REEAIMENT
RTMENT

DEPARTMENT

E
E

B

:

NN

Iterative Tree Automata

Karel Culik I1
Sheng Yu

CS-84-03

January, 1984

ITERATIVE TREE AUTOMATA"

Karel Culik IT and Sheng Yu

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
December 1983

ABSTRACT

The tterative tree automaton ie infroduced as a binary tree-
connected network with sequential input and output ai the root of
the tree. The real and linear time computational power of this type
of systolic system as a language acceptor is studied. It iz shown
that for real-time computations the arity of the tree is essential
while this is not the case for linear-time computations, Onr main
result is that every T(n}time nondeterministic Turing machine
can be simulated by an ITA in (deterministic}) cT{n)}time. A
number of properties of real and linear time ITA are proved.

Keywords Systolic system, iterative array automata, VLSI
tree automata, nondeterministic Turing machine, formal languages.

1. Introduction

Motivated by the development of VLSI technology, there has been an
increased interest in parallel computing, particularly in algorithms which use reg-
ular networks of identical simple processors. Such systems of processors were
given the name systolic systems by Kung and Leiserson [13]. A large number of
systolic algorithms have since been designed, see [14] for references.

|6] proposed a systematic study of the capabilities of systolic systems with a
given geometrical configuration of processors by studying their power as language
recognizers or transducers. It should be pointed out that the techniques used in
systolic programs for language recognition or string manipulation are not much
different from those used in numerical systolic algorithms. For example, a systolic
system recognizing the language {ww | w € X+*} can be converted into a system
which compute the scalar product of two vectors simply by reinterpreting the
basic operations(* and + as comparison and “and*).

* This work was supported by the Natural Science and Engineering Research Council of Caasda
under Grant A-7403.

2 Karel Culik I and Sheng Yu

Linear or multi-dimensional atrays of finite automata as language recogniz-
ers were already studied more than ten year ago, sce for example {4, 8, 17). They
are usually called iterative arrays (when the input is serial at one processor) or
cellular automata (when the input is parallel). Two distinct types of tree-
connected networks with parallel input and a bottom-up direction of the data
flow are studied in [7] and 3, 6].

In the present paper, we study tree-connected networks of finite state auto-
mata with serial input and output at the root of the tree and a bidirectional flow
of data. An example of such a device is the dictionary (data base) machire of
[16]. We mainly study iterative tree automata {ITA) which have an underlying
binary-tree structure. However we also discuss briefly the ITA having a bounded
multinary-tree structure, The well known iterative arrays are them, simply, ITA
with an underlying unary-tree structure.

We focus our attention on realtime and linear-time ITA, We show that
some quite complex tasks can be carried out on ITA in real time, for example, a
version of dictionary look-up. On the other hand, some relatively simple context-
free languages cannot be recognized by real-time ITA.

The computational power of ITA in linear time is much greater than in
real-time. We show that linear-time (deterministic) ITA can simulate every
linear-time nondeterministic multitape Turing machine. Moreover, the family of
linear-time ITA languages are closed under Boolean operations, Kleene operations
and inverse gsm mappings. Clearly, linear-time or even real-time ITA may use
exponentially many processors, which is hardly feasible except for short inputs. As
a continuation of this work, we will study linear-time ITA with a logarithmic
bound on the depth of the tree accessed in a computation. Such ITA will use only
Ofn) processors when given an input of length n, for ezample, dictionary
machines [16] satisfy this restriction.

In Section 2, the definition of an iterative array and a lemma from 4] is
reviewed. And in the next section, the formal definition of ITA is given. In Sec-
tion 4, it is shown that the satisfiability problem for Boolean expressions can be
solved in linear time by ITA. Then it is shown that every T{n}time nondeter-
ministic Turing machine can be simulated by an ITA in (deterministic) ¢T{n}
time. In the last section, the multinary or n-ary ITA are introduced and we
show that the familics of languages they recognize in real time form a proper
hierarchy with respect to the arity of the underlying tree structure. However, in
the case of linear and super-linear time, n-ary ITA (n22) define the same family
of languages for n = £.

2. Preliminaries

A linear iterative array automaton (IAA) is a one-dimensional one-way
infinite sequence of cells. Each of the cells communicates with its left neighbor
and right neighbor, except that the leftmost cell, called a special cell, communi-
cates with the external wosid and its right neighbor. This device works synchro-
nously. At the beginning, all the cells arc in a quiescent state denoted by #. The
next state of a cell is depending on the current state of this cell, the current state
of the left neighbor (or external input for the special cell) and the current state of
the right neighbor. The fact that the special cell enters a final state shows the

Iterative Tree Automata 3

acceptance of the input string.

infnut

——d >

special cell

Fig. 2.1

Definitlon 2.1 An iterative array automaton is a quintuple I = (Q, X, 6,
5, F) where

Q 128 a finite 2et of states,

L is the input alphabet;

6o ¢ ZU{e} X (QU{#LE = QU{#} is the state transition function for the
special cell;

8: (QU{#))® ~QU{#} is the state transition function for every cell except
the special cell, which satisfies S(#,%,#) = #;

FCQ is the set of [inal states.
£ Q is a special quiescent state. O

Iterative array automata in general and the real-time linear iterative array
automata in particular have been studied quite extensively, see, e.g., [2, 4, 8, 15].
In [4] a property of real-time IAA has been shown which can be used to prove
that certain languages are not accepted by any real-time JAA. We now introduce
a concept related to this property and the property itself.

