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ABSTRACT

In this paper we consider the problem of predicting the fill-in that occurs
in the QR-decomposition of sparse matrices using Householder transformations.
We show that a static data structure cam be used throughout the numerical
computation, and that the Householder transformations can be saved explicitly in
a compact format.

1. Introduction

Let A be an n Xn nonsingular matrix. In this paper we consider the problem of reducing
A to upper triangular form using orthogonal transformations, where A is large and sparse. That
is, we construct an 1% Xn orthogonal matrix @ so that

A = QR ,

where R is nXn and upper triangular. Since it is well known that computing such a
decomposition is numerically stable, the QR-decomposition iz useful in various numerieal
computations, such as the solution of nonsingular systems of linear equations. However, very few
implementations of the QR-decomposition exist for A when it is large and sparse. This is
apparently due to the general belief that the orthogonal matrix @ and the intermediate matrices
may be dense even though A is sparse, and also due to the lack of efficient techmiques for
exploiting the sparsity of the orthogonal matrix and the intermediate matrices.

One such implementation is due to George and Heath {2]. They make use of the fact that
the upper triangular matrix R is {mathematically) the Cholesky factor of the symmetric positive
definite matrix ATA (apart from possible sign differences in some rows). Thus, assuming ATA
and its Cholesky factor are sparse, one can easily determine the structure of R and sct up a data
structure for R using techniques developed for solving sparse symmetric positive definite systems
[3]. Then R can be computed using the sfatic data structure by applying Givens rotations to the
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rows of A one at a time. The Givens rotations are not saved in their implementation. However
in some applications, it is desirable or necessary to have the orthogonal matrix Q available. One
such context is the solution of several problems that have the same coefficient matrix A but
different right hand side vectors. In this paper, we show that if we compute the decomposition
using Householder transformations, then the nonzeros in the transformations and in the
intermediate matrices can be stored in a static data structure allocated for the Cholesky factors L
and LT of the matrix ATA. The ideas presented in this paper are similar to those used in the
implementation of Gaussian elimination for sparse matrices using partial pivoting [4].

An outline of this paper is as follows. In Section 2, we present the main results which
show that the structures of the transformations and the intermediate matrices obtained in the
orthogonal reduction of A are contained in the structures of the Cholesky factors of ATA. The
effect of permuting the colimns of A in the orthogonal reduction is considered in Section 3. In
Section 4, the basic technique of the paper is extended to handle rectangular matrices. Finally,
some concluding remarks are provided in Section 5.

2. Basic results
Let A be an n Xn nonsingular matrix. The following notation will be used throughout
our discussion. The (i,7)-element of the matrix A is denoted by a;;. The set of indices of the
nonzeros in A is denoted by Nonz(A); that is,
Nonz(4) = {(i,j)] a;j#0}

The matrix A is said to have a zero-free disgonel if all its diagonal elements are nonzero.

Lemma 2.1 [1]

Let A be an n X» nonsingular matrix. Then there exists a permutation matrix P such
that PA has a zero-free diagonal. O

For convenience, we assume in the following discussion that the rows of A have been permuted so
that A has a zero-free diagonal. The next result is useful in deriving the main results.

Lemma 2.2

Suppose A is n Xn and has a zero-free diagonal, and let B be an n Xp matrix. Then

Nonz(B} © Nonz(AB) . O

We will also assume that accidental structural cancellation does not occur; that is, we assume
that Nonz{A+ B)=Nonz(A)|J Nonz(B), for any n Xn matrices A and B.

Now let A=A and partition A, into

o ¥
4 = zy By ’
where B is (n —1})X(n—1), and z, and y, are vectors of appropriate dimensions. By assumption,
o, #0 and B, has a zero-free diagonal. Assume z,#0 and consider annihilating the nonzeros of
z, using a Householder transformation H,. (If z;=0, then H,=I.) One way of constructing the
Householder matrix H is as follows. Define an n-vector w; by

o + o

w = s
1 z4
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where e®=af+z7z,. Let 7rl=%wfw,. Then it is easy to verily that

= LI o
H =1I- L

1

wl2) - ()

Thete are other ways of constructing H, (see [6]) and they differ esseatially in the way the vector

is orthogonal and

oy
{z ] is scaled. Thus we can assume that in general the Householder matrix ; has the form
1

H o= 1-2Luul |
m

By
wy = uy N

for some appropriate 7, f; and u,, with §;#0 and Nonz(u,}=Nonz{z;). Note that by storing
the nonzeros of u, (and #; and 7,), one can save H, in a compact format.

