;

STMENT
PARTMENT

A

§E DE
ENCE DEPARTMENT

E|ENGE BEPA
RN

1}

T

A
PU

)

3

W
A
WATE

3

i
TY

VERSITY OF WATERLO

VER
VER

i

Local Error Control in
SDIRK-Methods *

Syvert P. Norsett
Per G. Thomsen

CS-84-10

June, 1984




Local Error Control in SDIRK-Methods *

Syvert P. Norsett
Per G. Thomsen

Technical Report C5-84-10

ABSTRACT

This paper describes some problems that are encountered in
the implementation of a ¢lass of SDIRK-methods. The contribution
to the local error from the local truncation error and the residual
error from the algebraic systems involved are analysed. A section
describes 3 special interpolation formula. This is used as a predic-
tion stage in the iterative solution of the algebraic equations. A
strategy for computing a starting stepsize is presented,

Numerical results are given to verify some of the analytic
results.

1. Introduetlon
The explicit methods most often used for solving systems of ODE's

v=r{y), z=a, y(e) =y, € R’ (1)

have a finite region of absolute stability, When the system (1) is stiff the stability
requirements will restrict the stepsize and methods with unbounded stability
domains are preferable. Only methods with some kind of implicitness will have
this property, as stated by Lambert {1977], "Although no precise result concern-
ing all possible classes of methods exists {naturally!) it is certainly true that for all
commonly used methods, explicitness is incompatible with infinite R"'.

When a EDF-method or an Implicit Runge Kutta method is used, it requires
the solution of one or more systems of algebraic equations at each timestep. The
algebrajc equations are of the form

* This work was supported by NATO Research Grant Programme, project RG 096.20 and by
National Sciences and Engineering Research Council of Canadz, Grants: Al1244, A3597, A4076,
A8111, A8230, A3G39



2 Syvert P, Norsett and Per G, Thomsen

v=1y+ k- f(v) v € R" 2)

where i is computed from past information, k is the current stepsize and 7 is a
real positive parameter depending on the method being used. For some implicit
RK-methods a more natural way of writing the algebraic system would be in the
traditionzl derivative-form

Z=h[W+2Z), Z=h-f(v). )
We advance the solution over a step using values of Z found as solutions to

equations like (3). For that reason this form would often be preferred.

In Houbak, Norsett and Thomsen [1983] we addressed the problem of how
to stop the modified Newton iterations

N ) = o)y = —pp*) , i=z0 (4)
that are used to solve (2) or (3). We introduced the residual defined by
) Riv) = v = 4 ~ 7h - /(0) (5)
and the Newton matrix

NJ) =1~ qhd (6)

. . . .. 8 ;
where J is an approximate Jacobian matrix —aL evaluated at some point of the

numerical solution. One of the conclusions in that work was that {4) should be
stopped when the displacement becomes small, i.e.,

Hha ] =118 =] <7 ()

for some positive § = 0, where 7 is a positive iteration tolerance. Another criteria
for stopping the iterations (4} uses the residual of the v\*/ and requires that

IR || <r, i=0. (8

This is residual test as opposed to displacernent test when (7) is used.

However, the iteration error is not the only error committed when we use a
method to solve (1) numerically. The other major contribution is the local trun-
cation error I, (from the step z,, to z, +1)- In most existing codes the stepsize is
chosen so that the estimated local error I, satisfies

[ li<e ©

where ¢ is the local error tolerance.



Local Error Control in SDIRK-Methods 3

In this paper we discuss the choice of 7 and ¢ for Runge Kutta methods.
With 7 = k-¢ a value for x is proposed for each given Runge Kutta method, «
depends only on the coefficients of the method. In most present codes a very
small value of £ is used. This is equivalent to forcing the iterations to satisfy a
very strict condition. For the two methods considered here, however, the value of
k is in the vicinity of 1 and this results in large savings in the number of itera-
tions and thereby in the number of evaluations of the differential equation,

The Implicit Runge Kutta methods have no natural way of generating start-
ing values for the iterations {4).

