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ABSTRACT

We introduce the notion of inverse morphic equivalence of two
morphisms g and & on a language L . Two variants are con-
sidered, the universal version, that is h~}(z) = g~(z), for all =
in L, and the existential version, that is A~ 'z) N g™ Y(z)# &,
forallz in L with A" (z) U g™ (z) 2 &.

Keywords: morphism; homomorphism; inverse morphism; equality set;
inverse morphic equivalence; test set.

1. INTRODUCTION

In [CS1] the notion of the agreement of two morphisms on a language was
abstracted from previous work on the equivalence of iterated morphisms, see [RS]
for example. This work heralded the subsequent studies of morphisms in which
well known families were characterized morphically |[C2], the Ehrenfeucht Conjec-
ture was confirmed in a number of cases, [EKR| and [AW], and the relationship
with algebraic systems of equations was explored, [CK2| and [ACK|. More
recently, in [CFS], the family of regular languages has béen shown to be generable
by sequences of morphisms and inverse morphisms of length four applied to the
language 0*1. This has been generalized to arbitrary families in [KL] and [T},
while [LL] have studied the generative power of sequences of morphisms and
inverse morphisms. In particular they prove that a sequence of length greater
than four has an equivalent sequence of length four. It is these two avenues of
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research that led us to study inverse morphic equivalence on languages. Inverse
morphisms may be viewed as a restricted class of nondeterministic generalized
gequential machines (ngsms). The equivalence of ngsms and other transducer
models has been studied in [C1] for example; where equivalence means equality of
the collections of input-output word pairs. Inverse morphisms correspond to func-
tional ngsms.

Although we only study inverse morphic equivalence in this paper,
equivalences may be studied over any class of mappings, for example mappings of
the form gh™', g”'h , or even fo™'h ; where f,g, and h are morphisms.
Recently this suggestion has been followed in [KK] and [KM]. Clearly the
equivalence problem may also be studied when different types of mappings are to
be applied, for example a morphism and an inverse morphism.



Inverse Morphic Equivalence 3

2. PRELIMINARIES

Our basic notions in this note are those of a morphism or homomorphism
from one finitely generated free monoid into another and the inverse relation of
it. We gall a homomorphism h: B =~ a’ periodic if there exists an element
vin A such that A(X) C u , and binary if the cardinality of X equals two.
We say that b has bounded delay p (from left to right), for some p = 0, if the
following holds for all words v and v in £ and all letters a and b in 5 :

h{au) h(bv}
implies a = b
lul =p

where £ means: “is a prefix of " and || denotea the length of the word u.
Let ¢ and & be morphisms from £ into 4° and L 2 language over 4.

We say that the inverse morphisms ¢~ h 1, a° -23 umvenauy (resp.
ezistentially) agree on L if g ’(z) = l(:c) for all z in L (resp.

l(:c)f‘lh z)# @D for all z in L ﬂ(h(E JUg(E")). Letting
L = A" we obtain the notions of the universal inverse cquality language of
morphisms g and h, denoted by IEy(g,h), and the ezistential inverse equal-
ity language of g and h, denoted by IE3(g,k), as follows:

IEy(g,h) = {z € A" | g7 Yz)= b Yz) = B}
and o
E3(g,h) = {z € A" |g"z)Nh~ Yz} 2 D} .

Observe that if g and k are injective, then [Ey(g,h) = IE3(g,h). Moreover,
the inverse equality languages are connected to ordinary equality languages,
denoted by E(g,h) and defined as {z € £° :g(z) = h(z)}, in the following
way:

Lemma 2.1 For all pairs (g,h)} of morphisms from £ into A" we
have:

IEy{g.h) G IE3(g,k) = h(E(g,k)).

Proof: The inclusion is clear by the definitions. To prove the equality we
first assume that z € JE3(g,h). This means that for some word y we have
y €R7Yz)N g™z} which implies that h{y) =z = gly), that is
y € E(g,h). Consequently, z € h(E(g,h)). Conversely, if z € h(E(g,h)),
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then there exists a word y in E(g,k) such that z = h{y)}, which means that
h(y) = z = g(y). Therefore, z € IEx(g,k). O

A well known conjecture of Ehrenfeucht, cf. [CS2], states that for each
language L over £ there exists a finite subset F of L such that to test whether
or not two arbitrary morpisms g and h: L <« A agree on L it suffices to
test whether or not they agree on F. F is called a {morphic equivalence) test set
for L.