Consider applying H; to Ay. Let

where

“01 Z?

where

T T T T T

A I DA BT L N L B L TP |

Ay H By L1 1717 By By T | ! 1 B,
Thus,

1
= 4T ;‘;ﬂl{ﬂxyl + Bluy)

and

1
A, = B, — }T"n(ﬂlyf"' 1B,)
Since §,#0, and if exact structural cancellation does not occur,
Nonz(z,) = Nonrz(y,) {J Nonz(BTu,) ,

and

Nonz{A;) = Nonz(B,) U Nonz(uyy]) U Nonz{uiufB,)
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Furthermore, since Nonz{u,)=Nonz(z,), we obtain the following which we state as a lemma for
future reference.

Lemma 2.3
1) Nonz(z,)= Nonz(y )| Nonz(BTz,).
(2) Nonz(A;)=Nonz{B,)}{J Nonz(z,3T) Nonz(z,27B,). 0

Corollary 2.4
A, has a zero-free diagonal. O

Note that similar results holds if Givens rotations are used to annihilate the nonzeros in
z;. The effect of applying a Givens rotation to climinate a nonzero, say a;,, is to replace the first
and the k—th rows of A by a linear combination of those two rows. Consequently, after
annihilating @y, the structures of rows 1 and k of A are the union of the structeres of the
original rows. Thus, after all the nonzeros in z, have been annihilated, the structure of row 1 of
A will be the union of the structures of the first row of A and of those rows such that they have a
nonzero in column 1. That is, Nonz{z,) will be given by

Nonz(z) = Nonz(y,) U Noni(z1B,)

Using similar arguments, it is easy to see that, in the worst case, the structure of the remaining
{rn—1)%(n—1) matrix A, will be given by

Nonz(A,) = Nonz{B;) U Nonz(z,(sT + 27B,))

Thus Lemma 2.3 holds even if Givens rotations are used. Now for each nonzero in z,, there will
be one Givens rotation. In order to save these Givens rotations in the space provided by the
nonzeros in z;, we need to represent each of them by a single number using the scheme proposed
by Stewart [7}].

We now show that the structures of u;, 2, and A, are related to the structures of the
matrices obtained after applying one step of Cholesky decomposition to the symmetric positive
definite matrix A7A,. Note that

AT oy z{ a yf af + xfxl aly, +zlll.‘i'I ot "1
00 v, BT = By - ay, + BTz, BIB, + y¥ v By

Applying one step of Cholecky decomposition to AS'AO, we obtain
Th_!/2
Ta =
Aoho = u/flml [DFl] ’

- 1
Fy, = El-;l-"lvl

where

The first observation is that

Nonz(v,) = Nonz(y,) U Nonz(BTz,) ,
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assuming again exact structural cancellation does not occur and also because o, #0. Since B, has
a zero-free diagonal, it follows from Lemma 2.2 that

Nonz(z,) € Nonz(BTz,) ,
and hence
Nonz(u;) = Nonz(z,) © Nonz(BTz,) C Nonzly,) U Nonz(Blz,) = Nonz(v,)
Moreover, from Lemma 2.3,

Nonz(z;) = Nonz(y,) {J Nonz(BTz,) = Nonz(v,)
Consider the matrix F).
] 1
F, = E - r—l"x”f = (B7B, + yyy]) - T—l(aw; + Biz,)oys? + 21B,)

1f exact structural cancellation does not occur, then
Nonz(Fy) = Nonz(BIB,) U Nonz(yy7)
U Nona(8Tz,97) U Nenz(y,278,) U Non:(Blz,27B,)
Recall from Lemma 2.3 that
Nonz(A,) = Nonz(B,) U Nonz(z,yT) U Nonz(z,2TH,)
Since B has a zero-free diagonal, it follows from Lemma 2.2 that
Nonz(A,) € Nonz(BTB,) U Nonz(BTzyT) U Nonz(Blz,zTB,) C Nonz{F)

Thus we have proved the following result.

