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Abstract

A common approach for the numerical solution of the heat conduction
problem is to reduce it to a set of ordinary differential equations through
discretization of the space variables. Unfortunately the resulting system displays
certain properties, particularly sparseness and stiffness, which make it unsuited
to solution by many standard numerical ODE solvers. The methods examined
here are an alternate formulation of the semi-implicit Runga-Kutta schemes,
whereby the problem is further reduced to that of estimating an exponential
function involving matrix arguments. Stability and implementation considera-
tions lead us to examine rational approximations of the form

e = (coterzt - ten2™)/(1+02)", m=na,

where the value of b is chosen first, and the numerator coefficients are then cal-
culated to give maximum order at zero.

The primary aim of this thesis is to determine what values of the parameter
b most benefit the solution of the heat conduction problem. We find that by
making the method exact for some critical eigenvalue of the complementary
problem, performance during the transient phase can be greatly enhanced. The
ability of the approximations to satisfy such a criterion is established by two
existence theorems. Results concerning Ag-stability and the attenuation of high
frequency components are also given. Finally, a physical problem involving heat
conduction in a thermal print head is used to more fully demonstrate the
behaviour of these methods.
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Chapter 1
Introduction

1.1 The Semi-Discrete Problem

We will investigate numerical solutions for the following class of parabolic
initial boundary value problems, defined inside the finite region f2, with boun-
dary 812 and boundary normal n{z):

LD vale)Vule ) - Helulzt) + olzt)
u(z,0) = f(z), z€ (1.L.1)
nu(z,t) + buy(z,t) = g(z,t), z €3, t >0.

It is assumed that a(z) is positive and suitably smooth, and that S(z) is non-
negative and at least piece-wise continuous inside the region §2. The problem
can be generalized to include mild non-linearities in u, time dependent coeffi-
cients o and B, and so on, and the results stated here will often apply. The phy-
sical problems which can be represented by (1.1.1) are numerous, and include
heat conduction [2], fluid flow in a porous medium [28], and mass transfer [1].

The numerical approach to this problem will be that of semi-discretization,
or “the methed of lines“. We will illustrate this for Dirichlet boundary condi-
tions and {2 a finite interval [a,b] inIR!. The extension to higher dimension and
other boundary conditions is straightforward, and can be found in a number of
sources (for example, Varga [39], chapter 6).

The region |[a,b] is first discretized into N  subintervals
[zi,zi+1), =0, ...,N—1, where zg=a, zy=b, and z; <z;+;. A common stra-
tegy is to select a uniform mesh where 2ll intervals have an identical length A,



and we will normally assume this has been done. Define

u(t) = (e1t), . .., un~2(8))7,
where u;{t} is to be considered an approximation to u(z;,¢). The system can
now be written in the “semi-discrete” form

d—';(tf)- = =B~ lAn(t) + B s(¢); (1.1.2)

w(0) = (f(z1), ..., flan-1)T.

The length N—1 vector s{t) arises from the source term s{z,t) and any inhomo-
geneous boundary conditions. The N—1 by N~1 matrices A and B result from
the discrete approximation of the operator L given by

Ly = =V{a(z)Vu) + f{z)u,

with the appropriate boundary conditions.
For example, a standard method for estimating the operator L is through

the central difference approximation

y(z+h/2) —- y(z—h/2)
h

by(z) = = Vy(z) + O(hY),

giving
Lu; = ~;—21 (o + hI2) (s 41— ;) — a(zi = BI2)(wi = i—1)] + Plzi)u;.

In this case B is simply the identity matrix. When a(z}=1 and S(z}=0, the
matrix A takes the well known form:

2 -1 0

-1 2 -1
1 ..
F . .
-1 2 -1
¢ -1 2

Central difference is one of the most popular approximations, and we will
adopt it for our “model® operator. A second major class of methods are the



finite element approximations, particularly Galerkin and collocation (see
Mitchell and Wait [25]). The important point is that these approximations can
be expected to have the following properties in general:

1. The matrix A is positive semi-definite for Neumann boundary conditions,
and positive definite for Dirichlet boundary conditions. The matrix B is
positive definite.

2. A and B will often be symmetric (or can be made symmetric) and thus have
real non-negative eigenvalues. '

3. The matrices will be sparse and highly structured. In the one-dimensional
case, for instance, A is typically tri- or pentadiagonal. In the two-
dimensional case, A is banded and block tri- or pentadiagonal.

It will often happen that B is the identity matrix. Since the essential
characteristics of the problem are preserved, we will assume that this is case
from now on. In section 1.4 it will be shown how a more complicated operator
can be introduced during implementation. A

We have reduced (1.1.1) to a system of ordinary differential equations
(ODE’s) which, due to the properties of A and B, is well posed. It is now entirely
feasible to submit (1.1.2) to one of the many robust and well-developed numeri-
cal ODE solvers. This is inadvisable for at least two reasons:

1. The semi-discrete system often displays a property called stiffness, for
which many standard packages will be inefficient.

2. A competitive scheme should take full advantage of the special properties of
the problem. In particular, the sparseness of the matrices must be
exploited.

A class of numerical methods which are designed specifically for the efficient
solution of the semi-discretized heat equation is the subject of this thesis.



1.2 The Method of Rational Approximations

Numerical methods for the solution of (1.1.2) reflect those for general
ODE's (for a general survey, see Seward, Fairweather, and Johnston [33]). Our
approach, which is in fact equivalent to the class of semi-implicit Runga-Kutta
schemes, will be as follows:

Consider the homogeneous problem

dl;tt = —Au(t); u(0) given. (r.2.1)
The exact solution is
u(t) = exp(~tA) u(0),

where exp(C) represents the convergent series I+ C + C%s21 + ---. Since
time marching techniques are used, this will be written in the incremental form

u(t+7) = exp(—7A) u(t).

The symbol 7 will be used throughout to represent the time step.

An approximation to the exponential is now required. For reasons that we
will discuss later on, rational polynomials will be used, so that

exp(~ A} = R(rA) = (A} 'p(7A),

vhere p and q are polynomials. In practice, of course, matrix inverses are never
actually calculated. The numerical method can now be written

g(rA)vi+1 = p(rA)v, (1.2.2)

where v, is the calculated solution after the k'th time step.

| In view of the properties of A, we may consider instead the approximation
% toexp{—=z)

R(2) = q(2)"'p(2)

where 2 is a complex scalar with non-negative real part. Some useful properties
for R(z) will now be given.



Definition 1.2.1

A rational approximation R(z) to exp(—z) is said to be

1. Of order r if exp(—z) — R(z) = 0(z"* ) as 2z - 0.

2. A-acceptable if | R(2)] < 1 whenever Relz] > 0.

3. Agacceptableif [R(2)] <1 whenever | arg(z}| <.

4. Ag-acceptable if | R(z)| < 1 whenever z is real and positive.
5. L-acceptable if R(z) is A-acceptable and R(z) = 0 as | z| = ¢,

The problem of stiffness often arises in connection with the solution of
(1.2.1). A detailed description of this phenomenon will not be attempted here;
however, a good introduction is given by Shampine and Gear [34], and Finlayson
{8] discusses stiff systems arising from partial differential equations in particular.

Stiffness is caused by eigenvalues in the Jacobian (in this case, the matrix
—A) which have real parts that are large and negative relative to an appropri-
ate time scale for the problem. In these cases the time increment for many
numerical schemes must often be kept unduly small because of stability, rather
than accuracy, considerations. As an example, the largest negative eigenvalue of
the matrix — A resulting from the central difference approximation, assuming a
uniform mesh, is proportional to 1/4% The time scale is determined here by the
smallest eigenvalue, which is roughly constant for any mesh selection, and so the
system becomes stiffer as the spatial mesh is refined. For instance, to ensure the
stability of the Forward Euler scheme it is required that

B2
TS T

The method can be very inefficient when fine spatial meshes are taken.

This leads naturally to the consideration of methods which are stable
regardless of step size; that is, the A-stable methods. Dahlquist defines A-
stability in terms of the scalar equation



y‘ = “Ayl y(O) = Yo, Re()‘) >0,
resulting in the numerical scheme

vi+t = R(™\)vg, vo = y(0). (1.2.3)

Definition 1.2.2
Scheme (1.2.3) is

1. A-stable (As-stable) (Ag-stable) if v —~ 0 as k - o for any step size 7 when-
ever Re(\) >0 (] erg(7)| < a) (A is real and positive).

2. L-stable if it is A-stable and R{r\) - 0 as | 7A] - o, with Re(\) >0.

The definitions can be extended to the system (1.2.2) if A is non-defective
(has a full set of eigenvectors), which we will assume. In this case X\ is con-
sidered to represent the eigenvalues of the matrix A. Since for the current prob-
lem these will normally be real, we will primarily be concerned with Ay-stability.

The relationship between stability and acceptability is as follows:
Scheme (1.2.3) is A-fAq-/Ag-/L-stable if R is A-/A,-/Ag-/L-acceptable.

The advantage of rational over polynomial approximations is now apparent; A-
stability is possible only when the degree of the denominator is at least that of
the numerator. The price, of course, is that we must now solve systems of equa-
tions at each time step. This can be partially ameliorated by the careful selec-
tion of the rational approximation.

Lack of L-stability (assuming the method is A-stable) is normally not a
problem unless | R(7A)} = 1 as | 7A| =, in which case the larger eigenvalues
can become (very nearly) parasitic. A classic example is the Crank-Nicolson
scheme, although it occurs for all (n,n) Pade approximants. Various measures
have been suggested for overcoming this difficulty. Morris and Lawson [19], for
instance, recommend that time steps for Crank-Nicolson be no larger than lh/,
where [ is the spatial interval length. A major goal when developing numerical
methods is to avoid such stability-related restrictions.



1.3 Approximations to the Exponential

We now address the problem of choosing an approximation to the exponen-
tial. One of the best studied to date is the (m,n) Pade approximant, defined as
the rational

R(z) = ( é;;d,-z‘)-l (é';;c.-z‘),

where the coefficients are determined solely to maximize the order at zero. The
resulting method is of order m+n. The numerator and denominator are unique
up to a common scaling factor, which we resclve by assuming dg = 1.

The usual manner of displaying these methods is through the Pade table:

m 0 1 2
\
n

0 1 1-z 1—z+2%/2

1 1 1-2/2 | 1=22/3+2%/8
1+z 1+2/2 14273

0 1 1-2/3 1-2/2+2%/12

1+242%13 | 14227342216 | 1+2z/2+2%/12

Table 1.3.1: Pade’ approximants to exp(—z) for 05 m,n =2,

The entries for the first row (n =0) are simply the truncated Maclaurin series of
exp( = z). Some well known Pade’ approximants are:

(1,0) Pade” (Forward Euler)

(0,1) Pade’ (Backward Euler)

(1,1) Pade’ (Trapezoidal or Crank-Nicolson)
The stability properties are as follows:



Theorem 1.1

The (m,n) Pade approximant to the exponential is
(1) Ag-acceptable ff m=n.

(2) A-acceptableiff n—-2=m=n.

{38) L-acceptableiff n—2=m=n-1.

Proof
(1} Varga [38], (2)-(3) Ehle [5] and Wanner, et al {40].

In direct contrast to Pade are the Chebyshev approximations, where the
coefficients of R(z) are determined to minimize the uniform error on the positive
real axis:

| lexp(=2) = B(2)| | = = sup |exp(~2) — R(2)|

These were first studied by Cody, Meinardus, and Varga [4], and the princi-
ple application is for methods which give reasonable results using a single large
time step. Otherwise they would seem to be of little use, since the Chebyshev
property is not preserved under compounding (Lawson and Swayne [22]).

A disadvantage of the pure Chebyshev methods is that they have no order
at zero (although they can be manipulated to give a 0-order method). As we
shall see in the following section, order can be valuable for the integration of
forcing terms. In response, Lawson and Lau [18] proposed the order constrained
approximations, which determine the rational R(z) with minimum uniform error
that satisfies given order criteria at zero. To date, little work has been done on
these (but see Lawson and Swayne [21]).

The major drawback with all of the above methods lies in the implementa-
tion. From (1.2.2), we are faced with the solution of the linear system

g(rA)v = ¢

The matrix A is generally very sparse; however when ¢(rA} is formed explicitly
severe fill-in can occur, to the point where solving the system becomes infeasible.