However, using an interpolation formula based on information from the
most recent step, a starting value for the iteration of (4) is found. The derivation
of these interpolation formula is discussed in section 3.

In the last section some more details regarding the actual implementation
are taken up, details such as the balance betwcen the adjustments to the stepsize
based on (9) and the restrictions introduced do ensure convergence in the modi-
fied Newton Iterations (4), also how the starting stepsize may be chosen in an
efficient way.

2. Solution of the algebralc equations
Our study will be concentrated upon m-stage Runge Kutta methods given
by

o) =y, +h Fa; f{¥;} i=1.,m;A={g]}la; (10

=1

B) Vpar = v + b 378 £(%)

iwy

where y, is an approximation to y(r,). An alternative way of writing the
method is

a) k,' =h f(y,, + Z ﬂ"J‘ k]) i 1,..., m (11)
=1
5) Y41 =yp + b Ky
=1

Although the following discussion is general, we will illustrate the discussion using
the following two embedded SDIRK-methods from Norsett and Thomsen [1982].



Syvert P. Norsett and Per G. Thomsen

5 5

6 6

20 | _101 5

108 108 6

1 23 3 5

6 183 6l 6 (12)
25 36

b 61 ot °

d 2 824 1
61 671 11

Method NT I of order 3 with order 2 imbedded method
for local error estimation. The order 3 method is B-stable.

51 %

6 | 6

o _15 5

39 20 6

o | 28 _130 5
54 27 6

1 | 4007 8103 _ 133 5 (19)

6 | 6075 24300 2700 6
32 669 1

Pl 300 100 0

. | o 2197 9
150 2100 100 14

Method NT II of order 3 with order 4 imbedded method for
local error estimation. The order 3 method is A-stable.



Local Error Control in SDIRK-Methods 5

The local error in each method is estimated by
o= k@ =)@ @), )T (14)
=@ =M@ k... 5"

The solution of (10a) or (11a) is usually found by a modified Newton-method.
Let Y, ¢ = 1,..., m be the computed solution to (10a) and k;, s = 1,..., m be the
computed solution to (11a). When (11) is used we solve directly for the quantities
that are used to calculate y, 4, from (11b). When (10) is used, we solve for
}};, i =1,.,m, but we need f(Y;) to insert in {10b) for calculating y,4,.
Evaluating f(Y;) costs one extra function evaluation per stage and furthermore,
as pointed out by Shampine [1980] it also amplifies inaccuracies in the solution
when the system is stiff. The build-up of errors can be avoided if we put

ET, . kDT e (P, ..., F(E)T (15)

tm AT {[]7,", LY e ® .}
where e = [1,.,1]T € R™ .

This assignment corresponds to a PJEC]Y scheme for livear multistep methods
whereas using

Ei=hi(f), i=1..m

would resemble P|[ECIVE schemes. For nonstiff problems the P(EC)VE
schemes are preferred over P(EC)Y schemes but for stiff problems it turns out
that (15) represents the correct way of obtaining the final function values. In
order to illustrate the difference in behaviour the method (12) has been tested in
the form of (10) using both (15} and (16). The results are shown in Table 1.
They were obtained from the program SIMPLE, for details see Norsett and
Thomsen {1984].

METHOD € K= Fen Calls _Steps Problem
A B A B
5.00 1138 82 129 14
NT I 1074 0.50 815 170 56 15 Ds

0.10 290 201 23 16
0.01 280 189 16 18
0.67 1458 734 194 80
NT I 1072 0.20 1266 838 117 78 | Vander
0.10 1356 967 103 80 Pool

0.0t 1267 1212 81 81

Table 1: Comparison between P(EC)N E and P(EC)N for Stiff Problems.
A is P(ECYVE and B is P(EC)V, ¢ is the local ersor tolerance.




