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Abstract

Average Case Selection

This thesis deals with the average case complexity of selecting elements of given
ranks from a totally ordered set. The basic approach is to classify different kinds
of comparisons in such a way that, by knowing their relationship, tight upper
and lower bounds can be achieved. This approach is applied to prove that the
Floyd-Rivest selection algorithm SELECT [Floyd-Rivest 75] is optimal up to
lower order terms. Selection of the minimum and the maximuem of a set is shown
to be of almost the same difficulty in the worst and average cases.

By the use of sampling techriques similar to those of Floyd and Rivest, we
develop simple and efficient algorithms for selecting the maximum (or minimum),
and an element of any given rank. The problem restricted to selecting the max-
imum and any element no smaller than the median is optimally solved. These
results are extended to produce upper and lower bounds on the number of com-
parisons needed to select the minimum, the maximum and an element of any
given rank.

Another application studied is the problem of finding the closest neighbour(s) of
a given random element in a set. By using an adversary argument, a simple algo-
rithm is shown to be optimal in the worst case. For the average case version of
the problem, we again make use of sampling techniques to design an optimal
algorithm.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. The problem and related work.

When performing statistical analyses of large amounts of data, relevant
information is often provided by looking at a subset of elements with specific
ranks. Such a subset, called the summary of the data and commonly defined by
the median, the maximum, the minimum, and quartile elements, provides
descriptive statistics of the population. With the summary, frequency histograms
are elaborated to give a pictorial distribution of the data. Clearly, for this type
of application, it is important to have available efficient selection algorithms. In
attempting to study the complexity of problems of this type, the number of com-
parisons has been the usual measure of work. This measure seems to elegantly
capture the inherent difficulty of the problems. The computational complexity of
comparison based problems is a well established area in the theory of computing
(see [Knuth 73]). Motivated by practical considerations, such as those suggested
above, and spurred on by a relatively long history of surprising and, on occasion,
deep results, this subarea continues to be fruitful. Hence we have both practical
motivation and mathematical interest for this study on the computational com-
plexity of selection problems. Our main interest is then, in the average case
difficulty of selecting several elements of given ranks.

Because selection problems are commonly associated with a single element
of given rank, we will specifically call the selection of two or more elements of
given ranks muitiple selection, denoting its complexity by M(k, , ky, «++ , ky; n},
where we are selecting m elements of ranks £, - -+ , &, from a set of n elements.
Actually, this concept generalises both selection and sorting problems since, if the
list of ranks is unitary (m = 1), the multiple selection is just a selection, and, if
the list of ranks includes all {m = n), the problem transforms into sorting.

The multiple selection problem can be succinctly stated as follows: given a
set X of n elements with an underlying total order and a list of ranks, find the
elements in X of such ranks, with as few comparisons as possible.
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Our measure of difficulty will be the number of pairwise comparisons
among the elements of the given input. Under our model, it is assumed these are
the only operations performed on the data. However, the algorithms may retain
any information learned through such comparisons, and make computations on
the information free of charge.

Occasionally we will be interested in the worst case. The majority of the
thesis, however, deals with average case behaviour. It may be assumed that all
possible relative orderings of the input are equally likely. Equivalently, it may be
assumed an adversary has initially ordered the data, but the algorithms may

make use of a random number generator to map it into the former case.

Altkough the problem of (single element) selection has been widely investi-
gated for the worst case complexity, the average case has received less attention.
The first practical selection algorithm seems to be that of C.A.R. Hoare [Hoare
61]. His algorithm FIND is an application of the procedure PARTITION used in
Quicksort. In its simplest version, the algorithm randomly chooses an element
called the pivot, from the current set of elements. The set is split into two, one
with elements smaller and the other with elements larger than the pivot, by sim-
ply comparing all the elements with the pivot. Recursion on the subset with the
element of desired rank completes the process. The algorithm is certainly easy to
understand, but its analysis is not trivial. Somewhat later, Donald E. Knuth
[Knuth 71] proved that the average number of comparisons performed by FIND
is

ME;n)<2(n+1)H,~(n+3-BH, ;+1-(k+2)H, + n+3] ,
where

Ho= 31 .
i=1t

If selecting the median, this yields,
M(Inf2], n) < 3.39n + ofn) .

This is somewhat above the totally naive estimate of 2n, but one’s intuition is
restored by noting that the desired element is, at each step, more likely to fall in
the larger subset than the smaller.

In 1970, Robert Floyd and Ronald Rivest developed a mew approach to
selection by making use of sampling techniques [Floyd-Rivest 73] (later published
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in [Floyd-Rivest 75]). We will discuss their approach in much greater detail in
section 3.1. The basic idea is to ﬁnd, on the basis of a small sample, elements
just above and just below the desired element. Having done this, the selection
problem is reduced to one of size o{n), upon which even a sort would be satisfac-
tory. Their algorithm SELECT provides an upper bound on the expected

number of comparisons required as
M(k; ) < n+ min(k, n— k+ 1+ O(n?) .
In the particularly interesting case of median selection, they have
M([nf2] ; #) € 152 + O(n'/% .

Floyd and Rivest observed the interrelation between two types of comparisons:
those which first join two disconnected substructures and those which constitute
the (a posteriori) proof that the correct element has been found. Based on the
solution of a linear programming problem, a lower bound for the selection prob-
lem is also proven in [Floyd-Rivest 75]. In the case of selecting the median the
best of a sequence of lower bounds achieved was '

M([nf2] ; n) > 1.375n .

Although the method is weak, it supplied the first, and up to this point, enly
nontrivial lower bound for the problem.

The problem restricted to finding elements of smail fixed rank, ie.
independent of n, was first devised by David W. Matula [Matula 73]. His elegant
and surprising algorithm shows that for a fixed rank &,

M(k; m) < n+ k [Iogz(ll:).l{ll + Intn{n))

(see also [Knuth 73]). A lower bound confirming Matula’s conjecture that the
method was near optimal was formalised by Andrew C. Yao and F. Frances Yao
[Yao-Yao 82]. They showed that for a fixed rank & > 2, there exists a number
N, , such that,

Mk;n) > n+ ; {lnln(n) -~ In{k) - 9) , forall n > N; .

Multiple selection problems have been investigated only in the worst case.
While some specific instances of the problem have been studied for long time, an
algorithm for the general problem first appeared in [Munro-Spira 76] and was
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improved in [Dobkin-Munro 81]. This upper bound has been recently improved
still further, approaching the lower bound supplied by information theory
[Cunto-Munro 83]. The average case complexity for special instances of multiple
selection are, to the best of our knowledge, first considered in this work.

1.2. Scope of the thesis and main results.

There were essentially two goals in the research leading to this thesis. The
first was that of a specific theorem to close the 12 years old problem of proving
the optimality of the Floyd-Rivest SELECT algorithm. The second was to intro-
duce and develop some particular instances of the average case multiple selection
problem.

Although the first goal is very specific, it plays an important role in deriv-
ing the results for the second. The second goal is that of opening a subarea that
has received very little attention. The results on multiple selection obtained may
be considered work still in progress. Certainly some interesting problems and
conjectures remain to be investigated.

Chapters 2 through 5 constitute the body of the thesis. The main results
are briefly outlined below.

Chapter 2 deals with the average case problem of selecting the minimum
and the maximum of a set. Although this particular problem is not hard to
solve, and the average case differs little from the worst case, the bounds obtained
will be used explicitly in deriving the more important result of Chapter 4. Furth-
ermore, this problem provides a relatively natural introduction to the type of
arguments used later. Identical upper and lower bounds for selecting the
minimum and the maximum are proven. That is,

XL

o mod(n, 2) .

M1, n;n)= 32_13_2+
Compared with the worst case bounds for the same problem, an improvement is
made when the set has odd cardinality. Certainly the most significant result of
this chapter is the proof of the tight lower bourd.

Chapter 3 is concerned with the selection of a single element such as the
median. It begins with a detailed description of Floyd-Rivest selection algorithm
SELECT. In addition to its place in providing the relevant upper bounds for
Chapter 3, it also constitutes the basis of the algorithms to be developed in
Chapter 4 and Chapter 5. A lower bound on selection due to Floyd and Rivest is
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also described. It is shown that their approach cannot yield a substantially
stronger lower bound. We reformulate their model, avoiding the restrictions
implicitly imposed. The main part of the chapter is presented in the third sec-
tion, in which a new model is used to prove that the algorithm SELECT is
indeed optimal to within lower order terms. That is,

n+ min(k, n- k+ 1)} - O(log(n)} < M(k; n} £ n+ min{k, n -k + 1) + O(n'/?) .
In the case of selecting the median,

M(fnf2] ,n; n) = L5n 4 o(n) .

In Chapter 4 we turn to specific average case multiple selection problems.
In particelar we consider the problem of finding the maximum (or minimum) and
any other rank, and also, of finding the minimum, the maximum and any other
rank. Algorithms and lower bounds which depend on the rank of the ‘other’ ele-
ment are developed. Typical of the results shown is that the complexity of
selecting the median and the maximum (or minimum) is

M(Inf2], n; n) = 1.75n £ o(n) .

Some of the algorithms developed in the chapter not only are conceptually sim-
ple, but also quite practical. This is the case for the algorithms finding the max-
imum and the median; the minimum and the median; the maximum, the
minimum and the median.

Chapter 5 concludes with the problem of finding the closest neighbour(s) of
a given random element z for which no rank is known a priori. The problem is
analysed for both worst and average cases. In the worst case, we prove that
lower and upper bounds are equal to

2n-3
comparisons. In the average case an algorithm is given with running time of
n+ min(k, n— k+ 1) + o(n)

comparisons if zis of rank k in the set. Averaging over all ranks, since z is a ran-

dom element, this gives
-gnn + ofn) .

Our main purpose in achieving this result is to show that the basic techniques
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used in solution of the problems presented in the previous chapters, can also be
applied for a different kind of problem.

1.3. Types of comparisons in selection problems.

At each stage in any comparison based algorithm, the information which
has been obtained can be represented as a collection of connected directed acyclic
graphs, called fragments. These fragments can be depicted as a directed acyclic
graph in which nodes denote elements and edges establish order relations. Such
a figure is called a Hasse disgram. By convention, elements with bigger value are
higher in the diagram, thus each edge is implicitly directed downward. We define
a special kind of fragment, moztree, to be a tree with edges oriented such that
there is a path from a specific element, the maximum or root, to every other ele-
ment. Because of its extensive use, we will refer to any maxtree simply as a #ree.
We will call a set of maxtrees a mozforest, or simply a ferest. A tree of special
interest is the binomia! tree, being a tree of size a power of two, recursively defined
as two binomial trees of equal size joined by the roots. A singleton is the

minimal binomial tree.

