|
ERARTMENT

EPA al

ENT

EPARTMENT

CIENGE B
GIENCE D

QOQ0O

WATER

gF
F WATER

Y
my

IVERSITY OF WATERLO

N

An

Isothetic View

of

Computational Geometry

Derick Wood

Data Structuring Group
CS-84-01

January, 1984

AN ISOTHETIC VIEW OF
COMPUTATIONAL GEOMETRY'

Derick Wood*

ABSTRACT

We survey a number of results, some new, for isothetic
polygons in the plane. Specifically we consider intersection,
convexity, combinational, clustering and visibility problems.
These problems occur in image processing, VLSI design and lay-
out, circuit testing, transaction systems, and pattern recognition.

1. INTRODUCTION

Since Michael Shamos [Sh] carried out his pioneering work in computa-
tional geometry the field has blossomed considerably. The purpose of this
chapter is to review some of the developments in computational geometry
since its inception. In order to do justice to the field I have been obliged,
albeit not unwillingly, to restrict my attention to the plane and to isothetic or
rectilinearly-oriented polygons. Since the first problem I studied in computa-
tional geometry was the rectangle intersection problem with Yon Bentley [BW)
and my most recent work [Wo] involves isothetic polygons, this restriction is
a happy one. This survey provides an opportunity to draw together the
variety of problems for isothetic objects into some coherent whole, while also
allowing the forma] treatment of isothetic polygons in the style of Shamos
[Sh].

Isothetic polygons occur in VLSI design, in floor and street plans, in
data bases, in CAD/CAM, in NC, in circuit routing, in circuit testing, in
robotics, in locked transaction systems, in image processing, in pattern recog-
nition, and in Saskatchewan. Often they can be viewed as discrete approxi-
mations to polygons in the real plane, for example in image processing and
pattern recognition, however just as often they appear in their own right, for
example in VLSI designs. From a theoretical viewpoint isothetic polygons

¥ Work carried out under a Natural Sciences and Engineering Research Council of Canada Grant
0. A-5692.
Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1.

2 Derick Wood

are usually (but not always) easier to handle than arbitrary polygons.
Because of this it is often possible to obtain time- and space-optimal algo-
rithms for isothetic polygons, when this is not the case in general. Finally,
isothetic polygons are the source of many beautiful problems - an important
issue for a researcher.

Section 2 provides the basic definitions for isothetic objects. In Sections
3 through 7 we study intersection, convexity, combinational, clustering, and
visibility problems, respectively. Section 8 is a closing discussion of the
results, the methodology, and some of the omissions.

2. DEFINITIONS

We begin by defining our objects of study, namely isothetic lines, line
segments, curves and polygons. We assume all objects are in the plane
except when explicitly stated otherwise. We assume the plane has an embed-
ded Cartesian coordinate system.

An isothetic (straight) line is a straight line parallel to either the x-axis or
y-axis. Similarly, an isothetic line segment is a line segment parallel to either
the x- or y-axis, and an isothetic ray is a ray parallel to either the x- or y-axis.
See Figure 2.1(a), (b) and (d).

~—s ~—
(a) (b) (c) (d)
Figure 2.1

An isothetic curve is a connected sequence of isothetic line segments, sec
Figure 2.1(c).
An isothetic curve is closed if starting at any point p, on the curve, a

path can be traced along the curve, visiting every point once and only once,
which leads to p.

An isothetic curve is simple if:

(i) self-intersections only occur at endpoints, and
(ii) no more than two segments intersect at each endpoint.

A non-closed simple isothetic curve is a staircase if either for all points p

An Isothetic View 3

{a) (b)

Figure 2.2

and ¢ on the curve, with p to the left of g, p is not above g, or for all
points p and g on the curve, with p to the leftof g, p is not below gq.
See Figure 2.2,

An isothetic polygon is a closed isothetic curve, which forms its boun-
dary. We also consider a polygon to be the closed finite region of the plane
enclosed by the closed curve. Note that this definition excludes the possibil-
ity of a polygon having holes. A simple isothetic polygon is a closed simple
isothetic curve. See Figure 2.3(a) for a simple polygon and 3(b) for a non-
simple polygon.

) |
—

(a) (»)
Figure 2.3

We often wish to distinguish polygons not only with respect to their sim-
pleness, but also with respect to their isothetic convexity.

A simple isothetic polygon is isothetically convex if every isothetic line
has either an empty intersection with the polygon or an isothetic line segment
as its intersection. Figure 2.3(a) is a non-convex polygon, while Figure 2.4
displays a convex polygon. A special case of a convex polygon is a rectangle.

Observation Every convex isothetic polygon can be decomposed into at most
four staircases. In Figure 2.4 there are three: 1t02,21t0 3, and3 to 1.

If a polygon is non-convex we often wish to refer to its convex hull,
which is defined as follows:

4 Derick Wood

Figure 2.4

The isothetic convex hull of a simple isothetic polygon is the smallest, in
area, convex simple isothetic polygon containing the given polygon. Figure
2.5 displays the convex hull of Figure 2.3(a).

Figure 2.5

Already our definitions lead to three natural problems:
Problem 1 Determine if a given isothetic polygon is simple.
Problem 2 Determine if a given simple isothetic polygon is convex.

Problem 3 Determine the convex hull of a given simple isothetic polygon.

In the next section we will describe an algorithm to determine whether
or not an isothetic polygon is simple, while the following section will discuss
convexity.

3. INTERSECTION PROBLEMS

Throughout this and the following sections we will omit the adjectives
isothetic and simple. Al objects are isothetic and all polygons are simple
unless it is explicitly stated otherwise. We first state:

An Isothetic View 5

Problem 4 Given a collection of polygons determine if there are two inter-
secting polygons in the collection, that is two polygons having a common point.

Problem 5 Given a collection of polygons determine all pairwise intersecting
polygons.

Problem 6 Given a collection of polygons and an integer k = 2, determine
if there is a k-intersection, that is k polygons having a common point. In par-
ticular is there a p-intersection?

Problem 7 Given a collection of polygons determine the maximal k for
which there is a k-intersection, that is the thickness of the given polygons.

Using the sweep line paradigm, Shamos and Hoey [ShH] gave an
O(plogp) time and O(p) space algorithm for Problem 4 for the case of p
line segments. This was extended by [BO1] and [Br] to provide an
O(plogn+k) time, where there are k pairwise intersections, and O{p)
space algorithm for Problem 5 for line segments.

The algorithm of [BO1] with some minor modifications gives us a fast
algorithm for simplicity testing, that is Problem 1. There are two checks to
be carried out. First, we need to check whether or not there are two edges
which intersect at some point which is not an endpoint. Such non-endpoint
intersections are caused (a) by a veriical edge crossing a horizontal edge, (b)
by two vertical edges overlapping, or (c) by two horizontal edges overlap-
ping. The algorithm of {ShH] will detect intersections of type (a), while
those of types (b) and (c) can be found by sorting the edges. Second, we
need to check that each endpoint intersection is formed by a unique pair of
edges. Clearly there should only be n such pairs for an n-vertex simple
polygon. Hence we count the endpoint intersections. If their number
exceeds n then the given polygon is not simple. The {BO1] and {Br] algo-
rithm can be modified to perform this count, without affecting its time and
space bounds, hence we obtain:

Theorem 3.1 Given a polygon with n vertices it can be tested for simpleness
in O(nlog n) time and O(n) space.

