MAPLE
User's Manual
Third Edition

Keith 0. Geddes
Gaston H. Gonnet
Bruce W. Char

Research Report CS-83-41
December 1983

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

MAPLE
User’s Manual

Third Edition

Kzith O, Geddes
Gaston H. Gonnet

Bruce W. Char

December 1983

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

PREFACE

The design and implementation of the Maple system are currently in progress.
This manual is a working document for the project. The version of the Maple system
which has been completed at the time of publication of this third edition of the
manual (December 1983) is version 3.1.

The Maple project was first conceived in the fall of 1980 as the logical outcome
of discussions on the state of symbolic computation at the University of Waterloo.
The authors wish to acknowledge many fruitful discussions with colleagues at the
University of Waterloo, particularly Morven Gentleman, Michael Malcolm and
Frank Tompa. It was recognized in these discussions that none of the locally-
available systems for symbolic computation provided the environment nor the facili-
ties that should be expected for symbolic computation in the 1980’s. We concluded
that since the basic design decisions for current symbolic systems such as ALTRAN,
CAMAL, Reduce, and MACSYMA[Hal71a, Bou71a, Hea7la, Mar71a] were made
more than ten years ago, it would make sense to design a new system from scratch
taking advantage of the software engineering technology that has become available
since then, as well as drawing from the lessons of experience.

Like other algebraic manipulation systems, Maple’s basic features (e.g. elemen-
tary data structures, input/output, rational number arithmetic, and elementary sim-
plification) are coded in a systems programming languzge for efficiency. For users,
there is a high-level language with an Algol68-like syntax more suitable for describ-
ing algebraic algorithms. An important property of Maple is that most of the alge-
braic facilities are defined using the high-level user language. The basic system is
sufficiently compact and efficient to be practical to use in a present-day time-sharing
environment while providing a useful array of facilities. To this basic system can be
added successive levels of ‘function packages’, each of which adds more facilities to
the system as may be required, such as polynomial factorization or the Risch integra-
tion algorithm. The modularity of this design should allow users latitude in selecting
which algebraic facilities they wish to have.

The basic system is written in a languege belonging to the BCPL/B/C family.
The Margay macro processor[Joh83a, Mera] is used to generate versions of the
source code in B (for Honeywell TSS) and C (for the Vax UNIXt system). It is anti-
cipated that very high level use of Maple (¢.g., the Risch integration algorithm) will
be impractical in a heavily-used time-sharing environment. Such use will be more
practical on a dedicated microprocessor with one or more megabytes of main
memory. Currently, the Maple system has been installed on several Motorola 6800
based systems. These include the Pixel system, the WICAT system, the Spectrix sys-
tem, and the Sun workstation.

+ UNIX is a Trademark of Bell Laboratories.

CONTENTS
PREFACE .. i i naaes s sanans .

2.LANGUAGE ELEMENTS ..iiiiiiiiiieiieiiiceassonsrosiescsnssnassnses
2.1.Character Set e N esee i et ee et ea s iaa e raseeaarns
2.2.TOKENS iiiiiiiiiiiiiiiieniiaiatiiri e re ettt eraaraataas
2.3.Blanks, Lines, and Comments D
0 - PN

3.STATEMENTS AND EXPRESSIONS . ..iiiviiiiiiiiiiiiiiiiaiiiinnn,
3.1.Types of Statements ... Ciessaseane S
3.1.1. Assignment Statementiiiiciiiiiienieiiiiiiiiieiieas
3.1.2.Expression Ceeeeerieriesaneans
3.1.3.Read Statement e easeteaeeieiaarereerienierareraaaian
.1.4.Save Statement Creseaereereeees Chiebieieererreeeeienaanias
1.5.8eclection Statementcceiiiiiiiiiniiiiiniiiiniiiiiaea,
1.6.Repetition Statement b sibeeiaeieibierrestaiaerieeees
1.7.Break Statement iiiiiiiiiiiiiinsiaeiiniisaianisaisaias
1.8.Quit Statement D TN
1.9.Empty Statement iiiiiiiiiiiiiiiie e
3.2.Expressions o.eeeee. rerieeresresaeaeans

3
3
3
3
3
3

.
.

3.2.1.Basic Constantsiiiiiiiiiiiiiieeiiiii e e
3.2.2.Names Ceesieseesbairereerianaas Cerrerttnraesiarnanens ceveen
3.2.3.Expression SEQUENCE .i.vuiiinierianseroianisisnsisisasasaaes
3.2.4.8Sets and Lists
3.2.5.Indexed EXpressionscciiiiiieniiiieniiiiseiiiiniians
3.2.6. Algebraic Operatorsccieiiiiiiiiiiiiiiiiiiiiiiiie,
3.2.7.Relations and Logical Operators cecvinnen e
3.2.9.Selection OPEratoreeeueeninreeniereaseinsrnniensnreanes
3.2.10.Unevaluated Expressionsicviiiieiinisinniiiinneenss
3.2.11.Proceduresiiiiiiiiiiieiisaiaiiiiiie i
3.2.12.Precedence of Operators

3.3.Sample Maple Session ...i.iiiiiiiiii e

4.DATA TYPES AND FORMAL SYNTAX = .. .iciiiviiiiiircenenncennnnns
4.1.Data Types

4.1.1.Int8GET .iiiiiiiiiiiiiiiiiiiiaeiiaian .
4.1.2.Rational Number e aaees ettt eeetas et a et iesbansanaassinis
4.1.3.Floating Point Numberccccviiiiiiiininereniiniinnnnes
4.1.4Name ...iiiiiiiciiiiana. rebesieeciasiinsantatatietasianians
4.1.5.Expression Sequence 0s Sravreseesnisraansanees
4.1.6.8etand List ... iiiiiiiiiiiiiisiieniiiraccnariariassesinneens
4.1.7. Addition, Multiplication, and Power Ceessessiasiesiesisnenis
L T 0« .
4.1.9.Equation and Inequality cciiiiiiiiiiniiiiiiiiniee
4.1.10.Boolean Expression D
L 5 0 - T
4.1.12, Procedure Definition e eeabesiha e saaiea i saaias
4.1.13. Unevaluated Function Invocation c.ecevennns
4.1.14. Unevaluated Factorial =oiiiiiiiiiiiiiiiiiiiniiiianiiaias

4,1.15.Unevaluated Concatenationovvevvenraricnsanseenrenss

ii Geddes, Gonnet, and Char

5.ARRAYS AND TABLES cceenee e e 30
5.1.0verview L. ee e ieeaer et ieraieaas 30
5.2.Creating Tables ...t 31

5.2.1.Explicit Table Creation ~iiiieviiiiiiiiiieniinnnnnianis 3
5.2.2.Implicit Table Creationcciiiiiiiiiiiiini i, 33
5.2.3.User Interface for Table Creation ety enreresaeeainaes 33
5.3.Table Components veaaan Feereersarateaaiaiasieiiiatiesseaaiaeiaaias 34
5.3.1.Evaluating Components covvee.n P 34
5.3.2. Assigning and Unassngmng Componems 36
5.4.Tables as Objectsoiiiiiiiiiiiiiiiiiieiieiiniieneennnnnnnnsennes 37
5.4.1.Copying Tables eeeeesrrereeieisieneeriasiiassastants . 37
5.4.2.Tables Local to a Procedure ooviiiiniiiiinnecniinnannnn,s 38
5.4.3.Tables as Parameters e ariereaaesiaaaas 38
5.4.4. Automatic Loading of Tables e 39
5.5.Indexing functions b eeiesrbanreriaeaes ereriresasianieeianianeais 40
5.5.1.The Purpose of Indexmg Funcuons tsvresrenraseaiians 40
5.5.2.Indexing Functions Known to the Basic System 40
5.5.3.User-Defined Indexing Functions ~ i 42

6. PROCEDURES .. .iiiiiiiiiiiiiiiiiiiiiiiinnianianianns ererienieaees 46
6.1.Procedure Definitions ~ iiiiiiiiiiiiiiiiiiiiii s craes 46
6.2.Parameter Passingo, e, 47
6.3.Local Variables and Options Cetetseieareiieniairenies ferieeiiieens 49
6.4. Assigning Values to Parameters erreeesseesaiasiesiiiaians 50
6.5.Error Returns and Special Returns ~ fareeisaiaes 52
6.6.Boolean Procedures c.cciiiiiiiiininienn, P PN . 54
6.7.Reading and Saving Procedures Cerereeeies feeeeaeas . 55

7.INTERNAL REPRESENTATION AND MANIPULATION 58
7.1.Internal Organization Ceseesrareariaseansaseasaass N 58
7.2.Internal Representation of Data Types Ceareaaiee. errereeeeiarias 59
7.3.Portability of the Maple System Crrerrereeniianiaaees TP 65
7.4.Searching Tables in Maple vt 66

7.4.1.The Simplification Table Ciseiesiesesirensacsranias cerians .. 67
7.4.2.The Partial-Computation Table ~ccciviinriaviiiinnnnas 68
TA4A3ATIaYS i e peees peeessraaias 68
7.5.Style Recommendations for lerary Contributions 69

8.LIBRARY FUNCTIONS . ..ccviiinviicinnnens e terrserieseeseareiaaas 72

8.1.Standard Library Functions coiiiiiiiiiiiiiiinan Cresiiaaaas 72
8.1.1.abs (expr) ferenieareiaas Cerieiiessesnianeas ferrienene 72
8.1.2.analyze (expr) b titiareirereereaaaanas freerreerianes .12
8.1.3.anames () ..iiciiiiiiiioni.. e eeebreerrsren i raeretiianan 73
8.1.4.array (indexing_function, init_list, lo,..hl,, lo,. lll,, .

....................................... P R &
8.1.5.assigned (name) N 74
8.1.6.asympt (expr, x) or asympt(expr,x,n) 74
8.1.7.cat(a, b,c,...) e riartiaaeiaes veienees T4
8.1.8.coeff (EXPr, X, D) ittt e, 74
8.1.9.convert (expr, class, arg,, arg‘, ves) 75
8.1.10.copy (expr) Ceremesariarseniaiiaiiasieieasann ererrenenian 77
8.1.11.degree (expr, x) CPetiarenriesrsreertercesantnnansannranann 77
8.1.12.denom (expr) e TN 78

8.1.13.diff (expr, Xy Xyp ¢+ s Xy) ererririiiiiininne. e 78

MAPLE User’s Manual

8.1.15. ERROR (<EXPISEQ™)} «evuvrnirnieninrenrnernennenannnn,
8.1.16.evalb (BXPT) .iiiiiiiiiiiiiiieiiiirier e eea e
8.1.17.evalc (expr) ...oiiiiiinieninnnn. Ceresierianianiaas
8.1.18.evaln (name) e et teeerere ittt esraanaraeaaan
8.1.19.cvalf (expr) or evalf (expr,n)
8.1.20.expand (expr) or expand (expr, €;, €3, . « s €,)
8.1.21.factor (expr) e ireriarieseeti et iarieeeanraraans
8.1.22.Float (m, eXP) .iiiiiiiiiiiiiiiinriieiieiieniaeriaiianis "
8.1.23.frac (a) N
8.1.24.gcd (a, b, ’resultl’, 'resultZ') Cereereieessansanaas
8.1.25.has (exprl, eXpr2) iiiiiiiiiiiiicieieiieeieneieenaen,
8.1.26.icontent (expr) = Ciereeriesianee
8.1.27. xfactor(n) ..
8.1.28.iged (i, jy k, . . .) ...l
8.1.29.40em (4, j, Ky - - ©) it e
8.1.30.imodp (n, p) et e teriattarieriaearaeteeiaiaatarees
8.1.31.imods (D, P) ciieiiiiiiiiiiiiiiiiiee e .
8.1.32.indets (expr) e iereeiiaatesiarrer et tteaitaaraans
8.1.33.indices (tbl)iciiciiiiaian Cererbariareaen
8.1.34.int (expr, x) or int(expr,x=a..b) ciieeinn
8.1.35iquo(m,n) ...l et benbereenen eeeiaiteeiareanans
8.1.36.isprime (n) orisprime (m, iter) ... ciiiiiiiiiiiieiiinenn
8.1.37.isqrt (n) orisqrt (n, x) erreeeeniennes e,
8.1.38.ithprime (i) ..iiiviiniiiiiiiiiiii i
8.1.39.lem (a, b) TN Phereeirenrenanneans
8.1.40.1coeff (expr) or lcoeff(expr, x)or lcoeff(expt, X, Y,
8.1.41.1degree (CEPI, X) titiiiiiiiiiiiriiiiiiiiirieaeaniaanias
8.1.42.length(n) ...coiiiiiiiiiinnns P
8.1.43.lcxorder (name,, mame;) ...iicciieeneiiieiiiieie
8.1.44.1imit (eXPr, X = 8) .ireeiiiiiiiiiieiierieiiinianiieriannas
B.1.45.0PHNL (8, B, oo)i ceeerrrieriiiieriiiierrierereniiaaas
8.1.46.map (£, expr, arg,, ATy «oos ATR,) eriiiriiiiiniinionnens
8.1.47. maparray (f, A, arg2, arg3, ...) .iiiiiiiiiiiiienn
8.1.48.max (a, b,¢c,...) ettettneariereaerees Cbeereeneenes
8.1.49. member (expr, set_or_list, ’position’) eeiiiiell
8.1.50.min (a, b,c,...) ...
8.1.51.minv (N, P) ceiiiiiiiiiiiiiiirirrirersie e raaaas
8.1.52.modp (&8, P) .eeiiiiiiiiiiinns
8.1.53.mods (8, P) ceiiiiiiiiiiiiiiriarirr e e eaeaas
8.1.54.mquo(a, b, p)ormquo(a, b, p,r)
8.1.55.mrem (8, b, p)ormrem(a, b,p,q) rreeeeeeenaas
8.1.56.mextprime(D) L.ciiiiiiiiiiiiiiiiiiaes e
8.1.57.nops (expr) eteeientereseiearraeeatteaunttsariesinanusra
8.1.58.normal (8XPr) ...iiiiiiiiiiiiiiieiiiieiieeiiiiieniaatinoan
8.1.59.numer (EXPr) tiiiiiiiiieiiiiiriereinieecenaerenareaianas
8.1.60.0p (i, expr) or op(l .j, expr) or op (expr)
8.1.61.prem (a, b, X, "M’} .iiiiiiiiiiiereeeeiieie
8.1.62.prevprime (n) viiiiiiiiiiann.
8.1.63.print (eXpry, €XPry, cee) iiiiiiiiiiiiiiieiiiiiiiaraaas
8.1.64.product (expr, i = ML.D) .iiiiiiiiiiiiieiieiiiiiaees
8.1.65.quo(a, b,x)orquo(a, b, x,1) Chrerereeeerierrannaaes

8.1.66.radsim exr or radsim exr 'ratdenom’ 99

ii

iv

Geddes, Gonnet, and Char

8.1.68.readlib (£) or readlib (', file,, file,, ..., file,) 100
8.1.69.rem (a, b, x)orrem (a, b, x,q) ... Ceeraen . 100
8.1.70.remember (f(x,y,...) = result) erereerens 100
8.1.71.RETURN (expr,, expry, . . .) e re ety 101
8.1.72.saveonly (filename, 'name,’, *name,’, ... ‘name,’)
................... PO {) §
8.1.73.seq (expr, i =rANBE) .iiiiiiiiiiiiiiieiii 101
8.1.74.sign (expr) , sign (expr, x), or sign (expr, X, ¥y, ... }
8.1.75.solve (eqn, var) or solve ({eqn,, ..., eqn,}, {vary, ...,
varb) Srsersasiessaninnraas cereeees veereseanaaanea.s 102
8.1.76.subs (old, = new,, ..., old, = new,, expr) i 103
8.1.77.5ubsop (i = NEwWeXPr, €XPIr) .iiviiiiiiiiiiiiiireeinrinns .. 103
8.1.78.substring (string, m..n) .., 104
8.1.79.sum (expr,i) or sum(expr,i=m..n) e 104
8.1.80.system (8) siieiiiiiiiiiiiiiiiiiiiiane eerriesieeiesieneas 105
8.1.81.table (indexing function, init list) ooiiiiiiiiiinn, 105
8.1.82.taylor (expr, x = a) or taylor(expr,x=a, n)
et ieiienees s resieraiiaa, Cieeresrsisssianaasiecsasrsares 106
8.1.83. tmnc(expr) .. 107
8.1.84.type (expr, typename) or type (expr, ratfunc, arg)
.. vreee. 108
8.1.85.unames () iiiiiiieiiiiiiiiiiiieiioiiiiasa i iaiiariaans 109
8.1.86.whattype { €XPr) .ioiiriiiiiiiiiiiiiiiiiiie e 109
8.1.87.writeto (filename) ..iiiiiiiiiiiiiiiiiiiii e 109
8.2.Miscellaneous Library Functions et ieresarer i 110
8.2.Lbermoulli{ n) ... verrraiaes 110
8.2.2.binomial(N, T) .iiiiiiiiisiiiiriiiiriinirasaeniasianies e 110
8.2.3.cfrac (f) or cfrac (f, maxit) RPN [1
8.2.4.content (&, varlist) ...l e 110
8.2.5.convergs (a, b, n) or convergs(a,b) ...l eserian 110
8.2.6.E_ML (£, X, 1) cevveerrrnerirnneseriaesianieesanes s 111
8.2.7.expandoff (<fcn name,>, <fcn name, >, ... <fcn name,>
.......................... TS PR & § |
8.2.8.expandon { <fcn name,>, <fcn name, >, ... <fcn name, >
) U b eaesiaees e n e ree s iaransienes 111
8.2.9.invfunct (fname) ..., Crariens 111
8.2.10.mged (a, b, p) iii. B TP & -2
8.2.11.mgcdex(a, b, p) or mgodex(ab p k) fereeiraeiaaes 112
8.2.12.mpower (x, n, p) T ¥ v
8.2.13.0rthOZ.P teivevreniarioiiarinniesionnes Ceseiesiereeserienens 112
8.2.14.psqrt (8) ..iiiiiiiiiiiiiiiiiiien, B PP b
8.2.15.randlem () .iiiiiiiiiiiiiiiiiiiiiiii s s s s 113
9.MISCELLANEOUS FACILITIES ettt ie e raaa e 114
9.1.Debugging Faciies ..c.ueevvnnrerunersinessineessnennins veeennn 114
9.2. Monitoring Space and Time e eee e ee e e e rrataes 116
9.3.Session Injtializationcieiiiiieiii i veeaas v 117
9.4.Other Facilities Cerebtesa e et teeberierrerear e 117
10.APPENDIX A erreeiereeeaiaiaas e, Ceenariaaaas 119

11LAPPENDIX Bo, e 120

1. INTRODUCTION

Maple is a mathematical manipulation language. (The name can be said to be
derived from some combination of the letters in the preceding phrase, but in fact it
was simply chosen as a name with a Canadian identity). The type of computation
provided by Maple is known by various other names such as ‘algebraic manipulation’
or ‘symbolic computation’. A basic feature of such a language is the ability to, expli-
citly or implicitly, leave the elements of a computation unevaluated. A correspond-
ing feature is the ability to perform ‘simplification’ of expressions involving
unevaluated elements.

In Maple, statements are normally evaluated as far as possible in the current
‘environment’. For example the statement

a:=1;

assigns the value 1 to the name a. If this statement is later followed by the statement
x:=a-+b;

then the value 1+b is assigned to the name x. Next if the assignments
b:= —-1; f:= sin(x);

are performed then x evaluates to 0 and the value 0 is assigned to the name f. (Note
that sin(0) is automatically ‘simplified’ to 0). Finally if we now perform the assign-
ments

b:=0; g:= sin(x);

then x evaluates to 1 and the value sin(1) is assigned to the name g. (Note that
sin(1) cannot be further evaluated or simplified in a symbolic context, but there is a
facility to evaluate an expression into floating point form which will yield the decimal
expansion of sin(1) to a number of digits controlled by the user).

As each complete statement is entered by a user, it is evaluated and the results
are printed on the output device, usually the user’s terminal. The printing of expres-
sion may be formatted on several lines to give as nice a display of the expression as is
possible. There are several ways in which the user can alter the display of There are
several ways in which the user can alter the display of If the global variable ‘pretty-
print’ is assigned a value of 0, then expressions are printed on a single line. Setting
the value of ‘prettyprint’ to 1 resets the prettyprinting mode. The global variable
‘printlevel’ determines how much output may be printed. Setting this variable to —1
prevents the printing of any results. This may be helpful in silently reading a file of
Maple statements. Finally, the silent statement terminator ‘:’, when used to ter-
minate a statement also prevents the results of the statement from being displayed.
(The normal statement terminator used to separate statements is ‘;’.) A sample
Maple session is shown in section 3.3.

2 Geddes, Gonnet, and Char

2. LANGUAGE ELEMENTS

2.1. Character Set

The Maple character set consists of letters, digits, and special characters. The
letters are the 26 lower case letters

a,becdefghijklmnopaqrnstuv,wxyz
and the 26 upper case letters
A,BCDEFGHLLKLMNOPQRSTUYVWXY,Z
The 10 digits are
0,1,2,3,4,56,7,89
and the 25 special characters are

blank [leftbracket
; semicolon] right bracket
: colon { left brace
= equal } right brace
+ plus * grave accent
— minus ' single quote
* asterisk " double quote
! slash < less-than
! exclamation > greater-than
period ' underscore
, comma @ at-sign
(left parenthesis # sharp
) right parenthesis * caret
2.2. Tokens

The tokens consist of keywords, operators, strings, natural integers, and pune-
tuation marks.

The keywords are the following reserved words:

break by do done
elif else end fi
for from if local
od option options proe
quit read save stop
then to while

The operators consist of the binary operators

MAPLE User’s Manual 3

addition; set union
subtraction; set difference
multiplication; set intersection
division

exponentiation

exponentiation

I+

* 8~

less than

less than or equal
greater than

greater than or equal
equal

> not equal

At VVAA

and logical and
or logical or

1= assignment
. concatenation; decimal point
ellipsis (more generally, ...»)

the unary operators
+ unary plus (prefix)

- unary minus (prefix)
factorial (postfix)

not logical not (prefix)

decimal point (prefix or postfix)

and the aullary operators

last expression
penultimate expression)
before penultimate expression

(Note that three of the operators are reserved words: and, or, not).

The simplest instance of a string is a letter followed by zero or more letters,
digits, and underscores. Another instance of a string is the at-sign (@) followed by

* two or more consecutive periods are parsed as an ellipsis.

4 Geddes, Gonnet, and Char

zero or more letters, digits, and underscores. More generally, a string can be
formed by enclosing in grave accents any sequence of characters (except a grave
accent). In all cases, the maximum length of a string in Maple is 499 characters. A
string is a valid name (e.g. a variable name or a function name) but the user should
not indiscriminately use names involving the at-sign (@) since such names are used
globally by the Maple system. A Maple string is also used in the sense of a ‘charac-
ter string’, usually by enclosing a sequence of characters in grave accents.