In order to be able to identify the k-th smallest element of a set, any algo-
rithm has to partition the set into a subset of k- 1 bigger elements, the &th, and
a subset of n— k smaller elements. Thus, starting with a collection of n unitary
fragments, or singletons, representing the absence of known order among the

(33}

Q

[

new

Figure 1.1
Subgraph present in any final configuration
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elements in the set, any selection algorithm must produce a connected fragment
whose transitive closure graph includes the graph given in Figure 1.1 as a sub-
graph. Based on these observations, Floyd and Rivest [Floyd-Rivest 75] defined
two classes of comparisons. A join comparison is one which connects two disjoint
fragments by comparing one element in each fragment. The key comparison of an
element is the first one made between that element and either the kth or some
clement lying between it and the bth smallest. Observe that the set of n -1 key
comparisons constitute the ‘earliest’ comparisons whick can be used as a proof
that the kth smallest is indeed of that rank. Furthermore, a key comparison
may be recognizable only a posteriori, after the kth smallest is known. It is clear
that any algorithm must perform exactly n-1 key comparisons and n-1 join
comparisons as well. The approach of Floyd and Rivest was to show that a sub-
stantial number of join comparisons are usually not key comparisons.

For multiple selection problems, the concept of key comparison can be gen-
eralised to the key—k; comparison, 1 < { < m, that is, the key comparisons associ-
ated with the selection of the element with rank ;.

We consider another class of comparisons called straddle comparisons, by
which we mean those between elements that will fall in different partitions.
Clearly, straddle comparisons are not key comparisons. Similar definitions of this
type of comparisons can be found in the literature. See for example [Yao 73].
Schematically, the relation between the three classes of comparisons is presented
in Figure 1.2.

5*"“-‘:““& Join KeT

Figure 1.2
Relation between straddle, join and key comparisons



CHAPTER 2

MINMAX AVERAGE CASE

It is well known that in the worst case, [3nf2] - 2 comparisons are neces-
sary and sufficient to find the minimum and maximum elements of n elements,
usually called the minmaz result. The bound was first proven in {Pohl 72, but a
simpler proof of the lower bound can be found in [Knuth 73]. The same lower
bound is again derived in [Fussenegger-Gabow 79, as a corollary of the more gen-
eral problem of selecting the first ¢ and last ¢ elements of a set. In this chapter
we study the average case version of the minmax problem. More precisely we
will prove that

M{l,n;n)=%£——2+-217 mod(n, 2) ,

where mod(n , 2) is the residue of dividing n by 2.

Following the approach presented in [Pohl 72], we will distinguish four
classes of elements: virgins, winners, losers and others. They will denote, respec-
tively, the elements that have not yet been compared, elements that have won
every (and at least one) comparison, elements that have lost every (and at least
one) comparison, and elements that have won and lost at least one comparison.

2.1. The upper bound.

Pohl suggested the following optimal algorithm to find the maximum and
the minimum of » elements, using at most [3n/9] - 2 comparisons [Pohl 72|,

i} Make |n/2} pairs.

ii) Find the maximum of the pair maxima.

iit) Find the minimum of the pair minima.

iv) If n is odd, the remaining virgin is compared with the maximum
computed in step (ii). If it loses, then it still has to be compared
with the minimum found in step (iii}.

Given our interest in the average case, we will see that a small improve-
ment can be made when n is odd. Ouly in that case does the following algorithm
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differ slightly from the one above. The algorithm will try to pair virgins as much
as possible. In the case of odd cardinality, the remaining virgin will be compared
in such a way that the virgin’s probability of winning is as close as possible to its
probability of losing.

More formally,

i) Pair 2 |nf2] virgin elements, then find the maximum of the pair
maxima. Since the Hasse diagram of this part of the computation
is a tree, call the maximum of the pair maxima the root.

ii) If nis odd then compare the remaining virgin with the element
which lost the first comparison to the root.

If the virgin wins, perform an extra comparison with the
tree'’s root, in order to decide the maximum of the set.

iii) Find the minimum of the set, by comparing the remaining losers
located at the leaves of the resulting tree.

Except for the second step, all the steps are unconditional. Furthermore,
during step (ii), the extra virgin is compared with an element that has lost only
to the maximum of n -1 elements. This loser may almost be considered a virgin

in the sense that we have virtually no information about its rank.

LEMMA 2.1. When n is odd, the probability of the extra virgin losing its first
n-1

comparison during step (ii) of the algorithm, is

Proof. Let X denote the set of n elements including z the remaining virgin after
step i of the the previous algorithm. The element which lost to the root of the

tree in the first round, y, has probability of being the j-th smallest,

1
-2
1<j< n-2, of X-z. Before being compared, r has probability % of having
rank i, 1 <i<n,in X.

n-1-1

If zis of rank i, the probability that y > zis0if i=nori=n-1, and oy

otherwise.

Hence the probability that y > zis
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2 "‘l_il= 1 »—zi
= n-2 n n(n-2) 2,
— 1 (n - 1)(n - 2)
n(n-2) 2
__n-1
T 2n

Hence, we can show,

THEOREM 2.2. The average number of comparisons performed by the minmax
algorithm outlined above on a set of size n is

3n 1
. < — - —_— R
M(1, n; n) 7 2+2n mod(n , 2)

Proof. When n is even, the algorithm performs exactly % - 2 comparisons. If

n=2k+ 1, step (i) will perform 2k - 1 comparisons in finding the maximum of

n-1 elements. At step (ii), the remaining virgin is compared for its first time,

winning with probability 2 +1

and therefore being compared again with the
tree’s root. Independent of the outcome, step (iii) involves & losers located at the
leaves of final tree, and hence & - 1 more comparisons are needed for selecting the
minimum,.

In total 3-2-'1 -2+ -51; mod(n , 2) comparisons are performed on average.

The comparisons performed can be classified as key-min, key-maz and join
comparisons. If n is even, then, during the first step of the algorithm, the nf2
pairings correspond to comparisons that are simultaneously key-min, key-max
and join. The next n/2 - 1 comparisons in step (i) are key-max and join. Finally,
in the third step, n/2 - 1 key-min comparisons are made ir finding the minimum
of the set. Observe that, exactly n — 1 comparisons of each type are performed in
the algorithm.

2.1.1. The lower bound.

The crucial information regarding the state of any computation which is
determining the maximum and the minimum can be summarised by the
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quadruple [a, 3, ¢, d] called an insiance (see [Pokl 72]). It specifies the number of
virgins, losers, winners and others, respectively. From an instance, one of ten
possible comparisons can be performed (virgin and virgin, virgin and loser, etc),
making a probabilistic transition to one of two possible instances, depending on
the outcome of the comparison. Therefore, starting from the initial configuration
of n virgins, any minmax algorithm will follow a sequence of instance-
comparisons, ending with the final instance consisting of no virgins, one loser
representing the minimum, one winner representing the maximum, and n - 2 oth-
ers. Figure 2.1 illustrates the transitional process from one instance to another.
Although the outcome probabilities depend on the partial order of the instances,
they can be easily bounded. As the second property is the only one needed in
proving the lower bound for the minmax problem, the notation used in Figure
2.1 does not relate these probabilities to the partial order of the instances.

Elements of each type are assigned a weight referring to a lower bound on
the asymptotic average number of comparisons the element contributes to the
total work. Let z;, z,, 7y and =z, denote the weights assigned to virgins, losers,
winners and others, respectively. The weight of an instance is the sum of each
element weight. Initially, the weight is nz, , and finally, z, + 2 + (n - 2)z, .

The mode! has to ensure that, as a result of a comparison, the average
difference between incoming and outgoing instance weights is not greater than
one (the comparison performed during the transition). This guarantees that the
difference between the initial and the final instance weights is a lower bound on
the average number of comparisons every minmax algorithm must perform. For
example, if a virgin and a loser are compared, the transition is,

> .o«-i ,b,a,c\u]

L

[&,510,,3] it

L ra-&‘\o,ux,dj{

No matter which partial order contains the loser, the probability, p, , of the loser
winning the comparison is less than half (p, < 1/2), since it has already lost at
least one comparison. A similar argument applies to p,, when virgin and winner
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D [A-a.‘b-n Je e ]

> Lot e ]

D[-'.b ,Lvl‘d-ﬁ—l]

<D[-|‘ , ¢ ul]
<‘;[ﬂ

'+'c.<l]

<D [Ql'b-ﬂ , .é]

" \ e 4]
"t \w h D [o 6t eor dna]
| \o b > la on e ani]
\o —P;D [a. v et da]
Yoo
Figure 2.1

Transitions among instances
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are compared. By taking the average difference of the instance weights, we get

: am + bz + cz3 + da} —p.{ (6 1)z + bep + cz3 + (d + I)z.,} -

‘{I—P){ (a- 1z + by + (c + )z + dh] =z - (1-p)2s- P12 ,

therefore, the associated inequality is,

n~-{1-p)es-pz, <1 .

The inequalities associated with the ‘other’' nine possible comparisons are derived
similarly from the transitional diagram shown in Figure 2.1. Any feasible solu-
tion in the model constitutes a lower bound for the problem. Hence, the goal is
to get the maximum lower bound possible. By using linear programming tech-
niques, the following lower bound for the average case minmax problem will be
shown.

Linear programming has already been used as a technique for proving lower
bounds in related problems. It is explicitly used in [Floyd-Rivest 75] to derive a
lower bound for selecting the median. Also, lower bounds appearing in other
references as [Pohl 72], [Schonhage 73] and [Munro-Poblete 82] can be formulated
as linear programming problems. We make use again of such a technique exploit-
ing also the information provided by the dual of the linear programming problem
derived for the minmax problem. As a useful reference for looking at the basic
concepts of linear programming we suggest [Hillier-Licberman 74].

THEOREM 2.3. The number of comparisons necessary on the average for the
minmax problem is

. 3n 1
M1,n;n) > z -2+ . mod(n , 2) .

Proof. As mentioned above, for each possible transition in Figure 2.1, the lower
bound is given by solving the linear programming problem,

max z = nz, -~ (2 + 23+ (n - 2)z,)

such that,
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25 - 22 < 1
-1 <1
-1, <1
n-(1-pas-pzs <1
n-(1-poir-pz < 1
n-ps—(1-pglzs < 1
P72~ 23) - 2piz, <1
PsT — pp2y S 1
PoTs — Po¥y S 1

Ty, 2, 2,220

The irequality associated with the case when two ‘others’ are compared is not
included, since trivially, 0 < 1. Note that the last three inequalities are redun-
dant since the second and the third are more restrictive. These last three ine-
qualities and the one from the comparison of two ‘other’ elements correspond to
the cases in which, with positive probability, one possible outcome from the tran-
sition is the same incoming instance, that is, the transition is stationary at the
same instance. This is represented in Figure 2.1 by the transitions starting at
the instance [a,b,c¢,d| and with one outcome to the same instance
la,b,c,d}.