6 Syvert P. Norsett and Per G. Thomsen

For the method NT I used in displacement mode and using the form (10) we see
that P(EC)Y is more efficient than P{EC)VE. The difference is very significant
for large values of the parameter & while it becomes less striking as it decreases.
The reason for this behaviour is that a small £ will give smaller errors in
Y;, i = 1,., m and thus the influence from the last evaluation of the function

SF(¥;) in the P(EC )¥E mode is less important, while for larger £ values there can
be a significant change. This is in full agreement with the observations of Sham-
pine [1980].

FFor the method NT II which uses a mixed displacment and residual mode in
the formulation (10) the behaviour is similar. Here the difference between the
P(EC)VE and P(EC)" modes is not as large as for NT I but he trend is in the
same direction. The mixed displacement and residual mode is less sensitive to
this phenomenon than the pure displacement mode. The reason for this will
become apparent later.

As a general observation we remark that the global error for P(EC)N E was
slightly larger than that for P{EC' )N -mode.

Since we are aiming at efficiency and reliability, we are interested in relative
large  values and we therefore recommend the use of P(EC)M mode for stiff
problems.

We now address the problem of choosing between the forms (10) and (11).
Let us define

y=7T,,..., YT 1T, k=T, .., 7,17
F) =), f T, v =Ty, WT T e rm

Then (10) and (11) can be written as

]
Y=e®Ry, +h AR I(Y) (17q)
Vatr =8y + R T ® (V) (176)
and
{ =k f(e@y, + ARE) (18a)
{ynﬂ =y, +T @k {18b)

When the modified-Newton method is used for solving (172) or (18a) we get
NN -Y)=-Y +eQ®y, +hAQ@ f(Y'), i=0 (19)
where N{J} is defined in (6), and
NUIK '« K)= «K + b f(e @y, + AQK') i 2=0(20)

where Y* and K* are the iteratives obtained by the modified Newton process with
Y® and K as the starting values.



Local Error Contrel in SDIRK-Methods 7

If we define V* by
Viee@y, +tAQK', i=0 {21)
we easily find
NNV - V)= -V +e@y, +hAQ V), i=0 (22
Hence if Y' = e @y, + A @ K° the processes (19) and {20) are consistent.

Runs using NT I have shown that this is indeed the case, using local error toler-
ance ¢ = 10™* for the problem D5 gave the results shown in Table 2.

Form. (16} A B
with given Y0
# F. Eval. 170 173 189
# Steps 15 15 21
Ly norm of the 6.2 (-4) 6.5 (-4) | B3 (-5)
error at end point

Table 2: Comparison between Formulation (19) and (20)
with consistent and inconsistent starting values.
A: Formula 20 consistent with (19),
B: Formula (20) not consistent with (19).

Consider the relation
Y-y =agEK*M-K), izl

according to this and depending on the value of | | A} |, small variations in the
values produced by (19 or {20) may be present when the residual or displacement
test is satisfied. The values of | |A|| and [ [ A7!|| for the two methods con-
sidered are given in table 3.

[1All; | 12244 | 66724

FTATY L, | 20007 | 75377

Table 3: Norms of the coefficient matrices for NT I and NT II.



8 Syvert P. Norsett and Per G. Thomsen

Based on this discussion it has been decided to settle for the P{EC)Y mode using
(10) in our implementation of SIMPLE.

3. Starting values for the modifled Newton lterations

For linear multistep methods, like BDF it is an easy matter to obtain good
starting values for the modified Newton process. An interpolation formula based
on an appropriate number of previous solution values will provide an explicit
predictor.

In RK-methods there are no previous solution values to use for interpola-
tion, m}!y thg last accepted y-value. Let this be y, at the point 7, and let the
set of Y;-or K;-values be those used to calculate y,.

Previous implementations like SIRKUS, Norsett [1974] and SPARKS,
Houbak and Thomsen [1979], chose the accepted value directly, ie.,
Y=e® ¥,- This works fine in the cases where the solution does not change
rapidly. On the other hand a more accurate prediction can be obtained using an
interpolation formula based on the information that is available. Such as interpo-
lation formula will also be useful for generating output values at non-step points.
For explicit RK-methods such interpolation formula have been described by Horn
[1982]. Addition of extra stages makes one able to find contintous ERK-methods
with the same order as the basis method or order one lower than the basic
method over the interval of integration.