The results for Problem 4 were extended to rectangles in [BW] who
gave an O(plogp+k) time algorithm. This was improved in [E] and [Mc1]
to also require only O(p) space. Since it was already proved in [BW] that
these were lower bounds, this results in:

Theorem 3.2 {BW], {E], [Me1]

Problem 4 for rectangles can be solved in O(plogp) time and O(p) space.
Problem 5 for rectangles can be solved in O(plogp+k) time and O(p) space,
where there are k intersecting pairs. Moreover these are both time- and
space-optimal in a comparison-based model of computation.

6 Derick Wood

Observe that k = O(n?) see Figure 3.1.

- M
C 2 R 2 I
I L AR]

L) i TT T T M

o b

:lM_ o " : "
[3%]

1\ v -/

l'l/z
Figure 3.1

More recently time- and space-optimal divide-and-conquer algorithms
for this problem have appeared, see [GiW] and [EQ]. While [GBT] have a
new approach based on resolution.

These results can be extended to polygons fairly easily. We sketch the
sweep-line approach for them.

The basic idea is to sweep, conceptually, a vertical line from the left of
the polygons to the right of the polygons and, by this means, reduce a static
two-dimensional problem to a dynamic one-dimensional problem. At each
position of the sweep line there are polygons which it intersects, active
polygons, polygons completely to its left, dead polygons, and polygons com-
pletely i its right, inactive polygons. The intersection of each active polygon
with the sweep line results in a number of disjoint intervals, called active
intervals. Sec position (b) of the sweep line in Figure 3.2. There are two
crucial observations about the sweep line, First there are at most 2n dif-
ferent sets of active intervals, since the set of active intervals only changes
when the sweep line meets a vertical edge of a polygon. Second two
polygons intersect if and only if there is a position of the sweep line for which
their corresponding active intervals intersect.

The first observation reduces a continuous sweep of the sweep line to
2n discrete jumps, the second reduces the two-dimensional problem to a
one-dimensional one. Letting the x-projections of the vertices in ascending
sorted order be known as sweep points we can describe the intersection algo-
rithm as:

For each sweep point x do
if x corresponds to a left vertical edge then
query active intervals with the edge for intersections, and
insert the edge to form or extend an active interval else

An Isothetic View 7

MM

—

Figure 3.2

{x corresponds to a right vertical edge}
delete the edge from its corresponding active interval
yielding zero, one or two new active intervals.

A left vertical edge is one on the left side of the polygon, while a right
vertical edge is on the right side.

The dynamic one-dimensional problem can be solved with either a seg-
ment tree, requiring O(rlogn) space, or a I-fold interval tree tequiring
O{n) space. We choose the former, since it has many other applications, a
description of the latter can be found in [E] and [Mc1]. The segment tree is a
binary leaf search tree, that is keys are to be found at external nodes while
internal nodes contain signposts, separating keys, or routers as they are vari-
ously called. Moreover each external node not only represents a point in the
key space, but it also represents the interval in the key space defined by the
successor key in the tree. This implies that each internal node can also be
considered to represent a key-space interval, namely the interval determined
by its external nodes. So each interval specified by a pair of keys is associ-
ated with a unique node of the tree. In our setting the keys are y-values
corresponding to the endpoints of vertical edges, In Figure 3.3 there are 7
vertical edges giving 7 y-values. The corresponding empty segment tree is
displayed in Figure 3.4.

External node y; represents the closed-open interval [y,y;.,) for
0=i<6 and yg represents the closed interval [yg,y¢]. Therefore the
interval of node u, int(x), is the interval [yg,y4). To each node u is asso-
ciated a set of intervals cover(u); each interval I in it satisfies int(u) C 17

8 Derick Wood

Figure 3.3
u
v/ W
Yo Y Y2 Y3 Y4 Y5 Yo
Figure 3.4

and int(wu) ¢ I, where mu is the parent of ». Initially cover(u) = &, for
all nodes u in the tree. In contrast to binary search trees the structure does
not change during insertions and deletions, only the cover sets of the nodes
change. Hence we can construct the segment tree to be a minimal height tree
initially. For example inserting the edge {yo,ys] of B into the segment tree
of Figure 3.4 causes cover(u):= {B}, cover(v}:={B} and
cover(w) := {B}. The latter assignment does not satisfy the rule given
above since int(w) = [ys,y¢). However because int(w) N [yo,ys] # @ and
w is an external node we assign B to cover(w) anyway. If asegment tree
has n external nodes, then it has height bounded by [log;n] and it is easily
seen that the insertion of an interval only affects the cover sets of at most

An Isothetic View 9

4[logan] nodes. Deletion is not quite as simple, see {BW] for details, but it
can still be carried out in O(logn) time.

Disregarding the technical details of maintaining the active intervals of
each polygon in the segment tree, consider a query. A query edge can inter-
sect an active interval in one of four ways, see Figure 3.5.

agq aq aq aq
(a) (b) (e) (d)

Figure 3.5

Intersections of types (a) and (b) can be found by searching the segment tree
for the external node corresponding to the y-value of the bottom endpoint of
the query edge. An intersection of type (c) can be found by a similar query
with the top endpoint y-value. In both cases all cover sets on the search path
intersect the query edge. Now intersections of type (d) are not found by
either of these queries. For this purpose we specify an additional field
downcover(u) for each internal node » in the segment tree. This new field
contains all intervals inserted in wu's subtree but not at u, that is
downcover(u) = | cover(v), for all proper descendants v of . Note that
downcover(u) = downcover(Au) U downcover(pu) U cover(hu)
U cover(pu) for all internal nodes u, where downcover(u) for u an exter-
nal node is defined to be . Maintaining downcover sets is no more diffi-
cult than maintaining cover sets, since an interval is inserted in at most
O(logn) downcover sets. Hence insertion and deletion complexity is not
affected. But an intersection of type (d) is now easily found. Perform a
dummy insertion of the query edge. Now for each cover(s) to which it
would be added all intervals in the corresponding downcover(z) intersect the
query edge. Conversely every intersection of type (d) must be found in this
way. Hence all pairwise intersections will be found and moreover each
update requires O(logn) time and each query O(logn+k') time, where
k' is the number of pairwise intersections found. Using the 1-fold interval

tree rather than the segment tree gives an optimal space bound, thus we =~

have:

Theorem 3.3 Given p polygons with n vertices all k pairwise intersections
can be found in O(nlogn+k) time and O(n) space, thus solving Problem 5.

10 Derick Wood

We now consider Problems 6 and 7. Again we first consider the case
for p rectangles. Now for the p-intersection case we have:

Theorem 3.4 Given p rectangles, there is a p-intersection, that is they all
have a point in common, if and only if every pair of rectangles have a point in
common.