Discarding the redundant inequalities, the primal problem is then
max z = ng — (2 + 23+ {n - 2)2,)

such that,

2n-z-5 <1
-751
zy-2, <1

5—{l-p)z-p2 < 1
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7-(1-p)%-p2, <1
- pst-{1-prs < 1
zlrzﬂszatzdzo -
It is easy to see that both p, and p, are strictly less than one half, since losers and

winners have afready lost and won a comparison already, respectively. The solu-
tion of the linear programming problem is then,

3n 3
z=T~2,z|=?.:¢=z_.,=1,z4=0 .

and, %"— — 2 is a lower bound for the problem. Figure 2.2 is the final tableau of

the Simplex algorithm [Hillier-Lieberman 74] applied to our primal problem.

z ™ oxm o ox, L Iy Xy e el
R R 2
% ! S ERE: 3

L -s L L

L. 1 1

* SR SRS L

a -5 {53 L 5o

Fo "% okLeh (3P L|x
Figure 2.2

Final tableau for the primal problem
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The lower bound derived above is tight when n is even, but not when it is odd.
Deriving the dual problem from the primal problem,

s
min g = Yy,
=]

such that,

2ttt
“nt - (l-p) -tk > -1
~nt-(l-p)a-(1-p)w>-1

—vz—ya—p1u4-pzv52—(n—2)

we observe that g, is the number of comparisons of type i (see Figure 2.1) neces-
sary to solve the minmax problem. The final tableau gives the optimal solution
of the primal problem and also displays the values of the dual variables

n n
!h=‘“2“, !J'2=!Ia='§'—l. u=yp=y=0,

indicating that only vy, #, and ww comparisons are perfermed. When = is odd, at
least one comparison of the type v, vw or vo must be made. In Figure 2.2, the
value of the slack variable z;, associated with the vo comparisons is greater than
zz and zg, which are the slack variables associated with the vl and vw comparisons
respectively. This means that a local perturbation of the optimal solution due to
the fourth or fifth equation is smaller than the one due to the sixth equation in
the primal problem. Since the fourth and fifth equations in the primal problem
are symmetric, we can arbitrarily choose to add

w1 o p>1

to the dual problem. The new optimal solution is then
3
g=""-2+(1-p) .

The maximum value of p, is the one computed in Lemma 2.1, that is



Consequently,

11
<1 1
h>3 "o

M(i,n;n) 2 %'1—2+

L
2n

mod(n, 2) .
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CHAPTER 3

COMPLEXITY OF SELECTION PROBLEMS

For years the median selection problem has proved intriguing to many peo-
ple. Although published more than a decade ago, the worst case linear selection
algorithm of [Blum et al 73] still constitutes a surprising achievement and a land-
mark in algorithm design. After a number of efforts, the best lower and upper
bounds for the worst case median selection are 79/43 n - O(1) [Murro-Poblete 82]
and 3n + o(n) [Schonhage et al 76} comparisons respectively.

For practical purposes, selection algorithms with linear worst case
behaviour have been unsatisfactory as they have had very complex implementa-
tions. However, 'practical’ selection algorithms with linear average running time
exist. For example, the idea of randomly partitioning a set, as is used in Quick-
sort, can be easily adapted for selection [Hoare 61], with running costs of
3.39n + ofn) comparisons on average [Knuth 71].

A very neat algorithm for selection called SELECT was presented in
[Floyd-Rivest 75], and rapidly became the preferred selection algorithm because
of its simplicity and average running time of n + min{t, n -k + 1} + o(n) com-
parisons for selecting the k-th smallest of n elements. The main feature of the
algorithm is the use of sampling techniques for selecting the desired rank. Floyd
and Rivest also demonstrated the first nontrivial lower bound for the average
case median selection problem (1.375r comparisons). They conjecture on the
existence of a lower bound differing by o(n) comparisons from the upper bound
supplied by the average running time analysis of SELECT [Floyd-Rivest 73]. We
will discuss the limitations of their model and give an informal description of how
it can be modified in order to get better lower bounds.

The main result of this chapter is the proof that the Floyd-Rivest algorithm
is indeed optimal {up to a lower order term), i.e. n+ min(k, n—- k+ 1) - o(n) com-
parisons are necessary, on the average, for selecting the #th of a set of n ele-
ments. For the case of selecting the median, this gives a lower bound of
1.5n — o(n) comparisons. Therefore, problem 5.3.4.24 in [KKnuth 73] is solved.

18
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3.1. The Floyd-Rivest selection aigorithm.

The main idea of the algorithm SELECT is to estimate the solution by first
taking a sample that, in negligible time (o{n) comparisons), will give quite a good
approximation. More precisely, the algorithm will take a random sample of size
ofn) from the set of n elements, and in ofn) time will find two elements, bottom
cut and top cut, denoted by B and T respectively, so that, with very high proba-
bility, the &th smallest element falls between them and the difference between
their ranks in the full set is also o(n) . The algorithm then partitions the remain-
ing singletons, elements that have not been in a comparison yet, by comparing
them directly with the two cuts. If £ < [n/2] , the singletons are first compared
with T and subsequently with B if necessary (the order reverses if &> [nf21]).
The algorithm can then be recursively applied on the subset containing the
actual /th. Because of the properties of the two cuts, the algorithm will recurse,
with probability almost one, on the subset of o(n) elements between the two cuts.

For a fixed probability that the ith smallest element fails to lie between B
and T, there is an inverse relationship between s, the size of the sample S, and
the expected number of elements falling between the cuts. Therefore, balancing
these values, i.e. s = O{x%*{In(n)}/*), minimises the expected cost subject to a
fixed tolerance that the k-th is not between B and T. The rank in X of any ele-
ment with known rank in S follows a negative hypergeometric distribution.
Hence, the average and the variance of the distribution can be computed.
SELECT is then recursively applied on S to select B and T in such a way that
the kth value lies between the expected ranks of both cuts in X, and the proba-
bility of the k-th being less than the rank of B or bigger than the rank of T in X
is o1/n} . The latter condition ensures that the expected work will be o(1) even if
SELECT ‘misses’ the target element which means it still has O(n} work to do.
The preceding conditions are satisfied by choosing the ranks of B and T in S to

s+1 12 s+ 1
m— [tn(n} &|*/* and & o
SELECT gives a running time of n + min(k, n— &+ 1) + O(n**In(n)/*) comparis-
ons. With some additional complication the sublinear term can be improved to

O(n'/%) (see [Floyd-Rivest 75]).

be & -+ [ln(n) 42, respectively. This approach to

A diagrammatic description of the algorithm is given in Figure 3.1. Circles
represent configurations and squares comparisons on elements. Heavier arrows
represent comparisons and lighter arrows outcomes.
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Labels on heavier arrows denote the number of fragments, and labels on lighter
arrows the outcome probabilities. For example, in the following diagram

ol
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the configuration has m fragments. Two comparisons per fragment are then per-
formed, one involving finding the minimum of the minima. Black nodes indicate
the elements that have already beer compared in finding the minimum (or the
maximum) of the set, and p, and p; denote the outcome probabilities.
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Figure 3.1
Algorithm SELECT for & < [n/2]
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Discarding lower order terms, the algorithm basically requires
min(k , n - k + 1) straddle comparisons, and the same number of key and non-join
comparisons. In total, the algorithm will find the i-th smallest of a set of size n,
in n + min(k, n - k + 1) + o(r) comparisons on average.

3.2. The Floyd-Rivest median selection lower bound, weaknesses
and extensions.

This section will be entirely devoted to median selection, that is k= [nf2] .
Although it presents new extensions of a proof technique, the median lower
bound developed here is subsumed by that of the next section, and the notation
in this section is not necessary for the subsequent one.

It is not expected that all join comparisons will be key as well. Essentially,
the lower bound of [Floyd-Rivest 75] is based on counting the expected number
of join nonkey comparisons. Adding the n -1 key comparisons to this value pro-
duces their lower bound for the problem.

The counting is done by looking at a family of ‘small’ fragments that con-
sist of all possible directed acyclic graphs containing at most some specified
number of nodes. Larger fragments are declared ‘big’ and ignored since it is
almost impossible to handle the large number of possible derivable fragments.
Because join comparisons cause fragments to be joined into larger fragments, it
seems natural to charge them the join nonkey comparisons. To accomplish this,
the model associates a nonnegative weight with each fragment, representing the
fragment’s individual contribution to the lower bound. Fragments of the same
type (i.e. isomorphic) will have the same weight, and weights will be independent
of the specific configuration to which the corresponding fragment belongs. The
weight of a configuration can be computed by adding the weights of the com-
ponent fragments.

Configurations and their corresponding weights can be interpreted as points
and lower bounds on their path length to a destination, respectively. The initial
configuration consists of n singletons and the final configuration of only one big

fragment.
b
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The count of the comparisons during a transition is a lower bound on the dis-
tance between the two consecutive points representing the cutgoing and incoming
configuration in the transition. Then, in order to compute a valid lower bound,
the model must ensure that, during any transition, the difference between the
weight of the outgoing configuration and the average weight of the incoming
configurations is at most the count performed during the transition. As a conse-
quence, the sum of weights of the initial n singletons is a valid lower bound for
the problem. Joining two big fragments creates another big fragment. Since no
count is performed during such a transition and because all weights must be non-
negative, their weight will be 0. In particular the weight of the final
configuration is 0. The inequalities derived from the transitions will supply valid
values for the fragment weights, and the maximum possible value for the single-
ton weight has to be found.

At this point, the model can be represented as a linear programming prob-
lem with format

max z =efw

Aw<b

w>0,

where the first canonical vector, e,, is the cost vector, w is the vector of nonnega-
tive weights, with w, corresponding to the singleton weights, and w, the weight of
a fragment type ¢. A is the transition matrix, and b, the counting vector is also

taken from the transitions.

The Floyd-Rivest model is based on the belief that, asymptotically, the
average probability of a join comparison being a key comparison, is at most 1/2 .
It assumes a negligible probability of a join comparison involving the true
median. Furthermore, the kind of counting that is performed is quite ‘local’ as it

deals primarily with join comparisons of specific types of fragments.

This model will handle two kinds of join comparisons,
i) between two small fragments,
ii} between small and big fragments.
Its weakness is due to the second type of join comparison. In those cases, the
probability of a join comparison being nonkey is equivalent to the probability of
that comparison being a straddle comparison. This fact will cause the weights to
be lower bounds on the number of join and straddle comparisons, rather than on
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the number of join nonkey comparisons alone. Actually, the lower bound
obtained by formulating the model for the family of fragments with size up to
three (see Figure 3.2) is not improved by any other formulation of the model with
families of bigger size. This follows from the transitions associated with the join
of a pair to a big fragment and the join of two singletons creating a pair. The
model will associate with the first transition the inequality,

wy < 1f4,
and to the second,
2wy -wy <12,

Both inequalities are included in every formulation obtained by the model for any
family of fragments up to size at least three, and both of them will satisfy equal-
ity in all linear programming solutions. Consequently,

w < 38,

and, the best possible lower bound for selecting the median achievable with this
model is 118 n comparisons.