In addition, the system can become very poorly conditioned. If, on the other
hand, ¢ has only real zeroes, we can perform the factorization

g(7A) = (I+b17A) - - - (I+d,7A)

and only the solution of systems similar in structure to A is required.

Unfortunately, the approximations discussed so far lead invariably to
denominators with complex roots whenever n >1. Two approaches have been
considered here. The first is to factor ¢ fully, and then carry out the solution in
complex arithmetic. A second approach is to factor ¢ into linear and quadratic
real factors. Normally, squaring A does not produce too much fill-in, and com-
plex arithmetic is avoided. The two methods are roughly competitive for simple
examples (see Swayne [36]), although complex factorization is perhaps preferred,
since it leads to better conditioned systems and avoids the more pathological
examples of matrix {ill-in.

These problems can be avoided altogether by selecting approximations

which have only real poles. In particular, consider rationals of the form

co+epz+ ot oepz™
(1+bz)* !

Rz} = m=n. (1.3.1)
The parameter b is chosen real and positive, so that the approximation is ana-
Iytic in the right-half complex plane.

An immediate question is then, why is only a single n’th order pole con-
sidered? As it happens, allowing more than one distinct real pole seems to offer
no advantages, based on either Chebyshev (Lau [16]) or order (Norsett and
Wolfbrandt [32]) criteria. As a bonus, the implementation of a single repeated
pole approximation can be expected to be more efficient in both time and
memory space; for instance, if Gaussian elimination is used to solve the linear
systems, only one LU decomposition is required.

The parameters b and {c;} can be selected using the same criteria as the
previous approximations. Norsett [30], for example, considered the case where
the order of the approximation at zero is maximized, resulting in an order m+1
method. This class includes the Crank-Nicolsor and Backward Euler methods. A
simple Norsett approximation which is not also Pad¢ is the L21 approximation
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of Swayne {36]. Lau {16} studied approximations of the type R;(z) where the
parameters are chosen to minimize the uniform error on the positive real axis,
both with and without order constraints. Since both the Norsett and Lau
approximations will be discussed in the next chapter, no more will be said at this
point.

This brings us finally to the approximations which will be studied in chapter
2; that is, where b is selected without constraint, and the numerator coefficients
are then chosen to give maximum order at zero. The resulting method is at
least order m. The main question posed is this: What values of b are of most
benefit in the numerical solution of the heat conduction problem? A number of
possibilities come to mind, including order, Chebyshev, and stability criteria, and
this provides a good basis for comparison.
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1.4 The Integration of Forcing Terms
In this section we discuss how the method of rational approximations can be

extended to include foreing terms. The full semi-discrete problem is

-';_‘t‘ = —Au(t) + s(t), u(0) given. (1.4.1)

The exact solution is given by (in incremental form)

t+r

u(t+7) = exp(—7Au(t) + [ exp[(0—~t—7)A]s(6)d0

or with the appropriate change of variable,

u(t+7) = exp(~7rA)u(t) + r}exp[(tr— 1)7Als(t +ondo

The method shown here, first proposed by Norsett [31a], and later adopted for
rational approximations to the exponential by Lawson {17], allows the efficient
evaluation of the integral term using the classic criterion that it be exact when-
ever s(t) is a polynomial of specified degree r or less. This is essentially an
extension of Hamming’s uniform method for scalar operators ([13], chapter 10).

Define the {’th moment m;(z) as

1
m;i(z) = [exp[lc—1)z]c*do
0
Using integration by parts, we can derive the following recursion relationship
mo = 2z~ [1—exp(—z)]
mi(z) = 27 1=im;_y(2)), i=1,---,r

Replacing the exponential with a rational approximation provides the impetus
for the following method: ‘

1. Choose an order r rational approximation to exp{—z)



-12 -

R(z) = q(2)7'p(2) (1.4.2)

2. Compute the coefficients of the r+1 rational moment functions from the

recursion
Mo(z) = 27 1-R(2)] {1.4.3a)
Mi(z) = 2" 1—iM; —1(2)], i=1, - r (1.4.3b)

3. Compute the coefficients of the r+1 rational weighting funetions from

id
Wi(z) = Yvi;Mj(z), i=0,--- (1.4.4)
=0
where 1;; are the elements of the inverse Vandermonde matrix associated

with the nodes a;, £ =0, - ,r.

The method can now be written

r
vi+r = R(rA)vy + 7 Y Wi(rA)s(t +a;7). (1.4.5)
img
For easily calculated source terms, the nodes {a;} are usually selected to be uni-
formly spaced between 0 and 1, including the endpoints. When the source terms
are difficult to caleulate, or involve the values of u, the nodes often correspond
to the previous r+1 time steps.

The over-riding advantage to this method lies in the following fact:
If R(z) is an order r approximation to exp(— z), then the rational func-
tions B(z) and {W;(z)} all have the same denominator.

Except for the right hand side, the systems of equations to be solved are the
same as for the homogeneous system (1.2.2}, and so the remarks of the previous
section still hold.

In implementation, Swayne [37] argues that the natural expression for
{1.4.5) is a partial fraction ordering. When R is chosen to be a repeated pole
approximation (1.3.1), this takes the form
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wilz) = a0 + ay(1462)7 + - oo 4 an(1+b2)7"
Wi(z) = 0i(1+b2) "1+ -+ + 0u(1+b2)7", i=0,---

Combined with a Horner-type scheme, v¢+; can then be evaluated from the pre-
vious time step vi as follows:

v 0 (1.4.6a)
fori=0(1)n—1do (1.4.6b)
'« (I+67A)  [v' + apoivi + 7500 0 - i8(t+ ;)] (1.46¢)
= .

Visr =V .+ agvE; (1.4.6d)

The efficiency of the method is obvious. When the forcing terms are simple
it is not much more expensive than the homogeneous problem. The source
terms at each node can be calculated once at the beginning of the loop and
stored, or recalculated each iteration; the proper choice is usually apparent from
the application. In any case, at least two vectors (v and v‘) require concurrent
storage.

Calculation of the moments, weights, partial fraction coefficients, and so
on, is tedious, and so FORTRAN routines have been provided in appendix A.
The code handles only the single repeated pole approximation, although most
routines would be useful for other rationals.

We can return to the more general problem (1.1.2}, where the matrix B is
not the identity matrix, by substituting B™!A for A and B™'s(t) for s(t) in
(1.4.6¢), giving

{(I+bB AW «v' + apoivi + 7570, 0B ls(t +a;7)}
F=0

Multiplying both sides by B results in the following replacement for (1.4.6¢):
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v «(B+ brA)" B(v" + ap-ivi) + ri‘mj,,,_,-s(t+a_,-r)]};
j=o

An interesting property of this method is the following:

Theorem 1.2

Let B(z) and Wi(z), {=0, - r be computed as in (1.4.2)-(1.4.4). Then
(1.4.5) is exact for the polynomial particular solution of (1.4.1) whenever s(¢) is -
a polynomial of degree r or less, and A is a real non-singular square matrix.

Proof
See Lawson [17].

The important point is that high order is a very useful property when com-
plicated forcing terms are present. If a method is both exact for the polynomial
particular solution and A-stable, we are guaranteed that the asymptotic solution
is correct, regardless of step size.
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1.5 The Integration of Transients

The previous section discussed the integration of forcing terms, and con-
cluded that the order of the method played 2 significant role in the evaluation of
the particular solution. This is not necessarily the case for the evaluation of
transients, as the following example demonstrates.

Gourlay and Morris [11] investigated a number of stable third and fourth
order extrapolation schemes using the following problem for comparison:

3u _ o

Py Yy 0=sz=<2, >0, (1.5.1)

v(0,t) = u(2,t) = 0, u(0,z) = 1.

Time steps of 7= .025 and 7 = .1 were taken, and the solution examined at
t = 1.2. The lowest uniform error achieved with any of the methods was
0.13x 10 % Yet using the same operator A, the simple 0-order scheme

[+ brAlviser = vk (1.5.2)

with 7 = .1 and & = 1.13454, achieves an error of 0.76x10~%. Of course, the
0-order scheme would not be useful if complicated forcing terms were present, so
this is not a criticism of the extrapolation schemes. The conclusion, however, is
that the requirements for the efficient evaluation of the transients are quite dif-
ferent than for that of forcing terms. In particular, high order is of little use if
large time steps are to be taken.

The above example may be understood by considering the exact solution to
(1.5.1)

u(z,t+1) = i‘a;sin(‘\/ﬁfz)exp(—p,- 7)

where

i
4

2
pi = y 6 = fu(z,t)sin(Vpir)de, =12, ---
0

The eizenvalues of the matrix A will be approximations to the eigenvalues
pi, £=1,--+- N—1, and the associated eigenvectors discrete approximations to
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the functions sin(V/piz), i=1, - ,N—1. To dampen each eigenvector at a
rate commensurate with the decay of the exact solution we require

R(rp;) = exp(—mp;), ¢=1, - ,N—1 (approximately). (1.5.3)

Note that the behaviour of R at zero, or anywhere but at the above points,
is irrelevant. In fact, condition (1.5.3) can be relaxed at all but the first few
eigenvalues, since only these are contained in any quantity in the exact solution
(except very near time zero). It is enough that the larger eigenvalues be A
attenuated at a rate greater than the first few. Scheme (1.5.2), for example, is
exact only for the value yj.

Methods which are exact for the exponential at one or more eigenvalues
have been termed exzponentially fitted. The main result for real eigenvalues is
the maximal interpolation theorem of Iserles {14]:

Theorem 1.3

If p(z) and ¢(z) are polynomials of degree m and n, respectively, then
f(z) = exp(—z)— p(z}/g(z} has at most m+n+1 zeroes (counting multiples)
on the real axis.

We shall refer to rationals which achieve this upper bound on the non-negative
real axis as generalized Padé¢ approzimants. Methods in this class have been pro-
posed by Liniger and Willoughby [24], Ehle [6], and Ehle and Picel [7].

Unfortunately, the generalized Pade suffer from the same implementation
difficulties as the (pure) Pade approximants; that is, of complex factors in the
denominator ¢(z) whenever n >1. It would seem worthwhile, if exponential fit-
ting is to be employed for the current problem, to develop high order methods
involving only real poles. One of the few examples to date is a fourth order
scheme by Cash [3].

That most schemes do not solve the complementary problem efficiently is
reflected in the well known heuristic that one must take small time steps when
transients are present. Since this i3 usually a temporary condition, a case must
be made that schemes which calculate transients both efficiently and accurately
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are worth developing. We make the following points:

1

In a survey, Shampine and Gordon [35] found that about half the problems
involving stiff differential equations require the accurate solution of rapid
transients, in addition to slowly varying portions.

Theorem 1.3 states, in effect, that if the forcing terms are smooth, and the
method is of high enough order, the time step is restricted by consideration
of the complementary problem alone. Once the transients have died out,
any time step whatsoever may be taken (provided the method is stable
enough). Under such circumstances, most of the work can be tzken up solv-
ing the transient portion of the problem. )

Certain problems have transients continually arising due to the forcing
terms being only piece-wise smooth in time (for instance, in periodic heat-
ing, or petroleum reservoir simulations).

Nevertheless, exponential fitting will generally be useful for only a small

part of the time in most problems. When the steady state solution is

approached, it is best to consider other methods. In addition, the e priori esti-

mation of eigenvalues is required.



Chapter 2
Selecting the Rational Approximation

2.1 Introduction

In this chapter we study a class of approximations to the exponential func-
tion as they apply to the complementary, or transient, solution of the heat equa-
tion. Our one dimensional model problem is as follows:

du 3%u
—_— = — =r=s!, t=
P pcl 0=<c=!, t=0,
u(z,0) = f(z), 0<z <, (2.1.1)

w(0,t) = u(l,t) = 0, t=0.