Definition 2.2 Let UCE" be a aet of strings. For any z,y €2 ., we say that
2Ryy(mod U)if for anyr € E* andld S &, zr € Uifandonlyifyr € U0

‘Theorem 2.1 For any n-dimension iterative array A, there ezist an
integer h and o polynomial g of degree n such that for any integer k, the number
of equivalence classes of Ryfmod (L(A)) is at most ho*). [4] D

3. The lteratlive tree automata

An iterative tree automaton (ITA) is a systolic system in which the basic
cells are connected in a infinite full binary tree structure. The root of the tree,
call the root cell, is a special cell, like the leftmost one in the iterative array,
which is the only place exposed to the external world.

The ITA works synchronously. Initially, every cell is in a quiescent state.
The input string is read by the root cell one symbol at a time. The next state of
the root cell is determined by the current state of the root, the current input sym-
bol and the current states of its two sons. Similarly, the state transitions of the
other cells depend on the states of themselves and their three neighbors, the
parent, the left son and the right son.

The transition function for the left and right cells (the left or right sons of
some cell) are different. The distinction between these two functions is essential
to the power of the ITA. If one function is applied on both left and right cells,
the ITA would be no more powerful than a linear iterative array. Alternatively,
we could use an output function for every cell, which produces different outputs

4 Karel Culik II and Sheng Yu

to its three neighbors. In this case, one transition function instead of three or two
can be used without any loss of generality. A homogeneous ITA of this kind is
defined in [19] where it is also shown that these two definitions are equivalent.

Definltlon 3.1 An iterative tree automaton A is a sextuple (Q, L, 6o, 6,
&, F), where

Q is a finite set of etates;
X is the input alphabet;

Go: Q@ X X X Q* + Q ia the transition function of the root cell written as
5o(X, e, Y, Z) = X' where X, Y, Z € Q are the current states of the root cell, its
left and right son, respectively, a € L is the current input symbol, X' ias the nexzt
state of the root;

8, 8: @4 = Q are the transition functions of the left and right cells,
respectively, written as 6(X, W, Y, Z) = X' where § is either § or &, X, W, Y and
Z are the current states of this cell, its parent, its left and right son, respec-
tively, X' is the next state of this cell;

FC Qisa set of final states.

q 18 the special gquiescent state in Q and all §; and & are satisfying the
condition &ifp, o, o D) =P ond &fp, o, . p)=a. O

To define the computation of A, we specify the global transition function A
{of A) which is defined on the cartesian product of the global states and input
alphabet X. A global state of A is a labeled rooted ordered infinite full binary
tree. The labels are from the state set Q and each node of the tree represents a
cell of A. The initial global state, usually denoted by Go, has all the nodes
labeled by the quiescent state, An accepting global state is a global state with
the label of the root cell in F. Let G and G’ be two global state of A and a € L.
We define A(G, a) = G', if 8,{U, 3, V, W) = U’ where U, V, W are the labels of
the root, its left and right son in G and U’ is the label of the root in G’, and 8(q,
X, Y, Z) == q' for any cell in A whete 8 is 8 or 8; according to whether the cell is
a left cell or a right cell, q, X, Y and Z are the labels of the cell, its parent, its left
and right son in G, respectively, and q’ is the label of the cell in G'. Furthermore,
for any w € L* At is defined as

G,itk =0,
AF(Gw)m JA(A* NG, z), 8), w = za, itk = |w];
A(aFY@, w), B), itk > |w).

Notice that we always assume that k = |w| and the B's are the blank symbols
following the input string.

Let p be the projection of a global state to its root-label.

Definltion 3.8 A language L is said to be accepted by an ITA A = (Q, L,
80, 61, 6, F), if L ={ w| p(AYGo, w)) € F, for some t = |w|}. We say that L is
accepted by A in time f(n)if L is accepted by A and L = { w| p(A{(Go, w)) € F,
|w] =t = flw|}}. We aleo call L a f(n)}time ITA language. Specially, if f(n) =

n, L is called a real-time ITA lenguage. If f(n) = en + d, for some constant ¢
end d, L is celled o linear-time ITA language. O

Iterative Tree Automata 5

Definition 3.3 Function f is said to be ITA constructable if {a/®f n = 0}
is a real-time ITA language. O

Obviously, the function f{n) = cn + d is ITA constructable for any con-
stants ¢ and d.

Theorem 3.1 If L is o T(n)}time ITA language, T(n) = f(n) and f(n) is
ITA constructable, then L is also o f(n}time language. O

From this theorem, we can see that if T(n) is ITA constructable then it
makes no differences whether to accept exactly in time T(n) or within time T(n)
in defining a T(n)-time ITA language.

4. Real-time ITA languages

The real-time iterative arrays have been studied by many authors, The first
question which is naturely posed about the real-time ITA is whether it is more
powerful than the real-time IAA. We will answer this question by showing a
language which is accepted by an ITA but not accepted by any n dimensional
IAA, n > 0.

Let Ly = {z %z, #_ #z,88° | n >0, 2,,2,,..2,.9 € {01} t=2]y| +1,
y=z; for some 1Si=n}
We call L4 a dictionary language because every word in L4 is a simulation of
several key insertions and a successful query.
Lemma 4.1 L; is accepted by a real-time ITA.

Proof : We can construct an ITA A4 which accepts Lq in real-time. The
fornial construction of A4 is tedious and hard to read. The reader interested in
details is suggested to [19]. An informal description of Aq follows.