We observe that if join and straddle comparisons are the only comparisons
counted, then it is possible to design an algorithm that joins the elements in such
a way that the average number of join and straddle comparisons performed

closely matches the lower bound on join and straddle comparisons given by the

00
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Figure 3.2
Family of fragments of size at most 3
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Floyd-Rivest model for the median selection problem. The idea is simple, and
deals with making join comparisons that are meaningless to the problem of
selecting the median, namely by building a binomial tree, and therefore finding
the maximum of the set.

LEMMA 3.1. The expected number of comparisons which are join and also

straddle with respect to the median can be as low as

8 2 2
-z—i-n—é—n-"'ﬁ'(o.-g&.n .

This demonstrates that models based on the counting of join-straddle comparis-
ons, such as the one given in [Floyd-Rivest 75, will not be suitable for proving
that the algorithm SELECT is optimal up to lower order terms.

Proof. A binomial tree on n = 2™ elements is formed by pairing winners on suc-
cessive passes until one remains. We observe that as the singletons are paired,
resulting in nf2 pairs, n/4 of those n/2 comparisons are expected to be straddles.
On the second iteration, the maxima of pairs are joined, forming binomial trees
of size 4. Since 1/4 of those pairs are expected to consist of two elements below
the median, it follows that

1
2 —
4

W]
oofw

of those nf4 comparisons, or 3nf32 comparisons, are straddle. More precisely, at
the beginning of the +th pass, n/2"" binomial trees of size 2! are joined by their
maxima in a total of nf2' comparisons, yielding n/2' binomial trees of size 2' each.
A straddle is obtained if and only if only one of the two binomial trees being

joined is completely below the median and the other is not. This happens with

probability

32
Then, during the #+th pass

SE

of the nf2' join comparisons are expected to be straddle. This yields an expected
total of
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i==1 i==1
com parisons which are both join and straddle.

Note, however, that for n > 64, this bound is greater than the asymptotic lower
bound supplied in [Floyd-Rivest 75).

Next, we will try to overcome the restrictions imposed by the ‘local count-
ing’ in the Floyd-Rivest model. Our main idea will be to count not only strad-
dles, but also any join nonkey comparisons possible. For example, consider
finding the median of 5 elements, M(3 , 5) = 88/15 (see 5.3.3 in [Knuth 73]). A
possible intermediate outcome during the computations is illustrated in Figure
3.3. Note that the comparisons performed between elements a and # is, with pro-
bability 1/4, a join, nonkey, non-straddle comparison, if ¢ is the actual median
and b is larger than it. Instead of ‘locally’ counting join comparisons and their
probabilities of being nonkey, we join fragments until they have to be declared
‘big’. At this point a less ‘local’ count i3 made. Any count, therefore, is per-
formed a bit more ‘globally’. The situations to be considered are

i) joining two small fragments, giving another small fragment,
ii) joining two small fragments, getting a big one,
iii) hooking a small fragment into a big one.

o

A\

S
Ny

Figure 3.3
Possible joins in the optimal
algorithm for median of five elements
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For the first type of join, because the result is still in the family and no
count is performed, the right side of the corresponding inequality is less than or
equal to 0. Figure 3.4 illustrates an example of such join comparison (a family of

fragments with sizes less or equal to 3 is assumed).

The outcome of the second type of join has to be declared ‘big’, and the
expected number of join nonkey comparisons computed. This value is based on
the total orderings possible and the binomial distribution of how the elements in
these total orders may be partitioned about the median. Figure 3.5 schematically
explains the countieg performed when the maxima of two pairs are joined.
Because the joining of two fragments can be done by any pair of elements, one in
each fragment, the model must consider all these possibilities. The joining of the
fragments through different pairs of elements will give inequalities differing only
by their right sides, since the counting is different but not the fragments. The
most restrictive inequality (inequality with minimum right side) is then kept, and
associated with the joining of these two fragments.

Asymptotically, the elements in a ‘big’ fragment may be thought of as hav-
ing continuous rank an, e € [0, 1. Again, each possible element to join and each
possible total order in the small fragment is considered. The model relies on the
Floyd-Rivest lemma proving that the expected number of joins involving the
median is small. When joining a ‘small fragment’' and a ‘big’ fragment, the
model must consider

i) all possible permutations consistent with the ‘small’ fragment, and

boT
g

W,
W
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WoEWL s Sy - 2, g0

Figure 3.4
Small fragment from the join of two small fragments
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their corresponding probabilities,

ii) joining by each element in the ‘small’ fragment,

iii) joining by an element in the big fragment that may be above or
below the median.

Then, for every total order and each element in it, the count is performed for the
case that the element in the ‘big' fragment is above the median, and for the case
it is below the median. In either case, the average of the counts (trinomially dis-
tributed) is a polynomial in « with a maximum value in its subinterval [0, 1/2) in
the first case and in (1/2, 1] in the second case. For each element in the ‘small’
fragment there are two cases. In one case, the element in the 'big’ fragment is
above the median, and in the other, it is below the median. The most restrictive
of the two cases is then kept. The final inequality associated with the ‘small’
fragment is given by the most restrictive inequality associated with any element
in it. Figure 3.6 gives an example of this type of join.

We were able to implement the whole model as a package with the aid of a
simplex routine developed by R. Bartels [Bartels 80] and facilities from the sym-
bolic manipulator Maple [Geddes et al. 82]. We obtained the lower bounds of
Floyd and Rivest by considering the family of singletons and also the family of
singletons and pairs. The first improvement with the new approach appears
when the family of fragments of sizes at most 3 is considered. This provides a
lower bound for selecting the median of 269/192 n = 1.40..n comparisons. Figure
3.7 illustrates the linear programming problem associated with this first improve-
ment.

The advantages of our approach over the one of Floyd-Rivest are:
i) it seems to improve the lower bound whenever a bigger family of
fragments is considered,
ii) the join between small and big fragments does not restrict the model
as in the case of Floyd-Rivest’s approach, and
ili) it actually bounds the set of join nonkey comparisons rather than

the set of join and straddle comparisons.

With this new approach, we are able to get 1.44.. n as a lower bound. The
family of fragments with sizes less than or equal to 5 was considered in the com-
putation.
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Hooking a small fragment into a big fragment
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max z = efw
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Figure 3.7
Model for median lower bound

3.3. SELECT is within o(n) of optimal.

The proof of our main theorem begins with simple observations extracted
from the Floyd-Rivest SELECT algorithm. In this algorithm almost all elements
are initially compared with one of the cuts, B or T, that are expected to be close
in rank to the &th smallest. With high probability, about k of these comparisons
are straddles. Furthermore, virtually all the nonkey comparisons correspond to
those straddles. Also, because both cuts are close in rank to the &th smallest ele-
ment, if a singleton is compared with one of the two cuts and the comparison is
not a straddle, then with probability almost one, its comparison with the other
cut is a straddle.

As no model based on the counting of join and straddles comparisons can
provide a satisfactory lower bound, our main approach is to relate the disjoint
sets of straddle and key comparisons. The crucial notion is what we call a close
comparison. The close comparison for the j~th smallest element, 1 < j < n and
j# k, is the first comparison made between that element and another of rank

such that, | k-] < | k-j|. In other words, the close comparison of an element
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is the first comparison between it and some other element which is at least as
close to it as the #-th smallest. Observe that this kind of comparison is either a
straddle or a key comparison, but not both. Furthermore, it is not necessarily a
join comparison.

For purpcses of notational convenience, we will think of X, the set of ele-
ments, as being the set of integers 1 through n. This assumption will allow us to
refer to the i-th smallest in X as the value i, IT will denote the set of n! permuta-
tions of X. It is helpful to think of an input permutation of X being stored as a
vector. Algorithms are allowed to access the vector cells but not to interchange
or modify their contents. Information regarding the relative order among ele-
ments is obtained by pairwise comparisons. The model represents any algorithm
a3 a decision tree with internal nodes indicating the pairwise comparisons
between two vector cells. The left branch of an internal node is taken if the first
argument of its comparison is smaller than the second argument. The right
branch is taken otherwise. Final configurations displaying the solution are at the
fringe of the decision tree.

Let us focus our attention on the elements k+{ and k-! with
1 <!{<min(k-1,n-# . By fixing ¢, k+! has a close comparison when compared
for the first time with an element with rank in the range [£—{, k+ (- 1], and
k- I, when it is compared for the first time with an element of renk in the range
[k-i+1,k+1{]. Then, relative to k—{ and k + /, our approach is to consider a
pair of permutations in II such that the algorithm follows the same sequence of
comparisons up to the point at which the close comparison is made for £+ { in
one permutation and k- { in the other. Moreover, the close comparison of k + {
will be a straddle if and only if the close comparison for #-1{ is a key. By
presenting a bijection from IT to itself, we will be able to prove that, on average,
the number of close comparisons of & - ! and k + { which are straddles is at least
1-o(1). By adding this average for all { in the range, a lower bound on the
npumber of straddle comparisons can be computed. Finally if the n - 1 key com-
parisons are added to the lower bound on the number of straddle comparisons, a
lower bound for the selection problem is achieved. Having proven this, it follows
immediately that SELECT is within a lower order term of optimal.

The definition of the class of close comparisons may seem very ‘algorithm
dependent’. Actually, this is not the first time ‘algorithm dependent’ operations
have been defined in order to prove the optimality of a certain algorithm. For
example, in order to prove the optimality of the Horner’s polynomial evaluation
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rule with respect to multiplications, a restricted type of multiplication (active
multiplication) was defined [Pan 68]. The new operation allowed that proof to
concentrate on the relevant ways of performing multiplications. In our case, a
similar direction is followed.

LEMMA 3.2. For any algorithm selecting the i-th smallest and any ¢ in
[1, min(k- 1, n- k)], the expected number of close comparisons (over all input
permutations) of k + [ which are straddles plus the expected number for k- 1lis 1.

Proof. Let n, denote the jth element of the permutation 7. We will define a
bijection, f, mapping I1 — II and adopt the notation that f;) denotes the image of
jin fr). Hence f{x;) denotes the fth element in f#). The bijection f{r) and its
inverse f(n) are cyclic shifts of the values k— 1/, - - - .k + {in 7. More formally:

fe+0=k-t
=i+ 1 jelk-1, k+1-1]

and
fi)=J otherwise .

Clearly f is given by
P k- =k+t
F=i-1 jelk-1+1,k+1]

and
FH))=j otherwise .

Consider the algorithm working with the permutation 7 as input. Suppose
m;=k+ land v=5;:xis the close comparison of ;. This comparison is key if
m €|k, k+ [- 1] and straddle if =, e [k- 1, k- 1].