A natural integer is any sequence of one or more digits. The basic constants in
Maple (integers, rational numbers, and floating point numbers) are formed from the
natural integers using operators. The length of a natural integer (and hence the
length of integers, rational numbers, and floating point numbers) is arbitrary (i.e.
the length limit is system dependent but generally much larger than users will
encounter). :

The punctuation marks are

; semicolon . comma

: colon [left bracket

' single quote] right bracket

* grave accent (left parenthesis
{ left brace) right parenthesis
} right brace

The semicolon and the colon are used to separate statements. The only difference is
that during an interactive session if a statement is followed by a colon, the result of
the statement is not printed. The comma is used to separate expressions in an
expression sequence (as in a function call or in specifying a list or a set). Enclosing
an expression in a pair of single quotes specifies that the expression is to be
unevaluated. The grave accent is used in forming strings. The left and right
parentheses have their familiar uses in grouping terms in an expression and in group-
ing parameters in a function call. The left and right brackets are used to form sub-
scripted names. The left and right brackets are also used to form lists and the left
and right braces are used to form sets.

2.3. Blanks, Lines, and Comments

The blank is a character which separates tokens, but is not itself a token.
Blanks cannot occur within a token but otherwise blanks may be used freely. The
one exception to the free use of blanks is when forming a string by enclosing a
sequence of characters within grave accents, in which case the blank is significant like
any other character.

Input to the Maple system consists of a sequence of statements separated by the
statement separators, which are the semicolon and the colon characters. The system
operates in an interactive mode, executing statements as they are entered. A line

MAPLE User's Manual 5

consists of a sequence of characters followed by <return>. A single line may con-
tain several statements or it may contain an incomplete statement (ji.¢. a statement to
be completed on succeeding lines), or it may contain several statements followed by
an incomplete statement. A statement will normally be recognized as complete only
when a statement separator is encountered, except in the cases of the quit statement,
the break statement, the if ... fi construct and the do ... od construct. When a line
is entered, the system evaluates (executes) the statements (if any) which have been
completed on that line.

On a line, all characters which follow a sharp character (#) are considered to be
part of a comment. The comment is echoed by the system. However the sharp char-
acter is not treated as the beginning of a comment if it is enclosed within a pair of
quote marks.

2.4. Files

The file system is an important part of the Maple system. The user interacts
with the file system either explicitly by way of the read and save statements, or
implicitly by specifying a function name corresponding to a file which the system will
read in automatically.

A file consists of a sequence of statements either in ‘Maple internal format’ or in
‘user format’. If the file is in user format then the effect of reading the file is identi-
cal to the effect of the user entering the same sequence of statements, The system
will display the result of executing each statement which is read in from the file. On
the other hand, if the file is in Maple internal format then reading the file causes no
information to be displayed to the user but updates the current Maple environment
with the contents of the file. Maple assumes that a file will be in Maple internal for-
mat when its file name ends with the characters ‘.m’ . For example, some typical
names for files in user format are:

temp
*Nlib/src/ged”

while some typical names for files in internal format are:

‘temp.m'
*flib/ged. m®

(Note that file names involving characters such as ¢/ or ‘.’ must be enclosed in grave
accents in order to be interpreted properly as <name>s).

The contents of a file in user format are written into the file either from a text
editor external to Maple or else from Maple by using the save statement (no ‘.m’ suf-
fix in the file name). The contents of a file in Maple internal format are written into
the file from Maple by using the save statement (*.m’ suffix in the file name). Either
type of file may be read into a Maple session by using the Maple resd statement.
Some Maple functions @-e not part of the basic Maple system which is loaded in

6 Geddes, Gonnet, and Char

initially, but rather reside in files in the Maple library. When one of these functions
is invoked in Maple, the corresponding file is automatically read into the Maple ses-
sion in Maple internal format. (See section 8 -- Library Functions).

MAPLE User’s Manual 7

3. STATEMENTS AND EXPRESSIONS

3.1. Types of Statements

There are nine types of statements in Maple. They will be described informally
here. The formal syntax is given in section 4.2.

3.1.1. Assignment Statement
The form of this statement is
<npame> := <expression>

and it associates a name with the value of an expression.

3.1.2. Expression

An <expression> is itself a valid statement. The effect of this statement is that
the expression is evaluated.

3.1.3. Read Statement
The statement
read <expression>

causes a file to be read into the Maple session. The expression must evaluate to a
name which is a valid file name in the host system. The file name may be one of two
types as discussed in section 2.4. A typical example of a read statement is

read “/u/dmackenz/lib/f. m"

where the grave accents are necessary $o that the expression evaluates to a name.

3.1.4. Save Statement
The statement

save <expression>

causes the current Maple environment to be written into a file. The expression must
evaluate to & name which is a valid file name in the host system. If the file name
ends with the characters ‘.m’ then the environment is saved in Maple internal format,
otherwise the environment is saved in user format.

3.1.5. Selection Statement

The selection statement takes one of the following general forms. Here
<expr> is an abbreviation for <expression™> and <statseq> stands for a sequence
of statements.

8 Geddes, Gonnet, and Char

if <expr> then <statseq> fi

if <expr> then <statseq> else <stuiseq> fi

if <expr> then <statseq> elif <expr> then <statseq> fi

if <expr> then <statseq> clif <expr> then <statseq> else <statseq> fi

Wherever the construct ‘elif <expr> then <statseq™' appears in the above forms,
this construct may be repeated any number of times to yield a valid selection state-
ment. The sequence of statements in the branch selected (if any) is executed.

3.1.6. Repetition Statement

The syntax of the repetition statement is as follows, where <expr> and
<statseq> are as above.

for <name> from <expr> by <expr> to <expr> while <expr>
do <statseq> od

where any of ‘for <name>’, ‘from <expr>’', ‘by <expr>’, ‘to <expr>', or ‘while
<expr>’ may be omitted. The sequence of statements in <statseq> is executed zero
or more times. The ‘for <name>’ part may be omitted if the index of iteration is
not required in the loop, in which casc a ‘dummy index’ is used by the system. If the
‘from <expr>' part and/or the ‘by <expr>’ part are omitted then the default values
‘from 1’ and/or ‘by 1’ are used. If the ‘to <expr>’ part and/or the ‘while <expr>’
part are present then the corresponding tests for termination are checked at the begin-
ning of each iteration, and if neither is present then the loop will be an infinite loop
unless it is terminated by the execution of the break statement (see section 3.1.7), or
the quit statement (see section 3.1.8), or by the execution of a return from a pro-
cedure (see section 6.5).

3.1.7. Break Statement
The syntax of the break statement is

break

and it causes an immediate exit from the innermost repetition statement within which
it occurs. It is an error if the break statement occurs at a place which is not within a
repetition statement. '

3.1.8. Quit Statement
The syntax of the quit statement is any one of the following three forms:
quit
done
stop

The result of this statement is to terminate the Maple session and return the user to
the system level from which Maple was entered. (In the Vax UNIX and Honeywell
TSS versions of Maple, hitting the break/interrupt key twice in rapid succession will
also exit from Maple).

MAPLE User’s Manual 9

3.1.9. Empty Statement

The empty statement is syntactically valid in Maple. For example

ar=1;; quit
is a valid statement sequence in Maple consisting of an assignment statement, the
empty statement, and the quit statement. Of course since blanks may be freely used,

any number (including zero) of blanks could appear between the semicolons here
yielding a syntactically identical statement sequence.

3.2. Expressions

Expressions are the fundamental entities in the Maple language. The various
types of expressions are described informally here. The formal syntax is given in
section 4.2.

3.2.1. Basic Constants

The basic constants in Maple are integers, rational numbers, and floating point
numbers. A <natural integer> is any sequence of one or more digits of arbitrary
length (i.e. the length limit is system dependent but generally much larger than users
will encounter). An integer is a <natural integer> or a signed integer (i.c.
+<natural integer> or — <natural integer>). A rational number is of the form

<integer> / <natural integer>

(Note that a rational number is always simplified so that the denominator is
unsigned, and it will also be reduced to lowest terms).)

An <unsigned float> is one of the following three forms:

<natural integer> . <natural integer>
< natural integer> .
. <natural integer>

A floating point number is an <unsigned float> or a signed float (i.e. +<unsigned
float> or —<unsigned float>). The evalf function is used to force an expression to
be evaluated to a floating point number (if possible). The number of digits carried in
the ‘mantissa’ when evaluating floating point numbers is determined by the value of
the global name ‘Digits’ which has 10 as its initial value. Note that the current ver-
sion of Maple displays floating point numbers with very small or very large magni-
tudes using the notation Float(mantissa, characteristic) which corresponds to the inter-
nal data structure. For example, evalf(exp(—10)) yiclds Float(4539992971,—14)
which represents the number

4539992971 » 10°(—14)
while evalf(exp(~2)) yields 1353352832 .

10 Geddes, Gonnet, and Char

3.2.2. Names

A name in Maple has a value which may be any expression or, if no value has
been assigned to it, then it stands for itself. A name is usually a <string>, which in
jts simplest form is a letter followed by zero or more letters, digits, and underscores
(with a maxirmum length of 499 characters). Keywords may not be used as names
formed in this manner. Note that lower case letters and upper case letters are dis-
tinct, so that the names

g G new_term New Term x13a xI13A

are all distinct. Another type of <string> is formed by the at-sign (@) followed by
zero or more letters, digits, and underscores. Names beginning with the at-sign are
used as global variable names by the Maple system and therefore should not be used
indiscriminately by users.

A <string> can also be formed by enclosing in grave accents any sequence of
characters (except the grave accent). Keywords enclosed in grave accents may be
used as names, but we recommend against using such dubious names. The following
are valid strings (and hence names) in Maple:

“This is a strange name:* ‘2D° ‘n-1"

The grave accents do not themselves form part of the string so they disappear when
the string has been input to Maple. For example, if n has the value 5 then the state-
ment

‘n—-1":=n—~1;
will yield the following response from Maple:
n—-1:=4
The user should beware of misusing this facility for string (name) formation to the
point of writing unreadable programs!
More generally, a <name> may be formed using the concatenation operator in
one of the following three forms:

<name> . <natural integer>
<name> . <string>
<name> . (<expression>)

Some examples of the use of the concatenation operator for <name> formation are:
v.5 pn a(2ed) V.(N.(i-1) ri.j

The concatenation operator is a binary operator which requires a <name> as its left
operand. Its right operand is evaluated and then concatenated to the left operand.
For example if n has the value 4 then p.n evaluates to the name p4, while if n has no
value then p.n evaluates to the name pn. Similarly if i has the value 5 then a. (2+i)
evaluates to the name al0. As a final example if N4 has the value 17 and i has the
value § then V.(N.(i—1)) evaluates to the name V17, while V.N.(i—1) evaluates to
the name VN4 (assuming that N has no value).

MAPLE User’s Manual 11

3.2.3. Expression Sequence
An expression sequence is an expression of the form

<expression,> , <expression,> , ... , <expression, >

The comma operator is used to concatenate expressions into expression sequences. It
has the lowest precedence of all operators. When expression sequences are con-
catenated, the result is simplified to a single, un-nested expression sequence.

A zero-length expression sequence is syntactically valid only in certain con-
structs, namely: an empty list, an empty set, a function call with no parameters, or
an indexed name with no subscripts. The special name ‘NULL' is initially assigned a
zero-length expression sequence which can be used in any expression.

Examples:

a:=A,B,C, D; assigns to ‘a’ a 4 element expression sequence
b:= NULL; assigns to ‘b’ a 0 element expression sequence
c:=a, b, a; assigns to ‘¢’ an 8 element expression sequence
f := proc() args[6] end;

f(c); yields B

3.2.4. Sets and Lists
A set is an expression of the form

{ <expression sequence> }
and a list is an expression of the form
[<expression sequence>] .

Note that an <expression sequence> may be empty so that the empty set is
represented by { } and the empty list is represented by []. A set is an unordered
sequence of expressions and the user should not assume that the expressions will be
maintained in any particular order. (A Maple system will use a particular ordering
that may be convenient for its implementation.) A list is an ordered sequence of
expressions with the order of the expressions specified by the user. For example, if
the user inputs the set x, y, y the system might respond with the representation y, x
while if the user inputs the list [x, y, y] then the representation used by the system
will be precisely this list.

3.2.5. Indexed Expressions
One form of expression in Maple is the indexed expression. The input syntax is
<name>> [<expression sequence>]

For an indexed expression, the zeroth operand is the <name>> and the i** operand is
the i* element of the <expression sequence>.

An indexed expression is syntactically legal anywhere a name is. It follows that
an indexed expression may also be input using the syntax

12 Geddes, Gonnet, and Char

<indexed expression> [<expression sequence>]

The use of the indexed name b{1] does not imply that ‘b’ is an array, as is true
in many other languages. The statement

a:= b[1] + bf2] + b[1000];

simply forms the sum of three indexed names. It is not necessary that ‘b’ have an
array value. (However, if ‘b’ does evaluate to an array or a table, then ‘b[1]’ is the
element of the array or table respectively selected by ‘1’.) The assignment of a value
to an indexed expression will implicitly create a table.

b[1] := 10;

If ‘b’ had no value previously, then this assignment statements creates a table for ‘b’
and initializes it with the value of 10 for the index value 1. (c.f. Arrays and Tables).

3.2.6. Algebralc Operstors
There are ten algebraic operators:

L L B] "
+ :!- +, =, 0,/, re,

The nullary operator " has as its value the latest expression, the nullary operator "”
has as its value the penultimate expression, and the nullary operator """ has as its
value the expression preceding the penultimate expression. The unary operator ! is
used as a postfix operator and it denotes the factorial function of its operand, + and
— may be used as prefix operators representing unary plus and unary minus. The
latter six operators all may be used as binary operators, representing addition, sub-
traction, multiplication, division, exponentiaticn, and exponentiation respectively.
The two operators ++ and * are synonymous and may be used interchangably.

The operators +, —, and » have a different semantics when their operands are
sets, in which case they denote set union, set difference, and set intersection, respec-
tively. For example, if the following statements are executed:

setl := {x+y, x, y}; set2:={y, y=x};
a:= setl + set2; b:= setl — set2; c:= setl » sef2;
then the value of a is {y, x, y—x, x+y}, the value of b is {x, x+y}, and the value of
cis {y}.
The order of precedence of all operators is described in section 3.2.12 below.

However, any expression may be enclosed in parentheses yielding a new valid
expression and this mechanism can be used to force a particular order of evaluation.

3.2.7. Relations and Logical Operators

A new type of expression can be formed from ordinary algebraic expressions by
using the relational operators <, <=, >, >=, =, <>, The semantics of these
operators is dependent on whether they occur in an algebraic context or in a boolean
context.

MAPLE User’s Manual 13

In an algebraic context, the relational operators are simply ‘place holders’ for
forming equations or inequalities. Addition of equations and multiplication of an
equation by a constant are fully supported in Maple. In the case of adding or sub-
tracting two equations, the addition or subtraction is applied to each side of the equa-
tions yielding a new equation. In the case of multiplying an equation by a constant,
the multiplication is distributed to each side of the equation. Other operations on
equations can be performed, using the ‘expand’ function as required. No operations
on inequalities are currently supported in Maple.

In a boolean context a relation is evaluated to the value ‘true’ or the value
‘false’. In the case of the operators <, <=, >, >= the difference of the operands
must evaluate to a constant and this constant is compared with zero. In the case of
either of the relations

opl = op2
opl <> op2
the operands can be arbitrary algebraic expressions.
More generally, an expression can be formed using the logical operators
and
or
not
where the first two are binary operators and the third is a unary (prefix) operator.

In Maple, the names ‘true’ and ‘false’ have special meanings when they occur in
boolean contexts but they are ordinary <name>>s which may be freely manipulated.
Any arbitrary expression may be used in a boolean context and if the expression does
not evaluate to either the value of ‘true’ or the value of ‘false’ then a semantic error
will be reported. Note that since ‘true’ and ‘false’ are ordinary names, it is possible
to assign values to them. For example, a user could assign

true := 1; false:= 0;

and thereafter expressions which previously evaluated to ‘true’ or ‘false’ will evaluate
to ‘1’ or ‘0’. Normally users will leave the names ‘true’ and ‘false’ unassigned so that
their values are their own names.

3.2.8. Ranges
Yet another type of expression is a range which is formed using the ellipsis
operator:
<expression> .. <expression>

(the operator here can be specified as two or more consecutive periods). The ellipsis
operator simply acts as a ‘place holder’ in the same manner as when the relational
operators are used in an algebraic context.

Two common uses of ranges are for Maple’s built-in functions sum and int. For
example, in the function call

14 Geddes, Gonnet, and Char

sum(i2,i=1..n)

the sum function interprets this to mean that the lower and upper limits of summation
are 1 and n, respectively. Similarly, in the function call

int(exp(2+x), x = 0..1)

the integration function interprets this as a definite integration with lower and upper
limits of integration 0 and 1, respectively. The range construct is also used by
Maple's built-in function op, which extracts operands from an expression. For exam-
ple, if

a:=[x,y,2,w]

then op(2,a) yields y, op(3,a) yields z, and op(2..4,a) yields the expression
sequence y,z,w (which might be formed into a new list as [op(2..4,a)] since an
< expression sequence> is not itself a valid <expression> in Maple). A final exam-
ple of the use of a <range> is the construct

<name> . (<range>)

which is a generalization of the name-formation construct using the concatenation
operator. This construct produces an <expression sequence> which, as we have
noted, is not itself a valid <expression> but it can be used wherever an <expression
sequence> is valid. For example,

print(p.(1..5))
is exactly equivalent to

print(p1, p2, p3, p4, p5) .

3.2.9. Selection Operator

The selection operator ‘[]’ can be used to select components from an aggregate
object. The form for a selection operation is

<npame> [<arg>]
The <name> must evaluate to one of the following:
name, table, array, list, set, expression sequence

If <name>> evaluates to an unassigned name, then <name>[<arg>] is an indexed
expression as described earlier (see section 3.2.5). If <name>> evaluates to a table
or an array, then the selection operation is an indexing operation. The use of arrays,
tables, and indexing operations is deferred to section 5. If <name> evaluates to a
list, set, or expression sequence, then either one or more components of such an
aggregate object may be returned by the selection operation. In these cases, <arg>
must evaluate to an integer, a range, or null. If <arg> is an integer i, then the i®*
operand of the aggregate object is returned. (See also op().) If <arg> is a range,
then an expression sequence is returned containing the operands of the aggregate

MAPLE User’s Manual i5

object as specified by the range. If <arg> is empty, then an expression sequence
containing all the operands (except the zeroth one) of the aggregate object is
returned.

3.2.10. Unevaluated Expressions

An expression enclosed in a pair of single quotes is called an unevaluated expres-
sion. For example, the statements

a:=1; x:=a+b;
cause the value 1+b to be assigned to the name x while the statements
a:=1; x:='a+ b’

cause the value a+b to be assigned to the name x. The latter effect can also be
achieved (if b has no value) by the statements

a:=1; x:="'a"+ b;
The effect of evaluating a quoted expression is to strip off (one level of) quotes,

s0 in some cases it is useful to use nested levels of quotes. Note that there is a dis-
tinction between ‘evaluation’ and ‘simplification’ (see section 7) so that the statement

x:='24 3"
will cause the value 5 to be assigned to the name x even though the expression
appearing here is quoted. This is because the ‘evaluator’ simply strips off the quotes

but it is the ‘simplifier’ which transforms the expression 2 + 3 into the constant 5.
Simplification can be avoided in a case like this by using two levels of single quotes:

X:="2+3"%

in which case the result of evaluating the right hand side will be the unevaluated
expression ‘2 + 3’ which will be left unchanged by the simplifier.

A special case of ‘unevaluation’ arises when a name which may have been
assigned a value needs to be unassigned, so that in the future the name simply stands
for itself. This is accomplished by assigning the quoted name to itself. For example,
if the statement

x:="x%
is executed, then even if x had previously been assigned a value it will now stand for
itself in the same manner as if it had never been assigned a value. -

3.2.11. Procedures
Another valid expression in Maple is a procedure definition which takes the form
proc { <nameseq>) local <nameseq>; options <nameseq>; <statseq> end

where the ‘local <nameseq>;’ part and/or the ‘options <nameseq>;’ part may be
omitted, and where <nameseq> stands for a (possibly empty) sequence of
<name>s. This construct has some similarities with the concept of unevaluated

16 Geddes, Gonnet, and Char

expressions, but in this case it is more generally a <statseq> (i.e. a sequence of
statements) which is unevaluated. Note that the keywords ‘proc’ and ‘end’ serve a
purpose similar to the single quotes in unevaluated expressions (except that evalua-
tion of this expression does not cause these keywords to be stripped off). An exam-
ple of a procedure definition is

max : = proc (a, b) if a>b then a else b fi end

which is syntactically an assignment statement where the <expression> on the right
hand side is a procedure definition.

A procedure is invoked by using the syntax
<name> (<expression sequence>)

which is another instance of an expression. For example if max is defined as above
then the expression max(1, 2) causes a procedure invocation in which the ‘actual
parameters’ 1 and 2 are substituted for the ‘formal parameters’ a and b, respectively,
and then the ‘procedure body’ is executed yielding the value 2 in this case. The syn-
tax of a procedure invocation may also be used in cases where the <name> has not
been assigned, in which case the result is an unevaluated function, such as sin(x) or
exp(x"2). (A more general discussion of procedures will be postponed until section

6)

3.2.12. Precedence of Operators

The order of precedence of all unary and binary operators is listed in the fol-
lowing table, from highest to lowest binding strengths. In parentheses it is stated
whether the operators are left associative, right associative, or non-associative.

(left associative)

t (left associative)
»e (non-associative)

" (non-asscciative)
./ (left associative)
+, - (left associative)

. (non-associative)
<, <=, >, >=, =, <> (non-associative)

not (right associative)
and (left associative)
or (left associative)

, (left associative)
1= (non-associative)

Thus the concatenation or decimal point operator ‘.’ has the highest binding strength
and the assignment operator “: =’ has the lowest binding strength. Note that the
exponentiation operators ‘e+’ and ** are defined to be non-associative and therefore
a’b’c is syntactically invalid in Maple. (The user must use parentheses to state his
intentions).

MAPLE User’s Manual i7

The evaluation of expressions involving the logical operators proceeds in an
intelligent manner which exploits more than the simple associativity and precedence
of these operators. Namely, the left operand of the operators ‘and’ and ‘or’ is
always evaluated first and the evaluation of the right operand is avoided if the truth
value of the expression can be deduced from the value of the left operand alone. For
example, the construct

if d<>0 and f(d)/d>1 then. .. fi

will not cause a division by zero because if d=0 then the left operand of ‘and’
becomes false and the right operand of ‘and’ will not be evaluated.