Theorem 2.5

Assume exact structural cancellation does not occur. Then
(1} Nonz(u;) © Nonz(v,)
(2} Nonz(z;) © Nonz(v)
3) Nonz{A;) ©€ Nonz(F\} . 0O
That is, the structures of u;, z; and A; which are obtained when z, is annihilated by an
Householder transformation are contained in those of the matrices obtained after applying one
step of Cholesky decomposition to A{Ao. The fact that Ay has a zero-free diagonal plays an
important role here. Some of the results above may not hold if A, does not have a zero-free
diagonal. For example, it is easy to comstruct an example in which Nonz(B,)¢ Nonz(BTB,),
where B, does not have a zero-free diagonal.

Now partition A, into

T
@y Yo

A = zy By ’

and assume z,#0. Consider annihilating the nonzeros of z, using an Houscholder transformation
H,. Let



H, = I—%wzw:{ s

2

2
where w,= v with Nonz(u,)=Nonz(z,). As before, 1,, 8, and u, are chosen so that

o, [-a2‘
H, 2 = o )
where ;= a§+zg},2. Suppose
T\
Ty 3
H,A, = 0 A,

By Corollary 2.3, A; has a zero-free diagonal and hence Theorem 2.5 applies again. That is, the
structures of u,, 2z, and A, must be contained in the structures of the matrices obtained by
applying one step of Cholesky decomposition to A?Al.

Apparently the results obtained so far do not provide us with a mechanism to implement
the orthogonal reduction of sparse matrices efficiently using Householder transformations since we
now have to consider the Cholesky decomposition of ATA,. However, the next result takes care
of this problem.

Lemma 2.6

Assuming exact cancellation does not occar,

Nonz{ATA|) = Nonz(F,)

Proofs
Recall that

4,

1
By - ;'Tul(ﬂly:{ +u{By)

It is then straightforward to verify that

512'4“1 "T“l 2

T T T T, T

AjA, = BB, + 2 1y g - ”_i)Bl“lulBl +
1 1

31"?"1 By
(___2 = =)¥Bluw{ + 9,u{B))
Ty m

Thus, assuming exact structural cancellation does not occur and assuming §, #0,
Nonz(ATA;) = Nenz(BIB;) U Nonz(y,yT) U Nons(BTu,sT) U Nonz(yu7B,)
U Nonz(BTu,uTB))

= Nonz(BTB,) U Nonz(y,97} U Nonz(BTz,3T) U Nona(y,z7B,)



U Nous(BTz,278)
since Nonz(1,)=Nenz(z,). Hence

Nonz(ATA) = Nonz(F)) . 10O

Corollary 2.7

The Cholesky factors of ATA, and F, have identical nonzero structures, assuming exact
structural cancellation does not occur. O

Lemma 2.6 and Corollary 2.7 are important since they say that we do not have to worry
about the Cholesky decomposition of AfAl. We only have to consider the Cholesky
decomposition of F';. That is, suppose

r vy 5% of(1 o }|n* vi”
A= lne] ™ L2 [o FQ] 0o I
Then,
Nonz(u,) © Nonz(vy)
Nonz(z,) © Nonz(v,)
and

Nonz(Ay) © Nonz(F,)

By applying the arguments above recursively to A, and F,, one can obtain a result which
is a generalization of Theorem 2.5. Before stating the result, we introduce more notation.