Now consider the action of the algorithm on fn). Up to the operation in ques-
tion, the outcomes of all comparisons fr,): fir,) are identical to these of n,: x,
because the relative order of two permutations differ only with respect to &+ [ in
# and k-1{in flr), and these elements have not yet had their close comparison.
Hence, the algorithm bekaves in the same manmner on f{n) as it does on =, up to
the close comparison which we will call v. In other words, the algorithm is
unable to distinguish between 7 and f{r) up to v.
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The comparison on flr) corresponding to v will be the close comparison of
fim} = k-1, and so be a straddle if fx) e [k+ 1, &+ 1] (i.e. me [k, £+ {-1]) and
key if fr)e[k—t+1,H (e melk~I,k-1]). In other words the close com-
parison of k£ + {in 7 is straddle if and only if the close comparison of & - {is key.

The lemma now follows from the fact that fis a bijection.

A superficial analysis might suggest we have the desired result, since we can
immediately conclude that the sum over all le[1, min(k-1,n- k)] of the
expected number of straddles involving % + [ and those involving k- [ is at least
min(k -1, n - k). We must ensure, however, that comparisons directly compar-
ing k+ ! and k-! do not cause serious difficulties as the above analysis counts
such straddles twice. This problem is alleviated by noting that such ‘double
close’ comparisons occur rarely.

LEMMA 3.3. The probability that the close comparison of & + {is also the close
comparison of k- [ is at most

Proof. Consider the algorithm operating on some permutation, «, such that &+ {
and k- ! happen to be directly compared and that comparison is close for both
elements. Call such a permutation a double close permutation and such a com-

parison a double close comparison.

We will show that in any algorithm, for every double close permutation having a
double close comparison at some internal node v in the decision tree, there exist
(at least) 2(- 1 permutations which are not double close and perform the same
sequence of comparisons from the root to v in the decision tree. In particular we
will partition a subset of II into equivalence classes of size 2/. Each equivalence
class contains a double close permutation and the 2! 1 permutations which are
not double close. Having proved this, it is immediate that the ratio

L
o

is an upper bound on the probability of a double close comparison for k + { and
k - [ happening in any algorithm.
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For each double close permutation 7 we define 2/ -1 functions denoted by g,
1<i<2-1, such that g{x) differs from = in that the position containing k- {
in 7 is replaced by k- I+ i and all the positions in 7 containing elements in the
subrange |[k- ¢+ 1, k—{+ i] are decremented.

Note that excluding the two elements being compared at v, = and all the g(r) are
the same permutations in the sense that the remaining elements have the same
relative order. Any comparison involving k+ [ or g(k-{ prior to v do not
involve another element in the range [k, k + {] and so have the same outcome
as the counterparts in 7. Hence, an algorithm acting on g(r), 1 < i< 2(-1, will
follow the same sequence of comparisons from the root to v. Note also that the
comparison at v for each g{r} is not a double close comparisen.

Consider how we could determine inverse images under g, 1 <7< 2/-1 of
« = g{x) where = is a double close permutation. An inverse must map the ele-
ment to be compared with & + [ in its close comparison to k-1 This value is,
then, k- [+ j, fixing j = ¢. Hence the inverse is unique and the lemma follows as
for each double close permutation we can exhibit at least 2/ distinet permuta-

tions.

The previous lemma could obviously be strergthened since we did not con-
sider all possible non double ¢lose permutations associated to a double close per-
mutations. For example, by fixing the position of & - {, transformations similar to
those defined in Lemma 3.3 (by fixing the position of & + {) can also be defined,
and therefore larger groups of permutations can be obtained.

THEOREM 3.4. The expected number of straddle comparisons necessary to

determine the i-th smallest of r elements is at least

. 1
min(k -1, ﬂ—k)—'i‘Hmin(t~l,n—k) .

Proof As noted above, it follows from Lemma 3.2 that the sum over all / in
[t, min{(k - 1, n - k)] of the expected number of close comparisons for &+ { which
are straddle plus that number for £ - {is min(k-1,n- k).

From Lemma 3.3 we see that the expected number of comparisons which are
close for both elements is at most
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From this, the theorem follows.

From Theorem 3.4, the observation that n-1 key comparisons are required for
selecting any rank, and the Floyd-Rivest SELECT algorithm, our main result fol-
lows immediately.

THEOREM 3.5.

n + mia(k, n- k+ l)-%Hmn(k_._,,_k)—st[k;n)S n+ min(k, n- &+ 1) + O(n¥3) .

Finally, we have the important corollary for the case in which the median is
selected.

COROLLARY 3.6.

M([n/2] ; n) = 1.5n £ ofn) .



CHAPTER 4

MULTIPLE SELECTION PROBLEMS

4.1. Selecting the maximum and any other rank.

If an element of a set of size n has rank , its relative rank is defined to be
the quotient kfn. Thus the relative rank of the maximum is 1 and of the
minimum, 1/n. Asymptotically, the relative rank of the elements can be seen to
approach the continuous interval (0, 1] .

In this section we will study the average case selection of the maximum and
any other element with a given relative rank « ¢ (0, 1] . This will be called the
max-a problem. Clearly, both upper and lower bounds apply to the symmetric
problem of selecting the minimum and another rank.

We will present algorithms and lower bounds for different subintervals of
(0,1). For ae|if2,1] we present an algorithm and prove its optimality to
within lower order terms. For « ¢ (0, 1/2), we develop a family of methods, con-
jecturing that the corresponding lower bound, which we developed, is tight. The
algorithms are based on sampling techniques and ways of partitioning small bino-
mial trees with the cuts B and T. The lower bounds are derived from the aver-

age case Jower bounds proven for the median selection and minmax problems,

Our most quotable result is that 1.75n + o(n) comparisons on average are
necessary and sufficient for the max-median problem, i.e. finding the maximum
and the median. For any o, the upper bounds supplied for the problem are
strictly less than 2n comparisons.

4.1.1. The lower bounds.

Selecting the maximum, and an element z with relative rank o, can be
viewed as two subproblems. The first is to partition the set into those elements
with relative ranks in {0, &), and those in {a,1]. The second is to find the
minimum and the maximum of the elements in [«, 1] . With this observation,
the lower bound follows from the results derived in the previous two chapters.

36
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THEOREM 4.1. Selecting the maximum and the element z with relative rank «
from a set of n elements, requires on average, at least

l -‘;i + —;—a n — o(n) comparisons if o ¢ (0, 1/2) ,
and
5 3 Lo
l 3 -3¢ " o{r) comparisons if « ¢ [1/2, 1] .

Proof. As noted before, the max-a problem must
i) find the elements with relative rank in o, 1],

it) determine the minmax of these elements.

Theorem 3.4 states that any algorithm to find an element of rank an requires at
least min{e , 1 - a)n — o(n) straddle comparisons. We emphasise that these strad-
dle comparisons involve elements of relative rank in (0, @) . Second, an -1 key-a
comparisons involving elements with relative rank {0 ,o| are necessary. This gives
a total of an + min{e, 1 - a) n - o(n) comparisons involving elements of relative

rank in {0, a) .

Turning our attention to part (ii), we will claim that 1.5 (1 - e)n - 2 comparisons
are necessary between elements of relative rank in [« , 1] . We argue by contrad-
iction as follows: Assume an algorithm A performs fewer comparisons. Then a
new algorithm B, based on algorithm A could take (1 - @)n elements of the set

and add an ‘dummy elements’ of ‘value’ —0o. B also conditions the execution of

rl,\u.

IR}

e : L
Figure 4.1

Average case max-a lower bound
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every pairwise comparison in A by first comparing the two elements involved in
the comparison with —oo, allowing the pairwise comparison only if both elements
are different from -co. Observe that by conditioning in B the pairwise comparis-
ons performed in A, only pairwise comparisons on the (1 - ajn elements chosen
initially will be performed in B. As the number of pairwise comparisons is our
complexity measure, algorithm B performs fewer comparisons than stated in
Theorem 2.2. Thus A requires at least 1.5(1 — a)n — 2 comparisons as claimed.

Observing that the types of comparisons, which we count, are disjoint, their sum
leads to a total of

‘ %+ %a] n —o(n)

comparisons if e € (0, 1/2), and,

[ %—%a] n —o(n)

comparisons if o € [1/2, 1] .

This lower bound has its maximum value in the case of selecting the

median and the maximum of the set.

COROLLARY 4.2. Selecting the median and the maximum of a set of n ele-
ments requires at least

1.75n - o(n)

comparisons in average.

Figure 4.1 displays the linear term coefficient of the lower bound expression,
as a function of a. In the case of selecting the minimum instead of the max-

imum, the lower bound function is symmetric to the previous one at « = 1/2 .

4.1.2. The upper bounds.

The first algorithm we present is a modification of the Floyd-Rivest algo-
rithm SELECT which finds elements with ranks larger than the median. Con-
sider the (1 - a)n + o(n) elements which are found to be greater than the bottom
cut B. These elements are paired such that the pair minima will be bigger than
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the top cut T. At this stage, the loser of each pair is not a candidate for the
maximum, and the winner is very unlikely to be of relative rank an . Therefore,
this comparison is with the same previous probability, a key-max comparison for
the pair minimum and and a key-o comparison for the pair maximum,

In any algorithm we develop, it should be understood that the step of sam-
pling, and therefore guessing the element with refative rank o, consists of deter-
mining the cut satisfying all the properties discussed in Section 1.3 for the algo-
rithm SELECT. The algorithm can be stated as,

i) Sample to guess z with relative rank a.

it) The remaining elements are first compared with the bottom cut B.

iii) Pair the set of straddling elements (elements larger than B).

iv) For each such pair compare the pair loser with the top cut T. If it
loses again, then compare the pair winner with T.

v) Find the maximum from the set of maxima larger than T.

vi) Select z from its subset.

Again, with probability 1 - o{1), step vi will be applicd on the subset of ele-
ments falling in between the two cuts. The algorithm is schematically presented
in Figure 4.3. Configurations with almost zero probability are not further
developed in the figure, although they must be considered in any implementation
of the algorithm.

Kh&- wedian

Figure 4.2
Classifying comparisons in max-median selection
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LEMMA 4.3. The previous algorithm performs on average,

comparisons, when selecting an element of relative rank « .

Proof. A very brief analysis of the previous algorithm shows that step (i) takes
o(r) comparisons (the same as in SELECT). Step (ii) performs one comparison
per singleton, that is in total n - o(n) comparisons. Also, from the analysis of

SELECT, we know that after the second step (1 - a)n + ofn) elements will be
1-a

larger than B, so step (iii) makes n + o(r) comparisons. For each pair

obtained at step (iii), step iv will make a comparison with T, and an extra
1-a

n + ofn) comparisons are performed during this step. Since, with high pro-

bability, the pair minimum will be larger than T during the previous step, it is
1-«a

also expected that n + o(n) pair maxima are involved in finding the max-

imum of the set at step (v). By adding all the comparisons made at each step,
the lemma follows.