3.3. Sample Maple Session

This section presents a sample interactive session using the Maple system. At
the University of Waterloo, Maple is initiated on the Vax UNIX system by issuing the
command “/u/maple/bin/maple’ and is initiated on Honeywell TSS by issuing the com-
mand ‘maple/maple’. In the following presentation of the Maple session, all lines
containing italic characters are user input lines and all other lines are system
responses. Each user input line must be terminated by <return>.

18 Geddes, Gonnet, and Char

Initiate the Maple system using the command
/u/mapleibinimaple if on Vax UNIX,
maple/maple if on Honeywell TSS.

A
N
\ MAPILE / Version 3.1 --- October 1983
<__|__>

Integers, rational numbers, and floating point numbers.

254 + 5280499999,

527994974

315

6

3;

720

1+ 1/4 + 1/16 + 1/64 + 1/256;

3417256

evalf(");

1.33203125000

a:= (540 + 3°50) 1 2°90;

a := 4547832457858487115869580437/618970019642690137449562112
evalfia);

7.3474196060

Digits := 40;

Digits := 40

evalfia);
7.3474196060154731089322604350878881161323
evalfia, 60);
7.347419606015478108932260435087888116132378478690193035482991
b := 2°90;

b : = 1237940039285380274899124224

asb;

9095664915716974231739160874

Names, including the concatenation operator.

g:=352; G:=4;
g:=52

G:=4

g*G;

208

JoritoSdop.i:= i'2od;

MAPLE User’s Manual

.

Shouwow
aigwes”

R
1 a“

-

nHx~IBRBRE
L)

nnnass

Sets and lists.

setl := {x, 2ey+1/3}; ser2 := {z—4, x};
setl := {x,2+y+1/3}
get2 : = {x,z—4}
set] + set2;
{x,z—4,2+y+1/3}
set] » set2;
{x}
set3 ;= set]l — set2;
= {20y+1/3}
set2 » set3;
{
list] := [x, 2ey+1/3]; list2 := [2—4, x];
listl : = [x,2+y+1/3]
list2 : = [z—4,x]
new_list := [op(list]), op(list2)];
new_list : = [x,2»y+1/3,2-4,x]

Polynomials and rational functions.

2 -x—2;
= x“2—x+ (-2)
= (x+1)2;
1= (x+1)‘2
(x"2~x+(—2))e(x+1)2
qum

X4+x"3~30x2—-5ex+(—2)

s:=plg;
8 := (x2~-x+(-2))*(x+1)'(-2)
normal(s);
(x+(—2))/(x+1)

r*s;

n*-.n-a-u‘a

19

20 Geddes, Gonnet, and Char

(x2—-x+(-2))2
Egquations.

eqnl ;= 3sp + S2q = 13;
eqnl : = 3#p+5+q=13
eqn2 ;= 4ap — 72q = 30;
eqn2 : = 4+p—Teq=30
3seqn2 — 4neqnl;
—41eq=38

q := 38/(—41);

q:= —38/41

eqnl; :
3ep+(—190/41)=13

p:= (13 + 190/41)13;
p:= 241/41

egnl; eqn2;

13=13

30=30

solve({Ssx + 10sy = 97, x~y= 12}, {xy})
{y=37/15,x=217/15}

Unevaluated expressions and procedures.

a; b;
4547832457858487115869580437/618970019642690137449562112
1237940039285380274899124224

f:="'bs(a+5);

f:= be(a+5)

ﬂ.

15285365112143875606234781594

max := proc (a,b) if a>b then a else b fi end;

max : = proc (a,b)if args[2]<args[1] then args[1] else args[2] fi end
max(a,b);

1237940039285380274899124224

max(25/7, 5251149);

2511

MAPLE User's Manual 21

Integers can be arbitrarily long.

Here is one that almost fills one screen on a typical video terminal.
Recall from above that 3!! (i.e. 6!) is 720

30 the following statement yields the same result as 720! .

31,

260121894356579510020490322708104361119152187501694578572754183785083563115694
822406785779581304570826199205758922472595366415651620520158737919845877408325.
105244690388811884123764341191951045505346658616243271940197113909845536727278.
709934562985558671936977407000370043078375899742067678401696720784628062922903:
071616698672605489884455142571939854994489395944960640451323621402659861930732:
369770477606067680670176491669403034819961881455625195592566918830825514942947.
653727484562462882423452659778973774089646655399243592878621251596748322097602!
056966999272846705637471375330192483135870761254126834158601294475660114554207:
589952563543068288634631084965650682771552996256790845235702552186222358130016'
083452344323682193579318470195651072978180435417389056072742804858399591972902:
266122912984205160675790362323376994539641914751755675576953922338030568253085!
977441675784352815913461340394604901269542028838347101363733824484506660093348.
444071193129253769465735433737572477223018153403264717753198453734147867432704:
579837866187032574059389242157096959946305575210632032634932092207383209233563
923267504401701760572026010829288042335606643089888710297380797578013056049576.
283868305719066220529117482251053669775660302957404338798347151855260280533386:
571391010463364197690973974322859942198370469791099563033896046758898657957111'
566670039156748153115943980043625399399731203066490601325311304719028898491856.
376666916446879112524919375442584589500031156168297430464114253807489728172337.
553806617198014046779356147936352662656833395097600000000000000000000300000000

quit

22 Geddes, Gonnet, and Char

4. DATA TYPES AND FORMAL SYNTAX

4.1. Data Types

Every expression in Maple is represented internally by an expression tree where
each node is a particular data type. While some data types are strictly for internal
use, most of the data types corresponding to expressions are accessible to the user
and can be tested for via the fype function. The user can examine the components of
such a data type by using the op function. In this section we discuss the data types
that are accessible to the user. For a more detailed description of the internal data
types, see section 7. ‘

4.1.1. Integer)

An expression is of type ‘integer’ if it is an (optionally signed) sequence of one
or more digits of arbitrary length (i.e. the length limit is system dependent but gen-
erally much larger than users will encounter). The ‘op’ function considers this data
type to have only one operand, so if n is an integer then the value of op(n), and also
the value of op(1, n), is the integer n.

4.1.2. Raticnal Number

A rational number (called type ‘rational’) is represented by a pair of integers
(numerator and denominator) with all common factors removed and with a positive
denominator. Like integers, rational numbers are of arbitrary length. The ‘op’
function considers this data type to have two operands, where the first operand is the
numerator and the second operand is the denominator.

4.1.3. Floating Point Number

An expression of type ‘float’ is a number represented externally as a sequence
of digits with a decimal point (e.g. 1.5, 15000., .15). Floating point numbers are
represented internally by a pair of integers (the mantissa and the characteristic),
which represent the number manfissa X 10bsrcteriste, Thug op(150.1) yields the
expression sequence 1501, —1. Arithmetic with floating point numbers is performed
via the evalf function. The number of digits carried in the mantissa when evaluating
floating point numbers is determined by the value of the global name Digits which
has 10 as its initial value, Note that the current version of Maple displays floating
point numbers with very small or very large magnitudes using the notation
Float(mantissa, characteristic) which corresponds to the internal data structure. For
example, evalf(exp(—10)) yields Float(4539992971, —14) while evalf(exp(-2)) yiclds
.1353352832 .

4.1.4. Name

An expression is of type ‘name’ if it is a <string> as defined by the Maple
grammar. For example, if x has not been assigned a value then x is of type ‘name’
and op(x) has the value x.

- MAPLE User's Manual 23

4.1.5. Expression Sequence

There is an internal data type in Maple for an <expression sequence>, which is
a sequence of <expression>>s separated by commas. An <expression sequence> is
not, by itsclf, a valid <expression> but it occurs in many places as a component of
an <expression>. There is no type name known to the type function for this data
type.

When the op function is used to extract parts of an expression, the result is
often an expression sequence. For example,

a:= [x,y,z,w]; op(a);

yields the expression sequence x,y,z,W. An important special case of an expression
sequence is the null expression sequence and there is a global name in Maple,
NULL, whose value is the null expression sequence. The value of the global name
NULL is equivalent to the value of the operation op([).

4.1.6. Set and List

Two more data types are the ‘set’ and the ‘list’. Each of these types consists of
a sequence of expressions and if expr is an object of either of these two types then
op(expr) yields the expression sequence. The external representation of a set uses
braces ‘{’, ‘}’ to surround the expression sequence and the external representation of
a list uses brackets ‘[*,]’ to surround the expression sequence.

4.1.7. Addition, Muttiplication, and Power

An expression can be composed using the algebraic operators +, —, «, /, %, *».
Such an expression is of type *+°, type "»°, or type “««*. Thus the expressiona ~ b
is of type *+" and op(a — b) yields the expression sequence a, —b. Similarly the
expression a/b is of type “s* and op(a/b) yields the expression sequence a, bsa(~1).
Of course, bes(—1) is an example of an expression of type “»»". The representation
used for these algebraic expressions is often referred to as sum-of-products form.

4.1.8. Series

The ‘series’ data type in Maple is a special data type which represents an expres-
sion as a (truncated) power series in one specified indeterminate. This data type is
created by a call to the taylor function. For this data type, the zeroth operand is
defined to be the name of the indeterminate, the first, third, . . . operands are the
coefficients (generally expressions), and the second, fourth, . . . operands are the
corresponding exponents. The exponents are ordered from least to greatest. Usu-
ally, the final pair of operands in this data type are the special ‘order’ symbol O(1)
and the integer n which indicates the order of truncation. (Note: The print routine
displays the final pair of operands using the notation O(x++n) rather than more
directly as O(1)sxs+n, where x represents the zeroth operand). However, if the
series is known to be exact then there will be no ‘order’ term in the series. An exam-
ple of this occurs when the ‘taylor’ function is applied to a polynomial whose degree
is less than the truncation degree for the series.

24 Geddes, Gonnet, and Char

4.1.9. Equation and Inequality

An expression of type ‘equation’ (also called type “=") has two operands, the
left-hand-side expressnon and the right-hand-side expression. An equanon is
represented externally using the binary operator ‘=",

There are three mternal data types for inequalities, corresponding to the opera-
tors ‘<>’, ‘<’, and ‘<=", Inequalities involving the operators ‘>’ and ‘>=" are
converted to the latter two cases for purposes of representation. Correspondin_gly,
only three names are known to the type function for inequalities; *<>", *<", *<="
Like an equation an inequality has two operands, the left-hand-side’ expressmn and
the right-hand-side expression,

4.1.10. Boolean Expression

The simplest cases of Boolean expressions are the names true and false*. Equa-
tions and inequalities (formed using the relational operators =, <>, <, <=, >,
>=) are also treated as Boolean expressions if they appear in a ‘Boolean context’.
More complicated Boolean expressions can be buiit out of these simple expressions
with the logical operators and, or, and not. The built-in function evailb can be called
with a Boolean expression as argument in order to cause the expression to be
evaluated as a Boolean. For example, the equation a = b is an algebraic equation if
it appears alone but evalb(a = b) will evaluate this equation as a Boolean. However,
an equation or inequality will be recognized as being in a Boolean context if it
appears in the ‘while part’ of a repetition statement or in the ‘if part’ of a selection
statement. In addition to the type names for equauons nnd mequahtaes, t.he follow-
ing type names are also known to the type function: “and’, “or’, "not’

4.1.11. Range

An expression of type ‘range’ (also called type °..") has two operands, the left-
hand-side expression and the right-hand-side expression. A range is represented
externally using the binary operator *..” which simply acts as a place-holder.

4.1.12. Procedure Deflnition

A procedure definition in Maple is a valid expression and its type is called ‘pro-
cedure’. The external representation of a procedure definition is

proc (<nameseq>) local <nameseq>; options <nameseq>; <statseq> end

The internal data structure represents each <nameseq> in the order shown above
followed by the statement sequence <statseq™>. Since <statseq™ is not a valid
expression in Maple, this part of the data structure is not retrievable by the op func-
tion. There are three operands defined for the op function applied to this data struc-
ture: the first operand is the <nameseq> of formal parameters, the second operand

*true and false are just Maple names that the system returns as the result of Boolean evaluation. Users
can use true and false just like any other name, but to be safe it is best to avoid assigning values to these
names.

MAPLE User’s Manual 25

is the <nameseq> of local variables, and the third operand is the <nameseq> of
option names. Therefore, if

f := proc (a,b)

local ¢;

options remember;

c:= ab;

if type(c, integer) then c else FAIL fi
end;

then

op(1,{); yields a,b
op(2,f); yields ¢
op(3,£); yields remember
op(£); yields a,b,c,remember

4.1.13. Unevaluated Function Invocation
A function invocation takes the form

<name> (<expression sequence>)

and if <name> is undefined then the result is an unevaluated function invocation,
called type ‘function’. Typical examples of the type ‘function’ are sin(x), exp(x"2),
g(a,b) where none of sin, exp, and g has been defined. For the op function applied
to this data type, operand 0 is defined to be the name of the function and the remain-
ing operands are the elements of the <expression sequence>. For example,

op(0, g(a,b)); yields g
op(1, g(a,b)); yiclds a
op(2, g(a,b)); yields b
op(g(a,b)); yields ab

4.1.14. Unevaluated Factorial

The factorial function is invoked through the use of the postfix operator *!’. If
the operand to the factorial function does not evaluate to an integer then the result is
an unevaluated function invocation of the type described above. For example,

type(n!, function); yields true
op(0, nt); yields factorial
factorial(m); yields m!

type(jl, ") yields true

26 Geddes, Gonnet, and Char

4.1.15. Unevaluated Concatenation

An expression which consists of an unevaluated concatenation is said to be of
type *.° . Normally, the concatenation operator is evaluated to form a name but an
example of an expression of type *.” would be the unevaluated expression 'a.i’ . In
the current version of Maple, if the name ‘i’ does not evaluate to an integer then the
expression ai] is another example of type *." (i.¢. an unevaluated concatenation).

4.2. Formasl Syntax

MAPLE User’s Manual 27

This section presents the BNF grammar which describes the syntax accepted by
Maple. In the following grammar, where a sequence of symbols is enclosed in a pair
of "§" symbols it indicates that this portion of the statement is optional. Where empty
occurs in the grammar, no symbol is required. A Maple session consists of a
<statseq>, which is a sequence of statements separated by semicolons.

<statsegq> ::=

<stat> ;=

<expr> ::=

<statseq> ; <stat> | <stat>
<expr>
<name>> := <expr>
read <expr>
save <expr>
§ for <name> § § from <expr> § § by <expr>§
§ while <expr> §
do
<statseq™>
od
break
if <expr> then <statseq> <elsepart>
quit*
empiy

<expr> or <expr>

<expr> and <expr> | not <expr>

§to <ex

I« Boolean expressions »/

| <expr> < <expr>
| <expr> > <expr>
| <expr> <> <expr>

| <expr> ..} <expr>

<expr> + <expr>
<expr> - <expr>
+ <expr>

<expr> » <expr>

<expr> es <expr>
<expr> " <expr>

<expr> , <expr>

<expr> <= <expr>
<expr> >= <expr>
<expr> = <expr>

I+ range sequence »/

/» algebraic expressions »/

- <expr>
<expr> / <expr>

tdone or stop can be used as synonyms for quit . In the Vax UNIX and Honeywell TSS versions of

Maple, hitting the break/interrupt key twice in rapid succession will also exit from Maple.

xprseq>
:xprlist>

wame> i=

nameseq>

slsepart>

Geddes, Gonnet, and Char

proc (§ <nameseg> §) /= procedure definition »/
§ local <nameseq> ; §
§ options <nameseq> ; §

<statseq>
end
<natural> . <natural> /» floating point numbers «/
<natural> .
. <natural>
< natural> I unsigned integer »/
{ <exprseq> } » set #/
[<exprseq>] In list o/
<name> /» variable name +/
<expr> ! /» factorial »/
(<expr>) I» parenthesized expression »/
' <expr>’ /» unevaluated expression s/
<name> (<exprseq>) /= function call »/
" I previously computed expressions »/
"o I LT
<exprlist> | empty
<exprlist> , <expr> | <expr>
| <name> . { <expr>)
| <name> . <string>
| <name>> . <natural>
| <name> [<exprseq>]
<nameseq> , <string> | <string>
fl] else <statseq> fl

i elif <expr> then <statseq> <elsepart>

ttually, two or more consecutive periods are permitted.

<natural>
<digit> 1=

<string> ::=

<alphanumeric>

<letter> ::=
<charstring>

<anychar>
Tt

MAPLE User’s Manual

= § <natural> § <digit>
0/1]2/3|415]/6]7|8|9
<letter> § <alphanumeric> §
| @ § <alphanumeric> §
| * <charstring> *
n= § <alphanumeric> § <letter>
§ <alphanumeric> § <digit>
[§ <alphanumeric> § _

/s Any lower-case or upper-case letter a-z or A-Z. +/

0= <anychar> § <charstring> §

= /» Any character in the supported character set. +/

29

30 Geddes, Gonnet, and Char

5. ARRAYS AND TABLES

5.1. Overview

Two of the data types in Maple are array and table. Arrays are used similarly
to those in other programming languages, while tables correspond roughly to the
ones provided in Snobol or Icon.

In Maple, the type ‘array’ is a specialization of the type ‘table’. An array is a
table for which indices must be integer expression sequences lying within user-
specified bounds. :

As with other data types in Maple, tables are self-describing data objects, which
may be created dynamically, passed as parameters, and so on. No declarations are
needed; to make a name refer to a table, an assignment statement is used in which
the right-hand side evaluates to a table object.

A table object consists of three parts:

@ an indexing function
® an index bound (for arrays oaly)
® a collection of components

The indexing function allows a table to have a user-defined interface. A
detailed discussion of indexing functions is given in section 5.5. If no special inter-
face is to be used, the indexing function should have the value NULL. (This is the
default.)

The only tables which have index bounds are arrays. The index bound is an
expression sequence of integer ranges. The number of ranges is called the dimension
of the array. Whenever a component of an array is referenced, the index is checked
against the index bound. The ith range gives the bounds on the itk integer in the
expression sequence used as the index.

The op function may be used to extract the operands of a table. The indexing
function is available as the first operand of a table object. For arrays, the index
bound is available as the second operand. The components are not available using
the op function. The reason for this is that the collection of components is stored in
an internal hash table and is not a user-level expression. (This is analogous to the
statement sequence in a procedure not being available to the op function.)

Components of tables are referred to using brackets ([’ and ‘]’) for indexing,
If T evaluates to a table, then components of T are referenced using the syntax
T[< expression sequence>] . For example, executing the following statements

T[1,2) := a; T[2,0} := b; V := T[1,2]+T[2,0]

causes V to be assigned the value a+b.

Tables may be created either (i) explicitly, by calling one of the builtin func-
tions array or table, or (ii) implicitly, by making an assignment to an indexed expres-
sion of the form A[<expression sequence>] when A does not evaluate to a table. The

MAPLE User's Manual 31

creation of tables is described in section 5.2.

Expressions of type ‘array’ and of type ‘table’ are represented internally using
the same data structure. The external representation is as a call to one of the func-
tions array or table which would re-create the object. Specifically, the external
representations are:

array(<indexing function>, <range seq >, {<equation seq >1)
and

table(<indexing function>, [<equation sequence>]) ,
where each equation in the <equation sequence> is of the form

(index) = component_value .

The equation sequence enclosed in brackets is a representation of an internal hash
table. The equations will appear in an apparently arbitrary order. The order in
which they appear can not easily be controlled by the user.

5.2. Creating Tables

5.2.1. Explicit Table Creation

The function array is used to create an array explicitly. To explicitly create a
table which is not an array, the function table is used. These functions take a
number of optional parameters which specify information about the table to be
created.

Probably the most common uses of these functions are illustrated by the follow-
ing examples:

t:= table();
a:= array(l..n);
b:= array(l..n, 1..m);

Here, ‘t" has been assigned a new table object, ‘a’ has been assigned a one-
dimensional array with n components, and ‘b’ has been assigned an » by m, two-
dimensional array.

The table function, in general, takes two parameters: an indexing function and
an initialization list. The function arrey takes an indexing function, an initialization
list, and an index bound. The index bound is passed as a number of integer ranges
appearing adjacently in the parameter sequence. The indexing function, initialization
list and, for arrays, index bound are all optional and may appear in any order in the
parameter sequence.

When a table i3 created using one of these functions, the following sequence of

32 Geddes, Gonnet, and Char

events takes place:

(1) The parameters are sorted out.

(2) If no indexing function is supplied, NULL is taken as the default.

(3) I no initialization list is supplied, an empty list is taken as the default.

(4) K it is an array that is being created and no index bound has been supplied, the
index bound to be used is deduced from the initialization list.

(5) If the initialization list is not empty, the initial values are inserted into the table.
(6) The table is returned.

The indexing function must be given as either a procedure or as a name. Not
specifying an indexing function is the only way to obtain NULL.

The deduction of index bounds for arrays and the initialization of table values
arc done by two procedures from the Maple library. It is possible to change the
actions performed by redefining these procedures within the Maple session. This
possibility is discussed further in section 5.2.3. The remainder of this section
describes the actions performed by the standard functions.

The initializations must be given either as a list of equations or as a list of
values. To avoid ambiguity, with a list of values, none of the values may be an
equation. With a list of equations, the left-hand sides are the indices (of the com-
ponents to be initialized) and the right-hand sides are the values. A list of values
may be given only for the creation of a table or a one-dimensional array. If a list of
values is given, the indices used are consecutive integers starting at 1 or the lower
bound on the indices, if one is given, for an array.

If no index bound is given for an array, then one is deduced from the list of ini-
tializations. This is done as follows. If the initialization list is empty, then the array
is assumed to be zero-dimensional and the index bound is NULL (i.e. a sequence of
zero integer ranges). If the initialization is given as a list of n values, then the array
is taken to be one-dimensional and the index bound is the range 1..n. Finally, if the
initializations are given as a list of equations, then each range in the index bound is
made as restrictive as possible while still encompassing all the indices used in the
equations.

Examples:
table(); yields table([|)
(The indexing function is NULL and no components have been initialized.)
table({a,b,c]); yields table({(1)=a,(3)=c,(2)=b})
table({1=20, cos(x)=al}); yields table(J(1)=a0,(cos(x))=al])
array(0..3); yields array(0..3,[])
array([x,y,z]); yields array(1..3,[(1)=x,(2)=y,(3)=z]}
array([b,c,d], 0..3); yields array(0..3,[(1)=c,(0)=b,(2)=d])

array([NULL=vall]); yields array([()=vall])

MAPLE User’s Manual 33

array([(2,2)=22, (1,7)=17]); yields array(1..2,2,.7,[(2,2)=22,(1,7)=17])
array(sparse,[5=x,100=y]); yields array(sparse,S..100,[(5)=x,(100)=y])

5.2.2. Implicit Table Creation

A table is implicitly created if an assignment is made to an indexed expression
of the form T[<expression sequence>] where T does not evaluate to a table. Implicit
table creation is provided primarily as a convenience for interactive use.