Following chapter 1, the system is discretized into N equally spaced inter-
vals, and the central difference operator used to approximate the second deriva-
tive. The solution of the resulting ODE is {in incremental form)

u(t+7) = exp{—rA) u(t) (2.1.2)

where A is symmetric and positive definite. An approximation to the exponen-
tial is now required. For the most part we will restrict ourselves to rationals of
the form

cot o+ oep2™
(1+b2)" ’

RMy(z) = m=n. (2.1.3)

The numerator coefficients are determined so as to maximize the order at zero;
that is

exp(—z) — RMy(z) = O(z™*1). (2.1.4)

It is understood that we always choose n=1. As well, the parameter b is chosen
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positive so that the rational has an n'th order pole at z=—1/b but is otherwise
analytic.

Some facts will now be presented which will be of use later on. If
(1+b2)" = do¢ +...+ d, 2" then

d = [’;]b", i=0,: - n.

To derive an expression for the numerator coefficients we multiply (2.1.4) by
{1+6z)" to get

(1+62)" (:vl_“;_fi) ~(co+ "+ epz™) = O{zm+l).

i=0

Equating the coefficients of z° to zero for i<m gives

min{i,n) ~1)F
L {],,l_ll__ iz

. ] — U, m.
P L (i — k)
Also note that
m+1 m em+12™ ! m+2
exp(=2z) = BRI (z) = exp(—2) — RiW(z} — m)n— =0z

and so the approximation error has the form

m+1
Cm+12

m+2y — - m+ly m+2 1.
(1+b2)" O(z""%) = em+12 O(2™74)(2.1.5)

exp(—2)= Ray(z) =

Laguerre polynomials will play a major role in deriving many of the results,
and a number of their properties are listed in chapter 3. For now, however, we
will need only the following:

Two Properties Of The Laguerre Polynomials

1. When M is a non-negative integer, the generalized Laguerre polynomial of
degree n is
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= E+X] gt

Ly=5% [”“‘}u)i n=0.

2. LM)y) has n distinet simple positive roots.

See, for instance, Lebedev [23].

The following theorem is due to Norsett [20]. We have generalized some-
what and used different notation.

Theorem 2.1

¢; = bIL}TU/D), isn,

G = (=)L) 1 IT (), i,

J=ma+1

d;

bELFT0), isn.

The remainder of this chapter will be concerned with finding the approxi-
mation Ryy(z) which is “best“ during the transient phase of the heat conduction

problem. The goal is a method which gives accurate results even for moderately
large time steps.

The most interesting problem lies in selecting the parameter . The follow-
ing three sections each describe a possible criterion for doing so. The first two
have previously been studied. The third criterion, which will be shown to be
best, is new for this class of approximations. The remaining sections will
develop this criterion more fully, as well as introducing an important variation.
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2.2 Selecting b to give Maximal Order
We have seen that R7(2) is an approximation to the exponential function

whose error is at least O{z™*!). For given m and n, however, there exists cer-
tain values of b such that

ezp(—2z) — RM(z) = O(z™*?). . (2.2.1)

These approximations were first studied by Norsett in [30] and [31], hence we
will refer to them as being of Norsett type. ’

From (2.1.5), the error for general RJ%(z) has the form

em+12™ 1 + O(z™*?). For an approximation to be of Norsett type, b must be
chosen so that ¢y, +1=0. From theorem 2.1, then, 1/b is the zero of:

[L,’:,:'{'“(y) if m <n,

LI'™y)  otherwise. (2:2.2)

By the second property of the Laguerre polynomials, the number of such points
is min{m+1,n}. These values of b, which we shall call Norsett points, have been
tabulated below for n=6 and 0sm=n.

It will be of interest later on to note that if R2;(2) is of Norsett type, then
it is also of the class RM™''(z), and so the error has the form
c'_"_|_22,m+2 + O(zm+3).
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m 0 1 2 3 4 5 6
AN |
1 1.00000 | 0.50000
2 0.50000 | 0.29289 | 0.21133
1.70711 | 0.788867
3 0.33333 | 0.21133 | 0.15898 | 0.12889
(.78867 | 0.43587 0.30253
2.40515 | 1.06858
4 0.25000 | 0.16667 | 0.12889 | 0.10644 | 0.09129
0.50000 | 0.30253 | 0.22043 | 0.17448
1.06858 | 0.57282 0.38888
3.10032 1.34537
5 0.20000 | 0.13820 | 0.10904 | 0.09129 | 0.07911 | 0.07013
0.36180 | G.23193 | 0.17448 0.14113 | 0.11908
(.65903 | 0.28886 0.27805 { 0.21688
1.34537 | 0.70751 | 0.47327
3.78420 1.62068
6 0.16667 | 0.11835 | 0.09485 0.08027 | 0.07013 | 0.06257 0.05667
0.28165 | 0.18813 | 0.14487 | 0.11908 { 0.10165 | 0.08%01
0.46702 | 0.29304 | 0.21688 | 0.17316 | 0.14452
0.81515 | 0.47327 { 0.33414 | 0.25795
1.62086 | 0.84109 0.55670
4.48739 1.80513

Table 2.2.1: Norsett points for 0Sm=n, 1=Sn =86,
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2.3 Selecting b to Minimize the Uniform Error

Selecting b to minimize the norm
sup |exp(~z) — Rn(2)] (2.31)
£ >0

was studied in a more general form by Lau [18]. The uniform error as a func-
tion of b shows a number of loczl minima, which we shall refer to as Lau points.
It was conjectured that the number of local minima was m+1 when m <n and
n otherwise. We note this is the same as for approximations of Norsett type.
The author’s own numerical tests indicate that the Lau and Norsett points
separate each other, with the smallest being a Norsett point. '

The following plot, with m =2 and n=4, is typical. Line NV is the coefficient
| e3| as it varies with b (c3=0 occurs at a Norsett point). Line L is the uniform
error {2.3.1) of the approximation as it varies with b {a local minimum occurs at
a Lau point).

NIV b
’ E

T T
0 1

Figure 2.3.1: Norsett and Lau points for Rfs(z).
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2.4 An Exactness Criterion for b

The third criterion will be developed for general rational approximations
(denoted R) to the exponential. The criterion equates the primary eigenvalue of
R(7A) with the attenuation of the primary Fourier component of the true solu-
tion. It has been used by Lawson, Morris, and Wilkes [20] to select an optimum
time step 7 for the Crank-Nicolson scheme. For the current schemes we will
show this can be done through the proper selection of the parameter b.

Consider the model problem (2.1.1). The exact solution is given by (in incre-
mental form)
-i’r'r

u(z,t+7) = L‘ a,sm( )exp( 2
(=]

)

_where

{ .
a; = fu(z,t) sin(-'%) dz.
0

The damping of the most persistent component alsin(flﬁ-} after a single time

step is

)

Consider also the exact solution (2.1.2) of the diseretized problem. If we replace
the exponential with an approximation R, the sclution becomes

Vi1 = R(7A) vg.
For the central difference operator, the eigenvalues of A are known to be

4ar . o iTh .
A= h2 sin ( 2 ), i=1,.,N—L1

We shall refer to the smallest eigenvalue Ay as Ap (for discrete). The damping
of Ap for a single time step is

R(xp) = R(——sm ( ))



-95-

The criterion can now be stated as satisfying
exp(—=Ap) = R{)\p) (2.4.1)

where (for the model problem)

r 4r . o wh
= TE Ao = g ey

Essentially, the error due to the spatial discretization cancels the error due to -
the approximation of the exponential; thus the most persistent components of
the continuous and numerical systems are damped at an equal rate. For this
reason, criterion 2.4.1 will be referred to as spatial error compensation, or SEC. ‘

When R is the Crank-Nicolson approximation, Lawson, Morris, and Wilkes
show that (2.4.1} is satisfied when

Ik

T~ —

T

For the current approximations we can list at least two strategies; prescribing
the time step 7 and then selecting the parameter b to satisfy (2.4.1), or prescrib-
ing b and selecting 7 appropriately. The former is in keeping with cur aim of
removing restrictions on the step size. The latter strategy, however, might allow
us to satisfy some other eriterion which depends on & alone; the Chebyshev cri-
terion of section 2.3, for example. Here we will adopt the first strategy of
prescribing the time step.

For a given time step 7, then, the question arises as to whether there exists
a value of b for which Ry(z) satisfies (2.4.1). The answer is generally yes, as
figure 2.4.1 demonstrates. The function

E(b) = exp(—7p) — Riy(\p) (2.4.2)
has been plotted as a function of b, and for various values of 7. The interval

length I is 1. Condition (2.4.1) is satisfied when E(b}=0.

Note for a given time step there may exist 2 number of values of b satisfy-
ing (2.4.1). Also note we have chosen a rather course discretization in space,
with h=.1. Section 2.6 will show that a slight variation of (2.4.1), particularly
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valid for a fine mesh, can always be satisfied.

.1
.05
a
b
a—EN
/ 4
C
-.05-
b -
-1
¢ 5 i s .

Figure 2.4.1: E(b) for 7= (a) .05, (b) .1, (¢) .5, (d) 1. (h=.1,1=1)
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2.5 Numerical Tests on the Transient Problem

In the previous sections, three possible criteria for selecting the parameter b
have been discussed. Here we present some simple numerical tests to determine
which might be best for the following problem:

du _

at ozt
u(z,0) = f(z), u(0t)=u(Lt)=0.

0<z=1, t=0.

The system is discretized into 20 equally spaced intervals (h =.05), replacing
the second derivative with the central difference operator. The rational R},(z)
is selected as an approximation to the exponential. The system to be solved is
then

Vie+1 = RI7A) vi.

The scheme is order 2 in space, order 2 in time, and order 3 in time when the
approximation is of Norsett type. A numerical examination shows the scheme to -
be Ag-stable when b >.1. For r = .0125, .05, .2, .5, and 1., the following critical
values of b were calculated (all values are approximate):

Norsett Lau SEC SEC SEC SEC SEC
Points Points | 7=.0125 [ 7=05 | r=.2 7=.5 r=1.

129 150 210 144 137 145 153
303 385 1.16 204 345 400 447
1.07 1.67 1.23 1.61 5.15 =34,

2

Table 2.5.1: Critical values of b for the approximation R,(2).

1 This point represents only a local minimum of | E(5)|.
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Test 1:  f{z) = sin{nz) . »
For time steps .025, .05, .2, .5, and 1., the numerical scheme was solved for

values of b in the range .1 to 2. The following error function was plotted as a
function of b:

o [ as

u(1) is the exact solution at time 1., calculated spatially at the discrete sample
points. v(1) is the computed numerical solution at time 1.

The results are shown in figures 2.5.1 through 2.5.5. Perhaps not surpris-
ingly, the SEC criterion gave dramatically superior results.

The 7=.5 case has an extra spike (the second one) which has an interesting
explanation. At this point we have

exp(—Xp) = =R p).

After two time steps, however, the damping factors of both the discrete and con-
tinuous systems have been squared, and hence are mow equivalent. In this
instance, then, SEC occurs every second time step. This phenomenon will not be
investigated further, but may be useful for approximations where SEC is not
possible in the usual sense.

Test2: f(z) = 3lsin(ixz)

i=t
The spectrum of the initial condition is “white“; that is, it contains every
Fourier component representable by the discrete system (see Hamming [13],
chapter 21). In the exact solution, all but the primary component are quickly
damped. A numerical scheme must mimic this behaviour to give accurate results.

Test 1 was repeated with the new initial condition. The error function
(2.5.1) has been plotted in figures 2.5.6 through 2.5.8. The two smallest time
steps displayed no appreciable differences between tests, and so these results are
not shown. The time step r=.2 was slightly less accurate at the first SEC
point. The two largest time steps, however, showed considerable loss of
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accuracy. It would appear that the larger time steps behave poorly when higher
frequencies are present; nevertheless, the exactness criterion of section 2.4
remained optimum. This will be discussed further in section 2.7.

Test 3: f(z) = IEsin(irrz), N = 40, 80

im
In the third test, the spatial mesh was increased to N = 40 and N = 80.
The initial condition remained white. As discussed in the introduction, the prob-
lem becomes progressively stiffer as the mesh is refined.

The results are shown only for 7 = .0125 in figure 2.5.9. In this case two
additional SEC points appeared, and so the implementation of the criterion
benefitted by taking a finer mesh. For other time steps there was no significant
change in the error curves from test 2, except for an expected shifting of the
critical points. These methods, then, were insensitive to the increased stiffness
of the problem.