Proof: Clearly if there is a point common to all rectangles then every pair
have a common point. Conversely, assume every pair have a common point.
We argue by contradiction. If the p rectangles do not have a p-
intersection, then there is 2 maximal % such that there is 2 k-intersection,
where 2=k<p. Let Ry...,R; be the k rectangles that have a k-
intersection and R be one of the remaining rectangles. Consider a common
point L of Ry,...,R, which is leftmost. Now L must lie on the leftmost
edge of one of the Ry,...,R;, let it be without loss of generality R;, other-
wise there would be another common point to its left, If R is to the left of
L then R does not intersect R - a contradiction. But a similar contradic-
tion is obtained for each of the other three possibilities. Thus Ry,...,R,
have a p-intersection. O

This rectangle version of Helly’s Theorem leads to the following stra-
tagem for determining the existence of a p-intersection:

Determine if there is a pairwise non-intersection.

But this can be done by, essentially, the same algorithm which finds all pair-
wise intersections - the query at a sweeping point becomes: Is there an active
segment which does not intersect the incoming segment?

An alternative approach is simply to count the number of pairwise inter-
sections and if it is equal to () then there is a p-intersection. Otherwise
there is at least one pairwise non-intersection. Either way we obtain:

Theorem 3.5 Given p rectangles the existence of a p-intersection can be
determined in O(plogp) time and O(p) space.

Unfortunately Theorem 3.4 does not hold for polygons, see Figure 3.6.
Indeed Figure 3.6 displays p convex polygons with (g) intersections but no

p-intersection, for p = 3. However for convex polygons Helly’s Theorem
holds directly, that is:

Theorem 3.6 Given p convex polygons there is a p-intersection if and only
if every three polygons have a common point,

Although such a characterization does not hold in genera! we are still
able to prove:

An Isothetic View i1

- p_' oy
1 /M — — —
]
J
]
1
I
Figure 3.6

Theorem 3.7 Given p polygons and an integer k then the existence of a
k-intersection can be determined in O(nlogn) time and O(n) space, where
the p polygons have n vertices.

Proof Sketch: 'We use the sweep-line and segment tree approach described
above to solve Problem 5. In other words we sweep the polygons from left
to right so that at each position of the sweep line we have for each active
polygon the disjoint intervals it forms with respect to the sweep line, that is
the active intervals. Now there is a k-intersection of polygons if and only if
at some position of the sweep line there is a k-intersection of active intervals.
We represent the active intervals in a counting segment tree, that is cover(u)
for each node u is replaced by its size, #cover(u). Moreover for each
node # in the tree define a new field thickness(u) to be the maximal k-
intersection in the subtree rooted at u. Observe that
thickness(u) = max(thickness(Au), thickness(pu)) + #cover(u), hence the
thickness fields are easily updated after insertion and deletion. But this
means that there is a k-intersection of active intervals exactly when
thickness(root) = k. Moreover only insertions increase this value, so after
each insertion thickness(root) is checked. D

Note that the above proof sketch also yields a solution to Problem 7,
therefore we have:

Theorem 3.8 Given p polygons with n vertices their thickness can be
determined in O(nlogn) time and O(n) space.

12 Derick Wood

4. CONVEXITY PROBLEMS

We have already defined the generally accepted notion of convexity for
isothetic polygons. In this section we consider convexity testing, that is Prob-
lem 2, how the convex hull of a polygon is computed, that is Problem 3, how
we might define the convex hull of a collection of polygons, and the convex
skull problem.

Solving Problem 2 reduces to testing whether or not a given polygon can
be decomposed into at least 2 and at most 4 staircases, which fit together
appropriately. Ignoring the degenerate cases when they are only 2 or 3 stair-
cases, observe that four staircases form a convex polygon if every staircase
has the same orientation when they are rotated to place them in the north-
west corner. This observation also holds, essentially, for the 2 and 3 case
too. Thus testing a polygon for convexity reduces to testing if its north-west
curve is a staircase of the form displayed in Figure 2.2(a). Since the polygon
is specified by the sequence of its vertices in clockwise order, this reduces to
five linear scans of them. The first determines the, at most, four curves, the
second decides if the north-west curve is a staircase, the third tests the north-
east curve, and so on, yielding:

Theorem 4.1 Let P be a polygon with n vertices, then P can be tested for
convexity in O(n) time and space. Moreover both these bounds are optimal.

Now solving Problem 3, that is computing the convex hull of a polygon,
is similar to testing it for convexity. The only difference is that a smallest
enclosing staircase for each curve is computed. This is straightforwardly
computed, see [MF], [NLLW] and [OSW1], yielding:

Theorem 4.2 Let P be a polygon with n vertices, then the convex hull of
P can be computed in O(n) time and space, which is optimal.

The convex hull of one polygon is easily defined, but when given a col-
lection of polygons it is not even clear what definition should be used.

Thus we have:

Problem 8 Given a collection of polygons define their convex hull.

To begin to understand what is meant by the convex hull of a collection
of polygons, we first make precise the notion of a convex collection. A col-
lection C of polygons is convex if its intersection with every line is either
empty or a line segment, in other words it is the same definition as is used
for individual polygons. We now discuss three reasonable definitions of the
convex hull of a collection of polygons.

Definition 4.1 Minimal Collection
Given a collection C of polygons its convex hull is the minimal area convex
collection of disjoint polygons containing the given collection.

An Isothetic View 13

By the area of a collection we mean the area of its union, and by con-
tainment we mean a collection €; contains a collection C, if every polygon
in €, is contained in the union of the polygons in C;.

Definition 4.2 Minimal Polygon
Given a collection C of polygons its convex hull is a minimal area convex
polygon P containing the given collection.

Definition 4.3 Half Plane
Given a collection C of polygons its convex hull is the intersection of all
closed isothetic half-planes containing the collection.

There are four isothetic closed half-planes as displayed in Figure 4.1.

Figure 4.1

Definition 4.1 is the isothetic version of the classical definition of the
convex hull and is used in [OSW2)]. Definition 4.2 is the one used in [MF]
and {NLLW], while Definition 4.3 corresponds to finding the maximal vec-
tors in a set of vectors [KuLP]. We call these the mc-, the mp-, and the
hp-convex hulls, respectively, and for a collection C we denote them by
MC(C), MP(C) and HP(C), respectively. It is not difficult to show that:

MC(C) C HP(C) C MP(C)

and, moreover, in many cases these containments are proper. See Figure
4.2, for example:

Figure 4.2(a) displays a collection of three rectangles and its mc-convex
hulll Figure 4.2(b) and (c) show its sp-convex hull and an mp-convex hull,
respectively.

For the usual non-isothetic convex hull of a point set there are a number
of equivalent formulations, viz:

(1) The convex hull of a set is the intersection of all convex sets containing
the given set.

(2) The convex hull of a set is the intersection of all half-planes containing
the given set.

14 Derick Wood

]

= =
5. T T

(a} {c)

Figure 4.2

(3) A point is in the convex hull of a set if and only if it is in the convex
hull of some three or fewer points from the given set.

(4) A point is in the convex hull of a set if and only if every line through
the point divides the set into two non-empty sets.