If T does not evaluate to a table, then the assignment
T[eseq] := expr

is exactly equivalent to the following statement sequence which uses explicit table
creation: ‘ ‘

T := table(); T[eseq] := expr
This rule is applied recursively if necessary.
Examples:
If A is a table but A[1] has not been assigned, then
All][2,x] =y
is equivalent to
Afl] := table(); A[l]{2,x]:=y
If B does not evaluate to a table, then
B[i, k][] : = £(i,})
is equivalent to

B := table(); B[i,k] := table(); B[i,k][j] := £(i,)

5.2.3. User Interface for Table Creation

As stated earlier, when a table is being created, the deduction of an index
bound (if it is an array) and the initialization of components are done by two pro-
cedures. These procedures are called “table/initbds’ and ‘“tablefinitvals’, respec-
tively. By default, the procedures from the Maple library are used.

It is possible to change the actions performed by redefining these procedures
within a Maple session, (It is not necessary to know how to do this to use tables
effectively.) As an example, a default lower value of 0 may be desired for index
bounds, rather than 1. Another example would be if the user wanted an initialization
of the form

34 Geddes, Gonnet, and Char

table({1..3 = 0,4 =1, 5.8 =0]);
to yield

table([(1)=0,(2)=0,(3)=0,(4)=1,(5)=0,(6)=0,(7)=0,(8)=0]) .

If a table being created is an array and no index bound has been specified, then
the procedure “table/initbds" is called. Itis passed the initialization list and the value
it returns is used as the array’s index bound.

If the initialization list is not empty, the procedure “table/initvals® is used to
install the initial values in the table being created. It is passed the new, empty table
object and the initialization list from the call to table or array. The library version o
*table/initvals' simply assigns the components of the table in a loop. i

To provide a model, the library functions are given in Appendix B.
§.3. Table Components

5.3.1. Evaluating Components

The semanitcs of referencing a table’s components are defined by its indexing
function. With the default indexing function, NULL, the usual notion of subscript-
ing is used. With other indexing functions, a procedure determines how indexing is
done. This more complicated case is discussed in section 5.5. In this section, the
default indexing semantics are described.

Suppose that T evaluates to & table with a NULL indexing function. When
T[«expression sequence>] is evaluated, the value of the entry in the table is returned,
if there is one. If there is not an entry with the <expression sequence> as its key,
then the table reference “fails”.

This is analogous to a FAIL return from a procedure. The value returned is an
indexed object where the index is the <expression sequence>, evaluated, and the
zeroth operand is the name which directly evaluated to the table. If T is a table
rather than a name which evaluates to a table, then the zeroth operand is the table
itself.

MAPLE User’s Manual 35

Examples:
t ;= table(); yields t:= table([])
tk] := ZZ; updates the table to table({(k)=ZZ])
[T
s[1] := XX; updates the table to table([(1)=XX,(k)=Z2])
1[k]; yields ZZ
s[1]; yields XX
t2]; yields t[2]
ji= 2
tfil; , yields t[2]
s[2]; yields t[2]
p := proc(a) a[2] end;
p('s’); yields t[2]
p(s); yields table([(1)=XX,(k)=2ZZ])[2]

In the above examples, the name ‘s’ evaluates to the name ‘t’ which then evaluates to
the table. That is why s[2] yields t[2] when it fails. With the first procedure call,
p(’s’), this is what happens when the table reference fails. In the second call, p(s),
the name ‘s’ gets fully evaluated and it is the table object that is passed. Then, when
the table reference fails, that object is used as the zeroth operand of the result.

Even if the last name in the evaluation chain evaluates to some other object
before evaluating to the table, it is still used if a table reference fails.

Examyple:
a:=b; yields a:= b
b o= f(table()); yietds b :m f(table([]))
f := proc(t) print(hello); t end;
a[x]; yields b[x] after printing “hello”

Ax array is zero-dimensional if its index bound is the null expression sequence.
A zero-dimensional array has only one component and the index for this component
is NULL.

Example:
t:w= array(); yields t:= array([)
t[]:w tval; updates t to array([()=tval);

LiBH yields tval

36 Geddes, Gonnet, and Char

5.3.2. Assigning and Unassigning Components

If T is a table and an expression of the form T[<expression sequence>] appears
on the left-hand side of an assignment statement, then an entry is assigned in the
table. If there was previously no entry in the table with the <expression sequence>,
evaluated, as its key, then a new entry is made. If there already is an entry, then it
is updated to reflect the new value.

In many cases it is desired to assign a value to a parameter of a procedure.
Table components may be assigned this way, in the same way as names. To assign a
table component, an indexed expression is passed. Consider the procedure

assignsqr := proc(a,b) a := bes2 end

So long as the first parameter is a valid left-hand side, the assignment will be made.

Examples:
t:= table();
assignsqr(t[2], 4); assigns the value 16 to t[2]
s 1= 'sh unassigns §
assignsqr(s[3], 3); assigns 9 to s[3], implicitly creating a table

If the component to be assigned already has a value, then it is necessary to use
quotes or the evaln function to pass the indexed name.

Examples:
After executing the statements

t := table();
for i to 5 do assignsqr(tfi], i) od;

assigning new values to the components of ‘t" may be achieved by
for i to 5 do assignsqr(evaln(tfi}), 1/i) od;
+ When the subscript need not be evaluated, quotes may be used:

assignsqr(’t{1}]’, x);

To make a name stand for itself in maple, a statement is executed to “‘unassign” it.
Exactly the same thing is done with the components of a table — to remove an entry
from a table, it is “unassigned”. This may be done either by quoting the right-hand
side or by using the evaln function. '

MAPLE User’s Manual 37

Examples:
a = array([x, vy, z]); yields a := array(l..3,[(1)=x,(2)»y,(3)=2])
a{1]; yields x
a1} := ‘a{1}’;
a[i}; yields a[1};
a; yields array(1..3,[(2)=y,(3)=2z])
ji=3;
a[i] : = evaln(ali]);
a; yields array(1..3,[(2)=y])

5.4. Tables as Objects

5.4.1. Copying Tables

In Maple, only objects of type ‘table’ may be altered after having been
created. This is because it is only with tables that it is valid to make an assignment to
a part of the object.

The fact that a table object may be altered after creation means that if two
names evaluate to the same table, then an assignment to a component of one affects
the other as well. To illustrate, if the following statcments are executed:

a := array([t,x,y,z]);
b:m a;
afl] :=9;

then b[1] will evaluate to 9, not ‘t’.

For this reason the copy function is provided (see section 5.6.3). It may be
used to create a copy of a table upon which operations may be performed without
altering the original.

For example, if a procedure makes assignments to components of a table passed
as a parameter, then it may be necessary to pass a copy. Suppose that ‘decomp’ has
been assigned a procedure that does an in-place LU matrix decomposition, and takes
an array as its only parameter. If it is desired to find the LU decomposition of the
matrix given by ‘a’ while retaining ‘a’ for further use, then the following statements
may be used:

b := copy(a);
decomp(b);

38 Geddes, Gonnet, and Char

£.4.2. Tables Local to a Procedure

A variable local to a procedure may be assigned a table, just as it may be
assigned an object of any other type.

A table object which is created and assigned to a local variable may be returned
as the value of the procedure or passed out through one of the parameters, in exactly
the same way as any other expression.

Example:
put the coefficients of a polynomial in a table
getcoeffs 1=
proc(poly, var)
local Cs, ¢, i;
if not type(poly, polynom, var) then
ERROR("must have a polynomial')
fi;
Cs := table();
for i from ldegree(poly, var) to degree(poly, var) do
¢ := coeff(poly, var, i);
if ¢ <> 0 then Csli] := cfi

od;

Cs
end;
Cs := table([this, that]); yields table([(1)=this,(2)=that])
getcoeffs(Isx»267 + y, Xx); yields table([(0)my,(67)=3])
Cs; yields table([(1)=this,(2)=that])

5.4.3. Tables as Parameters

A table may be passed as a parameter into or out of a procedure. Components
added to the table or removed from the table while the procedure is executing affect
the globally visible table, since it is the same object.

If a table is passed as a parameter in the following way:
a ;= table(); p(a);

then it should be noted that the name ‘a’ is evaluated to the table object before the
procedure is invoked. Therefore, if a reference to the table “fails” within in the pro-
cedure, then the resulting indexed expression will have the table object as its zeroth
operand.

This can be avoided by passing the name of the table (i.e. p('a")), thereby
making it available to any component references which may fail. Note that this situa-
tion does not arise if all the components which are used have been assigned prior to
the procedure call.

MAPLE User’s Manual 39

Passing an un-named table object as a parameter may lead to awkward results if
components which do not have values are used. If the procedure makes a component
reference that fails and assigns it to another component of the same table, then doing
the assignment creates a self-referential data structure. (Just as doing
x:= y; y:= "xee2’ does.) This would lead to an infinite evaluation recursion the next
time the component was evaluated.

5.4.4. Automatic 1.oading of Tables

It is possible to define large tables that get loaded only when a component is
referenced. This is done in the same way that procedures can be made to be read in
only when used.

To cause a table to be loaded automatically, it is assigned an unevaluated call to
readlib. If a user wants T to be loaded when it is used, then he makes the assign-
ment

T ;= ’readlib('T’, filename)';

where ‘filename’ is the name of the file in which the table has been saved.
Suppose a user enters Maple and exccutes the following statements:

Linverse : = table();

Linverse[l/ssen] :m tes{n—1)/(n—1)!;

Linverse[1/(s++2 + 2++2)] := sin(aet)/a;

save “/uw/jgpublic/laplace.m";

quit
If in a subsequent Maple session the assignment

Linverse : = 'readlib('Linverse’, “/u/jgpublic/laplace. m*)’;
has been made, then evaluating

Linverse[1/ssen)

causes readlib to be executed and the table is read in. The indexed expression then
evaluates to : :

tes(n—1)/(n—1)!

40 Geddes, Gonnet, and Char

5.5. Indexing functions

5.5.1. The Purpose of Indexing Functions

The semantics of indexing into a table are described by its indexing function.
Using an indexing function, it is possible to do such things as efficiently store a sym-
metric matrix or count how often each element of a table is referenced. Because
each table defines its own indexing method, generic programs can be written that do
not need to know about special data representations. For example, the same func-
tion would be used to perform an operation on sparse matrices as for dense matrices.

The normal method of indexing, described in section 5.3, is used when the
indexing function of a table is NULL. The semantics correspond roughly to those of
common programming languages, with the added notion of “failing” if a component
has not been assigned.

If the indexing function for a given table is not NULL, then all indexing into
that table is done through a procedure. This procedure is invoked whenever an
expression of the form T[<expression sequence>] is encountered and T evaluates to
the table.

Three parameters are passed to the procedure:
(i) the object which is being indexed, T, (unevaluated)
(ii) a list containing the index, <expression sequence>, (evaluated)

(iii) a Boolean value which is true (false) if the expression is being evaluated as on a
left-hand (right-hand) side of an assignment.

T is passed unevaluated so that a name will usually be available if a table reference

“fails”. The value returned by the procedure is used in the place of the indexed

expression.

The indexing function may be the procedure itself, or a name. Certain names
are known to the basic system as built-in indexing functions. If a name is given
which is not one of these, a function call is made using ‘index/*. <name> . First the
current session environment is searched for this name. If it is not found, the Maple
system library is searched for the file **.libname. ‘index/". <name>.".m" . If no such file
exists, then ‘index/*. <name> is applied as an undefined function.

5.5.2. Indexing Functions Known to the Basic System

At present, three names are known to the basic Maple system as indexing func-
tions. These are symmerric, antisymmetric, and sparse.

The indexing function symmetric is used for tables in which the value of a com-
ponent is independent of the order of the expressions in the index. The most com-
mon application is for symmetric matrices. When a component of a table with this
indexing function is referenced, the index expression sequence is re-ordered to give a
unique key. (The sort is done using the same internal ordering as for sets.)

MAPLE User’s Manual 41

Examples:
A := array(1..10,1..10,symmetric); yields A ;= array(symmetric,1..10,1..10,[])
All,2); yields Af1,2]
Al2,1); yields A[L,2]
Ali,j} - Alji]s yields ©
Af3,4] := x; yields A[3,4] :m= x
Al4,3] := y; yields A[3,4]) 1= y
A; yields array(symmetric,1..10,1..10,{(3,4)=y])
T := table(symmetric); yields T := table(symmetric,[]}

T[function,continuous,odd] : = f; yields T[odd,continuous,function] := f

The antisymmetric indexing function yields the result of symmetric, multiplied by
—1 if all components of the index are different and an odd number of transpositions
were necessary to re-order the index. If two or more components of the index are
the same, antisymmetric returns 0.

Examples:
B := table(antisymmetric); yields B := table{antisymmetric,[])
Bli,j]; yields Bi,j]
B[j.i]; yields - Bfi,j]
B[i,j,k} + B[i,k,jl; yields 0
B[i,k,k]; yields 0
Bfi,j] := v; yields B[i,j] := v
Blj,i] := u; yields ERROR: invalid name forming operation

The indexing function sparse is used with tables for which a component is
assumed to have value 0 if it has not been assigned. Suppose T is a table with this
indexing function. Evaluating T[<expression sequence>] on a right-hand side yields
the component’s value, if it has been assigned, or 0, if it hasn't. When
T[<expression sequence>) is evaluated on a left-hand side, the indexing function
always returns the indexed expression T[<expression sequence>] . (Returning 0 would
make assigning components impossible.)

Examples:
U := array(1..100,sparse,[90= ul}); yields U := array(sparse,1..100,[(90)=ul])
V := array(1..100,sparse,[34=v1]); yields V :m= array(sparse,l..100,[(34)=v1])
s:m 0
for i to 100 do
s:= s + Uli] + V[i]
od;
s; yields ul + vl

42 Geddes, Gonnet, and Char

8.5.3. User-Defined Indexing Functions

A user may create his own indexing function by writing a procedure which
returns the expression to be used, given the object being indexed, the index, and an
indication of whether a left- or right-hand side is desired.

Suppose we wish to define a large tridiagonal matrix. To avoid storing the off-
diagonal elements, the following procedure may be used as the indexing function:

t3 =
proc(A, index) local dummy;
op(1,index) — op(2,index);
if not type(”, integer) or abs(") <= 1 then
subs(dummy = op{index), 'A[dummy]’)
else
0
fi
end

The array may be created by the statement
Tri := array(1..10000, 1..10000, t3)
or by the statements

‘index/tridiagonal® : = t3;
Tri := array(1..10000, 1..10000, tridiagonal)

In the first case, ‘Tri’ would have the procedure as its first operand. In the second,
it would have the name ‘tridiagonal’. Assume for the following discussion, that ‘Tri’
has been assigned by the second method.

To cxplain how this procedure works, suppose the statement
Tri[3,20] := rhs;

is executed. After the right-hand side has been evaluated, ‘Tri’ is evaluated and
found to be an array. Next, the index is evaluated and found to be within bounds.
The indexing function is then found to be ‘tridiagonal’ so the following procedure call
is made:

‘index/tridiagonal*("Tri’, [3,20], true)

The third parameter indicates that the evaluation is being done for the left-hand side
of an assignment. (In this case the procedure ‘index/tridiagonal’ does not use the
third parameter, but it is passed anyway.) The element referred to is found not to be
on the tri-diagonal band so the else part is executed and the value 0 is returned.

MAPLE User's Manual 43

Since it is impossible to make an assignment to 0, the assignment statement generates
an error message. This is reasonable; it should not be possible to make assignments
to the off-band entries of a tridiagonal matrix.

If the statement
Tri[99,100];

is executed, then the following events occur. As before, ‘Tri’ is evaluated to a table
and the index is found to be within bounds. Then the procedure call

‘index/tridiagonal('Tri", op([99,100]), false)
is made. Since this component is found to be on the upper diagonal, the statement
subs(dummy = [99,100], *Tri[dummy]")

is executed. This returns Tri[99,100], unevaluated, as the procedure value. Then,
if Tri[99,100] has been assigned, its value is retrieved. Otherwise the table reference
fails as usual,

It is important to avoid evaluating the expression T[99,100] accidentally inside
the procedure, as this would cause an infinite recursion. This is the reason that subs
was used to create the expression returned by “index/tridiagonal’.

As a second example, suppose we want to count the number of assignments
made to components of various arrays and other tables. The counts will be kept in a
table, ‘Count_table’, initialized by

Count_table := table(sparse);

If ‘A’ is one of the tables to be monitored and an assignment is made to A[1,2], then
Count_tablefA, [1,2]] will be incremented by one.

The procedure below may be used as the indexing function for the tables to be
monitored:

44 Geddes, Gonnet, and Char

‘index/count” :
proc(T, index, is_lhs)
local dummy;
if is_Lhs then
T;
Count_table[", index} : = Count_table[", index] + 1
" is used to evaluate the name and get the table.
fi;
subs(dummy = op(index), 'T[dummy]’)
end

Then, the tables under investigation are created as follows

tl:= tabie(cOunt);
aa := array(l..100, count);

and used normally.

For a third example, we consider the “Riemann tensor” from general relativity.
For our purposes it may be considered to be an array with (0..3,0..3,0..3,0..3) as
its index bound. This object would have 256 components if all were independent.
However, the Riemann tensor has (among others) the following symmetry properties

R[ivjvkvn‘. 'R[j'i,k.ll
R[i'j»kvll - _R[i'jol»k]
R[i,j,k,1) = R[X,1,i,j] .

These imply that at most 21 components are algebraically independent. The array
could be created with the following procedure as its indexing function:

‘index/riemann” : =
proc(A,ix)
local i,j,k,l,dummy;
option remember;
i:= op(l,ix); j := op(2,ix); k := op(3,ix); 1 : = op(4,ix);

ifi= jork = |then 0
elif not order(i,j) then - A[j,i,k,l]
elif not order(k,1) then —Ali,j,1,k]
elif not order([i,j],[k,1]) then A[k,1,i,j}
else subs(dummy = op(ix), 'A[dummy]’)
fi

end;

where ‘order’ is a boolean function defining an ordering on expressions, such as

MAPLE User's Manual 45

order := proc(a,b) evalb(a = op(1,{a,b})) end

(which uses the ordering defined by Maple's ordering of elements in a set). The pro-
cedure ‘“index/riemann® is recursive, since evaluating the expressions —Al[j,i,k,1],
-Ali,j,1,k], and Alk,Li,j] causes the indexing function to be called again.

46 Geddes, Gonnet, and Char

6. PROCEDURES

6.1. Precedure Definitions

One instance of an expression in Maple is a procedure definition; which has the
general form

proc { <nameseq>) local <nameseq>; options <nameseq>; <statseq> end

Such a procedure definition may be assigned to a <name> and it may then be
invoked using the syntax

<name> (<expseq>).

When a procedure is invoked the statements in <statseq> are executed sequentially
(and some of the names have special semantics as described below). The value of a
procedure invocation is the value of the last statement in <statseq> that is executed.

It is possible in Maple to define and invoke a procedure without ever assigning
the procedure definition to an explicit <name>>, as in the following example:

proc (x) x"2 end;
"(2);
where the value of the procedure invocation "(2) is 4. Another example of using a

procedure definition without a name is when a simple function is to be mapped onto
an expression, as in:

a:=[1,2,3,4,5];
map(proc (x) x*2 end, a);

which causes each element of the list ‘a’ to be squared, yielding the new list
[1,4,9,16,25].

The keywords ‘proc’ and ‘end’ may be viewed as brackets which specify that the
<statseq> is to remain unevaluated when the procedure definition is evaluated as an
expression. The simplest instance of & procedure definition involving no formal
parameters, no local variables, and no options can be seen in the following definition
of a procedure called max:

max ;= proc () if a>b then a else b fi end
Executing the statements
a:= 25/7; b:= 525/149; max();

yields 25/7 as the value of the procedure invocation max(). This procedure is making
use of the names ‘a’ and ‘D’ as global names. In Maple, all names are global names
unless otherwise specified. One instance of non-global names is the case of formal
parameters which are specified within the parentheses immediately following the key-
word ‘proc’. A more useful definition of the above procedure max can be obtained
by making the names ‘a’ and ‘b’ formal parameters:

MAPLE User's Manual 47

max : = proc (a,b) if a>b thenaelse b fiend

This procedure may now be invoked in the form max(exprl, expr2) where exprl and
expr2 are expressions. For example, max(25/7, 525/149) evaluates to 25/7. The
names ‘a’ and ‘b’ are now local to the procedure, so that if these names have values
external to the procedure the external values neither effect, nor are affected by, the
invocation of the procedure.

6.2. Parameter Passing

The semantics of parameter passing are as follows. Suppose the procedure
invocation is of the form

name (exprll €Xpray - .., EXPT,) -

Firstly, name is evaluated and let us suppose for now that it evaluates to a procedure
definition with formal parameters

parm,, parm,, ..., parm, .

Next, the acrual parameters expry, * + - , expr, are evaluated in order from left to
right. Then every occurrence of parm, in the <statseq™> which makes up the body of
the procedure is substituted by the value of the corresponding actual parameter expr,.
It is important to note that these parameters will not be evaluated again during execu-
tion of the procedure body. (The consequences of this fact are explained in section
6.4 below). In terms of traditional parameter passing mechanisms used by various
computer languages, Maple’s parameter passing could be termed ‘call by evaluated
name’. In other words, all actual parameters are first evaluated (as in ‘call by value')
but then a strict application of the substitution rule is applied to replace each formal
parameter by its corresponding actual parameter (as in ‘call by name’).

It is possible for the number of actual parameters to be either greater than, or
less than, the number of formal parameters specified. If there are too few actual
parameters then a semantic error will occur if (and only if) the corresponding formal
parameter is referenced during execution of the procedure body. The case where the
number of actual parameters is greater than the number of specified formal parame-
ters is, on the other hand, fully legitimate. Maple allows an alternate mechanism for
referencing parameters within a procedure body; namely, the special array ‘args’.
The name ‘args(i]’ references the i* actual parameter. For example, the above pro-
cedure max could be defined without any specified formal parameters as follows:

max := proc () if args[1] > args[2] then args[1] else args[2] fi end
This procedure may now be invoked exactly as before with two actual parameters and

the semantics are identical to the previous definition. The user will notice that, when
displaying procedure definitions, the current version of Maple uses the ‘args’ names
for specifying formal parameters even if the user specified formal parameter names.