~1.54

N b->
-3 T T T
.S 1 1.5 2

Figure 2.5.1: Test 1, (2.5.1) with = .0125.
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w

Figure 2.5.2: Test 1, (2.5.1) with 7= .05.

3
1.5+
G—
1.5+
b=
-3 T T T
1] .5 1 1.5 2

Figure 2.5.3: Test 1, (2.5.1) with r= 2.
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1.5+

=1.5+

Figure 2.5.4: Test 1, (2.5.1) with 7= .5,

-2

b -

' T
Q .3 i 1.5

Figure 2.5.5: Test 1, (2.5.1) with 7= 1.
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w

~1.54

Figure 2.5.6: Test 2, (2.5.1) with 7= .2.

w

-1.54

-3 T T T

Figure 2.5.7: Test 2, (2.5.1) with 7= 5.
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2~
0
-2_
. b -
d 5 1 L5 2
Figure 2.5.8: Test 2, (2.5.1) with r= 1.
a
-lu.
vz-l
_3—
" 5 ; s :

Figure 2.5.9: Test 3, (2.5.1) with 7= .0125,
(2) N =20 (b} N =40 (c) N =80.
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2.6 Exponential Fitting with b

In section 2.4 we presented the criterion

exp(—Ap) = R{\p) (2.8.1)
where
r
Xp=—t'§—, Ap = h2 sm(

From the Taylor series expansion

Ap=Ap
Ap

_ (=h)?
=5 + O(hY),

so for small & we have Ap = Ap. If it is assumed this holds exactly, that is
Ap = Ap, (2.6.1) can be written

exp(=\p) = R(\p), Ap = ";" . (2.6.2)
It will be convenient to define the error function
EJu(z) = exp(—2) — Riu(z),
so for the current methods, (2.6.2) becomes
EXudp) =0, A\p= %2-21 . (2.6.3)

Hence we have arrived at the criterion of exponential fitting. The suitability of
this criterion for the current approximations is shown by the following two
theorems. Proofs are given in the next chapter.
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Theorem 2.2 (m <n case)

Let
2 >0, m, and n be given, with m <n,
81 < 8 < *** < 8u+y be the values of & such that Biy(z) is of Norsett
type,
o1 <02 < *°° < 0p be the values of b such that RJ';(z) is of Norsett
type.

Then

L <01 <& < " <op <bn+yy

2. for a given ¢, 1=Si=m, there exists exactly one value of b €(8;,s;) such that
Enul(z) = 0,

3. there exists exactly one b > §p 4 such that E7(2) = 0,

4. for all other positive values of b, EJ(z)#0.

The following result has been shown in Norsett [28]. We will give an alter-

nate proof in section 3.3.

Theorem 2.3 (m=n case)

Let
z>0 and n be given,
6 < 8 < *++ < 6 be the values of b such that Rj;(2) is of Norsett
type,
01 <03 <+ < 0, be the values of b such that R};'(z) is of Norsett
type.

Then

1. i< <h< - <& <o,

2. for a given f, iSi=<n, there exists exactly one value of b€(8;,0;) such that
Eze(z) = 0,

3. for all other positive values of b, E} 4(z)#0.
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Definition 2.6.1

Given m and n, the ¢'th inferpolation interval will be defined as the inter-
val [&;,0;] from theorem 2.2 or 2.3 (as appropriate). When m <n, the m+1st,
or infinite interpolation interval is defined as the interval |§,+3,%) from
theorem 2.2.

Figure 2.6.1 shows typical behaviour for the approximation error. The
function Efy(z) has been plotted for 0=z=15, and for five values of b on the
second interpolation interval [fa,00]. The curves (a) and (e} correspond to the
Norsett points b = 82 and b = o3, respectively. Curve (¢) corresponds to a Lau
point (note the “equi-ripple® property).

.1

~. 05 N -7

2 -
=.1

¢ 3.bsg 7.5 11025 1k

Figure 2.6.1: E};(2) for b = (a) .30253 (b} .34 (c) .388 (d) .42 (e} .5.

Two Questions

1. When can the exponential fitting criterion {2.6.3) be used in place of cri-
terion {2.6.1)t That is, when can the spatial discretization error be ignored?

2. How does one calculate the value of b in some given interpolation interval
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[8:,0:] such that Bg(z) is exact for given Ap?

The first question is important since, while the eigenvalue Ap of the exact
solution may be well known, it will often happen that Ap cannot be determined
without considerable calculation. Unfortunately, the answer depends on the
approximation to —VZ, the time step, the values of m and n, the interpolation
interval for b, and so on. However, it is generally to be expected that if the spa-
tial mesh is “reasonably fine“, criterion (2.6.3) can be used with confidence.

Table 2.8.1 below shows values for the function

1
f1- [-i‘ﬁ(—)i-p-)—- " (2.6.4)

exp(—Ap)

for various values of A and 7. The b values were chosen from the second interpo-~
lation interval to satisfy (2.6.3) in each case. The function indicates the relative
error at ¢ = 1 introduced by using exponential fitting over SEC in the solution of
the model problem.

5 05 .005
A

1 .164 844x107 " | .844x1071
01 155x1072 | 813x107% | .812x107°
001 | .377x107% | .817x107% | .817x10”°

Table 2.6.%: (2.6.4) for various values of A and 7 {{ = 1).

The second question is easier to answer. We shall use a result from section
3.3 and state that Eqys,(2) and 7, (2) are of opposite sign for any z >0. Since
EJw(Ap) depends continuously on b, the point where Efy(Ap) = 0 can be found
by a simple iterative technique; the bisection method, for example. When the
interpolation interval is infinite {as in [6,+1,%)), one might first find an upper
bound by > 8pm+1 such that E7% (Ap) is of opposite sign to E7s , (Mp), but this
presents no real difficulties.
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2.7 The Non-Primary Components end Stability

It has been shown that a set of rational approximations to the exponential
of the type Ri(2) can be found which are exact {in the sense of section 2.8} for
the primary component of the transient solution. In this section we discuss ways
to ensure the remaining components, which in the true solution are quickly
damped, are properly handled. From section 1.5 we ask at least

RM{Ap) > | RM(z}] whenever z> Ap. (27.1)

One method is to require that R7u(z) strictly decrease to some non-negative
limit on the interval [0,¢). Obviously, such an approximation will also be Ag-
acceptable. When m <n we only require that R;{(z) be strictly decreasing,
since it is asymptotically zero. Surprisingly, such approximations are easily
found.

Theorem 2.4

Given n and m <n, let b be contained in the m+1’st (infinite) interpola-
tion interval of Rpu(z). Then R7%(2) strictly decreases with z on the non-
negative real axis.

The proof will be left until chapter 3.

Corollary 2.1

Given n, m<n, and Ap>0, there exists exactly one value of b in the
m =+ 1'st interpolation interval such that

1. R(z)is exact for z = Ap,
2. wslz) is Ag-acceptable, and
3. condition (2.7.1) is satisfied.

Theorem 2.4 also holds when m=n, and b is restricted to the n’th interpo-
lation interval; however the approximation is asymptotically negative here, and
so (2.7.1) is not assured. However, Theorem 2 of Norsett [30] can easily be



-30-

extended to the following:

Theorem 2.5

The approximation Ry s{z) is Ag-acceptable when b is contained in the n'th
interpolation interval.

Other interpolation intervals may still provide usable approximations. Fig- .
ure 2.7.1 shows plots of the logarithms of exp(—z) 2nd | Ris(z)], where the b’s
where chosen from the first interpolation interval so that the approximation is
exact for Ap = .206, 1.09, and 2.96. When [=1,, this satisfies criterion {2.6.3)
for time steps r = .03, .1, and .3, respectively.

0
-1
_2_
&, b o
. Pl
. .
N e _’-
Cee e .
-
-3 et
4”’
\\ »’
\\ "’
"4
a z -
4 |
g 3 5 8 8

Figure 2.7.1: (a) -z, and In[R7,(z)] fitted at
Ap= (b) .206 (c} 1.09 (d) 2.96 (interpolation points are circled).

It is apparent that (2.7.1) is most likely to be violated when Ap (propor-
tional to the time step) is large. This suggests calculating, for given m and n,
the maximum value Ag which satisfies the following:

If 0<Ap<)g and EJy(Ap)=0 then {2.7.1) holds. (2.7.2)
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Of course, there will be min{m+1,n} interpolation intervals from which to
choose the values of b, and it is worth considering each interval separately. An
interesting feature is that when b is restricted to a single interpolation interval,
(2.7.2) appears to be strict; that is, all calculations have shown that when
Ap > Ag, (2.7.1) does not hold.

The values of Ag which satisfy (2.7.2) are tabulated below for n=<6 and
0sm=n. Each pair (m,n) has min{m +1,n} entries, corresponding to each of
the interpolation intervals in order. An entry of 0 means that hg < .1, with the '
possibility that no value exists which satisfies the condition. An entry of o refers
to the resuits of theorem 2.4.

m| 0| L ] 2] 3] 4] 5|6
AN

1 o 029
2 o | 242 0
o 447
3 o | 3.80 { 1.17 0
o 2.92 0
c 617
4 © | 4.50 | 2.33 [t} 1}

c 4.24 | 2.06 Q
L 3.15 | 032

© 711
5 o | 526 | 3.15 | 1.11 0 V)
L) 5.28 | 3.30 | 1.04 4]
L] 454 | 2.52 0
] 3.28 | .282
co 769
6 o 594 | 3.80 | 2.02 0 0
© 6.15 | 422 | 2.38 0

L 5.66 | 3.80 | 1.71
® 473 | 2.80
@ 3.37 | 449
0 810

cOooo

Table 2.7.1: Maximum values of hs which satisfy (2.7.2).
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Some Remarks

1.

For the model problem, condition (2.7.2) implies the constraint

g
=

T=

Except for those cases delineated in theorem 2.4, we have a restriction on
the time step {typically between 7.1 and 7.5 when {=1.). In particular,
the results of test 2 (section 2.5) are explained. Most importantly, the res-
triction is independent of the spatial mesh.

For given m and n it is the later interpolation intervals, that is, the larger

values of b, which are best able to dampen the higher frequencies.

For given n, and ignoring the cases of theorem 2.4, it is the smaller values
of m which best dampen the higher frequencies. In particular, one should
not choose m=n if large time sleps are to be taken. This directly opposes
the goal of maximizing the order of a method.

To complete the discussion on stability we present the following result.

Again the proof is left to the following chapter.

Theorem 2.8

Let 1 and m=n be given, and let [§,0] be some finite interpolation interval

for R7s{z). Then R7y(2) is Ag-acceptable if b € [§,0] and both R7s(2) and R, (2)
are Ag-acceptable.

Table 2.7.2 shows the stability of each interpolation interval for 1=n=8

and m=n. The intervals have been organized as in table 2.7.1. The letter S

means the interval is Ag-acceptable throughout. Otherwise the interval has the
entry U.
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Table 2.7.2: Stable (S) and unstable (U} interpolation intervals.



2.8 Further Remarks

We have examined two closely related criteria for deriving approximations
which will efficiently solve for transients in the heat equation. Of these, spatial
error compensation (SEC) is theoretically the “correct® approach. Exponential
fitting (EF) is but a close approximation to the first if spatial discretization is
carried out accurately.

However, the EF approach merits attention for the following reasons: First,
it is independent of how the spatial discretization is performed. Second, there do
exist problems for which there is no discretization error associated with the most
persistent component of the complementary problem. An example will be given
in chapter 4. Third, EF is useful for general ODE’s which are not the result of
some spatial discretization. Finally and most important, there exist strong
theoretical results concerning both existence and stability. Similar results for
SEC would be difficult to derive, and probably the best approach is to assume
that the results for exponential fitting extend.

Nevertheless there will be instances when SEC should be used. This is espe-
cially true for problems in 2 and 3 spatial dimensions, where accurate spatial
discreiizations can only be achieved at great expense.

Further remarks should also be made concerning the selection of interpola-
tion intervals for exponential fitting. Apparently, the later interpolation inter-
vals are superior. In fact the so-called “infinite® interpolation intervals result in
approximations whose properties would appear to be ideal, and one would
assume any size time step can be taken. One problem does arise, however.