Now (1) only holds for mc-convex hulls, (2) only holds for hp-convex hulls,
when isothetic half-planes are meant, (3) only holds for kp- and mc-convex
hulls, and (4) only holds for none of them, when isothetic lines are used.

For the usual non-isothetic convex hull we also require:

(5) The convex hull of a set to be unigue.

(6) The convex hull of a set to be stable with respect to insertion and dele-
tion of points.

Now (5) holds for both hp- and mc-convex hulls, but not for mp-convex
hulls, see Figure 4.3. Tt is possible that there are infinitely many mp-convex
hulls of a given collection, indeed Figure 4.3 only displays 3 possible mp-
convex hulls for a collection of two rectangles. However from the point of
view of stability Ap- and mp-convex hulls are both stable, but mc-convex hulls
are not, see Figure 4.4. In Figure 4.4(a) a collection and its mc-convex hull
are displayed, while in Figure 4.4(b) a rectangle is added causing the mc-
convex hull to grow tremendously.

- -] H

H]

T - O

Figure 4.3

Each of these convex hulls can be computed in O(nlogn) time and

An Isothetic View 15

M Y227y

(o} Figure 4.4 (b)

O(n) space, where the collection contains p polygons with a total of »
vertices. Moreover for the case of the Ap-convex hull (and probably for the
others) this can be improved to O(nlogh) time, where A is the number of
vertices in the kp-convex hull. To summarize:

Theorem 4.3 [OSW1], [KS]

Let C be a collection of p polygons with a total of n vertices. Then
MC(C) and MP(C) can be computed in Q(nlogn) time and O(n) space,
while HP(C) can be computed in O{nlogh) time and O(n) space, where
h is the number of vertices on the hp-convex hull.

One interesting question for the mp-convex hull of a collection C is: Is
MP{C) unique? We have:

Theorem 4.4 [OSWI1])
Let C be a collection of p polygons with n vertices. Then whether or not
MP(C) is unique can be decided in O(nlogn) time and O(n) space.

Finally, the stability of the hp-convex hull means that hp-convex hulls
can be maintained, efficiently, under both deletions and insertions.

Theorem 4.5 [OvL}

Let C be a collection of p polygons with n vertices. Then HP(C) can be
maintained in O(nmlog“n) time for each deletion or insertion of a polygon
with m vertices.

We now turn to the convex skull, which is in one sense a close relative
of the convex hull. We have:

Problem 9 The Convex Skull Problem
Given a polygon P find a largest area convex polygon Q with Q CP. Q is
called a convex skull of P.

This problem is also known as the potato peeling problem, namely peel
the smallest area from P to leave a convex polygon [Go]. See Figure 4.5
for an example.

16 | Derick Wood

In [WoY] it is proved that:

Theorem 4.6 A convex skull of a polygon with n vertices can be found in
O(n’logn) time and O(n) space.

A simpler problem is:

Problem 10 Given a polygon P find a largest area rectangle R with
RCP.

In this case we find:

Theorem 4.7 A largest-area rectangle contained in a polygon with n vertices
can be found in O(n?) time and O(nlogn) space.

Proof sketch: Each side of a largest-area rectangle with the given polygon
must touch one edge, at least, of the polygon. For otherwise it could be
enlarged. See Figure 4.6.

Hence, using the sweep line paradigm, sweep from left to right keeping track
of possible largest-area rectangles. At each position of the sweep line there
are at most n candidate rectangles; these can be represented in a segment
tree, If the sweep point corresponds to a left vertical edge, then it starts a
new candidate rectangle. If it corresponds to a right vertical edge then it ter-
minates some candidates and restricts others, see Figure 4.7. Since there
may be as many as n restrictions at each sweep point, see Figure 4.7, we
obtain the result. O

An Isothketic View 17

Figure 4.6

Figure 4.7

5. COMBINATIONAL PROBLEMS

By combinational we mean that the polygons are combined in some
manner and, possibly, some properties of their combination are computed.
For example the measure problem, that is finding the area of the plane
covered by a collection, is one of the earliest of these problems, see [B] and
[VLW]. We consider three combinational problems for a collection of
polygons: the contour problem, the hidden line problem, and the boolean
masking problem.

Problem 11 Given p polygons with a total of n vertices, report the disjoint
polygons obtained as their union; that is their contour. See Figure 5.1.

Clearly the resulting polygon may have O(n?) edges, see Figure 3.1,
for example. [LipP] gave the first algorithm for this problem, when the
polygons are, in fact, rectangles. Their general approach is found in the sub-
sequent work of {Gill], [Gil2], and {[Wo]. [LipP] observed that it is only
necessary to compute the horizontal edges of the resulting polygons, since the

18 Derick Wood

N

Ty

N
\
N

>

SO

/|
NLALA L

N

Figure 5.1

vertical edges may then be deduced from them. This gives a two-phase algo-
rithm:

Phase 1:Compute the horizontal edges of the contour.
Phase 2: Compute the complete contour.

Phase 2 requires the horizontal edges to be sorted so for this reason it
has a worst-case behavior of O(n’logn) or, more precisely, O(rlogr) if
there are r edges resulting from Phase 1. However Phase 1 can be solved in
O(nlogn+r) time and O(n) space, as demonstrated in [Gal], [Gt2], and
[Wo]. In [Wo] a solution is given, based on the segment tree, which solves
Problem 11 in full generality, not just for rectangles. The results proved in

[Wo] are:

Theorem 5.1 Given p polygons with a total of n vertices. Then the r hor-
izontal edges of their contour can be computed in O(nlogn+r) time and
O(n) space. Moreaver these bounds are optimal.

We now turn to our second problem:

Preblem 12 The Boolean Masking Preblem
Given p, disjoint red polygons with n, vertices and p, disjoint green
polygons, with ng vertices, report the polygons formed by their:

(a) OR - the union of the red and green polygons,
(b) AND - the intersection of the red polygons with the green polygons,
() XOR - their OR minus their AND,

(d) NAND - the intersection of the non-red portion of the plane with the
green polygons.

An Isothetic View 19

These operations are fundamental in mask design checking, see [La] and
{MeC], where the red and green polygons correspond to polygons on two dif-
ferent layers.

Clearly Problem 12 is a special case of the contour problem, so
Theorem 5.1 provides upper bounds for its solution where p = p, + p, and
n=n,+n, Indeed this is the result in [Pr], which is also implied in
[OWW2], namely:

Theorem 5.2 Given a collection of P =p,+p, polygons with
n=n,+ ng vertices, as above, their OR, AND, XOR, and NAND can be
computed in O(nlogn+r) time and O{n-+r) space, where r is the number
of vertices of the resulting collection.

Finally we turn to:

Problem 13 The Hidden Line Problem

Given p opaque polyhedra in 3-space with n vertices and a given isothetic
viewing direction, report the polygonal faces, and portions thereof, that can be
seen from the viewing direction.