Of course, if the sampling at step (i) fails to satisfy the properties assumed above,
the maximum has already been found in O(r) comparisons, and z can be com-
puted by simply sorting the subset in which it belongs, then performing at most
Ofrlog(n)} comparisons. Since this events happens with probability o(1/n}, its
contribution in the total average performance is o(n) comparisons only.

Comparing Lemma 4.3 and Theorem 4.1, we can deduce that for
a €[1/2, 1] the algorithm is optimal up to lower order terms. Surprisingly, for
a=1/2, this gives 1.75n + o(n) comparisons. Thus, when selecting the median,
an extra 0.25n + o(n) comparisons are sufficient to determine the maximum of the
sct as well.

It is helpful te classify the comparisons performed by the algorithm. Figure
4.2 illustrates the kinds of comparisons and their numbers (lower order terms are
not considered), when o == 1/2. Better upper bounds are obtained when larger
numbers of comparisons which belong to the intersections of the comparison sets,
are performed.
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Figure 4.3
The optimal max-a algorithm for & ¢ [1/2, 1]

The previous algorithm is not suitable for relative ranks a ¢ (0, 1/2) . For
example, it solves a problem close to minmax by performing 2.5n + o{n) comparis-
ons. This is a poor result, since we already know that the algorithm presented in
Section 2.1 makes 1.5n - 2 comparisons for the same problem. One reason for
such behaviour is due to the bad choice of cut for the singletons first comparison.
An easy modification is, to compare the singleton’s with the top cut T first.
More precisely,

i) Sample to guess z with relative rank «.

ii) Compare the remaining singletons against T.

iii) Compare the straddling singletons (smaller than T), with B.

iv) The maximum is computed from the set of maxima larger than T.
v) Select z from its subset.
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It is not difficult to see that this algorithm will perform 2n + o(n) comparis-
ons regardless of a. After step (ii), (1 - ) - o{n) elements will be candidates for
the maximum, and an + o{n) elements will straddle. The two methods have the
same running time for o = 1/3 . The behaviour of the second algorithm is still
not satisfactory, since when o approaches 0, we would like the upper bound to
converge to 1.5n+ o(n). A look at the kind of comparisons performed by the
second algorithm when selecting the minimum as well, shows that no comparisen
in the intersection of key-min, key-max and join comparisons is performed (see
Figure 4.4). At this point we conclude that ‘minmax like’ comparisons (pairing of
singletons} should be made. In a further modified algorithm, singletons are
paired before comparing them against the cuts.

Because each input permutation is equally likely, each pair would be parti-
tioned by z (if it were known), in such a way that, with binomial probability of,
i) (1 - )®, the pair is bigger than z,
ii) 2a(l - &), zis between the two elements,
iti) o2, z is bigger than the pair
(see Figure 4.5).

The algorithm can be stated as,
i) Sample to guess z with relative rank o.
ii) Pair the remaining singletons, calling ¢ the winner and & the loser for
each pair.
ii1) For each pair compare # and T.

Ru,— e Wtbi e

Figure 4.4

Types of comparisons in the second algorithm
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— (1=

Figure 4.5
Partitioning a pair

iv) For pairs straddling at step (iii} (b smaller than T), compare s with
T.
1)} If o is larger than T then compare b with B.
2} Otherwise, compare ¢ and B. If a is larger than B, compare
b with B also.
v) Select the maximum from the maximal elements.
vi) Select z from its subset.
Figure 4.8 is a schematic presentation of the algorithm stated above (again,
configurations happening with negligible probability are not shown).

Due to the properties of B and T, the probabilities, when partitioning the
pairs by using the cuts instead of the actual z, will differ by a negligible o(1)
term.

LEMMA 4.4, The algorithm stated above performs on average,
[ %+ 2a—%a"' n + o(n)
comparisons, when selecting an element of relative rank o .
Proof. From Figure 4.6 (lower order terms are not shown), observe that (neglect-

ing lower order terms) rf2 comparisons are performed during step (i), and
another nf2 comparisons are performed at step (iii). During step (iv}), a2 - a)

comparisons are made, not including the ﬂlz—_al n comparisons at substep (1)
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Algorithm for partitioning pairs

2
and, the % n comparisons during substep (2). At step v, two subsets of maxi-

okt
mal elements one with l-l--éfl- n and the other with ofl - a)n elements are
involved in the computation of the maximum of the set.

Again, since the probability of failure at step (i) is o(1/n), sorting is suitable in
the case of such a failure for selecting z, but on average this only adds o(r) com-
parisons to the overall performance.

An important observation is that, when o approaches 0, the upper bound
supplied by this algorithm converges to 1.5n + o{n) . This algorithm and the first
one proved in Lemma 4.3, meet each other at o == 1/3 with value 21 + o(n) .

44

<~ -ofo



45

Another improvement can be made in the region near & = 1/3 . The goal is
to ensure that for any «, the max-o problem can be solved in less than 2n com-
parisons. The main idea is to build a more complex structure, a binomial tree of
size 4, before partitioning it with the cuts.

Again, if the actual z is considered, the probabilities of the different ways of
z splitting the structures depend upon the frequencies of the total orders con-
sistent with the partitions, and the binomial distribution of elements falling
below and above z. Figure 4.7 shows what these probabilities are. They have
also been grouped in terms of the situations presented during different steps of
the algorithm. Note for example, the probability of partitioning the structure
with one element below z and three above zis 4(1 - ¢)*« . There are two ways of
making this partition (follow lines with label 1 in Figure 4.7), the first allowing
only one total order a > ¢ > d > b, and the second allowing two, s > 6 > ¢ > 4
and ¢ > ¢ > b > d. As all total orders are equally likely, the probability associ-

ated with the first case is %(1 - a)’a and for the second case % (1-apfa. The
remaining probabilities are derived in a similar way.

The decision of what element and cut to choose when making a comparison
during the partitioning process is
i) Choose the element having the smallest difference in probabilities of
being above and below z.
it) Then, select the cut corresponding to the larger probability in (i). If
the probability of being above z is larger, select T, otherwise select

b R -
I
* { ’ T (O I (\
ft hled] g ——
h { fwfjo([l*»{)a | W
s { . flx"fl-a{)ﬁ 1 e
b l i ali-d7 |
) \O¢
t (w}h L
Figure 4.7

Partitioning a binomial tree of 4 elements
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B.

The algorithm can be stated informally as:
i) Sample to guess z with relative rank c.
ii} Build with the singletons binomial trees of size four.
iii) Partition the small structure with the cuts.
iv) Find the maximum by comparing the maximal elements obtained
after the partition.
v) Select z from its subset.

Clearly, the most important step is the third one partitioning binomial
trees of size four. Briefly,
For each tree, compare the element labeled ¢ (see Figure 4.7) with T.
if b wins, compare 4 with B.
If 4 wins, compare it with T, in which case virtually the whole
tree is above T.
Otherwise, d having lost to B, compare ¢ with T, and finally
with B if ¢ loses its previous comparison,
Else if & loses against T, d is compared with B.
If d wins, with high probability a and ¢ are larger than T and &
smaller than B; consequently, ¢ is compared with T, and 4 is
compared with B.
Else, if dloses to B, ¢ is compared with T.
If ¢ wins, b is the only one left to be compared with B.
Otherwise in case of ¢ losing the previous comparison, a is
compared with T.
If ¢ wins the comparison, 4 and ¢ have still to be com-
pared with B.
Else, it is sufficient to compare ¢ with B, in which
case the whole tree happens to be below B.

Figure 4.8 presents a description of the algorithm.

LEMMA 4.5. In total, the previous algorithm makes

Ty lay ey o I
4+3-:Ju:+2az+c! Th n+ ofn)

comparisons on average, when selecting an element of relative rank o .

Proof. A brief analysis (discarding lower order terms) can be derived from Figure



—O 1

Figure 4.8
The algorithm for a close to 1/3
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4.8, by adding the comparisons shown on the heavier arrows. The outcome pro-
babilities for each type of comparison can be obtained from Figure 4.7,

Discarding lower order terms, the second step performs %n comparisons. During

the partitioning of the binomial trees of size four at step (iii),

l%+-;-a+-é-a2+a‘~§-a‘] n+ ofn)

1-a

comparisons are performed. There are n maximal candidates for the max-

imum remaining after the third step. The number of comparisons performed by
steps (i) and step (v), and the case of step (i) missing the target element z can all
be neglected.

The function obtained above has to be compared with the previous two
upper bounds obtained for the subintervals (0, 1/2) and [1/2,1]. Let p, and p,
denote the intersection points with the other two curves derived in Lemma 4.4
and Lemma 4.3, respectively. Calculations show that p, ¢|0.203,.204] and
pz €] 0362, 0.363] . As the function is monotonically increasing in the subinterval
[p1, po] . the maximum in the subinterval is given at p,, with value arcund
1.957. n+ o{n) < 2n.

The next Theorem summarises the best upper bounds obtained for different
values of a from Lemma 4.3 through Lemma 4.5.

THEOREM 4.6. On average, the max-o problem can be solved in the following

number of comparisons,

i)[%+2a—%a2] n+ofn), if eell,p],

i) L4 Loy Lo s_E4] i
11)[4+3a+2a + o T n+o(n), if aclp,pl,

. 5 3 i
m)l .2..--é-a] nto(n), if aelp,1].

for constants p, and p, , where, p; €[ 0.203, .204 ] and p; € [ 0.362 , 0.363] .

These bounds are strictly less than 2n. For a € [1/2, 1] it is within a lower order
term of optimal, and for @ = 1/2 its value is 1.75n + o{r) .
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COROLLARY 4.7. For all o, the max-a problem can be solved in an average of
1.958n + o(n) comparisons.

Figure 4.9 displays the linear term coefficient of the upper bound expres-
sions as a fumction of a. Through the development of these upper bounds, it
becomes clear that the algorithms for the max-o problem in the subinterval
(0, 1/2) have a radically different behaviour to those for « in the subinterval
[1/2,1]. In the second subinterval, the optimal algorithm develops virtually no
substructure at all. Singletons are compared directly with the cuts. However,
when « is in the first half of the interval, very complex procedures and structures
have to be designed in order to match the lower bound. We conjecture that
indeed, the lower bound for the first half of the interval can be approached by
buiding a binomial tree with all the elements and partitioning it in the right way.
We have not been able to reach this solution yet, leaving it as an open question.

CONJECTURE 4.8. The upper bound on the average number of comparisons
for the max- problem, o restricted to the subinterval (0, 1/2) , is

l%ﬁ-%a] n+ ofn) .

b

Figure 4.9
Max-a upper bounds
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4.2. Selecting the maximum, the minimum and another element.