Recall that the implementation of our methods (section 1.4) reduces to the
repeated solution of systems of the form

I+AAlv=¢, 7=br (2.8.1)-

where v is to be determined. For the model problem, the condition number p of

I+ qA is roughly

1+ 4y/h®
1+ w22 °
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When +~ is small and k large, p approaches 1. When the opposite is true we can
expect a condition number of about 4N%7%. From this point of view, then,
small time steps and the earlier interpolation intervals are to be preferred.

A more extreme case occurs when Nenmann boundary conditions are intro-
duced in the model problem. Here A will be singular, giving

Consider the exponential fitting of R{y(z) = 1/(1+ bz) at Ap = #°n1%. The
appropriate value of 7 is

2
LT -1,

The exponential growth of 4 with 7 can be expected whenever an infinite inter-
polation interval is used. We now have

2
p=1+ ﬁg—{exp(%)— 1).

Obviously the time step must be restricted if a reasonably well conditioned sys-
tem is to result.



Chapter 3
Proof of Theorems

3.1 Introduction

The purpose of this chapter is to prove the results stated in chapter 2.
Beforehand, however, an important property of Norsett approximations is
required; specifically that the error is uni-modal on the positive real axis. This is
presented as a corollary to a general result on exponentially fitting in section
3.2. Section 3.3 then proves theorems 2.2 and 2.3 which comprise the main
result. The final section establishes the two stability-related theorems 2.4 and
2.8. This last result is based on a rather interesting property of the current
approximations; that is, that they vary monotonically with the parameter b
when b is restricted to a single interpolation interval.

In the main we will be concerned with approximations of the form

co +...t cmz™

Bz = — iy

where n=1,0=m=n, ) >0, and the numerator coefficients chosen so as to
maximize the order. z will always be assumed to be real. Define

E7u(2) = exp(—z) = RT4(z)

EM(z) is at least O(z™*1) at z=0. RM(z) is said to be of Norsett type if
Ery(z) is O(z™*%). We say RM(z) is ezact, or ezponentially fitted, at z if
E::;,(Z) ={).

This chapter will use Laguerre polynomials extensively, so the required pro-
perities are listed here and then referenced by number when needed.
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Some Properties Of The Laguerre Polynomials

L

8.

When X is a nop-negative integer, the generalized Laguerre polynomial of
degree n is

k
Myy = rintr]zy)
L)(y) has n distinct simple positive roots.
The zeroes of L}y) and L}¥} (y) separate cach other.

The zeroes of L)y) and L)*(y) separate each other, with the i’th zero of
L)(y) preceding the i'th zero of L}*'(y).

—L*(y) + La(y) + Lt}(y) = 0, n=1

d2 XA d by
y%iy) + (Hl-y)—%y-)- + nLa(y) = 0.
d' X
% = ~I*i(y), n=1
d by
y—%—*—’l = nLdy) - (R NLas(y), n=L.

See, for instance, Lebedev [23].

The main relationship between Laguerre polynomials and the current

approximations is given by theorem 2.1.
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3.2 Exponential Fitting of Rationa! Approximations

Lemma 3.1

Suppose f(z) is continuous on the finite interval {a,b] and differentiable on
{a,b). Also suppose f(a) = f(b) = 0, and f(z) # 0 if z€(a,b). Then there
exists some point ¢ €(a,b) such that f{c)+ f{(c) = 0.

Proof

Assume that f(z) >0 on (a,b), since otherwise we would prove the result for
— f(2). By Rolle’s theorem there exists a point z; in (a,b) such that f'(z;)=0,
so that

[z} + fl(z1) >0. (32.1)

Consider the interval I = [maz{a,b~.5},b]. By compactness, f(z) achieves its
maximum on I at some point 2z, <b. From the mean value theorem there exists
a point 22 in (2,,b) such that

f(8)= f(zm) _ = f(zm)

fleg) = S 25 = ST (e,

and since f(zm )= f{22),
flz2) + flz9) <O (3.2.2)

By (3.2.1), (3.2.2), and continuity of f(z)+ f/(z), there exists a point ¢ between
z1 and zg such that f{c)+ fY¢)=0. 1

Lemma 3.2

Suppose f(z) is analytic on some open, possibly infinite, interval (a,b} on
the real axis. If f{2) has M zeroes on (a,b), then f(z)+ f(z) has at least Af—1
zeroes on (a,b) (including multiples).



Proof

Suppose f(z) has N distinct zeroes at the points {ay, . ..,an}, ordered so
that oy <aj+1. H f(z) has a zero of order v at a«;, then f'(z), hence
F(2)+ fU(z), has a zero of order ¥—1 at a;. This accounts for M— N zeroes.
Consider the intervals

[oi,@i+1), i=1..,N-L

Each interval satisfies the conditions of lemma 3.1; hence f(z)+ f{z) = 0 at
some point inside the interval, and we have found N—1 more zerces. O

Theorem 3.1

Let
{a,b) be some open, possibly infinite, interval on the real axis,
p(2) be a polynomial of degree m,

g(z) be a polynomial of degree n with at most d distinet zeroes, none of
which are on {a,b).

Then f(z) = exp(—z) — p{(z)/¢(z) has at most m +d+1 zeroes (counting mul-
tiples) on (e ,b).

Proof
That f{z} has finitely many zeroces is given by theorem 1.3. Now

w = P(2)4'(z} = [p(2) + p(2)lg(z) _ pl2)
f(z) + £%z) G 7)

In the numerator, g(z) and ¢(z) will have n —d common factors which will can-.
cel with factors in the denominator. Hence in reduced form p(z) will be of
degree {(m+n)—(n—d) = m+d. It follows that f(z)+ f!(z) can have at most
m+d zeroes on (a,b). By lemma 3.2, the result now follows. o

Simply put, there exists a direct trade-off between the order of accuracy at
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the origin, and the ability to satisfy exactness criteria elsewhere on the real axis.
By setting the interval of theorem 3.1 to (—1/6,%), we have the following
results:!

Corollary 3.1

The current approximations Rp:{z) can be exact for at most one positive
value of z. Moreover, the zero of E;'(z) at this point is simple.

The following will be of use in the next section.

Corollary 2.2

Approximations of Norsett type are not exact for any positive value of z.

1 It has been drawn to the author’s attention that these corollaries can also be derived
from theorem 3 of Iserles {15], a result based on the order star theory. Nevertheless,
theorem 3.1 is still of general interest, since there are implementation advantages associ-
ated with repeated factors in the denominator.



- 50 -

3.3 Proof of Theorems 2.2 and 2.3

Lemma 3.3

For fixed z >0, m, and n, there exists at most min{m+1,n} positive
values of b such that EJ(z) = 0.

Proof

Consider
h(b) = (1+b2)" ETy(=)
= (I+bz)exp(—2) — (co +...+ epnz™).
Obviously Ex%(2) = 0 only if h(b} = 0. From (2.1.4) we see that ¢; is an i'th

degree polynomial of b when ¢=n, and an n'th degree polynomial of b when
i¢=n. Hence k(b) is an n'th degree polynomial of b, and has at most n roots.

Also, if m <n then

m+1
d_‘w;’:__glﬂ = exp(—z)(1+bz)" "™ "1™ *lp - - (n—m)

for which all roots are negative. It follows from Rolle's theorem that A(b) can
have at most m + 1 positive roots. 0O

Lemma 3.4
If o; is the i'th zero of L)X} (y) then

\ <0 iff odd
(a) La(es) >0 otherwise,
(b) similarly for L}*Y(a;).
If B; is the #’th zero of L)y) then

<0 if 7 even

(0) LZi(8) { >0 otherwise,
(d) similarly for L)}*'(8;).
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Proof

Property 3 of the Laguerre polynomials states that the zeroes of L)y) and
L3221 (y) separate each other. Part (a) now follows by noting that L)0) > 0.
Part {b) follows from (a}, since by the fifth property of Laguerre polynomials

L3t aq) = L) o).

Parts {c) and (d) have a similar proof. 0O

We will now restate and prove the main results.

Theorem 2.2 {m <n case)

Let
z >0, m, and n be given, with m <n,
01 < & < '+ < 8m+1 be the values of b such that R7(z) is of Norsett
type.
01 <02 < ‘- < 0Op be the values of b such that BT, (z) is of Norsett
type.

Then

L <o <&< - <om <dm+yy

2. for a given {, 1={=m, there exists exactly one value of b € (§;,5;) such that
Edw(z) = 0,
there exists exactly one value of b > 8,4 such that EJ%(2) = 0,,

4. for all other positive values of b, Ef4(2) # 0.

Proof _
Part 1: From (2.2.2), {4} are the values of b such that

L3T ™Y (we) = 0.
Similarly, {o;} are the values of b such that

Ly™1/b) = 0.
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From property 3 of the Laguerre polynomials, the zeroes of Lai? Y y) and
Ly "™(y) separate each other.

Part 2: Let 5=4§; where 1=<{=m. From section 2.2,
ET5(2) = em+22™ 2 + O(z™F3).
To determine the sign of Egs (2z) we may choose any z >0 from corollary 3.2. By

allowing z to be arbitrarily close to zero we have that EJ'(2) is of the same
sign as ¢, +2. If m <n—1, then from theorem 2.1

eme2 = (&)™ TELATT T (V/8;),
and when m=n—1
em+2 = —(n+1)(6)° L{1/5).

Now 1/6; is the (m +2—¢)'th zero of L%3T *(y), so in either case it follows from
lemma 3.4 {a}, (d)

<0 ifm+2—i odd
Els(2) >0 otherwise.

In a similar fashion, and noting that Ry,.(2) = R7,.'(2) (since ¢m = 0),

<0 fm+1—1 odd

EDo(2) = B0 (2) { >0 otherwise.

It follows that En’s(2) and EY, (2) are of opposite sign. Since Eg(z) depends
continuously on b, there exists at least one b; between 6; and o; such that
EDy (2) = 0.

Part 3: From part 2, E7s  (2) < 0. Now the numerator of R7(2) can be con-
sidered a polynomial of & of degree m, and the denominator a polynomial of
degree n. Since m<n

E7y(z) »exp(—z) aa b -,
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EJw(2) = ezp(—2z) as b = oo

that is to say, E7s(z) becomes positive at some point. Again by continuity there
exists at least one by >8,, + such that ET) (2)=0.

Part 41 We have found m+1 intervals, each of which contains at least one
value of b where EQ(2)=0. Lemma 3.3 states there can be at most m+1 such
values; hence each interval contains at most one. Moreover there exist no oth-
ers. O

Theorem 2.3 (m=n case)

Let
z >0 and n be given,
61 < b2 < -+ < 6, be the values of b such that Rps(z) is of Norsett
type,
01 <02 < -+ < 0, be the values of b such that R3;'(z) is of Norsett
type.

Then

1. o<+ <8y <oy,

2. for a given i, 1=Si=<n, there exists exactly one value of b € (5;,0;) such that
E:,b(z) = 0}
3. for all other positive values of b, Egs(z) # 0.

Proof
Part 1: From (2.2.2), {6;} are the values of b such that
Li(1b) = 0.
Similarly {o;} are the values of b such that
L) = 0.

Part 1 now follows from property 4 of the Laguerre polynomials.
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Eps(2) = Cne2z" T2 + O(z';+3).

As before, E3 5,(2) has the same sign as ¢, +2. From theorem 2.1
en+z = (n+1)(n+2)(&)"LI(V/6G).

Now 1/5; is the (n+1—:)’th zero of Li(y), so from lemma 3.4 (d)

<0 ifn+1—1i even
Eis(2) | >0 otherwise,

and from the proof of theorem 2.2,

i - <0 ifn+l1-iodd,
Ego(z) = Eng (2) >0 otherwise.

It follows that E3s(2) and Eq,.(2) are of the opposite sign, and the result fol-
lows as before.

Part 3: Similar to part 4 of the previous theorem. 0
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3.4 Preof of the Stability Theorems

Theorem 2.4

Given n and m <n, let b be contained in the m + 1'st interpolation interval
of Ry4(z). Then Ry(z) strictly decreases with z on the non-negative real axis.