In [OWW1] a hidden line elimination algorithm is presented which deals
with collections of arbitrary polyhedra viewed from an arbitrary direction.
The restrictions to isothetic polyhedra and isothetic views leads immediately
to:

Theorem 5.3 Given a collection of opaque isothetic polyhedra with n ver-
tices and given an isothetic direction, then the two-dimensional view from this
direction can be computed in O(nlog§n+r) time and O(nlogn) space, where
r is the number of vertices in the resulting view.

In [S2] the hidden line problem for a single polygon of n vertices is
solved in linear time.

6. CLUSTERING PROBLEMS

We discuss three techniques for partitioning a collection of polygons into
clusters. The first, and most obvious, is based on intersections and connec-
tivity, that is connected components. The second is based on minimal area
convex hulls, while the third is based on diagonal closure. The latter cluster-
ing technique occurs when viewing, from a geometrical point of view,
deadlock and safety problems for locked transaction systems [Pa} and [LipP].
The second technique has been proposed as a method of partitioning com-
ponents in a chip layout into macro-components, which are then more easily
manipulated.

20 Derick Wood

Problem 14 Connected Components Problem
Given a collection of polygons with n vertices determine their connnected com-
ponents.

Given a collection of polygons, a subcollection is connected if its union
is a connected set of points. A connected component of the collection is a sub-
collection which is connected and is also disjoint from the remaining
polygons.

The connected components are the equivalence classes formed by taking
the transitive closure of the pairwise intersection relation. Thus they can be
found as a spin-off from Theorem 3.2. However this implies that a total of

O(nlogn+klogk) time is required using the standard UNION-FIND method
[AHU], where k is the number of pairwise intersections. Since k = O(n?)
this method produces an inefficient algorithm. Fortunately a better approach
is possible, as shown in [EVLOW] and [GuS].

Use the sweep line approach as we did in solving Problem 5, see Section
2. This gives rise to the notion of a left-connected component, with respect to
the sweep line, that is a connected subcollection of the collection, where each
polygon in the component is either dead or active. Clearly the connected
components are the left components associated with the rightmost position of
the sweep line. A crucial observation is that not only does the intersection of
the sweep line with each left-connected component give at least one line seg-
ment, but also for two or more components these can be, at most, nested,
they cannot overlap. In Figure 6.1(a) a valid configuration is displayed
showing the nesting of two components A and B, while C is completely
disjoint from both B and C.

An Isothetic View 21

CEEE
I’
i
B —
| E . e
|e N
\."‘____ A
E |
‘\
~—-| B
B ! c
] ¢
(a) {b)
Figure 6.1

Figure 6.1(b) displays an impossible situation since the two appearances of
B must be left connected as are the two appearances of A, hence A and
B must intersect; a contradiction.

Since the one-dimensional projection of the left-connected components
on the sweep line is so highly structured, it leads to an efficient algorithm to
find connected components.

A high level algorithm can now be given:

For each sweep point x:

(1)x corresponds to a left edge.

Determine the left-connected components it joins, belongs to, or ini-
tiates. Modify left-connected components appropriately, forming unions
where necessary.

(2)x corresponds to a right edge.
Determine the left connected component it belongs to and modify it
appropriately.

Since we are forming equivalence classes, underlying this algorithm we have
a classical UNION-FIND problem, since we need in both Steps (1) and (2) to
perform FINDs, while in Step (1) we also need to perform UNION. It is
sufficient to use any one of the methods of solving UNION-FIND probiems
which requires O(rlogn) time for O(n) operations. Beyond this we need
to represent each left-connected component as disjoint line segments, be able
to insert and delete edges from them, and given an edge query determine

22 Derick Wood

which left-connected components it intersects. It turns out to be important to
carry out the query in at most two phases. In the first phase it only reports
the left-connected components it possibly intersects. For this purpose only
the current topmost and bottommost points of each left-connected component
are used. The resuit of the query is either it overlaps some of these end-
points or it is enclosed by some pair of endpoints. In the former case this
immediately causes UNIONs to be carried out, while in the latter case the
smallest enclosing pair should be investigated further to determine if one
UNION should be carried out.

Data structures can be designed which yield the following result, gen-
eralizing the result for rectangles in [EvVLOW] and [GuS]:

Theorem 6.1 Given a collection of polygons with n vertices, its connected
components can be found in O(nlogn) time and O(n) space.

We now consider:

Problem 15 Determine the minimal area convex hull of a collection C of
polygons, thatis MC(C).

As pointed out in Section 4 MC(C) may consist of two or more disjoint
convex polygons, each of which contains at least one of the original
polygons. Now MC(C) 2 {MC(P): PinC}, and this collection can be
found in time linear in the number of vertices. Therefore, without any loss
of generality, we may assume that C is, in fact, a collection of convex
polygons.

In [OSW?2] the following theorem is proved:

Theorem 6.2 Given a collection C of polygons with a total of n vertices,
MC(C) can be computed in O(nlogn) time and O{(n) space.

The algorithm to compute MC(C) is very similar to that for computing
connected components, so we omit any further details.

Finally we turn to the notion of diagonal closure. Given a collection C
of polygons we say it is north-east closed if for every pair of points
p1= (x1,y;) and p, = (x3,y;) satisfying (1) and (2) below, the point
(x3,y1) isin C, where:

(1) p, and p, are in the same connected component, and
(2) x;<=x; and y; >y,

See Figure 6.2,

Similarly we say C is south-west closed if the point (x;,y,) isin C, and C
is diagonally-closed if it is north-east and south-west closed.

An Isothetic View 23

Figure 6.2

Given a collection C of polygons we define its north-east closure as the
minimal area collection C’ of polygons, with C’ 2 C and C’ is north-east
closed. Again we obtain south-west closure and diagonal closure. For a col-
lection C we denote these closures by NE(C), SW(C), and D(C) respec-
tively.

Problem 16 Given a collection C of polygons determine NE(C), SW(C),
and D(C).

In [SSW] the following theorem is proved:

Theorem 6.3 Let C be a collection of polygons. Then D(C) =
NE(SW(C)) = SW(NE(C)).

Thus determining D(C) reduces to determining the north-east and south-
west closure of a collection. Let rotate(C,6) denote the rotation of a collec-
tion C by 8 degrees about the origin, hence C = rotate(C,2w). Then we
obtain;

Theorem 6.4 Let C be a collection of polygons. Then NE(C) =
rotate(SW (rotate(C ,m)),w) and SW(C) = rotate(NE(rotate(C, 7)),).

Thus we only need to determine north-east closure in order to be able to
determine diagonal closure. In [SSW] it is shown that NE(C) can be com-
puted in O(nlogn) time and space for a collection C of polygons having »

vertices. The technique use is based once more on the sweep line paradigm.
It is also similar to the connected components algorithm, needing some extra
work, since regions need to be added to the original polygons. Thus:

Theorem 6.5 Given a collection C of polygons with n vertices NE(C),
SW(C), and D(C) can be computed in O(nlogn) time and space.