For example, if the input to Maple is

48 Geddes, Gonnet, and Char

max : = proc (a,b) if a>b then a else b fi end;
then the response from Maple is
max : = proc (a,b)if args{2]<args[1] then args{1] else args[2] fi end

(where, as a minor point, note also that Maple chooses to represent inequalities using
the ‘<’ relation rather than the ‘>’ relation). There is no restriction. against having:
extra actual parameters appear in a procedure invocation; if they are never refer-
enced they are simply ignored (but they will be evaluated).

In addition to the special array ‘args’ there is one other special name that Maple
understands within a procedure body, namely ‘nargs’. The value of the name ‘nargs’
is the number of actual parameters (i.e. the number of arguments) with which the
procedure was invoked. As an example of the use of the name ‘nargs’, let us gen-
eralize our procedure max so that it will be defined to calculate the maximum of an
arbitrary number of actual parameters. Consider the following procedure definition:

max := proc ()
result : = argsf1];
for i from 2 to nargs do
if args[i] > result then result : = args[i} fi
result
end;
With this definition of max we can find the maximum of any number of arguments.
Some examples are:

max(25/7, 525/149); yields 2577
max{ 25/7, 525/149, 912); yields 972

max(25/7); yields 2517
max(); causes an error

where the latter case is an example of a procedure being called with too few actual
parameters. If we wish to change our definition of max so that the procedure invoca-
tion max() with an empty parameter list will return the null value then we may check
for a positive value of nargs in a selection statement as in the following definition of
max.

max ;= proc ()
if nargs > 0 then
result : = args[1];
for i from 2 to nargs do
if argsi] > result then result : = args[i] fi
t]
result
fi
end;

MAPLE User’s Manual 49

6.3. Local Variables and Options

The mechanism for introducing local variables into a Maple procedure is to use
the ‘local part’ of a procedure definition. The ‘local part’ must appear immediately
following the parentheses enclosing the formal parameters, and its syntax is

local <nameseq>;

The semantics are that the names appearing in <nameseq> are to be local to the pro-
cedure. In other words, this can be viewed as causing a syntactic renaming of every
occurrence of the specified names within the procedure body. As an example, let us
reconsider the latest definition of max appearing above. There are two global vari-
ables appearing in the procedure definition which we would almost certainly want to
make local: result and i. This is effected by the following version of the procedure
definition. .

max := proc (}
local result, i;
if nargs > O then
result : = args[1];
for i from 2 to nargs do
if args[i] > result then result : = args[i] fi
od;
result
fi
end;

The user will notice that, when displaying procedure definitions, the current version
of Maple uses a function syntax of the form loc(i) for the various local variables that
have been specified. The function call loc(i) returns the value of the i local vari-
able. The use of the loc(i) function calls is a reflection of the internal implementa-
tion, but the user is not able to refer to local variables in this way.

There is a facility to specify options for a procedure by using the ‘options part’
of ‘a procedure definition. The ‘options part’ must appear immediately after the
‘local part’ and its syntax is cither of the following two forms:

option <nameseq>;
options <nameseq>;

The only name that is currently recognized as an option is the name ‘remember’.
The semantics of specifying ‘option remember’ or ‘options remember’ as the options
part of a procedure definition are as follows. After executing the procedure and
obtaining the value of a particular procedure invocation, the Maple system makes an
entry in a table called the partial computation table which associates the result with
that particular procedure invocation. If there is ever another invocation of this pro-
cedure with actual parameters that have the same values then the Maple system will
immediately retrieve the result from the partial computation table. In this way, it is
possible to avoid redundant executions of procedures that may be very costly. (See
also the remember function in section 8).

50 Geddes, Gonnet, and Char

6.4. Assigning Values to Parameters

Let us now consider an example of a procedure where we may wish to return a
value into one of the actual parameters. Recall that the integer quotient q and the
integer remainder r of two integers a and b must satisfy the ‘Euclidean division pro-
perty’

a=beq+r

where either r = 0 or abs(r) < abs(b). This property does not uniquely define the
integers q and r, but let us impose uniqueness by choosing

q = trunc(a/b)

using the built-in Maple function trunc. The remainder r is then uniquely specified
by the above Euclidean division property. (Note: This choice of g and r can be
characterized by the condition that r will always have the same sign as a). The fol-
lowing definition of the procedure ‘rem’ returns as its value the remainder after divi-
sion of the first parameter by the second parameter, and it also returns the quotient
as the value of the third parameter (if present).

rem : = proc (a,b,q)
local quot;
quot : = trunc(a’b);
if nargs > 2 then q : = quot fi;
a — quoteb
end;

The procedure rem as defined here may be invoked with either two or three parame-
ters. In either case the value of the procedure invocation will be the remainder of
the first two parameters. The quotient will be returned as the value of the third
parameter if it appears. At this point recall that the semantics of parameter passing
specify that the actual parameters are evaluated and then substituted for the formal
parameters. Therefore, an error will result if an actual parameter which is to receive
a value does not evaluate to a valid name. It follows that when a name is being
passed into a procedure for such a purpose it should usually be explicitly quoted (to
avoid having it evaluated to some value that it may have had previously). The fol-
lowing statements will serve to illustrate.

rem(5, 2); yields 1

rem(S, 2,'q’); yields 1

qg; yields 2

rem{ -8, 3,’q"); yields -2

q; yields -2

rem(8, =3); yields 2

rem(8, 3, q); yields System error (in evalname)

The latter error message arises because the actual parameter q has the value —2 from
a previous statement, and therefore the value —2 is substituted for the formal

MAPLE User’'s Manual 51

parameter q in the procedure definition yielding an invalid assignment statement.
The solution to this problem is to change the actual parameter from q to 'q’.

When values are assigned to parameters within a procedure, a restriction which
must be understood is that parameters are evaluated only once. Basically this means
that formal parameter names cannot be freely used like local variables within a pro-
cedure body, in the sense that once an assignment to a parameter has been made that
parameter should not be referred to again. The only legitimate purpose for assigning
to a parameter is so that on return from the procedure the corresponding actual
parameter has been assigned a value. As an illustration of this restriction, consider a
procedure get_factors which takes an expression expr and, viewing it as a product of
factors, determines the number n of factors and assigns the various factors to the
names f.i fori = 1,..., n. Here is onc attempt at writing a procedure for this pur-
pose.

get_factors : = proc (expr,f,n)
local i;
if type(expr, =) then
n := nops(expr);
foritondo
f.i := op(i,expr)

If this procedure is invoked in the form
get_factors(x»y, 'f’, 'number’);

the result is ‘ERROR: unable to execute for statement’. What has happened is that
the third actual parameter is a name (as it must be because it is to be assigned a value
within the procedure) and when execution reaches the point of executing the for-
statement, the limit n in the for-statement is the name ‘number’ that was passed in.
The point is that the fcrmal parameter n is evaluated only once upon invocation of
the procedure and it will not be re-evaluated. A general solution to this type of
problem is to use local variables where necessary, and to view the assignment to a
parameter as an operation that takes place just before returning from the procedure.
For our example, the following procedure definition follows this point of view.

52 Geddes, Gonnet, and Char

get_factors : = proc (expr,f,n)
local i, nfactors;
if type(expr, "+*) then
nfactors : = nops(expr);
for i to nfactors do
f.i := op(i,expr)
od
else
nfactors : = 1;
f.1:= expr
fi;
n : = nfactors
end;

Another solution to the problem in this example is to change the limit in the for-
statement to the operator ", which will yield the desired value. This leads to the fol-
lowing procedure definition.

get_factors : = proc (expr,f,n)
local i;
if type(expr, +*) then
n := nops(expr);
forito " do
f.i := op(i,expr)
od
else
n:=1;
f.1:= expr
fi
end;

6.5. Error Returns and Special Returns

The most common return from a procedure invocation occurs when execution
‘falls through’ the end of the <statseq>> which makes up the procedure body, and the
value of the procedure invocation is the value of the last statement executed. There
are three other types of returns from procedures.

An error return occurs when the special function cali
ERROR(<expr seq>)
is evaluated, This function call causes an immediate exit to the top level of the
Maple system and the following error header
ERROR:

followed by the evaluated sequence of expressions which are parameters to the func-
tion call.

MAPLE User’s Manual 53

An explicit return occurs when the special function call
RETURN(<expseq>)

is evaluated. This function call causes an immediate return from the procedure and
the value of the procedure invocation is the value of the <expseq> given as the argu-
ment in the call to RETURN. In the most common usage <expseq> will be a single
<expression> but a more general <expseq> (including the null expression
sequence) is valid. It is an error if a call to the function RETURN occurs at a point
which is not within a procedure definition,

A fail return occurs when the special name
FAIL

is evaluated. The effect of evaluating this name is to cause an immediate return from
the procedure. The value of the procedure invocation is the procedure invocation
itself, as an unevaluated expression. It is an error if the name FATIL occurs at a
point which is not within a procedure definition. The effect of FAIL can also be
achieved by the construct

RETURN(*name(args)’ }
where name is the name by which the procedure was invoked.

As an example of a procedure which includes an error return and a fail return,
consider the function ‘max’ which is supplied in the Maple library. The latest defini-
tion that we developed in section 6.3 for the function ‘max’ has a property which
makes it unacceptable as a library function. Namely, if a user calls this function with
an argument that does not evaluate to a constant, such as in max(x, y) where x and y
have not been assigned any values, then the result is an error message from the
Maple system: ‘ERROR: cannot evaluate boolean’. This error results from
attempting to execute an if statement of the form

if y>xthen. ..

where x and y are indeterminates. Since this call to the function ‘max’ may have
occurred from a procedure nested several levels, the resulting error message will not
be very informative to the user. In order to improve this situation, type-checking
should be done within the ‘max’ function and appropriate action should be taken if an
invalid argument is encountered. The following code from the Maple library shows
how this can be done using the FATL return facility, so that the result of the function
call max(x, y) will be the unevaluated function max(x, y). This code also shows the
use of the ERROR return facility to return an error message if the function is called
with no arguments,

54 Geddes, Gonnet, and Char

max : = proc ()
local i, M, p;
if nargs = 0 then
ERROR(function max called with no parameters’)
else
M : = args[1];
for i to nargs do
p := args[i};
if not type(p, rational) and not type(p, float) then FAIL fi;
ifM<pthenM:= pfi
od;
M
6
end;

6.6. Boolean Procedures

It was noted in section 3 that the names ‘true’ and ‘false’ may be freely manipu-
lated as names even though these names have a special significance when they arise in
a Boolean context. It follows that Boolean procedures may be written like any other
procedures. As an example of a Boolean procedure, consider the following defini-
tion of a function called ‘member’ which tests for list membership.

member : = proc (element, 1)
local i;
false; for i to nops(l) while not " do
evalb(element = op(i, I}) od;

end;
Some examples invoking this procedure follow.

member(x+y, [1/2, x»y, X, ¥]); yields true
member(x, [1/2, x+y]); yields false
member(x, []); yields false

A few points about this procedure should be noted. Firstly, note that the equa-
tion
element = op(i, 1)

is to be evaluated as a Boolean expression and therefore it is necessary to apply the
function ‘evalb’ to it. Otherwise, this expression would be treated as an algebraic
equation. Secondly, note the use of the nullary operator " in the while-part of the
loop to refer to the ‘latest expression’. Alternatively, this could be coded with the
use of another local variable but in this case it seems preferable to use the " operator.
Finally, it should be noted that the final " appearing in this procedure would be
redundant in some contexts but is necessary here. If it were left out then the value of

MAPLE User’s Manual 55

the procedure invocation would be the value of the last statement executed, which
would be the value of the for-loop. This value will be null in the case where ‘I’ is the
empty list, but the correct value to return in such a case is ‘false’ rather than the null
value. However, the value of " is never updated by a null value and this fact is
exploited in the above procedure definition.

6.7. Reading and Saving Procedures

It is usually convenient to use a text editor to develop a procedure definition and
to write it into a file. The file can then be read into a Maple session. For example,
the max procedure might be written into a file named /u/gahill/max . In a Maple ses-
sion the statement

read “/u/gahill/max";

will read in the procedure definition. Since this procedure is in ‘user format’ Maple
will echo the statements as they are read in. Once the procedure is debugged it is
desirable to save it in ‘Maple internal format’ so that whenever it is read into a Maple
session the reading is very fast (and no time is spent displaying the statements to the
user). To accomplish this one must use a file with a name ending in the characters
‘.m'. Within Maple the ‘user format’ file is read in and then Maple’s save statement
is used to save the file in ‘Maple internal format’. For example, suppose that we
have saved our procedure definition in a file named /u/gahil/max. If we then enter
the Maple system and execute the statements

read “/u/gahill/max";
save “/w/gahill/max.m";

we will have saved the internal representation of the procedure in the second file.
This file may be read into a Maple session at any time in the future by executing the
statement

read “/u/gahill/max.m";

which will update the current Maple environment with the contents of the specified
file. (It is often convenient to place the ‘save’ statement at the end of the ‘user for-
mat’ file so that simply reading in the file will cause it to be saved in ‘Maple internal
format’). The user will quickly discover the time-saving advantages of saving pro-
cedure definitions in ‘Maple internal format'.

A special case of reading procedure definitions in ‘Maple internal format’ can be
accomplished using the built-in function readlib. Specifically, the function invocation
readlib{ pname) will cause the the following read statement to be executed:

~

read ** . libname . pname . *.m

where ‘libname’ is a global name in Maple which is initialized to the pathname of the
standard Maple system library on the host system. For example, on the UNIX system
the value of ‘libname’ is “/u/maple/lib”. (The value of ‘libname’ on any host system
can be determined by entering Maple and simply displaying its value). The complete
pathname being specified in the above read statement is a concatenation of the values

56 Geddes, Gonnet, and Char

of ‘libname’, ‘pname’, and the suffix *.m", which could alternatively be specified by
cat(libname, pname, *.m") .

In order to specify this concatenation using only Maple’s concatenation operator *.” it
is necessary to concatenate these values to the null string =, because the left operand
of Maple’s concatenation operator is not fully evaluated but is simply evaluated as a
name. (See section 3.2.2.)

The readlib function is more general than this. If it is called with two argu-
ments then the second argument is the complete pathname of the file to be read, and
the first argument ‘pname’ is the procedure name which is to be defined by this
action. Thus the following two function calls are equivalent:

readlib('f’)

readhb(£, ** . libname . ‘f.m")
but if the procedure definition for 'f’ is not in the standard Maple system library then
the second argument is required to specify the correct file. (Even more generally,
the readlib function can be called with several arguments in which case all arguments
after the first are taken to be complete pathnames of files to be read, and the first
argument is a procedure name which is to be defined by this action). The definition
of the readlib function involves more than just the exccution of one or more read
statements. This function will also check to ensure that after the files have been
read, ‘pname’ has been assigned a value and this value is returned as the value of the
readlib function. In other words, the readlib function is to be used when the purpose
of the read is to define a procedure named ‘pname’ (and some other names may or
may not be defined at the same time),

The most common application of the readlib function is to cause automatic load-
ing of files. For this purpose, the value of ‘pname’ is initially defined to be an
unevaluated readlib function, as in one of the following assignments:

prame :
pname :

‘readlib('pname’)’;
'readlib('pname’, filename)’;

]

where the single quotes around the argument ‘pname’ are required to avoid a recur-
sive evaluation. Then if there is subsequently a procedure invocation pname(...),
the evaluation of ‘pname’ will cause the readiib function to be exccuted, thus reading
in the file which defines ‘pname’ as a procedure, and the procedure invocation will
then proceed just as if ‘pname’ had been a built-in function in Maple. Indeed, this
method is precisely how the names of Maple’s system-defined library functions are
initially defined so that the appropriate files will be automatically loaded when
needed, (For example, enter Maple and display op(’ged’) to see what the name ‘ged’
is defined to be and readlib(’gcd’) will be the response).

For completeness, the following is a definition in Maple code of Maple’s built-in
function readlib.

MAPLE User’s Manual

readlib : = proc (pname)
local i, errmsg;
errmsg : = “wrong number (or type) of parameters’;
if nargs=0 or not type(pname, name) then
print(“In function readlib;*); ERROR(errmsg)
fi;
pname := 0;
if nargs=1 then
read cat(libname, pname, *.m")
else
for i from 2 to nargs do
if not type(args[i], name) then
print(‘In function readlib;*); ERROR(errmsg)
else
read args][i}
fi
od
fi;
if op(pname) = 0 then
print(cat(pname, “:"));
ERROR((ineffective readlib®)
fi;
pname;

end;

57

58 Geddes, Gonnet, and Char

7. INTERNAL REPRESENTATION AND MANIPULATION

7.1. Internal Organization

Maple appears to the user as an interactive “calculator”. This mode is achieved
by immediately executing any statement which is typed at the user level. It is in this
context where we can define Maple as a parser-driven program. The parser is effec-
tively the main program; its task is to read input, parse statements and call the state-
ment evaluator each time a statement is input.

The parser accepts the Maple language which has been kept simple enough to
have the LALR(1)} property. The parser, being the main program, retains control
throughout the session. For each production which is successfully reduced, it creates
the appropriate data structure. Additionally the reduction of the nonterminal <stat>
produces a call to the statement evaluator, the main Maple evaluator. Maple will
read an infinite number of statements; its normal conclusion is achieved by the
evaluation (not the parsing) of the <quit> statement. Thus it is possible to write a
statement like:

if <condition> then quit fi;
which will terminate execution conditionally.

The initialization phase is normally called before the parser. In some sense we
may say that both initialization and parser arc at the topmost level of control. This is
particularly true for some parsers, like yacc, which provide a “canned” main program
whose only task is to call sequentially the initialization, parser, and possibly a finali-
zation routine,

The internal functions in Maple can be divided into four distinct groups.

(1) Evaluators. The evaluators are the main functions responsible for evaluation.
There are five types of evaluations: statements (done by evalstat); algebraic
expressions (eval); boolean expressions (evaibool); name forming (evalname),
and floating point arithmetic (evalf). Although the parser calls only evalstat,
thereafter there are many interactions between the evaluators. For example,
the statement

if a>0 then b.i : = 3.14/a fi;

is first analyzed by evalstat which calls evalbool to resolve the if-condition.
Once this is done, say with a true result, evalstat is invoked again to do the
assignment, for which evalname has to be invoked with the left-hand-side and
eval with the right-hand expression. Finally evalf will be called to evaluate the
result. Most of the time the user will not directly invoke any of the evaluators;
these are invoked automatically as needed. In some circumstances, when a dif-
ferent type of evaluation is nceded, the user can directly call evalf, evalbool
(evalb for the user), and evalname (evaln).

(2) Algebraic functions. These are functions which are directly identified with a
function available at the user level, and are commonly called “basic". Some
examples clarify this immediately: taking derivatives (diff), picking parts of an

MAPLE User’s Manual 59

expression (op), dividing polynomials (divide), finding coefficients of polyno-
mials (coeff), series computation (taylor), mapping a function (map), substitu-
tion of expressions (subs, subsop), expansion of expressions (expand), finding
indeterminates (indets), etc. Some functions in this group may migrate to the
Maple level (Maple library) and vice versa due to tradeoffs between size and
efficiency.

(3) Algebraic service functions. These functions are algebraic in nature, but serve as
subordinates of the functions in the above group. Most frequently these fune-
tions cannot be explicitly called by the user. Examples of functions in this
group are; the arithmetic (integer, rational, and float) packages (const, consti)
the basic simplifier (simpl), printing (print), the series package (polyn), the
set-operations package (sets), retrieval of library functions (retrieve), etc.

(4) General service functions. Functions in this group are at the Jowest hierarchical
level; i.e., they may be called by any other function in the system. Their pur-
pose is general, and not necessarily tied to symbolic computation. Some exam-
ples are: storage allocation and garbage collection (storman), table manipulation
(hash,pc), internal input/output (put), non-local returns, and various error
handlers.

The flow of control within the basic system is not bound to remain at this level.
In many cases, where appropriate, a decision is made to call functions written in
Maple and residing in the library. For example, most uses of the function
expand(...) will be handled by the basic system; however, if an expansion of a sum
to a power greater than 4 is required, the internal expand will call the external
(Maple library) function “expa/large’ to resolve it. Functions such as diff, evalf,
taylor, and type make extensive use of this feature. (For example, the basic function
diff does not know how to differentiate any function; all its knowledge resides in the
Maple library at pathnames “diff/<function name>"). This is a fundamental feature
in the design of Maple as it permits flexibility (changing the library), personal tzilor-
ing (defining your own handling functions), readability (the source is in Maple code
and available to all users), and allows the system to remain small by unloading
unnecessary functions from the basic system.

7.2. Internat Representation of Data Types

The parser and some basic internal functions are responsible for building all of
the data structures used internally by Maple. All of the internal data structures have
the same general format:

[Header | data1 | data2 | ... | datan]

The header field encodes the length (n+1) of the structure, the type, one bit to indi-
cate simplification status, and two bits to indicate garbage collection status. The data
items are normally pointers to similar data structures; the few exceptions to this rule
are the terminal symbols.

Every data structure is created with its own length, and this length will not

60 Geddes, Gonnet, and Char

change during its entire existence. Furthermore, data structures should not be
changed during execution since it is not predictable how many other data structures
are pointing to a given structure. The normal procedure to modify structures is to
create a copy and modify the copy, hence returning a new data structure. The only
safe modifications are those done by the basic simplifier which produces the same
value, albeit simpler. It is the task of the garbage collector to identify unused struc-
tures.

In the following figures we will describe the individual structures and the con-
straints on their data items. We will use the symbolic names of the structures since
the actual numerical values used internally are of little interest. The symbol t<xxx>
will indicate a pointer to a structure of type xxx. In particular we will use, whenever
possible, the same notation as in the formal syntax (section 4.2).

Logical and

[AND | t<expr> | t<expr>|

Array

[ARRAY | t<indexing fon> | t<expr seq> | t<components>

The <expr seq> is a sequence of integer ranges which are the bounds for the array.
The <components> operand is not accessible through the op function.

Assignment statement

[ASSIGN | t<name> [1<expr> |

The <name> entry should evaluate to a valid name, which is one of the following
data structures: NAME, CATENATE, LOCAL, or PARAM.

Break statement
BREAK

Concatenation of a name

[CATENATE | t<name> [t<expr> |

The <name> entry is treated as in ASSIGN. The <expr> entry must evaluate to a
nonnegative integer or to a name to be successful. There are two exceptions: if
<expr> is an EXPRSEQ the entry is taken to be an array reference (the content of
the EXPRSEQ being the indices), and if <expr> is a RANGE the entry is a genera-
tor of an EXPRSEQ (e.g. a.(1..2) generates al,a2).

MAPLE User’s Manual 61

Equation or test for equality
| EQUATION | t<expr> | t<expr> |

This structure, together with all of the relational operators, has a double interpreta-
tion: as an equation and as a comparison.