For implicit RK-methods related formulae can be derived. For methods
equivalent to collocation schemes (sece Norsett and Wanner [1981]) this is simple.
The interpolating polynomial is just the collocation polynomial, the order is m-+1
for an m-stage method. This type of interpolation is used in the STRIDE pack-
age (sce Burrage, Butcher and Chipman [1980]).

For the two methods NT I and NT II, both of low order, it is easy to con-
struct  interpolation formulas, the result for NT [ is given by:
Yp+1(0) = y(z, + 6R), 061

Bosa®) = 5, + B 5 00 (%) 22)

=1
b,(6) = 6(29—141 8 + 216 6%)/ 244
by(0) = 0(~1620 + 5832 6 — 3888 §%) / 671
ba(0) = 6(145 — 357 ¢ + 216 %)/ 14

The local error of (22) is 0(h%) for 0 < ¢ < 1.
For NT II we obtain the result:

Btal0) = 3 + b 3 5(0) S () (23)

i=l
b,{8) = 6(~100 + 220 4 + 8 6%)/ 300
b,{8) = 6(325—130 6 — 26 6%) / 300



Local Error Control in SDIRK-Methods 9

by(6) = 6(75—90 8 + 18 6%) / 300

with local error 0(k®) for 0 < 0 < 1. The order 0(k*) is acceptable here because
the formulae are intended for the calculation of local cutput only.

The interpolation formula can be used as an extrapolation formula as well
in order to obtain predicted values Y°. For that purpose we use

h R
R e (24)

where h is the current stepsize, and h; the stepsize used in the previous step.
This corresponds to ¢ = 1 + e C; in (22) or (23). The same type of idea for
0
prediction was used in STRIDE by Burrage, Butcher and Chipman [1980]. The
interpolation predictor kas been compared to using the strategy of usieg the most
recent y, as Y’O
For the problems D5 and the Van der Pool equation using NT I and NT II
we obtain the results in Table 4-6.

Local error # FCN # Steps Ly —error

tolerance Calls at end point

Problem | REPS-AEPS | A B A B A B
1072 53 36 15 | 10 | 86(-3) | 1.3(-2)
D5 1074 01 20 15 | 14 | 14(-8) | 43(-3)
107 387 515 | 50 | 49 | 3.5(-5) | 7.2(-5)
1072 337 322 77 67 | 1.3(-1) | 0.7(-2)
Van der 1078 559 | 700 | 08 | 00 | 9.4(-3) | 8.5(-3)
Pool 1074 1147 | 1528 { 176 | 164 | 1.7(-3) | 1.8(-3)

Table 4: Results for using interpolation-type predictor (A)
and previous solution value (B). Method NT L

Local error # Function # Steps L —error

tolerance Calls at end point

Problem | AEPS-REPS A B A B A B
1072 55 72 | 12 | 12 | 18(2) | 26(-2)
D5 10™4 100 120 16 | 17 | 30(-3) | 2.7(-8)
107° 582 676 | 54 53 | 8.1(-6) | 9.3(-5)
1072 586 602 77 82 { 6.6(-3) 3.8(-3)
VDP 1?2 1008 1 1185 | 127 | 118 | 6.4(-4) | 1.4(-3)
10t 1701 | 1729 | 188 | 168 | 1.1(-3) | 1.1(-3)

Table 5: Results for using interpolation-type Predictor (A)
and previous solution value (B). Method NT IL



10 Syvert P. Norsett and Per G. Thomsen

From the tables we conclude, that the (A)}-type prediction is the overall best way
of obtaining starting volues. The only case where (B) is preforming best is in the
Van der Pool equation with REPS = AEPS = 1072, In Table 6 the position of
the peak of the second solution component as computed in the same cases is
shown. It is seen from these results, that the case where the (B)-type prediction
was most efficient gave a very bad position for the peak.