1. All the nodes of A4 are quiescent initially.

2. For each string x;, the stream of 0’s and 1's flow down a path from the
root and is stored on the path one symbol at a time. Its value shows the direc-
tion of the path, i.e, if it is '0’, then the path goes to the left, if '1’ then goes to
the right. The second symbol will be stored at the son of the root designated by
the stored value in the root. Again, this stored value indicates the next direction
of the path. In this way, the values of x; form a path in A4.

3. The symbol '#' which terminates x; will go along the path, clean all the
stored values and mark the node pointed by the last value stored on the path.

4. A'$' terminates the insertions of x;,...,Xy.
5. The processing of y determines a path in the same way as the x;.

6. The first '$’ after y checks if the node pointed by the path of y is marked.
If it is, a success signal is returned to the root. Otherwise, a fail signal is passed
back. O

Lemma 4.2 L; is not accepted by any n-dimensional real-time iterative
array.

Proof 3 Consider arbitary n > 0. For any h > 0 and any polynomial g of
degree n, we certainly can find an integer t such that

6 Karel Culik II and Sheng Yu

92¢ . 1 > he(341)

Let k = 3t + 1. Now, our intention is to show that there are at least 22* - 1
equivalence classes over the relation Ry{mod Lq).

Consider a string y € {0, 1}t There are 2¢ distinct possible strings
y,i.e.there are 2t elements in the set Y = {y | y € {0, 1}*}. Furthermore, we
know that there are 2 - 1 different nonempty subsets of Y. Let X = {x,, xo,...,
Xm} and Z == {z1, 22,...,22} be arbitrary two distinct subset of Y, m,n > 0. Then,
there must exist a yo such that yo € X and yo £ 7 (or vice versa). We construct
two strings

x = x;#xo#. #x,$ and

7= 11#22#...#1113,
which are corresponding to the sets X and Z, respectively, where the order of
X1,---Xm 20d Z),...,7; i8 irrelevant. Consider

2y 8% +1 and zy 8%+,
Since yo € X and yo £ Lg, it is obvious that
2y $2 ! € L; and 29,82 T £L,.
Notice that ‘
[uo$2*!| =k,

therefore, x and z belong to different equivalence classes of Ri{mod Lq). Since X
and Z are arbitrary, we now can conclude that there are at least 22* - 1 distinct
equivalence classes of Ri{mod La). Because

22' -1> h'(k),

La is not accepted by any n-dimensional IAA by Theorem 2.}. O

Theorem 4.3 There ezist a language which ia accepted by a real-time ITA
but not accepted in real-time by any n-dimensional JAA.

Proof: Lgjis such alanguage proved by Lemma 4.1 and Lemma 4.2. O

The following is an obvious consequence of Theorem 4.1.

Theorem 4.4 The set of the real-time (1D) IAA language is a proper sub-
set of the real-time ITA languages.

Proof : For every (1D) IAA, we can always construct an ITA which simu-
lates the IAA with one path, e.g., the leftmost path of the ITA. And by the result
of Theorem 4.1, we have proved the proper containment. O

It is still open whether real-time nD TAA (n= 2) languages are properly con-
tained in the real-time ITA languages or they are incomparable.

Lemma 4.5 If L is accepted by an ITA in time T(n) > n, then L is
accepted by some ITA in time T(n) - 1.

Proof : Let A = (Q, X, 8o, 85, 8r, F) be the ITA which accepts L in time
T{(n). We construct A’ = (Q', L, 80", 8, 8/, F) such that the root cell of A’ simu-
lates the root cell and its two sons of A. Every other cell in A’ simulates two sons
of the corresponding cell in A. See Fig.4.1, the nodes are indexed by the width-
first order.

Iterative Tree Automata 7

Fig. 4.1

Formally, we define A’ as follows. For convenience, we assume <q., >
and <q, qa, G > are equivalent to qa.

Q =1{<que> | a1 2 € Q} U {<q1,q2,02> | a1, a2, a3 € Q}
S <po.ppp, >0, <l >, <r 1 >)
= <6(P0,a. P, L8 (Pr.Pa k1 2} 0 (P Poir 111 2) >

's:'(<t11t2>v <Po:PLPe > <lplz>. <r1,r2>)
= <8ty Pyl bl it n Dy P ire) >, for 2 = Lor v,

S (<t >, <ppp, >, <l 1o >, <Py re)
= <Oty,pgd1d2)0elt 00y i1 0) >,
z = Lorr, fora €CU(%, and po,p;,p, 01,000 70t 12 €Q;

F ={<po.pr.p.> | édpo.B.py,p,)EF}.

It is easy to see that there is a sequence of global siates of A obtained by
reading w = a;a2...25, s

GoB3g 8 . ug 3. 5 Grey: = G
if only if there is a corresponding sequence of glogal states of A’

Gedar% . Sgr.. > Gy’ = G1r)s
and Gryy) is an accepting global state in A if and oaly if Giyayy is an accepting
global state in A’ because of the definition of F. So, L is accepted by A in time
T(n) if and only if it is accepted by A’ in time T(n)-1. O

Theorem 4.6 I L is a T(n) + ¢ time ITA language, Tn) = nand cis a
constant, then L is a T(n)time ITA language. In particular, if Lis an n + ¢
time ITA language, then L i o real-time ITA language. O

The next theorem shows a property of the real-time ITA languages. This

8 Karel Culik II and Sheng Yu

property can be used to show that some languages are not real-time ITA
languages. The proof of this theorem is similar to that of [4].