The importance of diagonal closure stems from the work of [Pa] on
locked transaction systems. Given two transactions, each of which can be
considered to consist of a sequence of lock and unlock operations on at most

24 Derick Wood

n variables, we wish to determine whether they are deadlock-free and safe,

when executed in a concurrent environment. Associating the two transaction
sequences with the sequence of points 1, ... on the x- and y-axes, respec-
tively, then they define rectangular forbidden regions. For example letting
Ty = lock y, lock x, unlock x, unlock y, and
T, = lock x, lock y, unlock y, unlock x we obtain Figure 6.3.

T2
unlock x 4
uniock y 3~
y
locky 2
b \\
l\ X
lock x |-+ R
! ! ! |
T I 1 T
0,0 ! 2 3 4 T
focky lockx unlock x unlock y !

Figure 6.3

The region labelled x corresponds exactly to the restriction that variable x
may only be locked by one transaction at a time. A staircase from 0,0 to
4,4 which does not pass through any rectangle corresponds to a possible
interleaving of Ty and T, and vice versa, that is a computation history.

Consider the point (2,2). A staircase which approaches close to this
point (it cannot reach it since this would imply both T, and T, are locking
variable y) cannot reach point (4, 4) at all, since it must £0 up or go right.
The former is not possible since this requires T, to lock y also, and the
latter is not possible since this requires T; to lock x also. In other words
T, and T, are deadlocked. The rectangular area determined by (1, 1)
and (2, 2) is a region of deadlock. Note that the diagonal closure of the two
rectangles fills in this region, the shaded region in Figure 6.3. To character-
ize deadlock we refer to the left edges of a collection as the left edges of its
union, and to the lower edges as the lower edges of its union. Basically these
edges, in the diagonal closure, must be in the original collection for deadlock
freedom to occur.

Similarly, the notion of the safefy of T, and T, can be characterized

as the absence of any staircase which separates the forbidding rectangles into
two non-empty sub-collections. Indeed [Pa] proves:

An Isothetic View 25

Theorem 6.6 Let C be the collection of forbidding rectangles corresponding
to two transactions T and Ty of n variables. Then Ty and T, are safe if
and only if D(C) consists of a single polygon and T, and T, are deadlock-
free if and only if the lower and left edges of D(C) are (parts of) lower and left
edges of C.

7. VISIBILITY PROBLEMS

There are a number of visibility issues for polygons which either arise
from some practical problem or arise from considerations of the complexity
of polygons.

Examples of the latter situation are the various art gallery theorems.

Problem 17 Given a polygon place a number of guards or watchmen on ver-
tices, on edges, in the interior, or even in the exterior, so that each point on an
edge, in the interior, in the exterior, etc., can be seen by at least one watch-
man.

An elegant proof of one result of this type is:
Theorem 7.1 [O’R1}

{n/4) guards, stationed on vertices, are necessary and sufficient to see every
point in the interior of a polygon of n edges.

One can also assume that the guards have some mobility, for example
along a line segment. This has been investigated by [O’R2]. Other varia-
tions, which have not been investigated to the best of my knowledge, are
only allowing guards isothetic mobility and isothetic sight. Assuming the
walls are reflective is another possible assumption,

However we prefer to consider visibility problems arising from more
practical situations. To this end we define:

Problem 18 Given a collection of polygons we define a symmetric relation
vis, for '‘is visible to,’’ by: For two polygons A and D, A vis D if and only
if there is a horizontal or vertical line segment joining A to D which intersects
no other polygon, see Figure7.1.

If we wish to connect components A and D with a wire, then when
AvisD we have a straight connection, whereas if not AvisD then a connect-
ing wire needs to be routed around the blocking obstacles.

It is convenient to split the vis relation into its horizontal and vertical
components. Hence we say AhvisD if AvisD via a horizontal line segment
and AwvisD if AvisD via a vertical line segment. In general we might
have both AhvisD and AwvisD, since the given polygons are not necessarily

26 Derick Wood

A D
D'”D""_:] D D 1
AvisD not A vis D
{a) (b)

Figure 7.1

convex. Note that vis may be the empty relation, see Figure 7.2.

Figure 7.2

We first prove a combinatorial result concerning the size of vis, namely
the maximum number of visibility pairs among n polygons.

Theorem 7.2 Given a collection of p disjoint convex polygons, then hvis
(and vvis) has size at most 3p and, therefore, vis has size at most 6p.

Proof: Consider hvis only. Each polygon has a bottommost and topmost
edge. For every polygon, extend each of these edges to the right and left
until they meet another polygon, otherwise they become rays or lines. In all
three cases a partition of the plane is obtained, see Figure 7.3. Intuitively
this process gives the horizontal visibility regions for each polygon. Now
observe that each bottommost (topmost) edge of a polygon with its extension
abuts three visibility regions as in Figure 7.4. This follows from the disjoint-
ness assumption and the construction of the regions. Each polygon together
with its extension determines one horizontal edge for each of 6 regions. But
cach region, apart from the extremal ones, has two horizontal edges. There-
fore there are, at most, 6p/2 regions, that is 3p regions. O

An Isothetic View 27

Figure 7.4

This notion was used in [GIS] for printed circuit testing. In their appli-
cation they have curves rather than polygons. Their problem is to determine
a clustering of curves into disjoint groups, so that it is sufficient to test groups
against groups for fabrication faults leading to short circuits. They show that
there are at most 12 groups needed, in general, independent of the number
of curves. In this setting a curve corresponds to a wiring and a visibility
corresponds to the possibility of a short circuit. This is one application of the
local relation vis to a global problem. There are bound to be others. For
example a solution to the contour problem, see Section 5, depends on local
visibility.

8. DISCUSSION

It is to be hoped that the survey presented here, although a biased one,
will convince the reader that the isothetic viewpoint is a rich source of appli-
cations and problems. There are of course topics which have been omitted.
Two of them, especially deserving of mention are: motion problems and
decomposition problemns. Elsewhere in this volume Sue Whitesides and God-
fried Toussaint discuss motion problems in the context of robotics, see also
{ToS). Given a collection of polygons, some of which are fixed and are
called obstacles, plan a sequence of movements to move the movable polygons
to some given new positions, so that no two polygons collide and no two
polygons touch. In [COSW] all polygons are movable and the aim is to
separate them all, giving the game SEPARATIONT™,

Two examples of decomposition problems are to decompose the union
of a collection of polygons into a minimal number of disjoint rectangles and
into disjoint rectangles with minimal contour length. The first decomposition
method occurs as a problem in databases [LipLLMP], [LLMP], the second as

28 Derick Wood

a problem in wire routing on VLSI chips [LiPRS].

Research into isothetic problems has: yielded new data structures, for
example the segment tree, the 1-fold interval tree, and the priority search
tree; resulted in new paradigms, for example the sweep line, dynamization,
and paradigmatic transformations; and re-affirmed the utility of established
paradigms, for example divide-and-conquer and dynamic programming.

Acknowledgements

Many of the results quoted in this survey stem from collaborative
research in which I have been involved. The following are no longer just col-
laborators, but are also friends, without whom this survey could not have
been written. I thank Jon Bentley, Bernard Chazelle, Herbert Edelsbrunner,
Ralf Hartmut Giting, Thomas Ottmann, Eljas Soisalon-Soininen, Jan van
Leeuwen, Peter Widmayer, and Chee Yap. Also Karel Culik II is responsi-
ble for the present form of Theorem 7.2, improving my own bound by p.