Here we consider a similar problem for inverse morphisms. Accordingly we
say that a finite subset F' of a language L over A is an inverse morphic
equivalence test sct for L in the universal (vesp. ezistential ) sense if for all mor-
phisms g and h: X - A" the relation g~'z)=h"Nz) for all z in
F O (R(E)U g(£))) implies the relation ¢7'z) = h7'z) for all z in
F N (h(E,)U g{Z)) (resp. the relation g z)N AN 2)# D for all z in
F N (h(Z]) U g(E)) implics the relation g~'(z) N h™Yz)# @ for all z in
LN (R(Z")Ug(Z")) ). We simply call such test sets V —test sets and
J-teat sets , respectively.

Finally, we note that without loss of generality we can assume that the
alphabet A is binary. This situation is achieved by the standard encodings of
arbitrary alphabets into binary ones. Consequently from now on we assume that
A is binary.

&
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3. TEST SETS FOR INVERSE-MORPHIC EQUIVALENCE

We first point out that the main results of [ChK] and [EKR] ¢an be modi-
fied for inverse morphisms as follows.

Theorem 3.1: Let L be o fized alphabet. For each languege L and each
integer p = 0 there exists a [finite subset F of L such that for all pairs
(g,h) of morphiems from L having bounded deloy p we have:

L CIEy(g,k) it FCIEy(g,k) .

Proof: It was proved in [ChK] that for each integer p = 0 there exists a
regular language R over some alphabet V such that for each pair (9,k) of mor-
phisms having bounded delay p there exists another morpism 7 such that
E{(g,h) = r(R). So it follows from Lemma 2.1 (since bounded delay morphisms
are injective) that

IEy(g.h) = hr(R) .

Now, the result follows from the following lemma of [ChK]:

Lemma 3.2: Let L’ and R' be languages over A and V, respectively. There
ezists o finite subset F' of L' euch that for each morphism 1 from V* into
A we have

L'CHR') ift FFCHR'). O

Theorem 3.3: For each language L there exists o finite subset F of L
such that for any peir (g, h ) of binary morphisms we have

L CIE3(g,k) iff FCQIE3(g.h) .

. The theorem follows from Lemma 3.1 and the following characterization
result:

Lemma 3.4: For each pair (g,h) of binary morphisms there ezists
another morphism 1 over the alphabet {a,b,c,d} such that
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IE3(9,h) = r(({a} U {bc"a})") .

Proof: , In [EKR] it is proved that for any pair (g,2) of binary morphisms
from '{a,b} .th.eir equality language is of ome of the following three forms:
{87}, (87 8) for some words f,7 and §,0r N} U {z:|z|,/|=], = k},
where k is nonnegative rational or k = ® and [z|, denotes the number of
a’s in the word 2. Moreover, in the third case both of the morpisms are periodic
with the same minimal period 4, and therefore h{E(g,k)) = w' for some w .
Indeed if k=0 or k = ® then w =4 or a, respectively, and in all other
cases w = h{a)’h{b)! where ¢ and g are coprimes and t/g = k. So the
lemma follows from Lemma 2.1. O

Lemma 3.4 gave a partial characterization for existential inverse equality
languages of two binary morphisms. Our next example shows that in the case of
universal interpretation there are more possibilities.

Example 3.1: Let n = 1 and the morphisms g and A be defined as:

¢ =q” PISTLAL
g: h:
b~a”+l b -a®

Clearly, for any z in .{a,b}' if g(z)="h(z) then |z|, = |z|,. Therefore
IEy(g.h) C (GQ“H) . We claim that

Eylg.h) = {e™*y |0sisn}. 3.1)
Assume first that § > n . Let { = n+iy, where iy > 0. Then we have

g(a‘zn +la‘ob‘U) = gl2n+i)n a(” +iko o, 6(2” F1Xn +ig)

. g2+ +1) 6(2""'1)"0 - h(az"""a‘ob‘“) ,

je, altntili § IEy(g,h). Second let i = n . We consider the equation
i(2n+1) = yn+z(n+1) and show that it can hold with nonnegative values of
y and z only in the case y = z = § . Clearly, y and z must be < 2i . Solving
for z we obtain z =i+ (i=y)n/(n+1) which is, by the inequalities
05y <2 and { = n, an integer only if i = y (and hence also z =i ).
Consequently, the identity k{a‘ ') = g(a* ') = al®*1  ghows that
a2 t1)i ¢ IEy(g,1:) . Therefore (3.1) holds.
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It is easy to see that the test set conjecture for inverse morphisms with
either of the interpretations does not hold if the cardinality of the domain alpha-
bet L of the morphisms is not bounded. Indeed therg exists an infinite sequence
(9,0 )iz of znorpbisms such that E(g,,h;) = a; for some word e, and
hifo;) N hjla;) =@ for all i # j, cf. [CKl]. Now for each i =0 mor-
phisms §; and h; can be defined such that E(@;,k;) = (U Elg.%))" , hence the

=0
conclusion follows.