Theorem 4.7Let L be a real-time ITA language. There is c constant h
such that for any k > O there are no more than
k
h2

equivalence classes of Ryfmod L).

Proof : Let A be the ITA which accepts L. This proof is based on a simple
fact that the next k states of the cell at root are only determined by the current
states of the cells at the top £+ levels of the ITA and the next k input symbols.
Consider the two sequences of the global states

G 3G, 3 .. 2q,

and

g% . ag;
where 2ja2..a¢ € Ly, 0 é i = k if the statesl'of the cells at the top k+1 levels of
the global states G and G, ' all the same, then we can easily prove that G; and
G,’ have the same states oiﬂ the cells at top k levels. Slmllarly, G, and Gb"h
the same states of the cells at the top k-1 levels,...... ,‘ and G,' t'l:ave the same
states at top k-t+1 levels. Since t = k, we have

p(G;) = p(G;)).

We defined that G =, G’ if and only if G and G’ have the same states at
the top k+1 levels. =y is obviously an equivalence relation. We know that there
are

1424224 .. 42k = gkt

cells at the top k+1 levels of the ITA. Let n be the number of states in Q. Then
there are at most
o211

equivalence classes of my,

Since w Ry w' if Let

AG{* w)=¢ and aAG|" w)=¢" .
It is easy to see that w Ry w' if G =y G'. Let h = n®. Hence, there are no more
then
a2t

equivalence classes of Rifmod L) O

Now we define

Ly(K) = {z #z . #z #88* | n >0, 2,,25,..,2,,5 € {0,1,. . K—-1} t=2|y| +1,

y=z; for some 1=si=n}.

Notice that the language La we defined before is actually La(2).
Lemma 4.8 Ly(9) is not a real-time ITA language.

Iterative Tree Automata 9

Proof : Similar to the proof in Lemma 4.2, we can show that there are at
least

2

equivalence classes of Ry{mod Lq(9)), where & = 8. For big enough k (or t), we
have

2'—1 > p?,
By Lemma 4.3, La(9) is not a real-time ITA language.

Theorem 4.9 Real-time ITA languages ere incomparable with context free
languages.

Proof iWe change the. definition of L4(9) such that yR = x; rather than y
== x;, for some 1=i%n. Then this language is not a realtime ITA language
proved basically by the same argument. But we can easily construct a nondeter-
ministic push-down automaton to accept it. on the other hand, we know that
{ww]| w € I}
is an real-time IAA language, therefore, a real-time ITA language but not a CF
language. So, they are incomparable. 0O

5. Linear-time ITA languages

It is interesting to see that the deterministic ITA can compute the Satisfia-
bility problem in linear time. This is not surprising since the number of cells used
in the ITA is growing exponentially as the number of the Boolean variables is
increasing linearly. But it is still interesting to have a deterministic program on a
simply defined device to solve the problems such as the Satisfiability problem in
linear time.

Let X = {x;,X2,....Xa} be a set of Boolean variables. A truth assignment for
X is a function ¢t : X - {T,F}. We call x or Z to be a literal over X if x € X. A
clause over X is a set of literals over X. The truth value of a clause C is the dis-
junction of the literals in C. The truth vale of a collection of clauses E is the con-
junction of the clauses in E. Given a collection of classes E, the Satisfiability
problem is whether there is truth assignment t for X such that the truth value of
E is true {9].

We use the reversed binary coding of ¢ for literal x; and a minus sign follow-
ing it for literal z;. Commas are used to separate the literals. Parenthese are
used to separate the clauses. For example,

{1,01-,11)(001-,01,101,1-)
is the coding of the collection of clauses
{xlrz-Q:xa}{beZx&El}

Example The Satisfiability problem can be computed by an ITA in linear

time.

Proof of the example: The formal construction and proof are given in
[19]. Here, we only outline the idea.

We define level { of the ITA (i=0) to be the set of all cells at the distance §
from the root.

Let X = {x1,Xz,...,Xn} be the set of variables. Each level from level 1 to level

10 Karel Culik II and Sheng Yu

n corresponds to a variable in X. Level i corresponds to x;, I = i =< n, All the left
cells are assumed to have value False and all the right cells assumed to have
value True. Thus, each path of the ITA represents a truth assignment for X,
There are 2® possible distinct truth assignment for for X and we have 2° distinct
path (to level n) corresponding to them. When an input word which is coded as
described above is read in, the same Boolean operations are performed on every
path, i.e., on every possible truth assignment. After completing all the given
operations, the results are sent to the root along each path. The given collection
of clauses is satisfiable il and only if there is a “True“ result from some path.

The following technical details are worth mentioning.

(A) Given a reversed binary number followed by a separator, the ITA can
find out the corresponding level in the following way. When the reversed binary
coding flows down a path, every node subtracts 1 from the coding. For example,
“101“ would change to “001“ and “00001“ would change to “11110“ after those
codes flowing through a cell. The cell would not know that a number has been
decreased to zero until the separator following this number comes. The first cell
which becomes less than zero will be marked to be an operand of a Boolean
operation.

(B) The *-' sign following a binary coding will cause the complement of the
assumed truth value produced. The separators after the second operand in a
clause case the Boolean additions to be carried on. The separator brings the
operand it first encounters to the cell where the other operand is stored. The
operation is performed here and the result will replace the stored value, The
Boolean multiplications are operated in the similar way. Since there are two lev-
els of operations, we need markers to distinguish the Boolean multiplication
operands from the Boolean addition operands. When each clause is ended, the
ITA will mark the truth value of this clause to be an operand of Boolean multipli-
cation.