Expression sequence

[EXPRSEQ [t<expr> | t<expr> [...]

An EXPRSEQ may be of length 1 (no entries); this empty structure is called NULL.
Floating point number

| FLOAT | t<integer> | t<integer> |

The floating point number is interpreted as the first integer times 10 powered to the
second.

For-while Joop statement

[FOR | t<name> | t<from> | t<by> | t<to> | t<while-cond> [t<statseq> |

The entries for <from>, <by>, <to>, and <while> are general expressions
which are filled with their default values, if necessary, by the parser. The <name>
entry follows the same rules as in ASSIGN except that a NULL value indicates its ab-
sence. A NULL value in the <to> expression indicates that there is no upper limit
on the loop.

Fortran function
FORTRAN

Not implemented for production yet.
Function call

[FUNCTION | t<name> | t<exprseq> |

This structure represents a function invocation (as distinct from a procedure defini-
tion which uses the PROC data structure). The <name> entry follows the same
rules as in ASSIGN, or it may be a PROC definition. (The parser will not generate
this structure with a PROC definition for the <name> entry, but this may happen
internally). The <exprseq> contains the list of parameters.

62 Geddes, Gonnet, and Char

If statement

[1F | *<if-condition> | t<statseq> | t<statseq>

The parser gencrates a NULL third entry for the if-then-fi statement, and generates
an IF entry for the if-then-elif... statement.

Not equal or test for inequality
[INEQUAT | t<expr> | t<expr> |

Same comments as for EQUATION.
Negative integer

[INTNEG | integer | integer | ... |

Integers are represented in base BASE (BASE=10000 for 32-bit machines and
BASE= 100000 for 36-bit machines). Each entry contains one “digit". A normalized
integer contains no additional zeros. The integers are represented in reverse order;
i.e., the first entry is the lowest order “digit", the last is the highest order “digit".
BASE is the largest power of 10 such that BASE? can be represented in the host-
machine integer arithmetic.

Positive integer

[INTPOS | integer [integer | ... |

Similar to INTNEG.
Less or equal relation

[LESSEQ | t<expr> | t<expr> |

Similar to EQUATION. The parser also translates a ‘‘greater or equal” into a struc-
ture of this type, interchanging the order of its arguments.

Less than relation
[LESSTHAN [t<expr> | t<expr> |

Similar to EQUATION. The parser also translates “greater than” into a structure of
this type, interchanging the order of its arguments.

List

[LIST | +<exprseq> |

MAPLE User’s Manual 63

Occurrence of a local variable

LOCAL | frieger

This entry indicates the usage of the <integer>th local variable. This structure is
only generated by the simplifier when it processes a function definition. LOCAL en-
tries cannot exist outside functions.

Identifier

[NAME | t<assigned-expr> | string | string [... |

The first entry contains a pointer to the assigned value (if this identifier has been as-
signed a value) or 0. The string entries contain the name of the variable.

Logical not

| NOT | 1<expr>

Logical or

[OR | t<expr> | t<expr> |

Occurrence of a parameter variable

[PARAM | integer |

Similar to LOCAL, but using the parameters of the function.
Rational number

[RATIONAL | +<INTPOS or INTNEG> [t<INTPOS> |

The second integer is always positive and different from 0 or 1. The two integers are
relatively prime.

Series
[SERIES | t<expr> | t<expr,> | integer; | ... | ...]

The first expression is the “taylor” variable of the series, the variable used to do the
series expansion. The remaining entries have to be interpreted as pairs of coefficient
and exponent. The exponents are integers (not pointers to integers) and appear in
increasing order. A coefficient O(1) (function call to the function *“O" with parame-
ter 1) is interpreted specially by Maple as an “order” term.

64 Geddes, Gonnet, and Char

Power

[POWER [t<expr> | t<expr> |

If the second entry is a rational constant, this structure is changed to a PROD struc-
ture by the simplifier.

Procedure definition

[PROC | t<nameseq,> | t<nameseq,> | 1<nameseq,> | t<statseq>

The first <nameseq> is an EXPRSEQ of the names specified for the formal parame-
ters. The second corresponds to an EXPRSEQ of the names specified for the local
variables and the third to the options specified. The <statseq™ points to the body of
the function.

Product/quotient/power

[PROD | t<expr,> | t<expon,> [] -]

This structure should be interpreted as pairs of expressions and their (rational) ex-
ponents. Rational or integer expressions to an integer power are expanded. If there
is a rational constant in the product, this constant will be moved to the first entry by
the simplifier.

Range

[RANGE [t<expr,> | t<expr,> |

Read statement

| READ [t1<expr> |

The expression should evaluate to a name (string).
Save statement

[SAVE [t<expr> |

The expression should evaluate to a name (string).
Set

rSET] 1<exprseq>|

The entries in the <exprseq> are sorted in increasing address order. This is an arbi-
trary order, but is necessary for sets. (Any other arbitrary, but consistent, order
could serve.)

MAPLE User’s Manual 65

Statement sequence

[STATSEQ | t<stat,> | 1<stat,> | ... |

End execution

Sum of several terms

[SUM [t<expr,> [t<factor,> | ... | ...]

This structure should be interpreted as pairs of expressions and their (rational) fac-
tors. The simplifier lifts as many constant factors as possible from each expression
and places them in the <factor> entries. A rational constant is multiplied by its fac-
tor and represented with factor 1.

Table

[TABLE | t<indexing fen> | | t<components> |

The <components> are not accessible through the use of the op function.
Unevaluated expression

[UNEVAL | t<expr> |

7.3. Portablility of the Maple System

One of the design goals of Maple is to be portable. The level of portability that
we envision is one for which the scope of machines includes personal computers as
well as present-day time-sharing systems. It was a very early decision that the
language to be chosen should belong to the BCPL family. The reasons behind this
decision are: efficiency, suitability, and availability. On the other hand, no single
language in the BCPL family is sufficiently widely available to satisfy our needs. In
view of this, we decided to write our system in a language which closely resembles B
and C. This language is processed by the Margay macro-processor into either B or
C, and in the near future into Port and WSL (which are two systems implementation
languages developed at the University of Waterloo). Margay is a straightforward
macro-processor which resembles closely, although is more powerful than, C's
macro-processing. The most important difference is that Margay is written in its own
macros and hence is portable across several systems.

The level of portability for the Maple user should be total. That is to say, a
user should not be able to recognize in which hardware he is running. This is an easy
consequence of the fact that there is a single source for Maple; the macro processing
is done only before compilation and the intermediate code is never kept. It is impor-
tant to realize that the entire basic system is only about 4500 lines of code. With

66 Geddes, Gonnet, and Char

such a small system, we can afford minor changes in the code to improve portability
across systems. In many instances we add redundant information to be used by Mar-
gay, which may be ignored by some systems and used by others.

The Margay macros which aid in portability can be classified in various groups:

© name changes; e.g. concat(..) in B is equivalent to strcat(..) in C,

® declaration information; Margay recognizes EXF (external function defini-
tions), FUN (function definition), PAR (definition of parameters), LOC (definition
of local variables), EXT (definition of external variables), and three types: ALGEB
(algebraic), LONGINT (multiple precision integers), and INT.

® system constants; EOF (end-of-file), TRUE, FALSE, MAXINT, MAX-
ADDR, QUOTE, CHNL (new line character), etc.

® casting: I(...), forcing an expression to be of type integer.

& input/output: The input and output is one of the most delicate aspects of por-
tability. The Maple system requires a very simple type of sequential input/output.
Maple knows of only one sequential input stream (possibly stacked) and one sequen-
tial output stream (unique). The input and output are done either in words or in
characters.

The macros used for input are:
@ Ropen(“filename") Opens a file for input, stacks the present input file, and
returns false if it failed to open the file.
® Readch() Reads one character from the input stream.
@ Readws(vect,nws) Reads nws binary words into vect. Returns the number
of words read; 0 if EOF.
® Relose() Closes file and unstacks previous file for input.

The output macros are:
® Wopen("filename") Opens a file for output (there is only one at a given
time), and returns false if it failed.
@ printf("format",...) Outputs characters.
® Writews(vect,nws) Outputs aws binary words from the vector vect.
® Wclose() Closes the output file.

7.4. Searching Tables in Maple

Maple handles all table scarching in a uniform way. All of the searching is
done by an algorithm which is a slight modification of direct-chaining hashing.
Although it is not obvious, the internal tables play a crucial role; they are used for:
locating variable names (nametab); keeping track of simplified expressions (sim-
pltab); keeping track of partial computations (pctable); mapping expression trees into
sequential files for internal input/output (puttab); and for storing arrays and tables.
It is immediately obvious that the searching in these tables has to be fast enough to
guarantee overall efficiency.

The algorithm used for these tables can be understood as an implementation of
direct-chaining where instead of storing a linked list for each table entry, we store a
variable-length array. This requires a versatile and efficient storage manager, but
without one symbolic computation would not be feasible.

MAPLE User’s Manual 67

The two data structures used to implement tables are:
Table entry

[HASHTAB | 1<HASH> [+<HASH> [... | +<HASH> |

Each entry points to a HASH entry or it is 0 if no entry was created. The size of
HASHTAB is constant for the implementation. For best efficiency, the number of
entries should be prime.

Hash-chain entry

[HASH I key I value I I

Each entry in the table consists of a consecutive pair, the first one being the hashing
key and the second the stored value. A key cannot have the value 0 as this is the in-
dicator for the end of a chain. For efficiency reasons, the HASH entries are incre-
mented by S entries at a time and consequently some entries may not be filled. Keys
may be any integer or pointer which is representable in one word. In many cases the
key is itself a hashing value (two step hashing).

7.4.1. The Simplification Table

All simplified expressions and subexpressions are stored in the simplification
table. The main purpose of this table is to ensure that expressions appear internally
only once. Every expression which is entered to Maple or which is internally gen-
erated is checked against this table, and if found, the new expression is discarded and
the old one is used. This task is done by the simplifier which recursively simplifies
(applies all the basic simplification rules) and checks against the table.

The task of checking for equivalent expressions within thousands of sub-
expressions would not be possible if it was not done with the aid of a “hashing” con-
cept. Every expression is entered in the simplification table using its signature as a
key. The signature of an expression is a hashing function itself, with one very
important attribute: it is order independent. For example, the signatures of the
expressions a+b-+c and c+a+b are identical; the signatures of a*b and b"a are also
identical. Searching for an expression in the simplification table is done by:

@ Simplifying recursively all of its components;

® Applying the basic simplification rules.

o Computing its signature and searching this signature in the table. If the sig-
nature is found then we perform a full comparison (taking into account that additions
and products are commutative, etc.) to verify that it is'the same expression. If the
expression is found, the one in the table is used and the searched one is discarded.

The number of times that we have to do a full comparison on expressions is
minimal; it is only when we have a “collision” of signatures. Some experiments have
indicated that signatures coincide once every 50000 comparisons for 32-bit signatures.
(Notice that the signatures are still far from uniform random numbers). The result-
ing expected time spent doing full comparisons is absolutely negligible. Of course, if

68 Geddes, Gonnet, and Char

the signatures disagree then the expressions cannot be equal at the basic level of sim-
plification.

7.4.2. The Partial-Computation Table

The partial-computation table is responsible for handling the option remember
in function definitions in its explicit and implicit forms. Basically, the table stores
function calls as keys and their results as values. Since both these objects are data
structures already created, the only cost (in terms of storage) to place them in the
table is a pair of entries (pointers). Searching these hashing tables is extremely effi-
cient and even for simple functions it is orders of magnitude faster than the actual
computation of the function.

The change in efficiency due to the use of the remembering facility may be
dramatic. For example, the Fibonacci numbers computed with

f := proc(n)
if n<2 then n else f(n-1)+f(n-2) fi end;

take exponential time to compute, while

f : = proc(n) option remember;
if n<2 then n else f(n-1)+{(n-2) fi end;
requires linear time.

Besides the facility provided to users, the internal system uses the partial-
computation table for diff, taylor, expand, and evalf. The internal handling of
expand is straightforward. There are some exceptions with the others, namely:

@ diff will store not only its result but also its inverse; in other words, if you
integrate the result of a differentiation the result will be ‘“‘table-looked up” rather
than computed. In this sense, integration “learns” from differentiation.

@ taylor and evalf need to store some additional, environment, information
(Degree for taylor and Digits for evalf). Consequently the entries in these cases are
extended with the precision information. If a result is requested with less precision
than what it is stored in the table, it is retrieved anyway and “rounded”. If a result
is produced with more precision than what it is stored, it is replaced in the table.

® cvalf only remembers function calls (this includes constants); it does not
remember the results of arithmetic operations.

Both the simplification table and the partial-computation table are cleared of all
unreferenced entries at garbage collection time.

7.4.3. Arrays

Arrays and tables are implemented with internal tables. In this case the address
of the simplified EXPRSEQ of indices is used as a key for the searching. (Note that
since simplified expressions appear only once, we can use their addresses as keys.)
Arrays and tables are treated very similarly at the internal level. This implementa-
tion permits efficient use of sparse arrays of any kind without overhead.

MAPLE User’s Manual 69

7.5. Style Recommendations for Library Contributions

In this section we include several recommendations (or a checklist) which should
be useful in preparing Maple software intended to be part of the library. The main
motivation for this document is to provide uniformity and ease in porting and main-
taining the library. We expect that contributors will find the recommendations sound
and that these will be followed as closely as possible.

General Recommendations

7.8.1. Nothing, absolutely nothing, replaces good algorithms and good program-
ming techniques. No matter how closely it follows the recommendations or how
much it is embellished, a bad algorithm will always be a disgrace to the library.

7.8.2. Each function should have a precise objective. In this respect we think that
functions that can be trivially implemented with other commands or functions, are a
disservice to the user community, They take space in the libraries, manual, and
minds without giving a substantial service.

7.5.3. Each function should have comments in its heading which, without much ver-
bosity, explain the usage, purpose, author, level, algorithm and possibly some other
useful information. Pages of comments where it is difficult to find the above infor-
mation may be worse than no comments at all,

7.5.4. Each function should be accompanied by a test file which tests its correctness.
Test files should not be tedious repetitions of the same situation, but instead the shor-
test and quickest program that explores all of the code in the function. Test files will
normally grow with the examples that detected errors previously undetected. Such
“errors” are pieces of code which run through a sensitive path and are, in general,
excellent tests. Long and slow tests tend not to be run, and are self-defeating.

7.5.5. The code in the library is likely to be taken as an example for users and
future implementors of Maple. Consequently we are doubly motivated to produce
high quality code.

7.5.6. If a function resides in <any directory>/xxx.m then its source, that is the
Maple source code that generates it, will be placed in <any directory>/src/xxx . The
only exceptions to this rule are the functions that, for being thematically related and
very short, are included in a single file. System library functions should be saved
with a statement like

save cat(libname, ‘xxx.m");

so that their *.m" files can be created in a portable way.

70 Geddes, Gonnet, and Char

7.5.7. Files names (without the *“.m"), and consequently function names, should be
9 characters long or shorter, This is not counting directories. This is caused by sys-
tem limitations and the need to load with readlib(...). Internal! functions defined
entirely within another function body are not restricted by this limitation. Upper-
lower case distinctions are not respected by some systems; consequently, different
function names should not rely on case differences alone.

7.8.8. Local variables should be reasonably economized. Also, excessive use of
local variables tends to reduce readability of the programs. E.g.,

for i to nops(expr) do ... od;
is more efficient and readable than

limit : = nops(expr);
for i to limit do ... od;

The use of the RETURN{...) function typically eases the understanding of the flow
of control and saves local variables. Simple operations on parameters may not be
worth the assignment of local variables; for example, if op(1,paraml) is used only
twice, then assigning temp := op(1,paraml) is not a real saving.

7.5.9. Global variables should be avoided. If unavoidable, global variables should
be named starting with the at-sign (@). The Maple library convention for returning
a “fail” condition (in cases where a direct FAIL return is inappropriate) is to return
the global name @FAIL.

7.5.10. Data types should be used properly where needed. For example: a pair of
two elements where order is important should be accommodated in a list; an indicator
should only take the values true or false; etc.

7.5.11. Packages (collections of functions for a given purpose) should be structured
according to the following example. Suppose users want to call X(...) directly. If
X is nontrivial, it may optionally call sub-functions A, B, or C. Furthermore let us
assume that any of X, A, B or C can call the lowest level functions E and F. Then:

(a) X should be the only name known to Maple, or the only name subject to be
read with readlib(X).

(b) All of the functions that are likely to be loaded within the execution of X
should be included in the module of X. That is to say that the number of loading
operations should be minimized.

(c) The remmmng functions in the package, which may or may not be loaded
should be defined in the module X as B:="readlib("B')’, etc. This will cause the
loading of B to be delayed until B(...) is used.

(d) When there are two or more possible entry points which share most of the
package, then all of the definitions should be included in a single module, If X and
Y are two entry points for the same package, all of the code for X and Y will be
stored together (say in X.m). The initial definitions of X and Y will now be:

MAPLE User’s Manual T

X := 'readlib(’X’)’;
Y := "readlib('Y’, ** . libname . ‘X.m")’;

(e) Finally, a sub-function may be used directly by the user independently of
the package. For example, if C could be used independently of X and Y then we
need an entry for C. Within the package X we will define C as before, namely:

C := 'readlib(’C’)’;

For the direct use of C we need to load its accompanying E and F; consequently, the
definition for direct usage of C (not through X) will be:

C := 'readlib(’C’, **.libname.*C.m", **.libname. 'E.m", **.libname. 'F.m")’;

7.5.12. The option 'remember’ may be crucial for efficiency. It should be used
when it is reasonably effective: whenever recomputation is likely. It should not be
unnecessarily nested, Functions which produce side effects (printing of values,
returning values through parameters, etc.) cannot use the option remember since this
option reproduces the function result, not its side effects.

7.5.13. Atomized programming (splitting all steps of a computation) is not very effi-
cient and, frequently, is unreadable (the “Assembler syndrome™). At the other
extreme, ‘““one-liners” are also unreadable (the “APL syndrome"). Both extremes
should be avoided.

7.5.14. In complicated packages, it may be desirable to inform the user about the
progress of a computation. Such printing should be regulated by printlevel. The
values 2 and 3 are reserved for this purpose. For example:

if printlevel>2 then print(*Risch method applied") fi;

7.5.15. It has proved to be valuable to have a “‘benchmark” for each function. A
benchmark is a test file that not only tests for correctness but also for timing. When
changes are done, it can be precisely measured if more/less time/space is used.
Sometimes naive-looking modifications produce significant changes in performance.

7.5.16. Remember: Don't forget to use the load option *“~1" when loading Maple
library functions. (See section 8.3).

72 Geddes, Gonnet, and Char

8. LIBRARY FUNCTIONS

Maple's library functions fall into three categories: functions internal to the
Maple system, automatically-loaded library functions, and miscellaneous library func-
tions that are not automatically loaded. Functions in the first category are coded
internally in the basic Maple system. Functions in the second category are specified
by Maple ccde in the Maple system library, and their names are initially assigned as
unevaluated readlib functions (see section 6.7). The functions in the first two
categories will be grouped together in this section since the user will not generally
make any distinction between these two categories. In fact, the grouping of functions
into these two categories may be different on different host systems. For a specific
function ‘f’, the user can easily determine which of the first two categories it belongs
to by entering Maple and displaying the value op(’f’); the result will be the name ‘f’
for functions in the first category and the result will be ‘readlib(’f’)’ for functions in
the second category. Functions in the third category will be listed separately at the
end of this section because they cannot be used without being explicitly loaded by the
user.

The general rule for function invocations in Maple is that all arguments are fully
evaluated. Two exceptions are the functions assigned and evaln where the argument
is evaluated to a name, a third exception is the function evalb where the argument is
evaluated by the Boolean evaluator rather than by the general expression evaluator,
and a fourth exception is the function remember where the argument involves a pro-
cedure invocation which will not be invoked. The names of the library functions are
not reserved words in Maple. A user may define his own function using the same
name as one of the system-supplied functions.

8.1. Standard Library Functions

8.1.1. abs (expr)
If expr is of type integer, rational, or floating point, then the absolute value of

expr is returned, otherwise the function invocation remains unevaluated.
8.1.2. analyze (expr)

The purpose of this function is to analyze an expression in the following sense.
The expression expr is viewed as a sum of products, each of the form:

constef,"lef, e, #f e

where the f’s and ¢;'s can be general expressions. If expr is a product (including the
case of a single factor) then the value returned is the list

[comst, f;, ey, ..., f,, ¢,]
(where const will be 1 if there is no explicit constant in the product). If expris a

MAPLE User’s Manual 73

sum or an equation or a range then the function analyze is mapped onto expr. (See
the function map).

8.1.3. anames ()

This function takes no arguments. It returns an expression sequence consisting
of all of the active names in the current Maple session which are assigned names,
meaning names which have been assigned values other than their own names. (See
also the function unames).

8.1.4. array (Indexing fanction, init list, lo,..bt,, lo,..hi,, ...)

To create an expression of type array, a call is made to this function. The
parameters array takes are an indexing function, initializations, and an array bound.
Each of these is optional and they may appear in any order in the parameter
sequence.

The indexing function is given either as a procedure or as a name. If one is not
given, then a default of NULL is used. (Actually, that is the only way to obtain a
NULL indexing function.)

The initinlizations are given either as a list of equations or as a list of values.
(To avoid ambiguity, if a list of values is used, none of the values may itself be an
equation.) If a list of equations is given, then for each equation, the left-hand side is
used as the index of a component and the right-hand side is used as its value. With a
list of values, consecutive integer indices are used starting at the low index specified
in the index bound if an index bound is given, or at 1 if one is not given. The
default for initializations is the empty list.

The index bound is passed as a number of integer ranges which appear adja-
cently in the parameter sequence. If no index bound is given, then one is deduced
from the list of initializations. If the injtializations are given as a list of equations,
then the index bound is taken to be a sequence of ranges of the same length as the
indices. Each range is made as restrictive as possible while still encompassing all the
indices from the equations. If the initializations are given as a list of values then the
array is taken to be one-dimensional and the index bound is a range from 1 to the
number of values given. If as well as no index bound, no initializations are given (or
if an empty list is given), then the array is taken to be zero-dimensional. (In this
case, the only valid index is NULL.)