References

[AHU] Aho, A.V., Hoperoft, .E., and Ullman, 1.D., The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing
Co., Reading, Mass. 1974,

[B] Bentley, J.L., Algorithms for Klee’s Rectangle Problems.
Unpublished (1977).

[BKST] Bentley, I.L., Kung, H.T., Schkolnick, M., and Thompson,
C.D., On the Average Number of Maxima in a Set of Vectors
and Applications. Journal of the ACM 25 (1978), 536-543.

[BO1] Bentley, J.L., and Ottmann, Th., Algorithms for Reporting and
Counting Geometric Intersections. IEEE Transactions on Comput-
ers C-28 (1979), 643-647.

[BO2] Bentley, J.L., and Otimann, Th., The Complexity of Manipulat-
ing Hierarchically Defined Sets of Rectangles. Proceedings of the
10th International Symposium on Mathematical Foundations of
Computer Science; Lecture Notes in Computer Science 118 (1981),
Springer Verlag, 1-15.

[BW] Bentley, J.L., and Wood, D., An Optimal Worst Case Algo-
rithm for Reporting Intersections on Rectangles. IEEE Transac-
tions on Computers C-29 (1980), 563-580.

{COSW] Chazelle, B., Ottmann, Th., Soisalon-Soininen, E., and Wood,
D., The Complexity and Decidability of SEPARATIONTM,
University of Waterloo, Computer Science Technical Report CS-

[B1]

(E1]

(EO]

[EvLOW]

{FSS]

{FPT]

[GBT]
[GIS]

[Go]

[GVDK]

(Gus]
[Ga1]
[Ga2]
[Gi3]
[Gaw]

(Hs]

An Isothetic View 29

83-34 (1983).

Brown, K.O. Comments on ‘Algorithms for Reporting and
Counting Geometric Intersections.’ IEEE Transactions on Comput-
ers C-30 (1981), 147-148.

Edelsbrunner, H., A Time- and Space-Optimal Solution for the
Planar All Intersecting Rectangles Problem. Technical University
of Graz, Graz, Austria, Institute fuer Informatinsverarbeitung,
Report F50 (1980).

Edelsbrunner, H., and Overmars, M.H., Batched Dynamic Solu-
tions to Decomposable Searching Problems. TU Graz IIG Techn-
ical Report No. F118 (1983).

Edelsbrunner, H., van Leeuwen, J., Ottmann, T.A., and
Wood, D., Connected Components of Orthogonal Geometric
Objects. RAIRO (1983), to appear.

Ferrari, L., Sankar, P.V., and Sklansky, J., Minimal Rectangu-
lar Partitions of Digitized Blobs. Proceedings of the Sth Interna-
tional Conference on Pattern Recognition, Miami Beach (1980),
1040-1043.

Fowler, R.J., Paterson, M.S., and Tanimoto, S.L., Optimal
Packing and Covering in the Plane are NP-Complete. Information
Processing Letters 12 (1981), 133-137.

Gabow, H., Bentley, J.L., and Tarjan, R.A., Geometric Scal-
ing. In preparation {1983).

Garey, M.R., Johnson, D.S., and So, H.C., An Application of
Graph Coloring to Printed Circuit Testing. IEEE Transactions on
Circuits and Systems CAS-23 (1976), 591-599.

Goodman, J.E., On the Largest Convex Polygon Contained in a
Non-Convex n-gon or How to Peel a Potato. Geometriae Dedi-
cata 11 (1981), 99-106.

Groen, F.C.A., Verbeek, P.W., Delong, N., and Kiumper,
J.W., The Smallest Box Around a Package. Paitern Recognition
14 (1981), 173-178.

Guibas, L., and Saxe, J., Problem 80-15. Journal of Algorithms
4 (1983), 177-181.

Giting, R.H., An Optimal Contour Algorithm for Iso-Oriented
Rectangles. Journal of Algorithms (1983), to appear. ‘
Giiting, R.H., Stabbing c-Oriented Polygons. Information Pro-
cessing Letters (1983), to appear.

Giiting, R.H., Docterol dissertation, Dortmund, 1983.

Giting, R.H., and Wood, D., Finding Rectangle Intersections
by Divide-and-Conquer. IEEE Transactions on Computers (1983),
to appear.

Haralick, R.M., and Shapiro, L.G., Decomposition of Polygonal
Shapes by Clustering. Proceedings of the IEEE Computer Society

30

[Hw]

(rA]

(K]

[KuLP]

(La]

(LeP]
[LeW]
[VLW]

(Lh]

[Li]

[LiPRS]

[Lip]

Derick Wood

Conference on Pattern Recognition and Image Processing (1977),
183-190.

Hwang, F.K., An O(nlogn) Algorithm for Rectilinear Minimal
Spanning Tree. Journal of the ACM 26 (1979), 177-182.

Imai, H., and Asabo, T., Finding the Connected Components
and a Maximum Clique of an Intersection Graph of Rectangles in
the Plane. University of Tokyo, Tokyo, Japan, Department of
Mathematical Engineering and Instrumentation Physics;
manuscript (1981).

Kirkpatrick, D.G., and Seidel, R., The Ultimate Planar Convex
Hull Algorithm? Proceedings of the 20th Annual Allerton Confer-
ence on Communication, Control, and Computing (1982), 35-42.
Kung, H.T., Luccio, F., and Preparata, F.P., On Finding the
Maxima of a Set of Vectors. Journal of the ACM 22 (1975), 469-
476.

Lauther, U., An O(NlogN) Algorithm for Boolean Mask
Operations. Proceedings of the 18th Design Automation Confer-
ence, Nashville (1981), 555-562.

Lee, D.T., and Preparata, F.P., An Improved Algorithm for the
Rectangle Enclosure Problem. Submitted for publication,

Lee, D.T., and Wong, C.K., Finding Intersections of Rectangles
by Range Search. Journal of Algorithms 2 (1981), 337-347.

van Leeuwen, J., and Wood, D., The Measure Problem for Rec-
tangular Ranges in d-Space. Journal of Algorithms 2 (1981), 282-
300.

Lehert, P., Clustering by Connected Components in O(n)
Expected Time. RAIRO Informatique/Computer Science 15 (1981),
207-218.

Lingas, A., The Power of Non-Rectilinear Holes. Proceedings of
the 9th Colloquium on Automata, Languages and Programming;
Lecture Notes in Computer Science 140 (1982), Springer Verlag,
369-383.

Lingas, A., Pinter, R.Y., Rivest, R.L., and Shamir, A.,
Minimum Edge Length Partitioning of Rectilinear Polygons.
Proceedings of the 20th Annual Allerton Conference on Communica-
tion, Control, and Computing (1982), 53-63.

Lipski, W. Jr., Finding a Manhattan Path and Related Problems.
University of Illinois, Urbana, Hlinois, Coordinated Science
Laboratory; Report T-85 (1979).