Proof
Let
co +..t cpz™ p(z)
'”b(z) = == R
! {14+b2)" {1+bz)"
Then
dR74(2) _ (1+bz)p!(z) — nbp(2) _ _ |Cot..t Cm2™ @ 371)
dz (1+bz)* ! (a+bz)"tt T

We will first consider the coefficients ¢; for i=m—1. Since Rg(z) is an
order m approximation to exp{—=z), (3.3.1) will be an order m~1 approxima-
tion to —exp(—z). By theorem 2.1, then,

& =o' L}*W), i=0,--- m-1

From definition 2.6.1, b is in the m+1'st interpolation interval if 1/b = 1/6,
where 1/5 is the smallest zero of Li3T '(y). By applying property 3 of the
Laguerre polynomials m —1i+1 times, and then property 4 once, it is seen that
1/6 is smaller than the zeroes of L}*'™(y). Hence when y = 176, L} "' ~(y) will
be of one sign, and therefore positive since L} "'1""(0) >0. It follows that ¢; >0
when b=4.

For the remaining coefficient
Em = (n_m)bc,n.

Now ¢, = ™ Ly, "™(1/b), which is also positive when b2=4 (using only property 3

this time). Since all the coefficients {¢;} are positive, it follows that

dR7s(2)
z

4 <0 when z20. 0
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Lemma 3.5
Let n, m=n, and 2z >0 be given. If b is positive then
RZ) _ o
ab
if and only if 1/b is a zero of

{L,’r'.’"'"‘(y) if n<m,
Lialy) ifm=n,

Proof
ORT(z)  To+ A Eparz™ !
ab (1+bz)"+1
where
0 if =0,
&= cli+belio1—ne-y H1si=m,
be'p—nen, ifi=m+1,
' dC. sra=—i
«'=—5, ed ¢ =bLT().

We will first consider the case where 1=<i=m. By property 7 of the Laguerre
polynomials,

. dLPT(140)
; = e pi-1 VT
G-t = =T
hence
2ra-i s
& = ;-1EL'_(1fﬂ + [_bi—z_!_(n_'-,{_l)bi-l].m + ib"IL,-“-‘(l/b).

d(i/b)* d(1/)

Dividing both sides by 5°~! and setting y=1/b gives
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G _ dip dLy™ .
L U D G

=0
by property 6, and we have that afiy4(z)/ab = 0 iff €, +1=0. Proceeding simi-

larly for ¢, +1 gives

Cm+l e dLy"™(1/b)

If m=n then &np+1 = b"~1L}_,(1/b) by property 7. Otherwise by property 8

€m+1

bm

= —nLy"™(1/b) + nL3=T(1/6),
and by property 5 we have that p+; = nd™Ln ™ "Y1/8). n

Lemma 3.6

Let n, m=n, and z >0 be given, and let I be an interpolation interval of
ws(z) . Then Ry(z) is strictly monotonic as a function of b when €1,

Proof

We will only consider the case m <'n, since the argument for m = n differs
only in detail.

Let &; and i, 1=i=m, be the Norsett points as in theorem 2.2. From
(2.2.2), 1/6; is the m+2—i’th zero of LA37 ' (y), and Lo; is the m+1—¢'th
zero of L3™™(y). From properties 3 and 4 of the Laguerre polynomials, the
zeroes of Ly, ™™ !(y) are contained within the intervals (1/6;41,1/0;), 1Si=m.
Hence from lemma 3.5, dRy(2)/3b = 0 only when 4 €(0;,8;+1). The result now
follows by noting these intervals are disjoint from the interpolation intervals. o

The final theorem of chapter 2 now follows.
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Theorem 2.8

Let n and m=n be given, and let [5,5] be some finite interpolation interval
for Ry(z). Then RJ4(2) is Ag-acceptable if b €[6,0] and both RPs;(z) and
R2,(z) are Ag-acceptable.

Proof
Obvious from lemma 3.6 and the definition of Ag-acceptability. o



Chapter 4
A Study of a Thermal Printhead

4.1 Introduction

In this chapter we present some numerical studies with the following pur-
poses in mind: first, to demonstrate how the methods developed in chapter 2
might be utilized under more interesting circumstances, including two spatial
dimensions and Neumann boundary conditions; second, to carry out comparisons
between these and more standard methods; and finally, to show that problems
exist where exponential fitting {or spatial error compensation) is of obvious util-
ity.

The problem is taken from Morris ([26],[27}). Although we shall describe it
completely in section 2.2, only one portion, the two-dimensional thin film, will be
examined here. Numerical methods for the thin film problem are discussed in
section 2.3. In the final section we present the results of numerical tests.

All computations were carried out in single precision FORTRAN on the
Honeywell DPS-8/49 computer at the University of Waterloo Faculty of
Mathematics. The only exception is the double precision calculation of certain
coefficients, the source code for which is listed in appendix A.
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4.2 Description of the Physical Problem

The problem to be studied involves the heating of a print head from a ther-
mal line printer. A print head is composed of a matrix of individual elements, as
shown in figure 4.2.1. Printing takes place when thermally sensitive paper is
pressed against the print head and some or all of the elements are heated. Each
heated element reacts with the paper to create a single dot, the dots from a sin-
gle print head together forming a single character. When the image is formed,
the elements are allowed to cool until the next character. The principle advan-
tage to this system is that it requires few moving parts.

The goal is to develop a printer head which prints as quickly as possible. If
not enough time is allowed between characters, the elements overheat and a
blurred image results. Conversely when the elements are underheated the paper
will remain blank. Designing a print head which avoids these problems is expen-
sive if each prototype must be built in order to determine its properties; hence
the need for numerical modelling.

The construction of a single element is shown in figure 4.2.2. The zr and y
coordinates run in the horizontal directions in the figure. The 2z coordinate is
assumed to run in the vertical direction, increasing downwards. In this example
the dimensions of an element are taken to be 0 =5 z,y,z = 1, the boundary for
which is denoted 2. Morris argued in [26] that each element of the print head
may be modelled independently if Neumann boundary conditions are assumed in
the z and y directions.

HEATING
RESISTOR

PRINTING
SURFACE

Figure 4.2.1: A 5 x 5 matrix thermal print head - top view {from Morris [26]).
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707 2

THIN HEATING GLASS
FiLM RESISTOR SUBSTRATE

Figure 4.2.2: A single element of the matrix - side view (from Morris [26}).

Heat flow is examined in two separate parts of the element; the thin film -
(assumed here to be silver), which serves as the point of contact for the paper,
and the glass substrate upon which the film lies. The temperature gradient of
the film in the z-direction is assumed to be negligible, resulting in a two-
dimensional model. The film is heated underneath by a square electrical resistor
of dimension o« = z,y = 2 whose current switches on or off every ¢g seconds.
Cooling of the plate is assumed to take place through contact with the sur-
rounding air, which is held at a constant ambient temperature u=. The model-
ling heat equation for the thin film is then as follows:

du ®u |, 8%u
2 - ol + -5;.;) = v{u—ux) + ecsw(t)H(r,y) (4.2.1)
du du
o 0on 312 mo0,, 3y = 0on My=ot.
where
oK
pC
ko
pCD
e = -1
pC

1 if ¢t € 2ntg,(2n+1i)tg), n = 0,1,2,- -
su(t) = 0 otherwise
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1 if (z,y) € [a,f)x]e,d]
H{z y) = {0 otherwise.

The constants have the following meanings and typical values:

K Thermal conductivity coefficient i.

P Density 10.49
C Specific heat .0556

q Heat generated 10.

ho  Convective heat transfer coefficient .000053
D Thickness of film 000015
e Ambient temperature ’ 0.

The glass substrate effectively acts as a heat sink, with the boundary condition
at z = 0 defined as the temperature of the thin film. The modelling equation of
the glass substrate is fully three-dimensional:

du u | %u , o'
— + + 4.2.2
at - gzt o2 T 5 ( ).
ou du du
e = 0on df2;aq,, B—y = 0 on 8=y, o =00nd2,ml.
where
£1C1

and with constant values:

Ky Thermal conductivity coefficient .0028
p1 Density 24
Ci1  Specific heat 2

When the electric current is fixed at one position, either on or off, the sys-
tem will approach a steady state condition. However, if printing is carried out
as rapidly as possible then switching occurs long before, and the system remains
in a constant state of transience. Figure 4.2.3 shows a typical situation. Note
that after a few switchings, a kind of steady state is approached where the
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response becomes very near periodic. We are in the unusual position that the
failure of a numerical method to follow the transient phase accurately can result
in the wrong long term solution.

t -

g .2 5 .5 1.2
Figure 4.2.3: Temperature of the thin film at a single point (£¢ = .15).

i}

As remarked earlier, we will examine only the two-dimensional thin film
problem. Furthermore, since Morris [26] found no serious loss of aceuracy due to
the switching of the electric current, we limit our discussion to the transient por-
tion of problems whose source terms are held constant in time.
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4,3 Numerical Methods -

We will discuss various numerical approaches for the two-dimensional thin
film problem described in the previous section.

All methods are based on the same spatial discretization. A rectilinear grid
is superimposed on the film plate, dividing the # and y directions into N equally
spaced intervals, For Neumann boundary conditions the nodes at the boun-
daries are included, resulting in a system of (N'+1)? mesh points. In all numeri-
cal tests we will take N = 10 (h = .1). The central difference operator will be
used as an approximation to the second derivative at each point; that is

u{z+hy) = 2u(z,y) + u(z—h,y)
h2

g (2,y) = Su(z,y) = (4.3.1)

and similarly for uy(2,y). When 2z = 0 or l,‘(4.3.1) involves mesh points which
lie outside the plate. However, from the boundary conditions we set

ufzthy) — ulz=hy) _ o

uz(zay) = 2h

At z = 0, for instance, this can substituted into (4.3.1), giving

2u(hy) — 2u(0,y)

“n(o’y) = fl2

and so the point #({—#,y) does not appear.
Define Wi+ as the (N+1) by (N+1) matrix

2 =2 0
-1 2 -1
1 ..
Tz‘ - ’
-1 2 -1
] -2 2

Ix+1 as the (N+1) by (N+1) identity matrix, and
U=Wpn:+1®Iyns
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CV=In+1 @ Wy

where @ is the usual tensor product. The problem can then be written in the
semi-discrete form

d':ut = ~o (U + V)u(t) = vu(t) + s(t); u(0) given. (4.3.2)

Splitting Methods

Splitting methods are based on the following observation; that U and
(under re-ordering) V are tridiagonal, and hence can be inverted at compara-
tively little expense. Consider the problem (4.3.2) when v = s(t) = 0. The
exact solution is then

u(t+7) = exp(—re(U+V)) u(t). (4.3.3)

If U and V commute (that is, if UV = VU), which is true for this problem,
then {4.3.3) can be written

u(¢+7) = exp{—roeU)exp{—roV)u(t),

and we may then proceed as in section 1.2, solving at worst tridiagonal systems.

It is not clear how these methods can best be adopted for complicated fore-
ing terms. Morris, however, examined the following second order splitting
method, known as Alternating Direction Implicit, or ADI.

vie(l+ aU)" (I ~- aU)I - aV)ve — vesre + s{t +7/2));
Vit+l - (I + GV)_IV.;

where
Veryz = (I = ofU + V]jv, - *;—uv;, + 2ls(t),

a=
2"

In addition Morris considered the Locally One Dimensional (LOD) method.
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However, since its performance is nearly identical to that of ADY, this method
will not be mentioned again,

It is interesting that the radiation term vu was treated as a source term
rather than part of the elliptic operator Lu. With the splitting

exp(— U + oV + 1)) = exp(—reU)exp(— roV)exp(— i)
we arrive at a method which does not require an explicit predictor formula:
v« (I+aU)7! [exp(—)(I-aU)(I-aV)v; + rexp{—ru/2)s(t-l-n’2)];
Ve = (I+aV)™ v
This scheme (which Morris did not consider) will be referred to as ADII.
Although based on the (1,1} Pade¢ approximation, the method is L-stable when-

ever v > 0. By comparison, the ADI scheme can be shown to be unstable for
r=2/v.

A General Approach

Alternatively we can take the approach described in sections 1.2 - 1.4. In
this case the semi-discrete form is written

d_:(:ﬂ = —Au(t) + s(t); u(0) given,

where
A=0U+V)+
is a discrete approximation to the operator I, where
Lu = —o{uye + uy) + vu.