If we fix the domain alphabet I of g and h beforehand, then we do not
know whether or not “the test set conjecture” for inverse morphisms with either
of the interpretations holds. What we do know is that the size of a J-test sct
cannot be bounded by any function dependent only on the cardinality of £.

Example 3.2: For any integer ¢ 2 1 let g, and h, be morphisms defined
by

a- (6101)' a - (01)
g : b=0 hy : b0
¢ = (10) ¢ = {1010)*

Clearly, E(g,,h,) = {a"bc® | n =0} and, consequently,
Es(g,k) = {((01)*)’0 | n = 0}" . (3.2)

Let {p;,...pr} be a set of k primes which does not include 3. Let
p=p - p and z; = (01)3"0 where p.v' = 3(p/p;) for i = 1,..t. Let
ting L = {z,,...,z,} we claim that for each proper subset L’ of L there exists
a pair of morphisms such that their inverses existentially agree on L’ but do not
agree on L. Indeed, for L' =L = {z;}, for i =1,...,k, a suitable pair is
(g".’hp‘) by (3'2)'

We have

Theorem 3.5: For each natural number k there exists a language L,
such thot any set testing the ezistential inverse morphism equivalence on L for
morphisms from a three letter alphabet contains at least k words. D
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4. INVERSE MORPHISM EQUIVALENCE ON LANGUAGES

In this section we discuss the problem of whether or not two given inverse
morphisms agree existentially or universally on a given Janguage. The study of
such problems in connection with morphisms rather than inverse morphisms was
initiated in {CS1]. Our first result reduces the universal inverse morphism prob-
lem to the corresponding morphism problem.

Theorem 4.1: Let ,‘Z be a family of languages satisfying the following

two conditiona:

(i) 2 iseffectively closed under inverse morphisms,

(i) morphism equivalence is decidable in L , that is, given morphisms g
and h and e language L in ,t it i decidable whether or not the equa-
tion g{z) = h(z) holds forall z in L .

Then universal inverse morphism equivalence is decidable for I .

Proof: Llet g and A be homomorphisms and L € i . Obviously g~}
and A~ universally agree on L if and only if g and h agree on h7Y(L) and
R7YL) = g”Y(L). But these conditions hold if and only if g and h agree on
RTY L) and ¢g"HL). O

In the case of existential agreement no general result like Theorem 4.1 is
known. However, if the class of morphisms is heavily restricted as in Theorems
3.1 and 3.3 then we have such results.

Theorem 4.2: Let J be a family of languages satisfying the following
two conditionas:

(i) each L in L is recursively enumerable,
(i) for ¢ given L in L and a given regular languoge R it is decidable
whether or not L N R is empty.

Then it 18 decidable whether or not the inverses of two bounded delay morphisms
agree ezisientially on a given language L in o

Proof: Let g and & be morphisms from X * into A" . Fitst we recall that
the bounded delay p of g and & can be found effectively. Second, it follows from
[ChK] that a finite subset F" of L can be effectively found for a given L under our
current assumptions. Consequently, it is enough to check whether g-l and
k™! agree existentially on a finite. language which is, of course, effective. [

Exactly in the same-way as Theorem 4.2 is obtained from Theorem 3.1 we
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can deduce from Theorem 3.3:

Theorem 4.3: Let £ be a family of languages over a binary alphabet
satisfying conditions (i) and (ii) of Theorem 4.2. Then it is decidable whether or
not the inverses of two binary morphismas existenticlly agree on a given language

off . B

Now, we turp to consider the problem of whether or not the inverses of
periodic morphisms agree on a given language.

Lemma 4.4: Let g and kb be periodic morphisms from s l‘n.to A
Then there ezists, ¢ffectively, a finite set K such that IE3(g,h) = K

Proof: If ¢ and h have different minimal periods, then K = {\}. Other-
wise we have g(z) = h{z) if and only if

1 12 ‘ .
3 a(e)l |z|.l_ = Y |re)] |z|.‘ if and only if
e

i1

1=
Y = 1r(e)) |2l,, =0

il

which is equivalent, by a result in [ES], to the fact that

. Y(z) € {Z"a,-e‘|a‘20}

iy

for some vectors ey,...,¢ in IV || . (Here {(z) denotes the Parikh vector of a
word = ). Moreover, the vectors e,,...,¢, can be lou.nd effectively. So it follows
from Lemma 2.1 that IE3(g,k) = {k(p,),...h{p;)} , where p; € ¥ (e) for
i=1.,t. 0

As a corollary of Lemma 4.4 we immediately obtain

Theorem 4.5: Let L ke Jamily of languagee over a one letter alphabet
satisfying: given an L in f and o regular language R it is decidable whether
or not L © R . Then it is decidable whether or not two inverses of periodic
morphisms agree ezistentially on a given language of f .