Method NTI NT Il
local error A B A B
tolerance
1072 74.374 | 97576 | 81.407 | 81.252
1078 g1.218 | #1.690 | ®81.218 | 81.207
104 81.270 | 81367 | 81.176 | 81.185

Table 6: Position of peak value for the second
component of the Van der Pool Solution as
found by SIMPLE for differcnt strategies.

Remark. The method NT If was run at first using an interpolation formula dif-
ferent from (23). However, this had bad interpolation properties as may be
observed from the results in Table 7.

Local error | # Function ev. | # Steps Ly ~error
tolerance at end point
1072 72 12 2.6 {-2)
1074 180 17 2.7 {-3)
107° 676 53 9.3 (-5)

Table 7: Results from NT II for problem D5 using
alternative interpolation method.

The local truncation error T}, 4 ,{0) of the interpolation formula (23) ¢an be found
as

T, 41(8) = h* E1(8) - F(V)(y,) + O(rY) (25)
where E,(6) = 3% ~50 6° + 75 6% — 25 §) while the formula used to gen-
erate the results in Table 6 leads to

Ty 41(0) = 2% Ey(0) - FIK Yy,) + O(hY) (26)

where E,(0) = % (50 6% — 75 6% + 25 0) and we see that E,(6) = ~26 E,(0),



Local Error Control in SDIRK-Methods 11

this explains why {23) is the better choice and we see that the conditions imposed
on the interpolation formula must be selected carefully.

4. Iteratlon error tolerance In relation to local error tolerance

Locally there are two types of errors committed, the local truncation error
and the iteration error from the algebraic system. Each error is controlled
locally. Usually the truncation error will be bounded by a user defined local error
tolerance ¢ while the iteration error is made small compared to ¢, satisfying (8)
for 1 << e. In the programs SIRKUS, Norsett [1974] and in SPARKS, Houbak
and Thomsen [1979], 7 = ¢/ 100 was used.

In some cases iteration to convergence has been used. This corresponds to
7~ u, where ¢ is the unit-round-off-error of the computer used. In their pro-
gram STRIDE, Burrage, Butcher and Chipman [1980] use a different approach.
They estimate the number of iterations mecessary to obtain a displacement error
that satisfies (7) with r = «.

What strategy is best and what value that should be used for 7 is to quote
Shampire [1980] “a research question which peeds attention. It is clear that r
must be smaller than e. --. However, the smaller 7 is made, the more it costs to
compute y*. Experiments say that 7 a great deal smaller than ¢ does not improve
the solutions of the differential equation’.

We agree with most of this. But that we should need 7 smaller than ¢ is not
obvious and may not be correct. In fact this will depend on the method used.

In Houbak, Norsett and Thomsen [1983] the following relation between the
exact local truncation error, the computed local truncation error and the iteration
error is found

[ =1+ (- A7 ® N YHR(Y)

=4 +0b-af AT'@NTII) A B - J) &y (27)

For most stiff problems | 1N_1(j)| | is bounded by 1. Further
[ INTYIh A @ (J— J)|| is an estimate for the rate-of-convergence of the
modified Newton iteration and it must be smaller than 1 for convergence. The
contribution to the local error from the algebraic system is then bounded by

[1(=a)T a7 -7
It is seen that this contribution will depend on the coefficients of the method

used. Since we are interested in controlling the total local contribution to the
error we have chosen to use the following

[l <er2 (28)

Il(b*a)TA"‘I|f=§ (29)

Hence 7 is defined by 7 = ke where



12 Syvert P. Norsett and Per G. Thomsen

1
2| (6 - a)f A7Y |

(30)

values of x for different methods are given in Table 8.

Method | &, Ly-norm | &, L -norm
NT I 4.04 4.58
NT I 0.56 0.64
(7.6) 8.97 9.61
(6.8) 3.97 4.5

SIRKUS 0.17 0.21
NM I 0.11 0.156
{4.15) 0.065 0.077

Table 8: Values for x. The methods (9.6), (6.8) and
(4.15) refer to Norsett and Thomsen [1983].
NML is from Norsett {1974].