The procedure is then identical to the 1-dimensional case discussed earlier, and
affords far more flexibility in the treatment of source terms than the splitting
methods. Moreover, serious complications are avoided when U and V fail to
commute. However, the resulting systems are banded and block tridiagonal, and
in general are much more difficult to solve for than a simple tridiagonal matrix.
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Two classes of methods have been developed for the solution of sparse sys-
tems of this type. The first, the iterative methods {Varga [38], or Hageman and
Young [12]), require little memory space, but cannot take advantage of work
carried out in previous solutions. For this reason a direct method has been
adopted; that is, the quotient minimum degree ordering scheme implemented on
the SPARSPAK package.

SPARSPAK (see George, et al [9], [10]) is a user’s interface to various sparse
matrix soilvers. The matrix is assumed to be structurally symmetric and to
require no pivoting for numerical stability. Both assumptions are commonly met
by systems arising from the heat conduction problem. The method of solution is
divided into six separate stages:

1. The non-zero structure of the matrix is specified.

2. Rows and columns are reordered so as to reduce the amount of fill-in occur-
ring during factorization.

The values of the matrix elements are specified.
The matrix is factorized using LU decomposition.

The right hand side vector is specified.

I

The system is solved.

The important feature is that any stage may be repeated without redoing
previous stages. In the current schemes, for instance, steps 1 through 4 are per-
formed once at time zero, and steps 3 and 4 are redone whenever the parameter
b or time step is changed (hopefully rarely). Most time steps, then, involve only
the repeated execution of steps 5 and 6. The savings are critical, since matrix
factorization is more than 5 times as expensive as a single solve in our example.

The current approximations, whose denominators are composed of a single
repeated linear factor of A, reduce the amount of storage and LU decomposition
required to a minimum. Schemes requiring the inversion of two or more dif-
ferent linear systems per time step complicate matters considerably. Since
SPARSPAK can keep at most one system in core at a time, the factorized
matrices must be stored on disk files and read back in before each solve. It is
possible that the use of rationals with multiple poles (for instance, high order
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Pade approximants} could preclude direct methods entirely.

We will consider only those methods based on the repeated pole approxima-
tion (2.1.3). For convenience these will be referred to as the RP schemes. The
parameter b will be chosen so as to give an approximation of Norsett type, or to
exponentially fit {EF) some prescribed eigenvalue.

Exactness Properties

Consider the problem (4.2.1) with sw(t) = H(z,y) = 1. Given u(:;,y,t),
the exact solution at the following time step is

u(z,y,t+7) = f + i’ f:‘ a;;éi5{(z,y)bis(t),

imgje0
where
¢ij(2,y)} = cos(inz)cos(jmy),

¥ij(t) = exp[—ron’(i® + /%) + v)},
11
€
aiy = Ifiu(z,y:‘) - ;]¢,-J-(z,y)da:dy.
00
The methods ADI, ADI1, and those of type RP, can be considered in the
light of various exactness criteria. Specifically, we ask if the methods are exact
for the polynomial particular solution

€
“P(z ,!ht) = ;°

In this respect the ADI and RP methods are correct, but not ADI1. Of course if
the source term was polynomial and non-constant in time, only the RP methodsr
(if properly chosen - Theorem 1.2) would be exact.

In addition we consider the complementary problem. The RP methods ¢an
be exponentially fitted at one positive eigenvalue, and the obvious choice is that
associated with the most persistent component ¢oo(z,y) = 1. It can easily be
shown that the ADI1 method is also exact in this sense. This is summarized in
the following chart:
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ADI | ADI1 | RP(Norsett) | RP(EF)

Polynomial particular soin. E E E

First Fourier component E E

Table 4.3.1: Exactness properties of the numerical methods (E = Exact).

An interesting property is that there is no spatial discretization error associ- -
ated with the particular solution u, or with the first Fourier mode. In this last
instance, spatial error compensation is not required; exponential fitting is the
correct approach.
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4.4 Numerical Tests on the Thin Film Problem
In this section we present the results of numerical tests on the thin film
problem. The problem examined has only a constant heat source:

du a%u o%u
Smf =5+ ) - vu +
at =G taE Tt

and initial condition
u(z,y,0) = cos(xz )cos{ry).

The exact solution is known to be
u = -:—’-(l — exp(—wt)) + cos(wz)cos(ry)exp(—(v + 207°)t).

Errors are displayed using the function

logio | [ u(t) = v(t)| | =

where u(¢) is the exact solution sampled at the mesh points, and v{¢) is the com- -
puted solution, both at time ¢.

Figure 4.4.1 shows the consequences of fitting each of the two Fourier com-
ponents which make up the complementary problem. The uniform error of an
RP scheme based on the R};(2) approximation has been plotted as a function of
b for various times in the solution. The best choice for fitting can be seen to
vary with time. Earlier in the solution it is best to fit (or actually, spatial error
compensate) the faster decaying component. If accuracy at larger times is
required, fitting the slower decaying component is preferable.

One solution to this dilemma is to develop approximations which fit both
Fourier components at once; however, such methods are beyond the scope of this
thesis. A second approach is to {it different components at different times in the
solution. Probably the best solution is to {it the most persistent component, but
ensure the error near time zero is small through small time increments and high
order. This is similar to what is done using conventional methods, although the
time steps can now be increased at a much earlier stage.
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N:
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Figure 4.4.1: Error of R{(z) as a function of b at
t = (a) 025 (b) .05 (c) .1 (d) .15 (e) .2, r = .025.

Numerical tests were carried out using the following methods:

A ADI
B ADI1

and RP methods based on the following approximations to the exponential:

R
R}
R
R 20080
R3p
R%.1.707] 1
Ris
R%,.?ssﬁ?
R3,

AT momE0oa

Order 2
Order 2, EF

Order 0, EF

Order 2, Norsett (Crank-Nicolson)

Order 1, EF
Order 2, 1st Norsett (L21)
Order 1, 1st EF

Order 2, 2nd Norsett
Order 1, 2nd EF
Order 3, 2nd Norsett
Order 2, 2nd EF
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All exponential fitting was carried out for the first Fourier mode @y o(z,y). “Ist
EF“ means the parameter b was chosen from the first interpolation interval,
although the exact value remains undetermined until the time step is specified.

Figure 4.4.2 shows the uniform error as a function of time for methods A -
E using a constant time step of 7= .025. Time steps of .05 and .01 were also
studied, but no signilicant changes in the qualitative performance were found.

Note that the results of comparisons between the methods depend on where
the error is analyzed. For instance, ADI1 is superior to ADI for ¢ = .4, but
behaves poorly when the steady state solution is approached. This was expected
from the exactness properties. The advantage of the exporentially fitted RP
methods becomes clear only when the unfitted component has disappeared
(about ¢t = .2). Soon after this point, however, the error becomes essentially
zero.

It is interesting to compare methods based on approximations with the
same form. Methods D and E, for instance, have values for b of .5 and .51262,
respectively. This apparently slight change gives rather marked differences in
behaviour. Figure 4.4.3 compares errors for the methods F through I. The first
interpolation interval of the R}; approximation was found to be considerably
better than the second except when very large time steps were taken. Methods J
and K are examined in figure 4.4.4. High order was found useful among the
Norsett approximations, but not among the exponentially fitted methods {com-
pare K with G or E). The added expense makes method K less desirable for
problems with constant source terms.
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Figure 4.4.2: Error for methods A - E, r = .025.
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Figure 4.4.3: Error for methods F - I, 7 = .025.
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Figure 4.4.4: Error for methods J and K, 7= .025.

B
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Cost Comparisons

We have not yet attempted to compensate for differences in the costs of the
various methods. Doing so is not at all straightforward, since the cost per time
step is highly dependent on the implementation. For instance, there exists sub-
stantial tradeoffs between execution time and memory space when choosing
among the options of the SPARSPAK package. In addition it must be assumed
that the values of & and 7 in the RP schemes are changed only rarely, since oth-
erwise the cost of refactorization must be taken into account.

For simplicity we have chosen implementations which optimize the execu-
tion speed, measured in operations per time step. An operation is defined as a
single precision floating point multiply or divide. Memory space is measured in
the number of floating point variables requiring concurrent storage. Assuming
an RP scheme is based on the approximation R7(z), rough estimates of the
costs per time step are given below:
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ADI | ADI1 RP
Operations | 1200 | 960 | 1540n -+ i20{m+1)
Storage 500 300 6000

Table 4.4.1: Approximate costs per time step.

Comparisons between methods were made by examining the amount of
work required to achieve a given error tolerance at a given time in the solution.
Computation began at ¢ = 0 for each entry in the tables below, with the time
increment held constant during the course of a single run.

Time | t=.1]|¢t=3]|¢t=.6
Method
A 14.4 28.8 31.2
B 48 18.2 38.4
C 168 9.9 5.0
D 17.8 28.5 32.0
E 14.2 7.1 10.7
F 19.9 39.8 43.2
G 19.9 13.3 13.3
H 206 206 216
I 166 16.6 6.6
J 20.6 27.5 34.4
K 20.6 13.8 17.2

Table 4.4.2: Work {operations/1000) required for error = .001.

Again the results of comparisons vary with time. The splitting methods
appear to be most efficient very early on. At ¢t = .3 the exponentially fitted
methods are superior. At the latest time level, those exponentially fitted
methods which possess the monotonicity property of theorem 2.4 {methods C
and I) are clearly the best. This last result supports what we have said in sec-
tion 2.7; that is, an approximation must have special properties if it is to prop-
erly attenuate the unfitted components in the presence of large time increments.

The following tables compare a Norsett method (F) with an exponentially
fitted method (G) under a range of error tolerances. It appears that
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exponentially fitting becomes progressively more valuable as error tolerances are
reduced.

Error 01 .001 | .0001
Method
F 13.3 | 39.8 | 113.
G 10. 13.3 16.6

I
&

Table 4.4.3: Work required for various error tolerances at ¢

Error | .01 | .001 | .0001
Method
F 10. | 43.2 | 128.
G 10. | 13.3 16.6

Table 4.4.4: Work required for various error tolerances at £ = .6.
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Appendix A

Section 1.4 describes an efficient means of handling source terms in the
method of rational approximations. It has been found, however, that the calcu-
lation of parameters can be tedious even for very simple cases. This appendix
provides FORTRAN routines to carry out the task for approximations involving '
a single n'th order real pole.

The two user interfaces PALPHA and POMEGA return the values of
parameters {a;} and {w;;}, respectively. Since these routines are fully com-
mented, they will not be deseribed here. All other routines are subordinate and
need not be accessed directly by the user. The rational approximation is
assumed to be of type R7s(2) (section 2.1). Approximations of the same form,
but having numerator coefficients not determined solely by order constraints,
may be accommodated by appropriate changes to routine RCOEFF. All rou-
tines were tested on the Honeywell DPS-8/49 computer at the University of
Waterloo Faculty of Mathematics.
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CO..O‘.O‘.“‘O“‘t““t““.‘t‘t“t‘t“ttt...‘CO.“..“t“.!.!.t.tttttta

PALPHA Calculate the coefficients ALPHA(i), i=l,...,N+1, where

M ALPHA(2) ALPHA(N+1)
R (s) == ALPBA{1) + --------- F ovie F o meeeeaeaaaa.
N,B (1 +B 1) {1 + B z}**N

Input Parameters:

M, N, B Parameters describing a repeated pole
approximation of the type (2.1.3), where the
numerator coefficients are determined so as to
maximise the order at zero.

WORK Work array of Mtl double precision variables.

Output Parameters:
ALPHA In the context of section 1.4,
ALPHA(i) <=> <alpha>

i-1
Note that if M< N then ALPHA(i)=0, i=sl,...,N-M.
Restrictions:- M D= 0, N D= max{1,M}, B> 0.
All FP variables (B,WORK,ALPHA) are double precision,

AR Z R R R E R R EREER R E R R ERE R RN EZ AR RS R R R R E RN RS RERRERERER SR TN
SUBRGUTINE PALPHA (M,N,B,ALPHA,WORK)
DOUBLE PRECISION B,ALPHA(1) ,WORK(1)
CALL RCOEFF (M,N,B,WORK)
CALL PARTF (M,N,B,WORK,ALPHA)
RETURN

[oYoNeNsNoRoXoRoNoNoRoRoRoNoNoNoNoNoNoNoNoNoNoNol

END

c‘..i"““l.‘t’.‘l3‘l.‘.‘t“.t“.“t‘ttit‘..i“‘*‘O‘.‘t.“.“t““““.