Examples:
array(); yields array([)
array([]); yields array([])
array(0..3); yields array(0..3,[)
array(1..4,0..3); yields array(1..4,0..3,[])
array{{x,y,z]); yields array(l..3,[(1)=x,(2)=y,{3)=2])
array(0..3, [x,y,z]}); yields array(0..3,[(0)=x,(1)=y,(2)=z])
array(ix,y,z], 0..3); yields array(0..3,[(0)=x,{1)=y,(2)=z])

array((3=X,10=Y)); yields array(3..10,[(3)=X,(10}=Y})

74 Geddes, Gonnet, and Char

array(9..11, [10=Y]); yields array(9..11,{(10)=Y])
array([(1,2)=12, (2,7)=27)); yields array(1..2,2..7,[(1,2)=12,(2,7}=27])
array(sparse,[1=x,100=y]); yields array(sparse,1..100,[(1)=x,(100}=y])

8.1.5. assigned (name)

This function returns the value true if name is active in the current session and it
has a value other than its own name, and returns the value false otherwise. The
argument to this function must be a valid name. The argument is not fully evaluated
but is evaluated to a name.

8.1.6. asympt (expr, x) or asympt (expr,x,n)

The purpose of this function is to compute the asymptotic expansion of expr
with respect to the variable x (as x approaches infinity). If there is a third argument
‘n’ then it must evaluate to an integer which specifies the ‘truncation degree’ to be
used. If there is no third argument then the ‘truncation degree’ is specified by the
current value of the global variable Degree (which initially has the value 5 in the
Maple system), Specifically, this function is defined in terms of the taylor function
as follows:

subs(x=1/x, taylor(subs(x=1/x, expr), x=0,n))

(where the third argument ‘n’ to the taylor function will be omitted if it was omitted
in the call to asympt).
8.1.7. cat(a, b,c,...)

This function takes an arbitrary number of arguments, which are evaluated and
then concatenated to form either a name or an object of type °.’. The result of this
function can be specified in terms of Maple’s concatenation operator .’ as follows:

“.a.b.c
(for the case of only three arguments, for example).

8.1.8. coeff (expr, x, n)

For this function the expression expr must be in expanded form (see the func-
tion expand). The value of this function is the coefficient in expr of the term involv-
ing x"n . '
Examples: If

p:= T0syex'4 — 70+x"4 — 1774x"2 + 19+y"Sex — 35¢y*2 + 105
then

MAPLE User’s Manual 75

coeff(p, x, 0); yields 105—35+y"2
coeff(p, x, 1); yields 19+y"S
coefi(p, x, 2); yields -177
coeff(p, x, 3); yields 0

coeff(p, x, 4); yields T0+y—70

8.1.9. convert { expr, class, arg,, arg,, ...)

The purpose of this function is to explicitly convert an expression from one type
to another. Some of these conversions are coercions from one datatype to another,
c.g., from a rational expression to a floating point number. Others of these conver-
sions convert integer values into representations in bases other than decimal, e.g.,
conversion into binary format. Finally, there are conversions from one symbolic unit
into another, The second parameter class specifies what type of conversion is
required. Usually only two arguments are given when convert is called but some
classes of conversion may require additional information. In that case these would be
passed as the third and succeeding arguments.

If class is ‘array’, then an attempt is made to construct an array from the
expression given. Only expressions of type ‘list’ or type ‘table’ may be converted,
(One important use of this is to extend the bounds of an existing array, e.g., to add
a column to a matrix.) The value returned by convert is a new array created by the
array function. If extra arguments are given after ‘array’ in the call to convert, then
they are used as the index bounds. When expr is a list, then the array is created
using expr as the initialization list. 'When expr is a table, the initialization list used to
create the array has an equation of the form index = expr{index] for each component
of expr.

If class is ‘binary’ or ‘octal’, then convert returns an integer which represents the
value of expr in binary or octal format.

If class is ‘list’, then convert returns a list containing all the operands of expr.

If class is ‘metric’, then expr may contain non-metric unit names, e.g.,
S+ft+10+in. This expression is then converted into metric form. An additional third
argument which may be either ‘imp’ or ‘US’ may be given in cases where there is a
difference between Imperial units and U.S. units. A list of all the units which are
known to the convert routine is given in Appendix A.

If class is ‘name’, then convert returns a name which looks like the expression.

For the case where class is ‘polynom’, if expr is not of type ‘polynom’ then it
must be of type ‘series’ and the result is the polynomial obtained by removing the
order term (if any) from the series and converting from the series data structure to
the ordinary sum-of-products data structure.

For the case where class is ‘rational’, if expr is not of type ‘rational’ then it
must be of type ‘float’ and a rational number is generated which approximates the
given floating point number. The accuracy of the approximation depends on the
number of significant digits in the input floating point number.

76 Geddes, Gonnet, and Char

If class is ‘series’, then expr is expected to be a polynomial and this polynomial
is converted into a power series form.

If set is ‘set’, then convert returns a set containing all the operands of expr.

If class is *»*, the all the op’s of the expression are mulitiplied together to give
the result.

If class is *+°, then all the op’s of the expression are added together to give the
result.

Examples:

convert([a,b,c], array) yields array(1..3, [(1)=a,(2)=b,(3)=¢c])
table([(1,1)=11, (1,2)=0 1)

convert(", array) yields array(1..1, 1..2, [(1,1)=11, (1,2)=0])

convert(", array, 0..3, 0..3) yields array(0..3, 0..3, [(1,1)=11, (1,2)=0])

convert(9, binary) yields 1001
type(", integer) yields true
convert(15, octal) yields 17

convert(x+y, list) yields [x,¥y]
convert(—13, set) yields {-13}

convert(3»inch, metric) yields 7.62+cm

convert(8, name)‘ yields 8
type(", name) yields true

s : = taylor(sin(x), x=0); yields 8 1= lex+(~1/6)sx"3+1/120+x"5+ O(x"6)

convert(s, polynom); yields x—1/6#x"3+1/120+x"5
convert(3.14, rational) yields 2277

convert(3.1415, rational) yields 311/99

convert(0.30, rational) yields 173

convert(0.300, rational) yields 3/10

convert(1+x, series) yields 14 1ex

convert([a,b,c], ‘**) yields asbec

User Interface: New conversion procedures can be made known to the convert func-
tion by the following mechanism. If the user assigns a procedure to the name
“conv/newtype’ (where ‘newtype’ is any name chosen by the user) as in

‘conv/newtype’ := proc (expr, <extra parameters>) ... end
then the function invocation

MAPLE User’s Manual 77

convert (expr, newtype, <extra parameters>)
will cause the function invocation
“conv/newtype® (expr, <extra parameters>) .

If “conv/newtype" is not assigned then Maple looks for it in the Maple system library
at the pathname

cat(libname, “conv/newtype.m")

and if it is not found then an error occurs.

8.1.10. copy (expr)

The copy function returns a copy of its parameter. The primary use of this
function is to copy tables.

A table is the only type of data object which can be modified after creation. (A
table is the only type of object for which it is possible to make an assignment to a
part of the object.) Therefore it would only ever be necessary to use copy when
‘expr’ was a table or had a table as a subexpression. For other inputs, copy simply
returns its parameter.

copy is applied recursively to the subexpressions of ‘expr’ so that all tables in it
are copied. The expression returned is immune to side effects caused by assignment
to components of tables that existed when copy was called.

Examples:
copy(2 + sin(x)); yields 2+sin(x)
copy(proc() a end); yields proc() a end
u ;= table([X]); yields u := table([(1)=X])
vimu yields v := table([(1)=X])
w := copy(u); yields w := table([(1)=X])
ufl] := 8;
v{1]; yields 8
w(1]; yields X
L := [u,u]; N := copy(L); u[1] := 9;
L; yields [table([(1)=9]),table([(1)=9])]
N; yields [table([(1)=8]),table([(1)=8]}]

8.1.11. degree (expr, x)

If expr is a polynomial in x (allowing both positive and negative exponents)
then this function returns the degree of expr in x. It is not necessary that expr be in
expanded form. This function may be applied as well to the series data structure. If
expr is neither a series in the indeterminate x nor a polynomial in the indeterminate x

78 Geddes, Gonnet, and Char

then the value returned is @FAIL. (See also ldegree()).

8.1.12. denom (expr)

This function computes the common denominator of an expression. Specifi-
cally, it first applies the analyze function to expr. Then it extracts from each term
the denominator of the constant factor and all factors whose exponents have negative
sign, and forms the least common multiple of the denominators thus extracted from
each term.

8.1.13. diff (expr, X;, X;, . . ., X,)

This function computes the partial derivative of expr with respect to x,, x,, ...,
x,, respectively. The latter n expressions must evaluate to names. In the case where
n is greater than one, the syntax is simply a shorthand notation for nested applica-
tions of the diff function.

Examples: Assuming that x and y are names which stand for themselves, if the fol-
lowing statements are executed:

p:i= —30ex"3ey + 90+x"2¢y°2 + 5¢x°2 ~ Gexey;
diff(p, x, y);

then the result of the function invocation of ‘diff” is:
~90#x"2+360+x+y+(~6)

This is equivalent to exccuting the statement diff(diff(p,x), y) .

User Interface: New functions can be made known to Maple’s diff function by the
following mechanism. If the user assigns a procedure to the name “diff/newfcn’

.

(where ‘newfcn’ is any name chosen by the user) as in
“diff/newfcn : = proc (expr,x) newfcnl(expr) » diff(expr,x) end

(where the name ‘newfcnl’ is being used as the name of the derivative function) then
the function invocation

diff (newfcn(expr), x)
will cause the function invocation
“diff/newfen” (expr, x).

If “diff/newfen" is not assigned then Maple looks for it in the Maple system library at
the pathname '

cat(libname, “diff/newfcn.m")
and if it is not found then a FAIL return occurs from the diff function.

Functions whose derivatives are currently defined in the Maple system library
include the clementary functions (all of the circular, inverse circular, hyperbolic, and
inverse hyperbolic functions, as well as the functions exp and In), abs, GAMMA, Psi
(which satisfies the relationship

MAPLE User’s Manual 79

Psi(x) = diff(GAMMAC(x),x) / GAMMA(x)),

and the first four derivatives of Psi (represented by the names Psil, Psi2, Psi3, and
Psi4). The derivative of an unevaluated ‘int’ function is also defined in the Maple
system library.

8.1.14. divide (a, b, ’q’)

The purpose of this function is to attempt to perform exact polynomial division
of expression ‘a’ by expression ‘b’. The division is considered successful only if the
resulting quotient is a ‘true polynomial’ in its indeterminates -- i.e., negative
exponents are not acceptable in the result of a polynomial division. The value of the
divide function is ‘true’ if the division was successful, ‘false’ otherwise. Further-
more, if there is a third argument ’q" (which must evaluate to a name) and if the divi-
sion was successful then the value of the quotient is assigned to q. In the case of an
unsuccessful division the value of q will remain unaffected.

Examples:
a:= Try"3sx"4 — 20yex"3 — (y"4 — 214y"3)ex"2 — Geyex ~ 30y"4;
b= yex"2 4 3ey;
divide(a, b, ’q’); yields true
q; yields Toy2ex"2—20x—y"3

r ;= expand((2¢x-5)"3 * (x+1));
while divide(r, 2¢x-5, 'r’) do od;

1; yields x+1

f : = expand((c—-1)/c); ‘ yields 1-¢(-1)
g:=c—1; yields c—-1
divide(f, g); yields false

In the latter example, note that it is possible to simplify the expression f/g to the
value ¢(—1) but this cannot be accomplished by the divide function because the result
is not a ‘true polynomial’. For this purpose, the normal function should be used, as
in:
f/g; yields (1-c"(-1))/(c-1)
normal("); yields c(-1)

8.1.15. ERROR (<expr seq>)

This function is a special function whose purpose is to cause an immediate exit
from a procedure. (See section 5.5). Upon execution of this function, control
returns to the top level of the Maple system and the message "ERROR: " followed
by the values of the expression sequence given in the parameter list.

Example:

80 Geddes, Gonnet, and Char

ERROR(in, ’f’, x, xe*2); prints ERROR: in, f, 3,9

8.1.16. evalb (expr)

This function invokes the Boolean expression evaluator on expr. For example,
the expression a = b will be considered an algebraic equation if it does not appear in
an explicit Boolean context, but evalb(a = b) will evaluate the equation as a Boolean
(i.e., it will evaluate the equation to the value ‘true’ or to the value ‘false’).

8.1.17. evalc (expr)

This function evaluates and simplifies the complex expression expr. It uses the
global variable I for (~1)»+(1/2).

Examples:

evalc((3 + 5+I) » (7 + 4+I)); yields 1+ 47«1
evale((5— D/ (1 + 2+I)); yields 3/5 — 11/5+1
evale((9 + 8+1)*2);. - yields 17 + 1441

8.1.18. evaln (name) .

The purpose of this function is to apply to the argument ‘name’ Maple’s name
evaluator, which is the evaluator that is always applied to left-hand-sides of assign-
ments, for example. The argument must be a syntactically valid name and, of
course, it is not fully evaluated. One of the uses for this function is to umassign
names formed with the concatenation operator. For example,

forito 5 do a.i := evaln(a.i) od

will unassign the names al, a2, a3, ad, and a5. Note that in this case the evaln func-
tion cannot be replaced by the use of the unevaluated expression construct 'a.i’
because then the concatenation on the right-hand-side will remain unevaluated (and
the names al, . . ., a5 will remain assigned).

8.1.19. evalf (expr) or evalf (expr,n)

This is the ‘evaluate to a floating point form’ function, which evaluates the
argument ‘expr’ to a floating point number (if possible). If there is no second argu-
ment then the number of significant digits appearing in the result is controlled by
Maple's global variable Digits. (The initial value of the global variable Digits is 10,
but the user may assign any integer value to this global variable). If there is a second
argument ‘n’ to the evalf function then it must evaluate to an integer, and the number
of significant digits appearing in the result is determined by the value of n.

Examples:

MAPLE User’'s Manual 81

a:= (540 + 3'50) /2'90; yields
a 1= 4547832457858487115869580437/618970019642690137449562112

cvalf(a); yields 7.3474196060

evalf(a, 40); yields 7.3474196060154781089322604350878881161323
Digits : = 25;

evalf(5/3 » exp(—2) » sin(Pi/4)); yields .159494160850684873267980(

User Interface: New functions, and also new constants, can be made known to
Maple’s evalf function by the user.

For the case of new functions, if the user assigns a procedure to the name
“float/newfcn’ (where ‘newfcn’ is any name chosen by the user) as in

“float/newfen” := proc (x)
local t;
t := evalf(x);
evalf(exp(t"2) » sin(Pi/2 = t))
end

then the function invocation
evalf (newfen(x))

will cause the function invocation
‘float/newfen” (x) .

If *float/newfcn’ is not assigned then Maple looks for it in the Maple system library at
the pathname

cat(libname, “float/newfcn.m")

and if it is not found then an error occurs.

For the case of new constants, if the user assigns a procedure to the name
*float/constant/newconst” (where ‘newconst’ is any name chosen by the user) as in

“float/constant/newconst” : = proc () evalf((5°(1/2) = 1) /2) end;
then the function invocation

evalf (newconst)
will cause the function invocation

*float/constant/newconst’ () .

If *float/constant/newconst” is not assigned then Maple looks for it in the Maple sys-
tem library at the pathname

cat(libname, “float/constant/newconst.m")

and if it is not found then an error occurs.
Functions for which ‘evalf’ procedures are currently defined in the Maple

82 Geddes, Gonnet, and Char

system library include the elementary functions (all of the circular, inverse circular,
hyperbotic, and inverse hyperbolic functions, as well as the functions exp and In),
and the functions GAMMA, Psi, Psil, and zeta. Constants for which ‘evalf’ pro-
cedures are currently defined in the Maple system library include:

Pi, e (exp(1)), gamma (Euler’s constant), and Catalan (Catalan’s constant) .

8.1.20. expand (expr) or expand (expr, ¢, ¢,, . . ., ;)

The purpose of this function is to expand expr by distributing products over
sums, It also expands certain function calls. If the number of arguments is greater
than one then the additional arguments e,, e,, ..., €, are expressions which will be
‘frozen’ (i.e., the effect is to replace every occurrence of ¢, by a name before per-
forming the expand operation and then to restore the original expression ¢
unchanged). If the expression is an equation then expand is applied to the operands
of the equation. The functions that expand knows are:

bigprod, bigpow, C, cos, exp, factorial, large, In, power, sin, prodequa

Examples:
p:=(29x ~ 5)+ (35+x2 - x+ 7);
expand(p); yields 700x"3—177+x"2+19ex+(—35)

q := 3esin(x) » (xesin(x) — y*z) » (20372 - 3);
expand(q); yields
6esin(x)"2ex"3—9#sin(x) 2ex— +sin(x)syszex 2+ 9esin(x)sy*z

1= 3¢(x+1)"3 — Se(x+1)2;

expand(r, x+1); yields 3e(x+1)"3-5e(x+1)2
expand(r); yields 3¢x"3+42x2=x+(~2)
expand(C(n,r)) yields al/rl/(n-r)!
expand(7+cos(2+x)) yields Tecos(x)"2 - Tesin(x)"2
expand((n+1)!) yields (n+1)+n!
expand((x+1)"3) yieldsx"3 + 3#x"2 + 3'x + 1
expand(sin(x+y)) yields cos(x)esin(y) + cos(y)esin(x)
expand(sin(x+y), sin) yields sin{ x+y)

User Interface:

New functions can be made known to Maple’s expand function by assigning a
procedure to the name ‘expand/fcn’ where ‘fen’ can be any name chosen by the user.
To illustrate, we will give a definition for ‘expand/tan‘:

MAPLE User's Manual 83

‘expand/tan‘ : = proc(x)
subs(cos="@ONE’, sin=tan, expand(sin(x)/cos(x)));

end;

@ONE : = proc() 1 end;
The function invocation

expand(tan(2+x));
will in turn invoke

‘expand/tan‘(2ex);
which returns

2«tan(x)/(1-tan(x)"2) .

If ‘expand/tan’ is not assigned then Maple looks for it in the Maple system library at
the pathname

cat(libname, ‘expand/tan.m‘);

and if that file is not found, then the unexpanded function call
tan(2#x) '

is returned.

The functions expandoff and expandon (c.f. expandoff and expandon in section
8.2) can be use to selectively supress or apply Maple’s knowledge of how function
calls are to be expanded.

8.1.21. factor (expr)

This function computes a complete factorization over the integers of the mul-
tivariate polynomial expr. (Work on this function has not been completed at the time
of writing).

8.1.22. Float (m, exp)

This is a special function used to specify a floating point number. The arguments
to this function must evaluate to integers, and the value of Float(m, exp) is the float-
ing point number

m s 10%xp .

This function is particularly useful for specifying a floating point number with a very
large or a very small magnitude, as in Float(173, 21) or Float(1952135, -—30).

84 Geddes, Gonnet, and Char

8.1.23. frac(a)

This function computes the ﬁacﬁoml part of a rational number. It is the com-
plement of the trunc function; the value of frac(x) is specified by

x — trunc(x) .

8.1.24. ged (@, b, *result]l’, 'result2’)

This function computes the greatest common divisor of the multivariate polyno-
mials ‘a’ and ‘b’. It is an error if ‘a’ and ‘b’ are not polynomials in their indeter-
minates. The ged is computed in the domain of polynomials with integer coeffi-
cients, but the input polynomials may have rational coefficients in which case the
common denominator is simply removed. If the third argument ‘resultl’ is present
then it must evaluate to a name and upon return its value will be a / gcd(a,b) . Simi-
larly, if the fourth argument ‘result2’ is present then it must evaluate to a name and
upon return its value will be b / ged(a,b) . :

8.1.25. has (exprl, expr2)

The value of this function is true if exprl contains expr? as an explicit subex-
pression, false otherwise. The concept of ‘explicit subexpression’ corresponds to the
semantics of the op function: if op(exprl), or recursive application of op to each
operand of exprl, yields expr2 as an operand then exprl contains expr2 as an ‘expli-
cit subexpression’; otherwise it does not. -

Examples:
has ((a+b)"(4/3), a+b); yields true
has ((a+b)*(4/3), a); yields true
has (a+b+c, a+b); yields false

8.1.26. icontent (expr)

"This function computes the integer content of expr -- i.e., the greatest common
divisor of the integer coefficients in the case of an expanded polynomial. If expr is
not in expanded form then the icontent function is mapped onto its components to
obtain the result. For the common case of an expanded polynomial with integer
coefficients, this function has a concise definition in terms of the functions lcoeff,
map, igcd, and op as follows:

iged(op(map(lcoeff, [op(expr)])))

8.1.27. Ifactor (n)

This function returns the complete factorization of its integer argument n. The
answer is in the form of a product of powers, where the exponent of the powers is an
integer and the base of the powers is the null string function, whose argument is an
integer.

MAPLE User’s Manual 85

8.1.28. iged (1, §, k, . . .)

This function takes an arbitrary number of arguments which must evaluate to
integers, and it computes the nonnegative greatest common divisor of these integers.
If igcd is called with no arguments then the value 0 is returned.

Examples:
iged(); yields 0
iged(3); yields 3
iged(—10, 6, —8); yields 2

8.1.29. flem (1, J, k, . ..)

This function takes an arbitrary number of arguments which must evaluate to
integers, and it computes the nonnegative least common multiple of these integers. If
ilem is called with no arguments then the value 0 is returned.

Examples:
ilem(); yields 0
ilem(-5); © yields 5
ilem(7, -6, 14); yields 42

8.1.30. imodp(n, p)

The functions imodp and imods are two functions for computing the integer
modular operation

nmodp.

The final letter ‘p’ or ‘s’ in the function name stands for ‘positive range’ or ‘sym-
metric range’. If n and p are integers then the function imodp(n,p) returns an
integer r lying in the ‘positive range’:

0 = r < abs(p),

where n=peq + r for some integer q. If p is zero then an error occurs. Note that
the imodp function satisfies the property:

imodp(n, p) = imodp(n, —p).

Examples:
imodp(7, 5); yields 2
imodp(8, 5); yields 3
imodp(-8, -5); yields 2
imodp(7, ~6); yields 1
imodp(=7, 6); yields 5

86 Geddes, Gonnet, and Char

8.1.31. imods(n, p)

The functions imods and imodp are two functions for computing the integer
modular operation

nmodp.
The final letter ‘s’ or ‘p’ in the function name stands for ‘symmetric range’ or ‘posi-
tive range’. If n and p are integers then the function imods{n,p) returns an integer r
lying in the ‘symmetric range’:
—abs(p)/2 < r =< abs(p)/2,

where n=peq + 1 for some integer q. If p is zero then an error occurs. Note that
the imods function satisfies the property:

imods(n, p) = imods(n, —p) .