Let A be an n Xn matrix with a zero-free diagonal and let Ag=A. Consider the sequence
of matrices

{Au;ApAQ: e lAn—l } '

generated as follows. For k=1,2, -« - ,n =1, partition A, _, into

o U
Ay = z, B,
Assume z; #0 and construct an Householder transformation Hy so that

— 0 z;f

HyAp—y = 0 A )

where o= af + z{zk . Assume

1 T
Hy = In-kﬂ"‘gwk"’k '

Pr
where w, = v with Nonz(ug)=Nonz(z,). Here I; denotes the identity matrix of order j. It



is easy to see that

r“l s
A= Q1Qs - Qyun@y e zg' = QR ,
gz
.
where
I, O
Q. = o H, , for k=12, --n—1 |,
and

Q = @y @y
Also consider the sequence of matrices
{FO’FI’FQ’ e ’Fn"l } +
which is defined as follows. Let F0=ATA. For k=12, - - - ,n—1, partition F; _, into

'
% ”if

F:&“l = v, Ek

Applying one step of Cholesky decomposition to Fk-l yields
3
ij 0 1/2 v l/2
F,_, =
k=1 v l'rk’z I, - ) O B

LY

If we define L by
L., o 0
L,=1o % o , £=12,---,n-1 ,
o v, )

and L, by
-y © L.y O
L” B o Fa -1 B (o] 1"{‘"2

Then it is clear that
ATA = Fy = LiLy - L, LLTIT | - LELT = LT
where L=L,L, -+ - L, _,L,. Moreover, because of the way v, and Fj are constructed, we have

Nonz(F,) © [_"J Nonz(L, + L) = Nonz(L + LT)
=1



The following result is a generalization of Theorem 2.5. Its proof is similar to that of
Theorem 2.5 and hence is omitted.

Theorem 2.8
Assume exact structural cancellation does not occer. Then for k=1,2, - -+ n—1,
1) A; has a zero-free diagonal,

(2) Nonz(ug )JQNonz(v,)
3) Nonz(z)QNonz(v,) ,and
(4) Nanz(Ak)CNonz{Fk)CNanz(L+LT) =

Theorem 2.8 has an important implication. If A is sparse, then it says that the structures
of the vectors u; {which are the major components in the construction of Q) and the upper
triangular matrix R are all contained in the structure of the Cholesky factors of ATA. The
crucial point is that if ATA andits Cholesky factor are sparse, then it is pessible to determine the
structure of the Cholesky factor L of AT A from that of ATA efficiently. The reader is referred
to [3] for details. Knowing the structure of L, one can set up an efficient data structure that
exploits the sparsity of L. Now Theorem 2.8 simply implies that one can compute the orthogonal
decomposition using Householder transformations in that stetic data structure. No dynamic
storage allocation is necessary. Furthermore, the orthogonal matrix @ (in factored form) can be
retained. This may be useful in some situations, for example, when the QR-decompesition of A
has to be used several times.

Of course, the success of the approach relies on the fact that ATA and its Cholesky factor
are sparse if A is sparse. There are examples in which this may not be true; the matrices AT A
and its Cholesky factor may be dense even if A is sparse. Fortunately, the latter situation arises
usually because there are a relatively small number of dense rows in A. Even though identifying
these rows is a difficult problem, there are schemes which can handle dense rows in an efficient
manner. See [4,5].

3. Effect of permuting tke columns

Let P, be an n Xn permutation matrix and denote the QR-decomposition of AP, by
e = @1Qs @0 @n R,

where ék is an appropriate Householder transformation and R is an nXn upper triangular
matrix. Our results in the previous section indicates that the structures of R and the vectors used
in constructing Qk are contained in the structure of the Cholesky factor £ of the symmetric
positive definite matrix (AP, )T(AP )—PTATAP It ATA is sparse, it is well known that the
structure and the sparsity of L depend not only on the structure of ATA but also on the choice
of the permutation matrix F,. Thus it is desirable to choose F, so that Lisas sparse as possible.
Unfortunately, the problem of finding such a permutation has shown to be an NP-complete
problem [8]. On the other hand, there are many reliable heuristic algorithms for finding P, that
yields a reasonably sparse L. Examples include the nested dissection algorithm and the minimum
degree algorithm. See [3} for a detailed discussion of the ordering problem in sparse Cholesky
decomposition.