For the method (4.15) the last stage is explicit. In Butcher notation it can be
defined in the form

¢ A
| dT o
XA
P TER

In this case (27) becomes

=1+ 0 - A7 @ NU(HR(Y) (31)



Local Error Control in SDIRK-Methods

+5dT ATV QM A ® J) NYIHR(P)

Hence residual test is recommended for this case and the value of « is given by

1

K= il
211 =) + fal [1a" A7 |

A number of experiments have been carried out to give evidence to the above
considerations. The two problems, D5 and the Van der Pool equation ( ¢ = 10
have been used with different values for x and error tolerances 10™* and 10~
respectively. The starting values in the iterations have been obtained by interpo-

lation type prediction.

In the next two tables we give the data as follows

vawe

Number of Steps

Number of function evaluations

Norm of the error at the end point

The position of the peak in y, for the Van der Pool equation

D5: A/B/C
e=10"*

Van der Pool: A!B/C/D
€= 10"

100

10

5

1

0.5

0.1

0.01

76/15/1.4(-2)
138/17/2.2(-3)
150/16/3.4(-3)
187/16/3.1(-3)
200/16/3.9(-3)
268/16/2.1(-3)

283/16/7.3(-4)

640/98/2.4(-2)/85.045
1025/119/3.2(-3)/81.161
1135/121/9.1(-4)/81.209
1210/113/5.6(-4)/81.198
1429/115/8.9(-4)/81.191
1448/112/1.1(-3)/81.180

1793/114/5.0(-4)/81.177

Table 9: NT II with different values for xin 7 = x €.
The norm used id L,.




14 Syvert P. Norsett and Per G. Thomsen

D5: A/BfC
e=10"4

Van der Pool: A!B/C/D
€= 10"

100

10

1

0.1

0.01

51/16/1.4(-2)
72/16/4.8(-3)
91/15/1.4(-3)
91/15/1.4(-3)
100/17/1.2(-3)
121/18/1.7(-3)
163/16/4.5(-5)

200/15/4.6(-4)

401/115/1.6(-2)/84.013
484/101/7.1(-3)/82.698
629/103/8.7(-3)/81.060
661/109/1.1(-2)/80.941
685/103/7.0(-3)/81.520
888/104/4.0(-3)/81.237
1194/102/1.8(-3)/81.008

1607/106/1.6(-3)/81.063

Table 10: NT I with different values for K in 7 = & e.

The norm used is L.

From thé tables we draw the following conclusions:

1) Nothing is gained by making & very small, on the other hand when «
is too large the global error is affected. The reason is, when « is
large the iteration error is the dominant local contribution to the glo-

bal error.

2) The stepsize is unaffected by the choice of k. As «k decreases the
number of function evaluations increases, meaning that each step

involves more work.

3) We recommend the x-values from table 6 but as seen {rom the results
in Table 7 and 8 the exact value is not very critical for the perfor-

mance.

The choice of starting stepsize is a problem that in most library routines is
left for the user to supply. It is then expected that the routine will make adjust-
ments based upon satisfying the local error tolerance in the first step. However, if
the initial choice is outside the asymptotic region for the local error, the method
will not give an appropriate reduction. The order will be zero rather than p for a
p-th order method. The result is a rejection of the first step maybe several times
as illustrated in Table 11 where NT I has been used to solve problem D5 with

€ = 1074 using an initial stepsize hy =01




Local Error Control in SDIRK-Methods 13

ROC | EFAC H

0.02 0.48 | 0.0381
0.02 0.49 | 0.0148
0.02 0.51 0.0060
0.01 0.56 0.0027
0.05 0.68 0.0015

0.01 0.85 | 0.0015

Table 11: NT I on D5; ¢ = 10~ *; ROC = Rate of Convergence;
EFAC == Factor to modify the stepsize: EFAC > 0.8 =>
accept,
EFAC < 0.8 = > reject, H = the proposed stepsize.