[LipLLMP]Lipski, W. Jr., Lodi, E., Luccio, F., Mugnai, C., and Pagli,

{LipP]

L., On Two-Dimensional Data Organization II. Fundamenta
Informaticae 11 (1979), 245-260.

Lipski, W. Jr., and Papadimitriou, C.H., A Fast Algorithm for
Testing for Safety and Detecting Deadlock in Locked Transaction

[LipP1}

[LipP2]

[LLMP]

[Me1]

Me2]
[MeC]

[MF]

[NLLW]

[NP)

[O'R1)

[O'R2]

[0sW1]

[OSW2]

[OWW1]

[OWW?2]

{ovi]

An Isothetic View 31

Systems. Journal of Algorithms 2 (1981), 211-226.

Lipski, W. JIr., and Preparata, F.P., Finding the Contour of a
Union of Iso-Oriented Rectangles. Journal of Algorithms 1
(1980), 235-246.

Lipski, W. Jr., and Preparata, F.P., Segments, Rectangles,
Contours. Journal of Algorithms 2 (1981), 63-76.

Lodi, E., Luccio, F., Mugnai, C., and Pagli, L., On Two-
Dimensional Data Organization 1. Fundamenta Informaticae Il
(1979), 211-226.

McCreight, E.M., Efficient Algorithms for Enumerating Inter-
secting Intervals and Rectangles. XEROX Palo Alto Research
Center, Palo Alto, California; Report CSL-80-9 (1980).

McCreight, E.M., Priority Scarch Trees. XEROX Palo Alto
Research Center, Palo Alto, California; Report CSL-81-5 (1981).

Mead, C., and Conway, L., Intreduction to VLSI Systems.
Addison-Wesley Publishing Co., Reading, Mass., 1980.
Montuno, D.Y., and Fournier, A., Finding the x—y Convex
Hull of a Set of x—y Polygons. University of Toronto CSRG
Technical Report 148 (1982).

Nicholl, T.M., Lee, D.T., Liao, Y.Z., and Wong, C.K., Con-
structing the X-Y Convex Hull of a Set of X-Y Polygons. BIT
(1983), to appear.

Nievergelt, J., and Preparata, F.P., Plane-Sweep Algorithms for
Intersecting Geometric Figures. Communications of the ACM 25
(1982), 739-747.

O'Rourke, J., Galleries Need Fewer Mobile Guards: A Variation
on Chvdtal’s Theorem. Geometriae Dedicata 14 (1983), 273-283.
O'Rourke, J., An Alternative Proof of the Rectilinear Art Gal-
lery Theorem. Johns Hopkins University Technical Report 82-15
(1982).

Ottmann, Th., Soisalon-Soininen, E., and Wood, D., On the
Definition and Computation of Rectilinear Convex Hulls. Infor-
mation Sciences (1983), to appear.

Ottmann, Th., Soisalon-Soininen, E., and Wood, D., Rectil-
inear Convex Hull Partioning of Sets of Rectilinear Polygons.
University of Waterloo, Computer Science Technical Report CS-
83-19 (1983).

Ottmann, Th., Widmayer, P., and Wood, D., A Worst-Case
Efficient Algorithm for Hidden Line Elimination. University of
Waterloo, Computer Science Technical Report CS$-82-33 (1982).
Ottmann, Th., Widmayer, P., and Wood, D., A Fast Algorithm
for Boolean Mask Operations. University of Waterloo, Com-
puter Science Technical Report CS-82-37 (1982).

Overmars, M.H., The Design of Dynamic Data Structures. To

32

[OvL]

[Pa)
[Pr]

(R]

[s1]

[s2]

[sh]

{ShH]

(Sk]

[SkCH]

[SSW]

[81)

{1l

[ToS]

[vLW]

Derick Wood

appear as Lecture Notes in Computer Science (1983), Springer
Verlag.

Overmars, M.H., and van Leeuwen, J., Maintenance of Confi-
gurations in the Plane. Journal of Computer and System Sciences
23 (1981), 166-204.

Papadimitrion, C.H., Concurrency Control by Locking. SIAM
Journal on Computing 12 (1983), 215-226.

Pracchi, M., Boolean Expressions of Rectilinear Polygons with
VLSI Applications. University of Ilinois-Urbana, Coordinated
Science Laboratory Technical Report R-978 (1982).

Rappaport, D., Eliminating Hidden-Lines from Monotone Slabs.
Proceedings of the 20th Annual Allerton Conference on Communica-
tion, Control, and Computing (1982), 43-52.

Sack, I.R., An O(nlogn) Algorithm for Decomposing Simple
Rectilinear Polygons into Convex Quadrilaterals. Proceedings of
the 20th Annual Allerton Conference on Communication, Control,
and Computing (1982), 64-74.

Sack, I.LR., A Simple Hidden-Line Algorithm for Rectilinear
Polygons. Proceedings of the 21st Allerton Conference on Com-
munication, Control, and Computing (1983).

Shamos, M.I,, Computatinal Geometry. Doctoral Dissertation,
Yale University (1978).

Shamos, M.I, and Hoey, D., Geometric Intersection Problems.
Proceedings of the 17th Annual IEEE Symposium on Foundations of
Computer Science (1976), 208-215.

Sklansky, J., Measuring Concavity on Rectangular Mosaic. IEEE
Transactions on Computers C-21 (1972}, 1355-1364,

Sklansky, J., Chazin, R.L., and Hansen, B.J., Minimum Perim-
eter Polygons of Digitized Silhouettes. IEEE Transactions on
Computers C-21 (1972), 260-268.

Soisalon-Soininen, E., and Wood, D., An Optimal Algorithm
for Testing for Safety and Detecting Deadlocks in Locked Tran-
saction Systems. To appear in ACM SIGACT-SIGMOD Conference
on Principles of Database Systems (1982).

Srihari, S.N., Representation of Three-Dimensional Digital
Images. Computer Surveys 13 (1981), 399-424,

Tompa, M., An Optimal Solution to a Wire-Routing Problem.
Journal of Computer and System Sciences 23 (1981), 127-150.
Tousaint, G., and Sack, J.R., Some New Results on Moving
Polygons in the Plane. Proceedings of the Robotic Intelligence and
Productivity Conference (1983).

van Leeuwen, J., and Wood, D., The Measure Problem for Rec-
tangular Ranges in d-Space. Journal of Algorithms 2 (1981), 282-
300.

[Wo]

[WoY]
[YPK]

An Isothetic View 33

Wesley, M.A., and Markowski, G., Fleshing Out Projections.
Thomas J. Watson Rescarch Center, Yorktown Heights, New
York, Computer Science Department; Report RC 8884 (1981).

Wood, D., The Contour Problem for Rectilinear Polygons.
University of Waterloo, Computer Science Technical Report CS-
83-20 (1983).

Wood, D., and Yap, C., Computing the Convex Skull of an
Isothetic Polygon. In preparation (1983).

Yannakakis, M., Papadimitriou, C.H., and Kung, H.T., Lock-
ing Policies: Safety and Freedom from Deadlock. Proceedings of
the 20th Arnual IEEE Symposium on Foundations of Computer Sci-
ence (1979), 286-297.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