(C) After the input string is ended (B's are assumed), the results from all
the pathes are sent back to the root. When two paths are merged, the result are
“or“ed together. Finally, the result at the root cell will be the answer to the ques-
tion.

Now, let’s consider the time consumed for this computation. Let X =
{x1,X2,....Xa} be a set of variables and S be the coding of E, the collection of
clauses over X. Without loss of generality, we assume all the variables in X are
used in E. Then the last symbol of the input will not go further than depth n of
the ITA and the result will travel not more than n cells to reach the root. The
computation time on the input S is

T(S) = |8| +1+2n = 3]s| +1,
which is linear to the length of the input. ©

Now, we generalize the previous result. We will show that T(n)-time compu-
tation on a nondeterministic Turing Machine (NTM) c¢an be simulated by a
cT(n}-time deterministic ITA for some ¢ > 0. Here again, we see a trade-off
between the number of cells and the computing time.

It is a well known fact that every one-head one-tape TM can be simulated
by a two-stack machine. Because the tape symbols on the left of the head and the

Iterative Tree Automata 11

ones on the right of the head can be placed on the two stacks, respectively. The
actions of the head become the pushings and poppings of the stacks. The simula-
tion of an NTM by an ITA will turn out to be the simulation of a two-stack
machine.

An implementation of the stack by an IAA has been given in [10]. However
we will give our own very simple algorithm for this task after formalizing the
main theorem.

Theorem 5.1 Any T(n}-time NTM language can be accepted by an ITA in
cT(n) time, ¢ > 0.

In the following, we only consider the one-head one-tape TM's. It is fairly
easy to extend this result to the multihead and multitape machines. To prove
this theorem, we need the following lemmas.

Lemma 5.2 Any t cornputationa of an NTM with at moat k choices can be
simulated by ct computations of an NTM with at most 2 choices,

Proof : Let M = (@, L, T, §, g5, B, F) be an NTM with at most k choices
for any move. And M’ = (@', L, T, §', g0, B, F) is an NTM with at most 2

choices, which simulates M as follows. Let the n‘" transition rule of M be

E(qio’a‘J = {(qi,vag'Ivzl'I)I(Qizrag'z)ziz)""x(qi".ra"jlz’g'j)}s
for q,-o.q,-‘,...,qijEQ, LIS ,a,-iél", Xi Xy ,X.-iG{L, R, S}, 0ssj=k.

If } =< 2, then we have the same rule in 8'. Otherwise, 8' has the following
corresponding rules,

Hgig) = {(‘I;lva.'le.'l);('.',;a.'nys)3

6‘“"1:“10) = {(qiglaig;xig)r(tig!aiuxs]}r

e, p0ig) = iy poi, X, W@, X)}
The new state set Q' includes Q and the new states which are used in the decom-
position of the multichoices (= 3) into double choices.

It is clear that each move of M can be simulated by M’ with at most k-1
moves. So, (k-1} operations of M’ is enough to simulate ¢ operations of M. O

Lemma 5.3 Any NTM cen be simulated by ¢ nondeterministic two stack
machine (NTS). Moreover, t operations of the NTM can be simulated by no
more than ct stepa.

Proof ¢ This simulation is a well-known fact, see e.g. [12]. The simulation
can be accomplished by at most 3 steps for a move of the NTM. So, ¢t moves
need at most 3¢ simulation steps. O

Proof of Theorem 5.1:

By Lemma 5.2 and 5.3, we know that if a language L is accepted by an
NTM in time f{n), then there exists a nondeterministic two-stack machine (NTS)

with at most two choices of every transition which accepts L in time ¢f(n), ¢ > 0.
To prove Theorem 5.1, it sulfices to show that any g(n)-time NTS language is

12 Karel Culik II and Sheng Yu

also a kgfn}time ITA language, for some k¥ > 0.

The deterministic ITA simulates the NTS as follows. At the beginning, the
root is acting as the control unit and every path from the root is functioning as
two stacks. Note that each node has two channels for the stacks, so every path
has a pair of stacks working along it. All the paths are doing exactly the same
job provided no transition has more than one choice. When two choices are avail-
able for the mext move during the simulation, the two sons of the root become
two contro! units and the stacks are pushed one level down on every path. Thus,
each son of the root, together with the stacks below it, simulates one of the
choice. Now we have two branches of simulation. Whenever two choices of
moves appear at a branch of the simulation, the ITA will break it into two
branches in the same way as described above except at the different levels. Thus,
there may exist many control units and many pairs of stacks corresponding to
them. They are working parallelly and each one simulating a different approach
of the transitions of the NTS. When some control unit finishes the computation,
if the result is positive (acceptance), the result wili be sent to the root at the
speed of one level up at a time unit without any delay. If the result is negative
(nonacceptance), then the signal will be waiting at any node along the path to the
root until the signal from the other branch comes over. In such way, a positive
signal comes to the root if and only if there is one branch of simulation which is
ended with acceptance, and a negative signal arrives at the root if and only if all
the simulations get negative results.

It is obvious that this ITA accepts the same language as the simulated NTS
gince it simulates all the possible sequences of transitions of the NTS and only of
them, too.

Consider the time consumed by the simulation. Let t be the operation time
for the NTS to accept a word. Then the simulation need at most ¢ push-downs
for multiple choice transitions (=3), ¢ pure simulation steps and ¢ operations to
send the result signal back for the latest one. So, at most S time units are
needed.