As the table shows a total of 5 attempts have to be made. Each of them leads to
almost the same value of EFAC. The order is not p = 2 as the control assumes
but rather p = 0. If the order is assumed to be p = 0 one is led directly to the
correct stepsize. However, in general this would be a rather bad idea if we hap-
pened to be inside the asymptotic region with the first guess for k. A strategy
proposed by Hairer, Norsett and Wanner {198x] can be used for this purpose, the
basic ideas are as follows:

Let the norm of the local error for the method be
E, =0t | |y]] (31)

where C' is a characteristic error constant and 1y contains elementary differentials
of order p + 1. We can obtain a very rough but indicative estimate for | | ¢] |

by
el = (VTT Ty *! (32)

This estimate is at least correct for the case y’ = X y. We can obtain an esti-
mate of y*(z,) by

Wz = = Sz = (0o + &7 (o) = 1 (vo) (53)

where d is chosen as a multiple of the unit round of error for the computer in use.
If the local error tolerance is ¢ we will obtain a value for the initial stepsize b
given by



16 Syvert P. Norsett and Per G. Thomsen

1
N (V) L 34
" VT !

The initial point might be non-typical for the solution over the interval of interest
and a step of length A is taken using the forward Euler method. After this step
another stepsize k| is estimated using the same strategy. The starting stepsize is
then chosen as A = min(kg, hy). The total cost is 4 function evaluation which is
equivalent to the work in a normal step of a method of order 3 using one itera-
tion in each stage.

This method of computing the starting stepsize has been implemented in
SIMPLE and run on our favourite examples D5 and Van der Pool, and it was
found that the estimated stepsize was accepted in all cases but one. In the excep-
tional case a reduction by a factor of 3 was needed but this was inside the asymp-
totic range and thus acceptable. The other cases led to initial stepsizes that
could be increased by factors in the range 1.1 to 3.0 after the first step.

@

References

Burrage, K., Butcher, J.C. and Chipman, F.H. [1980]: “An Implementation of
Singly Diagonally Implicit Runge-Kutta Methods”, BIT, 20, (1980).

Hairer, E., Norsett, S.P., Wanner G. {198x]: To appear.

Horn, M.K. [1982]: “Fourth-and Fifth-order, scaled Runge-Kutta algorithms for
treating dense output’, SIAM J. Numer. Anal. 20, (1983).

Houbak, N. and Thomsen, P.G. [1979]: “SPARKS-A FORTRAN subroutine for
the solution of large systems of stiff ODE's with sparse Jacobians”, NI-79-02,
DTH, Lyngby, Denmark.

Houbak, N., Norsett, S.P. and Thomsen, P.G. [1983]: 'Displacement or residual
test in the application of implicit methods for stiff problems’, NE83-04 DTH,
Lyngby, Denmark. (To appear JIMA, Numer. Anal.)

Lambert, J.D. [1977]: “The initial value problem for ordinary differential equa-

tions: A survey”, in The State of the Art in Numerical Analysis, ed. D. Jacobs,
Acad. Press, New York, (1977).

Norsett, S.P,, and Thomsen P.G. [1982]: “Imbedded SDIRK-methods of Basic
Order Three”, Mathematics and Computation 8/82. NTH, Trondheim, Norge.

Norsett, S.P.. and Thomsen, P.G. : [1984]; “SIMPLE-a Stiff System Solver”. (to
appear), (1984).

Norsett, S.P. [1974]: “Semi-Explicit Runge-Kutta Methods™, Report no. 61974,
ISBN 82-7151-009-6, Dept. of Mathematics, University of Trondheim, Norge.
Norsett, S.P. and Wanner, G., [1981]: “Perturbed Collocation and Runge-Kutta
Methods”, Numer. Math. 38, {1981},

Shampine, L.F. [1980]: “Implementation of implicit formulas for the solution of
ODE's", SIAM J. SCI. STAT. COMPUT,, 1, (1980).

Shampine, L.F. [1979]: “Evaluation of implicit formulas for the solution of
ODE's”, BIT, 19 (1979).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