Selecting the median and the maximum can be carried out i 1.757 + o(n)
comparisons and this is optimal. Hence, it is quite reasonable to assume that
selecting the minimum, the maximum and the median should be possible in at
most 2n + o(n) comparisons. Although we are able to prove a lower bound of
2n + o{n) comparisons for this problem, we have not been successful in obtaining
the corresponding upper bound. The best upper bound we obtain is 2.25% + ofn)
comparisons. That means that when finding the median you only have to pay as
little as 0.25n + o(n) comparisons for one of the extreme elements, but for both,
the cost is three times as much, viz 0.75n + o(n) comparisons. However, even if
the algorithm we present is not optimal, it does have the virtue of simplicity.

In this section, we study upper and lower bounds for the problem of select-
ing the minimum, the maximum an element of relative rank « from a set of n ele-
ments. This particular problem is called the minmax-« problem. Lower and
upper bounds for the problem follow in a similar manner to the corresponding
bounds derived for the max-a problem.

THEOREM 4.9. On average,
3 .
I 2 + min(a , l—a)] n - ofn}
comparisons are necessary to solve the minmax—o problem with n elements.

Proof. The lower bound is another coroliary of the lower bounds for the minmax
and selection problems. This time the problem consists of three subproblems,

i) selecting z with relative rank «,

ii} minmax on the smallest an elements and,

ili) minmax on the remaining (1 - ¢)n elements.
From Theorem 3.4 we already know that the first subproblem requires
min(ea , 1 - @) - o(n) straddle comparisons. We emphasise that straddle comparis-
ons must involve one element strictly less than and one greater than that of rank

an. The second subproblem requires %an - 2 comparisons among the smallest an
elements, otherwise a similar argument to the one presented in the proof of
Theorem 4.1 can be given. For the third subproblem, -2—[1 - ajn - -%- comparisons

among the (1 - o)n largest elements are required. As we can observe, the classes

of counted comparisons are disjoint, so in total, [ -g—-f- min{e , 1 - a)l n - o{n)
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comparisons on average are needed.

As the problem is symmetric about a = 1/2, it need only be considered in
the subinterval [1/2,1]. The upper bounds we derive are similar to the
corresponding ones for the max-a problem. The basic strategy is to pair in the
subinterval with o relatively close to 1 (or 0), build binomial trees of 4 elements
in the subinterval around the relative rank 2/3 (or 1/3), and perform comparis-
ons of singletons with cuts for the subinterval around the median.

The first algorithm applies to values of a close to 1/2. It is assumed for
simplicity that « > 1/2.

i) Sample to guess z with relative rank a.

i) The remaining elements are first compared with the bottom cut B.

iti) Elements smaller than B are compared again to find the minimum.

iv) Pair the set of straddling elements (elements larger than B). Since
with very high probability (almost one), the pair minimum is larger
than T, compare the pair losers with T.

v) Find the maximum from the maxima larger than T.

vi} Select z from its subset.

Figure 4.11 is a pictorial description of the algorithm.

Lb.
L

0 Yt L
Figure 4.10
Average case minmax-« lower bound
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LEMMA 4.10. The previcus algorithm solving the minmax-a problem performs

[ -g-«-;-a] n+ on)

cOmparisons on average.

Proof. The algorithm differs from that of Lemma 4.3 only with the inclusion of
step (ii}. Therefore, by Lemma 4.3, we know that

comparisons on average are made excluding step (ii)

The lemma follows by adding the an comparisons of step (ii).

For a = 1/2, the upper bound becomes 2.25n + o(n) comparisons on average.
Consider the kinds of comparisons performed when selecting the median by using
the above algorithm (lower order terms are discarded). After the second step is

- -4
(- d)w 7=
—{-'-'irv B A L ? 4 N\ =i

o---9 o w

Fre—>

Figure 4.11
Minmax-a algorithm for (1/2, py
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completed, on average, % comparisons are simultaneously key-median and key-
max, while -g—- are key-min and straddle comparisons. After step (iv), the re-

pairing will produce -4"- comparisons, each of which is key-max for the pair’s loser

and almost certainly key-med for the pair’s winner. Note that the intersection of
the subsets of key-min, key-median and key-max comparisons is empty.

As mentioned before, for « close to 1, minmax-like comparisons are suit-
able. Observe the repairing of elements performed at substep 1. These kinds of
comparisons belong to the intersection of key-a and key-max comparisons.

i) Sample to guess z with relative rank «.
ii) Pair the remaining singletons, and for each pair call a the winner
and & the loser.
iti) For each pair compare s with B.
iv) For pairs which straddle at step (iii) (s bigger than B), compare 5
with B.
1) I b is smaller than B, pair the set of ¢'s. Then compare
the losers of these new pairs with T, since the pairs are
virtually larger than T.
2) If b wins the comparison, compare 5 with T. Note that
b is with probability almost 1 larger than T.
v) Select the maximum from the remaining maxima.
vi) Select the minimum from the remaining minima.
vii) Select z from the subset in which it is contained.

Figure 4.12 describes the algorithm.

LEMMA 4.11. The above algorithm performs

5.1 3,
|2+2a 2a]n+0(n)

comparisons on average.

Proof. Steps (ii) and (iii) perform n/2 comparisons each. At step (iv),

,U_‘i]él_'_"_‘ﬂ n pairs straddle (lower order terms are not considered). Of these,

o1 - ajn elements are re-paired during substep (1), and 1-@

n are compared

with T at substep (2). After the partitioning process, (1 - é«a)n minima are



f!‘ﬂ.’}hf() w

w mly, u 0-4) 1\|
"

wly, 3 h‘ ~ 4
e 17y

l—nl)(l-c

]

w0-0) w -Mh«

-4

SN

! g G\ 2l LEL ’1’
— (S =
7 % éY

1\4] -k /.4|

14 5( o

o

.

Figure 4.12
Minmax-a algorithm for (p, , 1} ‘ %

candidate for the minimum, and 1o, maxima remain candidates for the max-

imum.

Adding all the comparisons performed at each step and substep, the lemma then

follows.

The last case to be considered is the subinterval around 1/3. Again, the
main idea is to partition binomial trees of size four in such a way that as many
comparisons as possible belong to more than one class. Briefly, the algorithm is

i) Sample to guess z with relative rank o.
ii) Build binomial trees of size four with the singletons.
iil) Partition the small structures with the cuts.

iv) Find the maximum from the remaining maximals.
54
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v} Find the minimum from the remaining minimals.

vi) Select z from its subset.

The process of partitioning the binomial trees is similar to that appearing
in the proof of Lemma 4.5. The only difference is to take advantage, when possi-
ble, of the re-pairing of elements in order to produce comparisons that belong to
the intersection of two types of key comparisons. Figure 4.13 supplies the details
of the algorithm.

LEMMA 4.12. On average ,

7 1, }_s_id]
[4+a+2a+2a e n+ o(n)

comparisons are performed by the above algorithm.

Proof. Steps (i) and (vi) are already known to be o(n) . Step (ii) requires % n

comparisons to build the binomial trees. Partitioning the binomial trees during
step (i) takes

-!-a‘ + 20% - 16—3ar"| n

2
[1+§a+4

n maxima are candidates for

2
comparisons. After the partition, w

- 2 - = . ..
the maximum, and, w n minima are candidates for the minimum.
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Our average case upper bounds for the minmax-c problem can be summar-
ised

THEOREM 4.13.

. 3 5 3 .
1)[ -2-+-Ea—-2—a2] n4ofn), if ac(0,p),

o 7 1 1 5 .
11)[ Z+a+-§a2+-5a3—za4] n+ofr), if ee(p,rd,

2+%a] n+o(n), if ee(ps,1/?,

iv)[ %—

5,3, My 9.4 5. -
7 t 3@ 2a+20 T n+ofn), if ee(ps,pd,

0o | =

a] n+o(n), il ae(lf2,py,

vi)l %+ %a-—g—oﬁ] n+or), i aelp,,1],
for constants p,, ps, ps, and p,, where,

1€ [0.256 ,0.257] , pp € J0.363 , 0.364] , py € [0.636 , 0.637] , p, € [0.743 , 0.744] .

Figure 4.14 illustrates the linear term coefficient as a function of «. Finally,
we strongly believe that our algorithm solving the minmax-median problem is
optimal up to lower order terms, and therefore, the lower bound is the one to be
improved. Moreover for the minmax-a problem we conjecture

CONJECTURE 4.14. The complexity of solving the minmax-« problem is

S 3 3 . 1
|)|?+?a| nto(n), if ae((),-2—|,

ii)l3—-2—a] ntofn), if ae(é—,ll,
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Minmax-a upper bounds
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CHAPTER b

THE CLOSEST NEIGHBOUR(S) PROBLEM

Consider the following problem: given a set X of n elements including a
designated z ¢ X, find the closest neighbour(s) of z in the set X . That is, denot-
ing ¢ the rank operator, yeX is a neighbour of z if ard only if
|y8X-2z8X|=1. The element z may have one or two reighbours depending
on whether or not z is extreme in X. This condition is not known in advance.

We will study the worst case complexity of this problem as well as its aver-
age case, For the worst case, a simple algorithm making at most 2n - 3 comparis-
ons will be shown to be optimal. For the average case, we design an algorithm
having similar running time to the selection algorithm SELECT. That is, if z is
the kth smallest in X, n+ min(k, n— & + 1) + ofn) comparisons on average are
performed by the algorithm. Averaging over all possible ranks of z, an expected

run time of -Z-n + on) comparisons is obtained. If the rank of z is known, the

problem reduces to selection. Therefore, the lower bound on selection applies to
it.

5.1. Worst case optimality for closest neighbour(s).

An immediate algorithm for the problem is,
i) Partition X into X and X,,, subsets of elements less and greater
than z, respectively.
ii) Find the maximum in X if the subset is not empty.
iii} Find the minimum in X, if the subset in not empty.

If X, and X, are both nonempty, the number of comparisons performed is
2n - 4. Otherwise, if one of them is empty, only one neighbour is defined, and
2n — 3 comparisons are performed. Note there are n - I elements in addition to z.

From the previous analysis we see:

LEMMA 5.1 Finding the closest neighbour(s) of z¢ X, | X{ == n, requires at most
2n - 3 comparisons.
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This particular problem presents an interesting anomaly. If z turns out to
have two neighbours, the algorithm performs faster {one comparison less) than
the case when only one neighbour exists since z is an extreme in X. To take
advantage of this anomaly, let us consider the simplified version of the problem,
to find the closest left (smaller) neighbour of z, if this exists. Certainly the algo-
rithm given above solves this variant, and any lower bound derived for the
simplified version is a lower bound for the more general problem. By designing a
simple adversary that resembles the one given in [Blum et al 73] for worst case
selection, we will show that our algorithm is indeed optimal.