10 Karhumiki and Wood

We finish this section with some comments. By Theorem 4.1 it is decidable
whether or not two inverse morphisms agree universally on a given regular or
even context-free language, cf. [ACK]}). Very recently the same problem with exi-
tential interpretation has been shown in [KM] - contrary to our initial intuition -
to be undecidable. We also want to mention here the recent results of [KK]
where mappings of the form hg™! ‘and g~ 'h are studied. It is shown that for
mappings of the form hg~! it is undecidable whether or not two such mappings
agree universally on a given regular language. Furthermore, the same problem
for mappings of the form g~ A is shown to be decidable.

Acknowledgement:
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version of this note,



Inverse Morphic Equivalence 11

REFERENCES

[ACK]

[aw]

[CBK]

fo1]

{c?)

[CFS)

[CK1

[cka)

[csy)

[cs2]

[EKR]

[ES)

(KK}

(KL

(KM]

Albert, J., Culik II, K., and Karhumaki, J., Test Sets for Context Free
Languages and Algebraic Systems of Equations Over a Free Monoid,
Information and Control 52 (1983), 172-186.

Albert, J., and Wood, D., Checking Sets, Test Sets, Rich Languages and
Commutatively Closed Languages, Journal of Computer and System
Sciences 26, (1983), 82-91.

Choffrut, C., and Karhumaki, J., Test Sets for Bounded Delay Mor-
phisms, Proceedings of ICALP 883, Springer-Verlag Lecture Notes in
Computer Science 154 {1983), 118-127.

Culik II, K., Some Decidability Results about Regular and Pushdown
Translations, Information Processing Letters 8 (1979), 5-8.

Culik 1I, K., Homomorphisms: Decidability, Equality and Test Sets, in
Formal Language Theory: Perspectives and Open Problems, (R.V. Book,
ed.}, Academic Press, New York (1980), 167-194.

Culik I, K., Fitch, F., and Salomaa, A., A Homomorphic Characteriza-

- tion of Regular Languages, Discrete Applied Mathematics { (1982),

149-152,

Culik I, K., and Karhumiki, J., On the Equality Sets for Homomor-
phisms on Free Monoids with Two Generators, R.A.LR.O., Informetique
Theorique 14 (1980), 349-369.

Culik I, K., and Karhumiki, J., Systems of Equations Over a Free
Monoid and Ehrenfeucht’s Conjecture, Discrete Mathematics 43 (1983),
109-153.

Culik II, K., and Salomaa, A., On the Decidability of Homomorphism
Equivalence for Languages, Journel of Computer and System Sciences
17(1978), 163-175.

Culik 1I, K., and Salomaa, A., Test Sets and Checking Words for
Homomorphism Equivalence, Journal of Computer and System Sciences
20 (1980), 279-295.

Ehrenfeucht, A., Karhumiki, J,, and Rozenberg , G., On Binary Equality
Sets and a Solution to the Test Set Conjecture in the Binary Case, Jour-
nal of Algebra 85 (1983), 76-85.

Eilenberg , S., and Schiitzenberger, J., Rational Sets in Commutative
Monoids, Journal of Algebra 18 (1969), 173-191.

Karbumiki, J., and Kleijn, H.C.M., On the Equivalence of Compositions
of Morphisms and Inverse Morphisms on Regular Languages, manuscript
{1983).

Karhumiki, J., and Linna, M., A Note on Morphic Characterization of
Languages, Discrete Applied Mathematics 5, (1983), 243-246.
Karhumiki, J., and Maon, Y., A Simple Undecidable Problem: Existen-
tial Inverse Morphic Equivalence on Regular Languages, manuseript
(1983).



12

[LL]

(T

Karhumiki and Wood

Latteux, M., and Leguy, J., On the Composition of Morphisms and
Inverse Morphisms, Proceedings of ICALP 8%, Springer-Verlag Lecture
Notes in Computer Seience 154 (1983), 420-432.

Turakainen, P., On Homomorphic Characterization of Principal
SemiAFL’'s Without Using Intersection with Regular Sets, Jnformation
Sciences £7 (1982), 141-149.



	
	
	
	
	
	
	
	
	
	
	
	
	