Note that post-multiplying A by P, may change the zero-nonzero pattern of A. In
particular the matrix AP, may no longer have a zero-free diagonal (assuming A originally has
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X X X 1 X X X
X x 1 b
A= |x X P, = 1 AP, = X X
X 1 X
X X X 1 X X X

Figure 3.1: An example illustrating the fact that AP, may
not have a zero-free diagonal even though A has one.

one). This is iltustrated by an example in Figure 3.1. In order to preserve the zero-free diagonai,

we can apply P, to A symmetrically. That is, instead of looking at AP,, we consider PCTAPC. It

is a simple exercise to verify that PEAP,, has a zero-free diagonal for the matrix A given in Figure

3.1. Also note that pre-multiplying AP, by P, has no effect on the structure of L since
(PTAP,Y(PTAP,} = PTATAP, = [LT

Another approach which solves this proeblem is to find a column permutation P, first. Then we
find a row permutaition P, to make sure that P,(AP,) has a zero-free diagonal. The main
observation here is that the Cholesky factor of (P, AP,)T(P,AP,) is mathematically the same 2s
that of (AP,)T(AP,).

4. Generallzation to rectangular matrices

In some situations, such as the solution of sparse linear least squares problems, it may be
necessary to reduce a rectangular matrix to upper trapezoidal form. The approach we described
in Sections 2 and 3 can be modified to handle these cases. Let A be an m Xn sparse matrix with
m=n. We assume that A has full column rank. Partition A into

-2

where B is n Xn and C is (m—n)Xn. For simplicity, we also assume B has a zero-free diagonal.

Denocte the orthogonal decomposition of A by

R
A=0  2lo] .
where @, is an m Xm Houscholder matrix and R is an n Xn upper triangular matrix. Suppose

L, O
Qk = 0 Hk ’

with

Pr
1
H, = Im-kd'l_; % (ﬁk uf] -

Here u; is an (m —k}-vector. Note that the decomposition is equivalent to performing the first n
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steps in the orthogonal reduction of the m Xm matrix A:
aT

— B O
A= o1
Consider the matrix A7 4.

- [BTCT]BO
A4 =10 1 ller

Applying the first n steps of the Cholesky decomposition to atx yields
— pcT Lolfroj{eT wt
ZT A= =
c I W Ij\0oF [0 N § !

T = p = BT + ¢To

it

[BTB + cT¢ CT] [D CT}
c 1) = ler

where

and
W= ¢!

Since A has a zero-free diagonal, the results in Section 2 apply. That is, the structure of u; must

L
be contained in the structure of the k—th column of the matrix wl Similarly, the structure

of R must be contained in the structure of LT, Thus, one way to implement the reduction of A is
as follows.

(1) Determine the structure of M=A"A.

(2) Perform the first n steps of symbolic Cholesky factorization to M, and determine the
siructures of L and W=CL™l. Set up a data structure that exploits the sparsity of LT
L
and wl
(3) Reduce the matrix A to upper trapezoidal form using Householder transformations,
storing R 2nd u;’s in the static data structure determined in Step 2.

B
Note that we only want to reduce [ c ] to upper trapezoidal form. Thus we do not want

to worry about the last (m—n) columns in A. In other words, if we want to permute the columas
of A so as to obtain a sparse Cholesky factorization, we should only permute the first n columns
of A.

5. Cenclusion

We have shown in this paper that when a sparse matrix A is reduced to upper triangular
form using Householder transformations, the structures of the transformations, the intermediate
matrices and the final upper triangular matrix are contained in the structure of the Cholesky
factors of ATA. These results have an important practical implication. It is well known that the
structure of the Cholesky factor of a sparse symmetric positive definite matrix B can be
determined efficiently from the structure of B. Thus, by analyzing the structure of ATA, we can
determine the structure of the Cholesky factors I and LT of ATA, and can set up a data
structure for L and LT. Then we czn perform the orthogonal reduction of A using this static
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data structure. This idea has been extended to handle the case in which A is rectangular.

Efficient implementation of the ideas described in this paper is currently under
investigation.
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