Combining with the result from Lemma 5.2 and 5.3, we have proved the
theorem. O .

In the proof of Theorem 5.1, we use each path of the ITA to simulate
stacks. A path is actually.a linear iterative array (IAA). To show how it works,
we now give our own idea which shows how the stack can be easily implemented
by an IAA.

Each cell of the IAA has three registers, so it can have up to three stack ele-
ments stored in it. The leftmost cell is the top of the stack. For each cell,

(1) if there are three elements in the cell, the right one will be sent to the
right neighbor; (Expansion rule)

(2) if there is only one element in the cell, it will get one from the right
neighbor provided there is one. (Contraction rule)

Fig.5.1 shows an example of the implementation of the stack.

To verify that this stack-simulation works correctly, it suffices to show (a)
any cell will never be overloaded; (b) the stack will never be broken, ie., no

Iterative Tree Automata 13

empty cells will occur between nonempty ones. Clearly, (a) is guaranteed by the
Expansion rule and (b) is confirmed by the Contraction rule.

) [bla| =] [T J=—
20 lelpfalem=] T | =
¥ |dlefbl=a] T J=7—
w o pe] | =g blal J=—=
o) el | J==fal [J—==

(1) Stack has two elements a and b. (2) Push c.

(3) Push d. (4) Pop d. (5) Pop c.
Fig. 5.1

In the last section, we showed that the real-time ITA languages are incom-
patible with the context free languages. But this is no longer true to the linear-
time ITA languages. We know that any context free language L can be generated
by a grammar G in 2-standard form [p116 of 11). A grammar G = (V, I, P, §)
is in 2-standard form if each production rule is in the form

A-ax a€ X a€(N-{SH o=s|af=20or S
From this grammar G, it is easy to construct a nondeterministic push-down auto-
maton A which accepts the same language L in real time. Since G is in 2-
standard form, each action of A handles at most two stack symbols. Then A can
be easily simulated by a two-tape nondeterministic Turing Machine in £n time.
By Theorem 5.1, another result follows.

Corollary 5.4 Contezt free languages are properly included in linear-time
ITA languages.
[s]

Theorem 6.5 Lineer-time ITA lenguages are closed under Boolean opera-
tions,

Proof s Let L; and Lz be two linear-time ITA languages accepted by ITA
A, and Az, respectively. To show L,UL: and LiNL; are linear-time ITA
languages, we construct a new ITA A which has two channels for every cell. One
channel simulates A; and the other simulates Aj. The two result are merged at
the root cell by the required Boolean operation (union or intersection). Then it is
clear that L(A) is the union or intersection of L, and Ly and it is a linear-time
ITA language.

Let L = L(A), A = (Q, L, 8o, 8, 8,F) be an ITA and A accepts L in linear
time f{n} = cn + d. Let L = Z* L. Then it is easy to construct an ITA A by
simulating A and a f(n) time ITA at same time. The result is the reversed result
of Ain time f(n). 0O

Theorem 5.8 Linear-time ITA languages are closed under concatenation.
Proof t Let L; = L{A;) and Ly = L{Ag), respectively. Now, we are

14 Karel Culik 1I and Sheng Yu

constructing an ITA A to accept the language LyL;. For a given input string w,
A will test whether u € I; and v € Ly for all possible decompositions of w such
that w = uv. The structure of ITA A is outlined in Fig.5.2. The rightmost path
of A destributes the input to the subautomata So, Sy, Fori=0,1, ... , the
sub ITA 5y tests the decomposition w = uv where [u] == i. The root of S; sends

Fig. 5.2
the first § input symbols to its left son and the remainder to its right son. The left
son and its descendants will simulate A; on the first 5 input symbols, and the
right son and the subtree rooted from it will be working on the rest of the input
with the rules of Az S; accepts the input if and only if both of its sons get the
positive answers. A accepts the input if and only if one of the sub ITA's S, Sy, ...,
Sp accepts it.

It is worth mention how a sub ITA divides the string correctly for its left
and right som, i.e., for the sub ITA Sj, the difficulty is how it counts s symbols for
its left son and the remainder for the right son. We use a tagging technique. At
beginning, every node on the rightmost path of A is assumed storing a tag. The
input symbols are all untagged originally. The first untagged symbol passing a
cell of the rightmost path will bring the tag away and become tagged itself when
it goes to the right, Thus, So will receive no tagged symbol. S; will receive one. Sz
will receive two,.....etc. In the sub ITA S;, 0=<i<u, the tagged symbols will be
sent to the left son as the input string to A; and untagged symbols will be sent to
the right son to be tested whether in Lz or not.

We omit the tedious but quite straightforward formal construction of A and
the details of the proof. ©

Theorem 5.7 Linear-time ITA languages are closed under inversed mor-
phism.

Proof t Let L be a linear-time Ianguage on I accepted by ITA A. his a
morphism : E-X'and b'}(L) = L'. We construct an ITA A’ such that the root
works as two processors, one is functioning as a translator which maps any sym-
bol a € E to h(a), and the other together with ali other cells simulates the ITA A.
Then the proof becomes straightforward. O

Theorem 5.8 Linear-time ITA languages are closed under Kleene closure.