THEOREM 5.2 In the worst case, 2n -3 comparisons are needed to determine
whether a left neighbour of z exists, and if so, to find it. Hence, the above algo-
rithm is optimal.

Proof. The adversary will partition X - z, at any time, into five different subsets,

i) X,, the set of virgins having no comparisons associated with them,

ii) X, , the set of pairs created from pairing virgins.

ili) X~ , the set of elements known to be greater than z, each element
charged with two comparisons,

iv) X,,« , the subset of elements less than z, and charged with two com-
parisons per element.

v) X . the subset of elements less than z, but larger than any ele-
ment in X, .. Elements in this category are candidates for closest
left neighbour, and each one of them has been charged with one

comparison.

The only restriction on the adversary is that any given answer must be con-
sistent. The relative order the adversary will always keep at any stage, is given
in Figure 5.1. As an element is declared in X; o, it is declared to be smaller than
any other element still in one of the other subsets. Similarly entry into X, .,
declares an clement larger than all remaining ones. X, . and X; . can be viewed
as chains, which means that even though the adversary provides the total order
on those elements, no useful information is gained toward solving the problem at
hand.

If the algorithm chooses to compare two elements 4 and b, the adversary will
answer according to the following rules,
Casel:geX,.
i} If ais compared with z, 4 is transferred to X, . .
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Figure 5.1
Partial order kept by the adversary

it) If b is another virgin, they are paired together and inserted
into X, .

iii) If b is the minimum of a pair in X, with pair maximum
denoted by ¢, b is declared to be in X, . (although for con-
sistency b is larger than any element previously put in
X;,<) and ¢ becomes a ‘reconstituted’ virgin.

iv) If 5 is the maximum of a pair in X, with pair minimum
denoted by d, b is declared to be the mirimum in X; ., and
d becomes a virgin again.

v) If beX;«, then ¢ becomes the maximum of those currently
in X, ..

Case 2 : ais the minimum of a pair in X, , with corresponding max-
imum denoted by e.

i) If compared with z, a is declared to be the maximum in
X, < and ¢ becomes a ‘reconstituted’ virgin.

it) If bcX, . or either element of a pair then, ¢ becomes the
maximum in X, ., and ¢ a ‘reconstitute’ virgin.

Case 8 : a4 is the maximum of a pair in X, with corresponding
minimum denoted by c.

i) If compared with z then a becomes the minimum in X,
and ¢ a ‘reconstitute’ virgin.

ii) If &¢X, . or either element of a pair, 5 becomes the max-
imum in X; o .
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Case 4 : 4, b e X; ., b becomes the maximum in X, . .

Any other case leads to a redundant comparison. In particular X, . elements

always lose and X, , always win.

The computation begins with all elements in X, and ends with all in X, . or X5,
with the exception of one which may be in X; . The latter condition occurs if z
does have a left neighbour. The total charge to these n— 1 elements is, then,
2n-3.

6.2. Closest neighbour(s) average case.

Now consider the average number of comparisons necessary and sufficient
to solve the same problem. The element z is randomly picked from the set X,
therefore the probability of z having any rank in the set is 1/n .

The algorithm we present is another application of the sampling technique
also used in other probabilistic problems. We will consider the suitable sample
size that will reduce, as much as possible, the lower order term. The algorithm
can be stated as

i) Take a random sample S of size ¢ - 1 from X~z .

ii) Find s and &, the closest neighbours of zin §, by using the optimal
worst case algorithm. This step and the previous one give ranks of
g, zand b in S and so estimates of their ranks in X .

iii) If 28 (S|Y2)7# 1 and 28 (S| #) # ¢, then partition the set X - S
into sets A, B, C, of elements less than a, between ¢ and 5, and
greater than b, respectively, by comparing the singletons in X- §
against the two cuts a and & in such a way that if 26 5 < #f/2 then
the singletons are compared first with 5 and after with a if neces-
sary, otherwise the order of comparisons is interchanged. Other-
wise, the problem is solved by using the worst case optimal algo-
rithm.

iv) Find the closest neighbours in B by using the worst case optimal
algorithm.

Before analysing the algorithm, we will study the relation among ranks in
the sample S and the set X. Let p denote the inverse function of 4. In general,
if Vis a random sample of size s, taken from a set T of size n, we denote
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PipGmen = Pr[{{p V)OT=Fk (jpV}éT=r],

the probability of the +th and the jth smallest in V having ranks kand rin T,
respectively. Then,
l 1 r—k- 1 n- rl
- 8—7

PGnGa)se = ,
n
)

iSkESr-(i-9,

E+(i-)Lr<n-(s-j) .
By using the well known identity,
o | O
i-1)le-i) T ’
J=i

we can observe that,

{r-1 1)-1)
P(irhsn = :ﬁ P (uHGmn

=

07
)

and,

(=]
P(ifsn = ﬁ-{; P (5).07)sn
== k-1

]
NEN

are both, negative hypergeometric distributions with known average, variance
and ascending factorial moments [Feller 50] {see Figure 5.2).

Returning to the problem, we want to prove that
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Figure 5.2
Moments for a negative hypergeometric distribution
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P(iksn -

Note that,

5-1} n

. 1
Prizo(S|Yd)=i]= ”33 5 Plss—
k=i n

=1
=

as it was expected.
Finally,

Przd (S| J2)=i|z26 X=Fk]Pr[z8 X = k]
Prz 4 (S| ) = ]

Priz8 X=1Fk|z8(S|Jz)=i]=

n
8

o1
P (k)50 n 3

= Pibsn -

implying that, picking z from X first, then choosing a sample of size s -1, and
estimating the rank of zin X, is the same as picking a sample of size ¢ first, then
choosing z from the sample, and estimating its rank in X .

We are now ready for the analysis of the previous algorithm.

THEOREM 5.3, Ti'" + O( n/?) comparisons are sufficient for computing the

closest neighbours of z randomly picked from a set X of cardinality n .

Proof. We have to analyse three cases, when z is an extreme clement in § UER
when the rank of z is between 2 and ¢/2, and when its rank is between 8/2 +1
and s - 1.

In the first case, the worst case optimal algorithm is applied, therefore, 2n -3
comparisons are performed by the algorithm.

When z8(S|Jz)=1,2< i< 82, with probability p(1u42,9:, the two

closest meighbours of z in S| j = have ranks & and r in X, respectively. Then



66

23 - 4 comparisons are performed for computing ¢ and & in S{J ¢, n - s comparis-
ons of singletons in X/(S|J z) against b, r—i- 1 comparisons of clements less
than b against s, and 2r - 2k - 5 comparisons for computing the neighbours in B.
In total, n + & + 3r - 2k — { - 10 comparisons. Averaging over r and &,

ntet BFLli sntl

-10
s+ 1 s+ 1

comparisons are performed, if z ¢ (§| J z} is conditioned to be 7.

The last case is symmetric to the previous one. Taking the average over all possi-
ble ranks of z in §(J z, we get % n+ Ofs + nfs) . Optimising the lower order

term, ¢ = O( 72}, and the theorem follows.

The lower order term can be further improved from O( n/2) to O( log(n)) by
keeping the closest neighbours at any time during stage iii of the algorithm. The
algorithm is also very simple. Let us call a and ¢ the closest known neighbours of
z at any stage of the computation. They will act in the same way as the two
cuts in the selection algorithm. Also, A will denote the elements smaller than g,
and B the ones larger than 6. Then, the algorithm is,

i) Initially, the first singleton is compared with z, becoming one of the
two closest neighbours.
ii) If only one neighbour is known, the next singleton is compared with
it, and with z if necessary.
ii1) If both neighbours are known, then compare the next singleton with
a or b first, depending on which of the subsets A or B is bigger.
If the singleton straddles its first comparison, then com-
pare it with the other cui.
If the element lies between a and b, then compare
it with z and appropriately update one of the
closest neighbours.

The algorithm can be modelled as a Markovian process, in which the states
and transitional probabilities depend upon the sizes of both subsets. Let C;, be
the average number of comparisons performed after » singletons have been intro-
duced in the process, k- 1 of them being in A. It is not difficult to express C;, as
a recurrence. In fact, if k < nf2,
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1
Co,n= CO,n-l +1+ _n' ’

1 1 3 1
Cipn= '2—00,1»—1 + -2‘C|,n-1 tet oo
1 1 3 1 1
= — — = —— <k<L
C‘.n 201;..1,,._1 + 201,'.,_1 + 5 + ok + o 2< ]c_n/? N

Cop=10 .

An easy induction shows that,
C*»" S n+ k“" Hg‘!‘ 2H,)_k -

Averaging on k, the final renning time is,

;—- n+ O(logn) .

Note that the selection lower bound applies to the problem if the rank of z,
the random element, is known in advance, since in this case, the problem is con-
verted into the selection of two elements with known rank.



CHAPTER 6

DIRECTIONS FOR FUTURE RESEARCH

Although, the two conjectures presented in Chapter 4 are the next natural
steps to study in the direction defined by this work, there are other interesting
problems that also should be considered.

We observe that the technique of sampling can also be used for external
sorting. In this case, tradeoffs between the memory available and the number of
1/O operations constitutes an important issue to consider when designing efficient
algorithms. The idea is simple and deals with distributing the external file into a
sequence of subfiles in such a way that any element in a subfile is less than any
element in the next subfile in the sequence. Informally,

i) Read a random sample from the external file into memory.

i) Sort the sample in memory.

iii} Distribute the file into subfiles according to the sorted sample.

iv) For each subfile, apply step (i) to (iii) recursively or any other stan-

dard procedure.

A superficial analysis shows that if O(n'/%) memory space is available, and a sam-
ple of similar size is read into memory, then O{n loglog(n)) I/O operations are
sufficient.

Looking at other instances of the multiple selection problem, the best lower
and upper bounds obtained so far for the expected number of comparisons when
selecting the quartile elements (relative rank 1/4 and 3/4 respectively) are
2n - o{n) and 2.5n + o(n). The same results apply for some other instances such as
selecting the 1/3 and 2/3 elements. As mentioned in the introduction (Chapter
1) finding the minimum, the maximum, the median and the two quartile elements
of a set is a commonly required in performing statistical analyses. At this peint,
a simple algorithm can be designed. The ideas are,

i) Select the median and therefore partition the set into two halves.

ii) Apply the optimal min-median algorithm to the elements below the
median thus obtaining the minimum and the lower quartile of the
entire set.
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iii) Apply the optimal max-median algorithm to the upper half to obtain
the upper quartile and the maximum of the entire set.
This algorithm selecting all five ranks shows a reasonable average running time of
3.25n + o(n) comparisons. The question that still remains is of course, to find a
faster algorithm or to prove a tight lower bound.

We believe that in order to analyse more complex instances of the multiple
selection problem, stronger models than the one developed in Chapter 4 have to
be devised.
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