POMEGA  Calculate OMEGA(i+1,j), i=0,...,IORDER, j=I1,...,N, where
CMEGA(i+1,1) OMEGA{ i+1,N)

W (2) me memmemnmnnn- T S , i=0,..., [ORDER
i (1 + B 1) (1 +B z)**N

are the weight functions described in (1.4.2).

Input Parameters:

M, N, B Parameters describing a repeated pole
approximation of the type (2.1.1), where the
numerator coefficients are determined so as to
maximize the order at sero.

10RDER No. of weighting functions to be calculated - 1.
(<= the order of the approximation).

NODES(i+1), Interpolation nodes {in the context of section 1.4,
o, ..., NODES(i)] <=> a }. Nodes must be distinetl
TORDER i-1

aaceacacaaoocaaaoaQa
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NDIM Row dimension of OMEGA. (> IORDER+1)

WORK Work array of 3*P*P double precision variables
where P == max{Nt1,IORDER+1}.

Output Parameters:
MEGA In the context of section 1.4,
OMEGA(1,j) <= w
i-1,j

Restrictions: M <Gw 0, N >=max{1,M}, B> 0, 0 <= IORDER <= M+l.
Alt FP variables (B,NODES ,WORK,(MEGA) are double precision.

[ E R R R E NS N E R R R Y RS R R E R R RS R R R E RS R R E R R R P R R R PR E R RS R RS R TN S R 3
SUBROUTINE POMEGA (M,N,B, IORDER,NODES , OMEGA , NDIM, WORK )
DOUBLE PRECISION B,NODES(1},O0MEGA(NDIM, 1) ,WORK(1)
INTEGER WDIM,WDIM2
C....... All we do here is allocate working space for POMEGI.
WDIM = MAX (N+1, [ORDER+1)
WDIMZ = WDIM**2
CALL PGMEG1 (M,N,B, IORDER,NODES, OMEGA ,NDIM,
* WORK ,WORK (WD1M2+1 ) ,WORK( 2 *WDIM2+1) ,WDIM)
RETURN
END

[+XeRsReXoNoNoNoRoRoReoNoNoNoNo]

Ct‘t.‘.tt‘l‘l““l“‘."“...l“.O‘“‘.l.‘“.“..‘.‘.‘...Oi.l.‘.‘.‘.i...

C POMEG1
C Same as POMEGA, except three work arrays are given,
Lof each of size WDIM * WDIM, where WDIM Des max{N,IORDER} + 1.

c“t‘ll‘t‘..l.‘....‘...QI..“'.‘..‘....‘Q‘O.‘.‘“""‘.‘...‘t“‘i.‘.“.t

SUBROUTINE PGMEG! (M,N,B, IORDER,K NODES , (MEGA , NDIM,

. WORK1 ,WORK2 ,WORK3 ,WDIM)
INTEGER WDIM
DOUBLE PRECISION B,NODES(1),OMEGA(NDIM, 1),
. WORK1 (WD IM, WD IM) ,WORK2 (WD IM,WDIM) ,
. WORK3 (WD IM,WDIM) , SUM, BINOML

C....... Calculate numerator cceflicients

CALL RCOEFF (M,N,B,WORK1)
C....... Calculate denominator coefficients

DO 100 T == 1 ,N4i

WORK1(1,2) = BINOML(N,I-1) * B**(I-1)

100 CONTINUE
C....... Get numerator coefficients of moments

CALL MCOEFF (IORDER,WORKI ,M,WORKI (1,2} ,N,WORK2 ,WDIM}

C....... Multiply by the inverse Vandermonde
Lo JR to get the numerator coefficients of the weight functions.
CALL VDMINV (JIORDER+1,NCDES,WDIM,WORK1 )
DO 400 I = 1,IO0RDER+1
DO 300 L = 1,N
SUM = 0.D0
DO 200 J == 1, [ORDER+1
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SUM = SUM + WORK1(I,J) * WORK2(L,J}
CONTINUE
WORK3 (L, 1) = SUM
CONTINUE
CONTINUE

Calculate partial fractions of weights
DO 700 I == I, ORDER+1

CALL PARTF (N-1,N,B,WORK3(1,1) WORK1(1,1))
CONT INUE

Place solution in proper format in OMEGA
DO 800 1 == 1,IORDER+1
DO 850 J = | ,N
OMEGA(I,J) = WORK1(J+1,1)
CONTINUE
CONTINUE

RETURN
END

C...‘“‘.O‘.‘l.".l8‘“tt“‘“t“‘l“..““."‘.Ot.l."“““““.'l.lOl

aaaaoaaQaoaaa

100
200

RCOEFF

M

Calculate the numerator coefficients of R (Z) given by

max{N,i} l
--- i

C(i+1) = > BINOML(N,j) B (-1;"’

1}' (i-j)1, imo,...,M

ju=

Restrictions: M>= 0, N>=1, B> 0.

BEEEENESIIIES SIS LSRR LRI RE NN FILAELCAL S ARSI SSSBEBBRBASRERSIRRRLTER

SUBROUTINE RCOEFF (M,N,B,C)
DOUBLE PRECISION B,C(1),FACTRL, BINGVL
C(1} = 1.D0
IF (M.EQ.0) RETURN
DO 200 T = 1 .M
C(1+1) = (-1.D0}**1 / FACTRL(I)
NI = MIN {N,I)
DO 100 I = t,NI
C(1+1) = C(141) + BINGML(N,J) * B**J * (-1)**(I-J)
/ FACTRL(I-3)
CONTINUE
CONTINUE
RETURN
END

C.tt.t.‘.‘.““t“‘.t“.‘..t.‘."..‘.l.l“..‘t‘."O“““““.‘.‘."““

C Calculate FACTRL == N!

CC‘t‘t..‘l“.“‘i"‘t““.‘t"‘."‘t‘“‘.‘.’.““‘O‘t“‘.“t“‘.‘l‘l....

DOUBLE PRECISION FUNCTION FACTRL (N)
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FACTRL = 1.D0
IF (N.LT.1) RETURN
DO 100 1 = 1,N

FACTRL = ] * FACTRL
CONTINUE
RETURN
END

c..'t.t‘t...t.‘.‘l.‘..‘.“‘.“““..‘t-“‘.‘“.““‘.“““‘.“.““"..

C

Calculate BINGML = NI / (M! * (N-M)!)

C‘““t““.‘t‘..l“t.“‘t‘.““‘...‘t....t‘“.““."“‘..‘..t.‘.l‘i“‘

DOUBLE PRECISION FUNCTION BINGML (N,M)
DOUBLE PRECISION FACTRL

BINOML = FACTRL(N) / (FACTRL(M) * FACTRL(N-M))
RETURN

END

CHA3FIL0 B4R L AERESEAILAN0 RIS EIEILPHRRATHEBNISIBRI4 40O IbDs

aaaoaaacaaaaaaaaQad

200

300

MCOEFF
We are given the 'IORDER’ order rational approximation to exp(-x)r
NOMC(1) + ... + NUMC(M+1} z2°**M
R(g) == s-ccmmmicami it , M<=N,
DENC(1) + ... + DENC(N+1} 2**N
Calculate the values C{j,i}, j=i,...,N, iml, ..., IORDER+!, euch that
C(1,i) + ... + C(N,i) z**(N-1)
i-1 DENC(1) + ... + DENC(N+1) z**N
is the (i-1)’'th moment function defined by (1.4.3a,b).

The row dimension of C is assumed to ROADIM.

AR AR R LR RS LA AR AR R R R R R R R R E R S R R R R R R R R R R R R R L RS RS R R R Y]

SUBROUTINE MCOEFF ( IORDER,NUMC,M,DENG,N,C,RONDIM)
INTEGER 1ORDER,M,N,ROADIM, I,J
DOUBLE PRECISION NUMG(1),DENC(1},C(ROADIM, 1)

vivs Cage i =0

DO 100 J e I,N
C(J,1) = DENC(J+1)
IF (M.GE.J) C(J,1) = G(J,1) - NIMO(J+1)
CONTINUE
IF (IORDER.LT.1) RETURN

... Case i =1,...,I0RDER

DO 300 I = I,IORDER
DO 200 J = 1,(N-1)
C(J,1+1) = DENC(J+1) - I * C(J+1,1)
CONTINUE
O(N, I+1) = DENC(N+1)
CONTINUE
RETURN
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END

CHIF 3244040304300 4RB X400 5008500080080 00200 4802223825305 00083

PARTF
We sre given the rational
O(1) + ... + C(M#1) 3*°M
(t +B 1) **N

Calculate the coefficents PFC(i}, i=l,...,N+1 such that the above
rational has the partial fraction decomposition

PFC(1) + PFC{2) + ... +  PFCO(N+#1)

(1 +B 5) (1 +4B3) ** N

Note that it M< N, then PFC(i), i=,...,N-M, will be zero.
(AR EE SRR AR R R R R R R 2 R E R R RS R R R R R R R R F R R R N R F R R PR SRS R R R X
SUBROUTINE PARTF (M,N,B,C,PFC}
DOUBLE PRECISION B,C(1),PFC(1),BINOML
DO 100 [ == 1 ,N+1
PFC(1) = 0.D0
100 CONTINUE
DO 300 I e= 1,N&1
NIl =N-1+1
IF (NI1.LE.M} PFC(1) = C(NI1+1) / B**NI1
IF (1.EQ.1) GO TO 300
DO 200 J = 1,1-1
PFC{I) = PFC(1} - PFC(J) * BINOGML (N+1-J,NII)
200 CONTINUE
300 CONTINUE
RETURN
END

aaaaQaaaocaaaaaaacad

CrIE22 525 2XXEIAREFAEFSIA 2SI ESSEI NSRRI CNNRELXIBALAESEEBEILERINNED

VDMINV

Calculate the NxN inverse Vandermonde matrix A given the N nodes
NODES(1),....,NODES(N).

A(i,i) = ©(i,i) / FP (NODES(i))
1

where C(i,j) is the (j~|} th coefficient of FP (x), and FP (x) is the
fundemental polynomial given by: i

(x-NODES{1)) ... (x-NODES{i-1}) (x-NODES(i+1}) ... (x-NODES(N))
AR E R R ERE RS R R AL RN R R SR R R RS R R R R E R R R R R R R R RS R RS R R E R E RN FR PR RN RERRER T R ]
SUBROUTINE VDMINV (N,NODES,ROWDIM,A)
INTEGER N,ROADIM,ROW,COEFF
DOUBLE PRECISION NODES(1},A(RCADIM,1),FPDIV

aaoaaaacacaaaQad
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Initialise first coefficient of each row
DO 100 ROV = 1 N
A(RCV,1) = 1.D0
CONTINUE
1f N=1l that’s itl
IF (N.EQ.1) RETURN

Calculate C(i,k), i=1,...,N, k=t,...,N.
DO 500 ROW = 1,N
DO 400 J = 1,N-1
IF (J.LT.ROW) INODE = I
IF (J.GE.ROW) INODE = J + 1}

A(ROW,J+1) == 1.D0
DO 300 K= 1,J
COEFF w= J - K + 1
A(ROW,COEFF) = -NODES{INODE) * A(ROW,COEFF)
IF (COEFF.NE.1) A(ROW,COEFF) m A(ROW,COEFF) +
A(ROW, COEFF- 1)
CONTINUE

CONT INUE
CONTINUE

Divide by FPi (NODES(i))
DO 800 ROW = 1,N
FPDIV = 1.D0
DO 700 J = I,N-1
IF (J.LT.ROW) INODE = J
IF (J.GE.ROW) INODE = J + 1
FFDIV = FPDIV * (NODES(ROW)-NODES{INGDE) )
CONTINUE
DO 800 COEFF = 1,N
A(ROW,COEFF) = A{ROW,COEFF) / FEDIV
CONTINUE
CONTINUE

RETURN
END

Multiply coefficent array by the factar (x - NODES(INODE))
......... Coefficients are processed in reverse order.
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