Iterative Tree Automata 15

Proof : Let L. be a linear-time ITA language accepted by A. We construct
an ITA A’ such that L*= L{A'). When constructing A’, we expand the idea of the
proof of Theorem 5.7. T

Fig. 5.3

See Fig.5.3. The left sub ITA So will simulate ITA A on the whole input
string. The rightmost path of A’ is the main path. The input stream goes through
this path and is tagged in the same way as in Theorem 5.7. Let n be the length of
the input string. For example, when the input symbols going through cell r; to cell
' (i=n), there will be ¢ symbols tagged and n-i untagged. The tagged symbols
will go to cell 1,1 and the others will go to ris. The sub ITA’s with root riy and
r,z will recursively repeat the same processes as it is started from rgexcept they
will not work on the whole input string but only part of it. &’ will send back an
acceptance message if and only if both ry; and ry2 accept. ro will enter a final
state if either Sy enters a final state of A or an acceptance message comes from
the main path.

Since A’ tried all the possible partitions of the input string, w € L{A') if
and only if w € L2 for some n = 0. So, A’ is the ITA we wanted to construct.

The proof that A' is a linear-time ITA is omitted. O

6. Generalization of the ITA

The ITA defined in Section 3 are actually the binary ITA, i.e., every cell has
and only has two other cells as its two sons. In this section, the more general
concept of arbitrary n-ary ITA will be introduced. The main result in this section
is the hierarchies of the real-time ITA languages. We will show that for any 0 <
m < n the family of the real-time m-ary ITA languages is properly contained in
the family of the real-time n-ary ITA languages. To prove this result, several
properties of the general ITA will be given. Although higher arity ITA are faster
than the low arity ITA, the families of the linear-time languages of them are
equal. So, only the real-time languages of the general ITA will be concerned in
this section. First, we give the formal definition of the general ITA.

Definition 8.1 An n-ary iterative trece automaton A is o quadruple (@, L,
Dy, F) where

16 Karel Culik I and Sheng Yu

Q 12 a finite set of states;

X is the input alphabet;

Dy = {60,61,...,5:} i5 a act of transition functions; 8, is the function of the
root cell, §,,...,6, are the functions of the first cells, second cells, ..., the nth cells
(the cells which are the [irst sons, second sons, .., n'h sons of some cells),
respectively;

FC Qiseset of final states.
¢, t3 the epecial quiescent state in Q end all 8, 1i=n, satisfy the condition
6'(‘)\: D Iy voes ‘D\) = . a

Notice that a l-any ITA is a linear IAA. All the other definitions for the
binary ITA in Section 3 are also valid for the general ITA.

It is an obvious fact that for any 0 < m < n, the real-time n-ary ITA is at
least as powerful as the real-time m-ary ITA, since the n-ary ITA can simulate
m-ary 1TA with only part of their branches. The n-ary ITA and n*-ary ITA have
some special relation. Any k steps of internal computations of the p-ary ITA can
be simulated by an n¥-ary ITA in 1 step. The converse proposition is also true. If
the external input is considered as well, we get the following theorem.

Theorem 8.1 Let L be o language in £, # ¢ T, and
Lig = {a‘#""laz#"ﬂ...#""la,. | ayay---a, €L}
Then L is accepted by an n*-ary ITA in real time if end only if L is accepted by
an n-any ITA in real time.

Proof : Assume Lig i3 accepted by an n-ary ITA A in real time. We can
construct an nXary ITA A’ in the following way. Each cell of A’ simulates the
operations of f+n+..4+n¥? cells at k consecutive levels of A.

Fig. 8.1
Fig. 6.1.1 shows the correspondence of A and A'. But in order to simulate k
operations of the k levels {+n+...4n*! cells of A by one cell in one operation
correctly, each cell of A' should store the state information of L+n+...+n?*2 cells
at £k-1 levels of A. This is shown clearly in Fig. 6.1.2. An example is shown in
Fig. 6.2 where a 4-ary ITA is simulating 2 binary ITA. Given the current states of

lerative Tree Automata 17

Sy', Sy', Se', S7', Sg and Sy to compute the next state of Sy', we certainly need the
current state of cell 5. When the root cell of A’ is doing the simulation, it always
assumes an input string a®#*! when it reads a input symbol a. Then it is easy to
prove that A’ accepts L.

Fig. 6.2

Now assuming that L is accepted by an n¥-ary ITA A, we construct an n-
ary ITA A’ which accepts Lis. A’ operates k time units a cycle. Look at Fig.
6.1.1 and interchange A and A'. Every block of A' simulates a cell of A. At time
tk+1 (t = 0), each top cell of the blocks changes to a new state according the
transition rules of A. If the result is not quiescent, this state information is sent
down one level at a time until reaches the bottom of the block. When the state
information is sent down, each cell being passed adds a tag i (I = i = n)if this
cell is a ith cell. At the same time (from time th+2 to (t+1)k), the new state
information is passed up k-1 levels. So, at time (t+1)k+1, the transition of A’ is
defined as

5‘-'(q, (p"-l"Q"""-k—l)’ <q,'l,q,~’,...,q,-“t_l>, .y G .-.'q‘n'>)

7
(n-1)a¥ 141

= 5l-lnk-l+.-2nk-2+._~+'-k_‘u_H(q, Py iy q".k) if0<isn;

5/q, a, <G sk >0 <G A *>)

(n-1a* ey
=édg, a, g, ... ,q‘-"k) ifi =0

The details of the construction and proof are left to the reader. D

We use the notation L,(n) to represent the family of the real-time n-ary
ITA languages,

Corollary 8.2 If L,(m) = Lip\fn), then Ly, fm*) = L.(n*) for any k >

Proof : L € L, fm*) <=> Lis € Liyfm) <=2 Lis € Lyppfn) <=>L
€ L) O

In Section 4, we showed that Lqa(9) is not a real-time binary ITA language.

18 Karel Culik II and Sheng Yu

1t is fairly easy to see that La(n) € Lir,(n). So, we know that Ly;,(2) is properly
contained in L. (9). To prove that Ly,(m) C Lyn) for any ¢ < m < n, we
need the generalized concept of Theorem 4.7. The proof of it is similar to that of
‘Theorem 4.7.

Theorem 6.3 Let L be a real-time n-ary ITA language. Then there is o
constant h such that for any k > 0, the number of the equivalence classes of
Rifmod L) is less than

x

B o

This theorem is essential to the proof of the ITA hierarchies.

Example 8.1

(a) For all 0 < m® < n, Lypyfm) C Lipyfn).

(b) For all k > 0, Ly, (25) C Ly, (2++1).

The proof of the first part is easy, since we can prove that Lq(n) is not an
real-time m-ary ITA language by the similar method of Lemma 4.8. To prove
{b), we assume that the two families of languages are equal. By Corollary 6.2, we
get

2,
er(zk)= Lm\(zk(kﬂ)) and
2,
L2 = L (24 *1)
Lig2#+2) = [(olk +1)642))

Lp2*) = L2 +Y)

Since kfk+i) < k(k+i+1) < (k+1)(k+i) is true for any 0 < i < 2k, the
arity of every left hand side from the third equation is between the arities of the
two sides of the previous equation. So all the families in the above equations are
equal. Hence,

Liy(2¥) = Lypf23¥+1)),
But

0 <(2k’)3 < 98Kk(k+1),

We have a contradiction to (a). Thus (b) holds.
Now we are ready for the main result of this section.
‘Theorem 6.4 For any n > 0, Lipy(n) C L, (n+1).

Proof :Assume that L, (n) = Lifn+1). Then L) = Lipy((n+1)) for
any k > 0. Chose k be the integer such that

u+lk
—_— 4.
(= >

Then it is easy to show that there exist a ¢ such that
nk <2t <2t < (n+1)f.

Iterative Tree Automata 19

Since we know that Liy(#C Ly (#+!), we have Lyy(n*) C Ly ((n+1)). This is

a contradiction. D

Corollary 8.5 For all integers 0 < m < n, Lip,(m) C L, fn). O

Acknowledgment

The helpful suggestions and comments of LP.Fris are grateful appreciated.

References

1]
2l

(3!
(4]
(5]

f6]

8
fo

[10]
[n]
2
3
[14

[15}

[16]

J. L. Bentley and H. T. Kung, A Tree Machine for Searching Problems,
Dept. Compt. Sci., Carnegie-Mellon Univ., Tech. Rep, Aug. (1979).

C. Choffrut and K. Culik II, On Real-Time Cellular Automata and Trellis
Automata, Research Report F114, Institute fur Informationsverarbeitung,
Technical University of Graz, (1983).

K. Culik II, J. Gruska and A. Salomaa , Systolic Automata for VLSI on
Balanced Trees, Acta Informatica 18 (1983), 335-344.

5. N. Cole, Real-Time Computation by n-Dimensional Iterative Arrays of
Finite-State Machines, IEEE Trans. on Comp. 18 (1969) 349-365.

K. Culik II and J. Pachl, Folding and Unrolling Systolic Arrays, ACM
SIGACT-SIGOPS Symposium on Principles of Ditributed Computing
(Ottawa, August 1982) 254-261.

K. Culik I, A. Salomaa and D. Wood, VLSI Systolic Tree Acceptors,
Research Report CS-81-32, University of Waterloo, Waterloo, Ont.,
Canada, RAIRO Theoretical Informatics, to appear.

C. R. Dyer and A. Rosenfeld, Triangle Cellular Automata, Inf. and Control
48 (1981) 54-69.

P. C. Fischer, Generation of Primes by a One-Dimensional Real-Time
Iterative Array, J. ACM, 12 (1965) 388-394.

M. R. Garey and D. S. Johnson, Computers and Intractability,
W.H.Freeman and Company (1979).

L. J. Guibas and F. M. Liang, Systolic Stacks, Queues and Counters, 1982
Conference on Advanced Research in VLSI, M.L.T..

M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley
Publishing Company (1978).

J. Hopcroft . and J. Ullman, Introduction to Automata Theory,
Languages, and Computations, Addision-Wesley (1979).

H. T. Kung and C. E. Leiserson, Systolic Arrays {for VLSI), Sparse Matrix
Proceedings (1978).

H. T. Kung, Why Systolic Architecture?, Computer Magazine, Jan. (1982).

C. E. Leiserson and J. B. Saxe, Optimizing Synchronous Systems,
Proceedings of the 22nd Annual Symposium on Foundation of Computer
Science, IEEE Computer Science, (1981) 23-36.

T. A. Ottmann, A. L. Rosenberg and L. J. Stockmeyer, A Dictionary
Machine (for VLSI), JEEE Traus. on Computers 31 (9) (1982) 892-897.

20 Karel Culik I and Sheng Yu

[17] A. R. Smith I, Real-time Language Recognition by One-Dimensional
Cellular Automata, J. Comput. System Sci., 6, (1972) 233-253.

[18] A. Salomaa, Formal Languages, Academic Press (1973}.
[19] Yu S., Doctoral Thesis, in preparation (1984).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