Examples:
imods(7, 5); yields 2
imods(8, 5); yields -2
imods(-8, —5); yields 2
imods(9, —6); yields 3
imods(-9, 6); yields 3

8.1.32. Indets (expr)

The purpose of this function is to determine the indeterminates which appear in
expr. The value of the function is & set whose elements are the indeterminates. The
concept of ‘indeterminate’ is that expr is viewed as a rational expression (i.e. an
expression formed by applying only the operations +, ~, +, / to some given sym-
bols) and therefore unevaluated functions such as sin(x), exp(x'2), f(x,y), and
x*(1/2) are treated as indeterminates. When an indeterminate which is not a name
appears in the set then so will all of its component indeterminates. Expressions of
type ‘constant’ such as sin(1), £(3,5), and 2°(1/2) are not considered to be indeter-
minates. Note that if expr is a sum or product of terms t,, t,, - - -, t, then the
result of applying indets(expr) will be identical to the result of applying the set
union:

indets(t,) + indets(t,) + . . . + indets(t,) .

Examples: If the following statements are executed;

pi= 3sx"3ey"dez — 2+x"202°2 + y'3ez — Tay + §;
r:= (2+x°2 — 5) « (x — 2)"(1/3) / (x+exp(x"2));

then

indets(p); yields {zy, x}
indets(1); yields { exp(x2), (x+(-2))"(1/3), x }

MAPLE User’s Manual 87

Furthermore,
indets(exp(x2)); yields {exp(x2), x }
indets(x*(1/2)); yields {x(1/2), x}
indets(2°(1/2)+£(9)); yietds {}

8.1.33. indices (thl)

This function takes a table as its parameter and constructs an expression
sequence containing the indices of all entries in that table. Each index is made into a
list and the expression sequence returned has these lists as its components. The
indices are placed in lists to prevent indices that are themselves expression sequences
from merging.

Examples:
table([(1,2)= A, (2,1)=B, 9=C]);
indices("); yields [1,2],[9].[2,1]
indices(table()); yields the value of NULL
array([11, 22, 33, 44]);
indices("); yields [2],[3],[41,[1]

The indices will appear in the expression sequence in an apparently arbitrary
order. The order in which they appear can not easily be controlled by the user.

The indices function is useful for performing actions which use all entries in a
given table. For example, the following procedure will remove all zero-valued entries
from a table:

Iemove_zeros =
proc(tbl)
local i, ix_set, index;
ix_set := {indices(tbl)}; .
for i to nops(ix_set) do
op(i, ix_set); # get the i-th list
index := op("); # convert it to an expression sequence
if tbl[index] = O then
tbifindex] : = evaln(tbl[index])
fi
od
end;

88 Geddes, Gonnet, and Char

8.1.34. int (expr, x) or int(expr,x = a..b)

If the second argument is not an equation then this function attempts to compute
the indefinite integral of expr with respect to the second argument ‘x’ which must
evaluate to a name. If the second argument is an equation then its left-hand-side
must evaluate to a name ‘x’ and its right-hand-side must evaluate to a range ‘a..b’,
and this function attempts to compute the definite integral of expr with respect to ‘x’
over the interval specified by the range ‘a..b’. If Maple is not successful in perform-
ing the integration then a FAIL return occurs, meaning that the value of the function
invocation is the unevaluated function invocation.

Examples: If
f:= 1/2ex"(—2) + 3/2ex*(—1) + 2 — 5/2ex + 7/2+x"2;

then
int(£, x); yields —1/2ex°(—=1)+3/2+In(x) +20x— 5/4+x"2+ 7/6+x"3
int(f, x = 1..2); yields 20/3 + 3/2+In(2)
evalf("); yields 7.706387438

int((x~1)/(x+1), x); yields (x—1)eln(x+1)—(x+1)In(x+1)+x+1
expand("); yields —2+ln(x+1)+x+1

int(tan(x), x); yields - In(cos(x)
int(sin(t)=cos(t), t);yields 1/2+sin(t)"2
int(xecos(x), x); yields x+sin(x)+ cos(x)

int(exp(x"2), x'); yields int(exp(x"2),x)

8.1.35. iquo(m, n)

This function computes the integer quotient of ‘m’ divided by ‘n’. The result of
this function is identical with the result of applying trunc(m/n). The iquo function
will be more efficient than the latter when ‘m’ and ‘n’ are long integers because it
avoids first simplifying the rational number m/n to lowest terms. Specifically, if m
and n are integers then the function iquo(m, n) returns an integer q satisfying

m = neq-+r
for some integer r such that

abs(r) < abs(n) and mer=0.
If n is zero then an error occurs.
Examples:

MAPLE User’s Manual 89

iquo(7, 5); ‘ yields 1
iquo(-7, 5); yields -1
iquo(7, -5); yields -1
iquo(=7, -5); yields 1

8.1.36. isprime (n) or isprime (n, iter)

This function uses a heuristic method to determine whether n is prime. It
returns false if it can prove in iter (ten, if no second argument is given) iterations
that n is composite; it returns true otherwise.

8.1.37. Isqrt(m)orisqrt(m, x)
This function computes the closest integer to the square root of n. If called with

two arguments, the second one is used as a first approximation for the square root of
n

8.1.38. lthprime (1)
This function returns the i** prime.

8.1.39. Iem(a, b)

This function computes the least common multiple of the multivariate polynomi-
als ‘a’ and ‘b’. It is an error if ‘a’ and ‘b’ are not polynomials in their indeter-
minates. This function invokes the ged function, using the definition

lem(a, b) = asb/gcd(a,b)

(with an adjustment of the sign of the result to make the leading coefficient positive).
Restrictions on the input expressions are therefore the restrictions of the gcd func-
tion.

8.1.40. lcoeff (expr) or lcoeff (expr, x) or lcoeff (expr, x, ¥, ...)

This function returns the leading coefficient of the multivariate polynomial expr,
with respect to the set of indeterminates of expr, i.e., indets(expr), if lcoeff is
called with only one argument. If lcoeff is called with more than one argument, the
second and succeeding arguments are taken to be the set of indeterminants of the first
argument. If expr is in expanded form and if the set of indeterminants are {x.1,
x.2, . . ., x.n} then the result of the lcoeff function can be expressed as follows:

u:= expr;

for i to n while not type(u, constant) do
u := coeff(u, x.i, degree(u, x.i))

od;

u

It is an error if expr is not a polynomial in its indeterminates.

90) Geddes, Gonnet, and Char

Examples:
P := 31ex"4ay™4 + 20x"30y 30z — y22°5;
indets(p); yields {z,y,x}
Icoeff(p); yields -1
q:= 17+x"5 + x"3 — 5+x"2 + 111;
indets(q }; yields {x}
Icoeff(q); yields 17
i3 3/20y"3 = 5/2¢In(2)*x"5+y + x"4ay — 1;
indets(r); yields {x,y}
Icoeff(r); yields - 5/2+1n(2)
8 1= usv2+w 3ex"4;
Icoeff(s); yields 1
lcoeff(s, u, w); yields v2ex"4

8.1.41, Idegree (expr, x) -

This function is a companion to the degree function. If expr is a polynomial in
x (allowing both positive and negative exponents) then this function returns the low
degree of expr in x, which is the least exponent of x in expr. It is not necessary that
expr be in expanded form. This function may be applied as well to the series data
structure. If expr is neither a series in the indeterminate x nor a polynomial in the
indeterminate x then the value returned is @FAIL.

8.1.42. length (n)

For this function, the argument ‘n’ must evaluate to either a string or an
integer. The value returned is the length of the string or of the integer respectively.
The length of the integer is the number of digits in its base-10 representation, with
the sign of the integer being irrelevant.

8.1.43. lexorder (name,, name,)

This function tests to determine whether name, and name, are in lexicographical
order. It returns true if name, occurs before name, in lexicographical order, or if
name, is equal to name,. Otherwise, it returns false. The lexicographical order
depends in part upon the collation sequence of the underlying character set, which is
system-dependent. For names consisting of ordinary letters, lexicographical order is
the standard alphabetical order.

Examples: For a typical implementation of the ASCI character set the following
results are obtained:

MAPLE User’s Manual

91

lexorder(a, b); yields true
lexorder(A, a); yields true
lexorder(" a', a); yields true
lexorder(John, Harry); yields false
lexorder(determinant, determinate); yields true
lexorder(greatest, great); yields false
lexorder(“s", *™); yields true
lexorder(*™, *+*); yields true

8.1.44. limit (expr,x=a)

This function attempts to compute the limiting value of expr as x approaches a.
The second argument must be an equation and the left-hand-side of the equation must
evaluate to a name. This function applies the taylor function and deduces the limit
from the form of the taylor series. The limit point ‘a’ may take the special value
‘infinity’ in which case the limiting value is determined by applying the change of
variable x = 1/x in expr and then computing the taylor series about x = 0.
Examples:

limit(sin(x)/x, x=0); yields 1
limit((tan(x)—-x)/x"3, x=0); yields 173
limit((5+x—3)/(x"2+x+1), x=infinity); yields 0

ri=(x2 — 1)/ (11ex°2 = 2¢x = 9);

limit(r, x=0); yields 1/9
limit(r, x=infinity); yields 1711
limit(r, x=1); yields 1710
limit(1/x, x=0); yields infinity
limit(1/x, x=infinity); yields 0

8.1.45, Iprint(a, b, ...);
This function prints its arguments in line-print mode. Each argument is printed
as well as possible on a single line.

8.1.46. map (f, expr, arg,, arg,, ..., arg,)

For this function, f must evaluate to a name or to a procedure definition. The
purpose of this function is to map f (as a function name or as a procedure invocation)
onto the components of expr. The result of the map function is a new expression
which can be defined as follows: replace the ith operand in expr by the result of
applying f to the i® operand, fori = 1, 2, . .., nops(expr). If f takes more than
one argument then there must be additional arguments to the map function: arg,,
arg,, ** ‘, arg, which are simply passed through as the 2°¢, 3%, ... n™ argu-
ments to f.

92 Geddes, Gonnet, and Char

Examples:
map(f, x + y*z); yields f(x) + f(y»z)
map(f, y*z); yields f(y)*f(z)
map(f, {a,b,c}); , yields {f(a), 1(b), f(c)}
map(proc (x) x2end, x+y); yields x2 + y2
map(proc (x) x'2 end, {1,2,3,4]); yields [1,4,9,16]
map(int, [exp(t),In(t), tan(1)}, t); yields [exp(t), teln(t)~t, —In(cos(t))]

expr := 2/3 » x/sin(x) - 1/x + sin(x);
den : = 3exssin(x);

map(proc (e,m) mee end, expr, den); yields 2x"2 — 3nsin(x) + 3exesin(x)"2

mult : = proc (e,m) mee end;
map(mult, h(u,v,w), 10); yields h(10su, 10sv, 10sw)

8.1.47. maparray (f, A, arg2, arg3, ...)

This procedure applies a function to each component of an array. The parame-
ter ‘f* must evaluate to a procedure or to a name and the parameter ‘A’ must evaluate
to an array. There may be zero or more additional parameters and they may be of

any type.
The procedure maparray makes one call

f(evaln(A[index}), arg2, arg3, ...)

for each index within the index bounds of A. The value ‘A’ is returned. At the
present time, maparray must be loaded by the user from the maple library.

As an example, to assign zero to all components of a 3 by 3 array, the follow-
ing statement may be used:

maparray(proc(a) a := 0 end, array(1..3, 1..3));
To print the elements of an array, A, in a readable order, one could use
maparray(proc(a) a; print(a, * = *, ") end, 'A’);

The procedure below does component-wise addition of an arbitrary number of
arrays:

MAPLE User's Manual 93

Use A := addarray(X, Y, ...)togive A:= X + Y + ...

addarray := proc()
local bd, i;
if nargs = 0 then ERROR(nothing to add") fi;
bd := op(2,param(1));
for i from 2 to nargs do
if op(2,param(i)) <>bd then ERROR(different shapes®) fi

od;
proc(A) local i, ix, sum;
ix := op(A);
sum := 0;
for i from 2 to nargs do param(i); sum := sum + "[ix] od;
A= sum
end;

maparray(", array(bd), paramseq)
end;

8.1.48. max(a, b,c,...)

This function takes an arbitrary number of arguments. If each of the arguments
evaluates to an integer, a rational number, or a floating point number, then the value
of this function is the maximum of these numbers. If one or more of the arguments
does not evaluate to such a constant then a FAIL return occurs. It is an error if max
is called with no arguments.

Examples:
max(3/2, 1.49); yields 3R
max(3/5, evalf(In(2)), 9/13); yiclds .6931471805
max(5); yields 5
max(-~1001, 112, —-1/2, —=9); yields 12
max(x, y); yields max(x,y)

8.1.49. member (expr, set_or_list, *position’)

The purpose of this function is to test for set membership or to test for list
membership and (optionally) to locate the position of expr in a list. The second
argument ‘set_or_list’ must be either a set or a list, and this function returns srue if
expr is one of the elements in set_or_list, false otherwise. If the third argument is
present then it must evaluate to a name, the second argument must be a list, and, in
the case where the value of this function is true, the position of expr in the list will be
assigned to the third argument.

Examples:

94 Geddes, Gonnet, and Char

member(y, {x,y,2}); yields true
member(y, {x+y, y*z}); yields false
member(x, {}); yields false
member(3sexp(x/2), {sin(x), 3+exp(x/2)}); yields true
member(w, [x,y,w,u]); yields true
member(w, [x,y,w,u], 'k’); yields true
k; yields 3

member(x, [x+y, x—y, xoy, xy], 'k’); yields false
member(x+y, [x+y, x—y, x+y, xfy], 'k’); yields true
k; yields 1

8.1.50. min(a, b,c,...)

This function takes an arbitrary number of arguments. If each of the arguments
evaluates to an integer, a rational number, or a floating point number, then the value
of this function is the minimum of these numbers. If one or more of the arguments
does not evaluate to such a constant then a FAIL return occurs. It is an error if min
is called with no arguments.

Examples:
min(3/2, 1.49); yields 1.49
min(3/5, evalf(In(2)), 9/13); ©yields 35
. min(evalf(In(2)), evalf((5"(1/2)—1)12)); yields 6180339890
min(—10601, 172, —1/2, 9); yields —1001
min(x, y); yields min(x,y)

8.1.51. minv(mn, p)

This function returns the multiplicative inverse of the integer n in Zp (the ring
of integers modulo p). It uses the symmetric range.

Examples:
minv(5, 11) yields -2
minv(3, 4) yields -1

8.1.52. modp(a, p)

This function applies imodp (with modulus p) to the coefficients of the
expanded polynomial a. (Also see imodp(), mods().)

Examples:

MAPLE User’s Manual 95

modp(-1, 13) yields 12
modp(1/3, 7) yields 5
modp(x*2 ~ Sex + 8,5) yields x"2+43
modp(17+x+y"3, 11) yields Goxey"3

8.1.53. mods(a, p)

This function applies imods (with modulus p) to the coefficients of the expanded
polynomial a. (Also see imods(), imodp().)

Examples:
mods(9, 13) yields -4
mods(1/3, 7) yields -2
mods(x*2 — 5¢x + 8, 5) yields x2-2
mods(17sxey"3, 11) yields —5xey*3

§8.1.54. mqguo(a, b, p)ormquo(a, b, p, r)

This function returns the quotient q of a/b and optionally the remainder r where
a = beq + r and where 8, b, q, and r are in Zp[x] (polynomials in x with coeffi-
cients in the ring of integers modulo p). If the fourth argument is specified, it must
evaluate to a name into which the remainder is assigned. (Sce also mrem(), rem().)
Example:

mquo(x°4 + 5¢x"3 + 6, x2 + 2ex + 7, 13) yields 3ax + x2

8.1.55. mrem (a, b, p)or mrem (a, b, p, q)

This function returns the remainder r of a/b and optionally the quotient q where
a = bsq + r and where a, b, q, and r are in Zp[x] (polynomials in x with coeffi-
cients in the ring of integers modulo p). If the fourth argument is specified, it must
evaluate to a name into which the quotient is assigned. (See also mrem(), rem().)
Example:

mrem(x4 + 5¢x™3 + 6, x2 + 2+x + 7, 13) yields Jex + x2

8.1.56. nextprime(n)

This function returns the smallest prime that is larger than n. The argument n
must evaluate to an integer value. (Also see prevprime().)

8.1.57. nops (expr)

The purpose of this function is to determine the number of operands appearing
in expr. The manner in which expr is viewed by this function corresponds to the
manner in which an expression is viewed by the function op. In the most common
case, expr has operands indexed from 1 to n (such as in a general algebraic

96 Geddes, Gonnet, and Char

expression, a set, or a list) and nops(expr) is n. If expr is a function invocation with
operands indexed from 0 to n then nops(expr) is n. If expr is a series with operands
indexed from 0 to n then nops(expr) is n.

Examples: Assuming that f, x, y, and z are names which stand for themselves, if the
following statements are executed:

g:=1(x, y, 2);
a:= (3esin(x"3) — (2/3)ex + y) / (2+x"2 — 1);

then
nops(g); yields 3
nops(a); yields 2
nops{ op(1, a)); yields 3
nops{ op(2, a)); yields 2.
Note that the latter result of 2 is not because the denominator of ‘a’ is the expression
2+x°24+(-1)

which is an addition of two terms but rather op(2,a) is the expression
Qex24+(-1))"(-1)

which is a power (and a power necessarily consists of exactly two operands).

8.1.58. normal (expr)
This function normalizes expr into the factored normal form, i.e., into the form
numerator / denominator

where numerator and denominator are relatively prime. In the general case, each of
‘numerator’ and ‘denominator’ will be left in factored form as far as possible (without
actually performing any factorization) subject to the condition that sums of factors
will be expanded whenever this is necessary to guarantee that zero will be recog-
nized. In the special univariate case (i.e., when there is only one indeterminate in
expr) each of ‘numerator’ and ‘denominator’ will be in expanded form.,

Examples:

normal(2/x + y); yields (2+y*x)/x
normal(3+y»(x—-5)"2/ (x"2-25)); yields 3rye(x—5)/(x+5)
normal((sin(1)"2—1) / (sin(1)-1)); yields sin(1)+1
normal(2.3ex-+4,5¢x); yields 6.8x .

num ;= (3sx"2 — Sexey)2 ¢ (x"2 — 24xey + y2);
den:= x + (y—x)3;
normal{ num/den); yields x+(3ex—Sey)2/(y—~x)

MAPLE User’s Manual 97

normal((sin(x)*3 — 27) / (sin(x) — 3)); yields sin{x)*2+ 3=sin(x)+9
normal(x"2/(1-x) — x/(1-x)); yields ~-x

8.1.59. numer (expr)

This function computes the numerator of expr that results from first forming a
common denominator for the terms in expr. It calls the denom function. (See also
denom().)

Examples:
numer(2/x + y); yields 2+y*x
numer(3+y«(x—5)"2/ (x"2-25)); ~ yields 3ays(x—5)2
numer(x*2/(1-x) — x/(1-x)); yields x2-x

8.1.60. op (i, expr) or op(i.j, expr) or op (expr)

The purpose of this function is to extract one or more operands from the
expression expr. If op is called with two arguments and if the first argument evalu-
ates to a nonnegative integer, say i, then the value of the function is the it* operand
in expr. General algebraic expressions have operands indexed from 1 to n (for some
positive integer n). A function invocation

<name> (<expression sequence>)

is considered to have as its 0 operand <name> and the arguments are operands 1
through n (for some integer n). If expr is a series formed by expansion about the
point x=a (where x is the name of the indeterminate) then the 0" operand of expr is
x—a, the first, third, . . . operands are the coefficients (which may be arbitrary
expressions), and the second, fourth, . . . operands are the corresponding
exponents (with the exponents ordered from least to greatest). For a more detailed
description of the operands corresponding to each of Maple's data types, see section
4.1

If op is called with two arguments and if the first argument evaluates to a range
then the value returned is an expression sequence (i.e., a sequence of expressions
separated by commas) consisting of the operands specified by the range.

If op is called with only one argument, say expr, then the result is equivalent to
the result of the invocation

op (1..nops(expr), expr) .

For general algebraic expressions, this value is an expression sequence consisting of
all of the operands in expr. Note, however, that if expr is one of the structures for
which operand 0 is defined (e.g., a series or a function invocation) then the 0
operand will be missing from the expression sequence op(expr).

The special case where expr evaluates to a name must be noted. A name is
defined to have exactly one operand, which is the value assigned to the name, If no
value has been explicitly assigned to the name then its value is its own name. Note

98 Geddes; Gonnet, and Char

that in the case where a value has been assigned to a name, say x, the op function.
must be called in the form

op(’x’)
(or equivalently, op(1, 'x’)) if it is desired to see what value was. assigned: to x;

otherwise, if the argument is not quoted then it will be the value of x which:is-passed'
to the op function.

Examples:
g:=1i(x,y,2);
op(0, g); yields f
op(2, g); yields y
0p(0..2, g); yields f,x,y
op(g); yields x, v,z
e:= [2+x, y+1];
{op(e), 2]; yields [2ex, y+1, 2]
a:= (3esin(x"3) — 2/3ex + y) / (2ex2 ~ 1);
op(2,a); yields (2ex°2-1)(~1)
op(1,a); yields 3esin(x"3)—2/3»x+y
op(2, op(1,")); yields sin(x"3)
W= 3ax"2 — 2exey + y'2;
x:= 1/2;
op('w’); yields 3ex"2 — 2exey + y2
op(’x’); yiedds 12
op(w); yields 3/4, -y, y2
~op(x); yields 1,2

8.1.61. prem (=, b, x, ’'m’)

This function computes the pseudo-remainder of ‘a’ divided by ‘b’ with respect to
the variable x, where ‘a’ and ‘b’ must be polynomials with integer coefficients,
Specifically, the value of this function is the unique polynomial r with integer coeffi-
cients such that

mea = beq+r

for some polynomial q with integer coefficients, with r = 0 or degree(r,x) <
degree(b,x), where the multiplier m is defined by
m = c”(degree(a,x) — degree(b,x) + 1)

where ¢ = coeff(b, x, degree(b,x)) --i.e., cis the leading coefficient in b with
respect to x. If the fourth argument is present then it must evaluate to a name and it
will be assigned the value of the multiplier m defined above.

MAPLE User’s Manual 99

8.1.62. prevprime (n)

This function returns the largest pﬁm& that is less than n. The argument n must
evaluate to an integer greater than 2.

8.1.63. print (expr,, expr,, ...)

The effect of this function is to print the values of the expressions appearing as
arguments. The global variable "prettyprint’ is checked to determine the fashion in
which the expressions are to be printed. If prettyprint has a value of 1, then the
expressions are displayed as nicely as possible, perhaps on several lines. If pretty-
print has a value of 0, then the expressions are displayed as best as is possible on a
single line. The default value for prettyprint is 1. If this function is called with no
arguments then the effect is to create a blank line in the output stream.

8.1.64. product (expr, i = m..n)

This function forms the product of the factors obtained by substituting for i in
expr the values m, m+1, . . ., n. The second argument must be an equation and its
left-hand-side must evaluate to a name, its right-hand-side must evaluate to a range.
It is an error if n — m does not evaluate to an integer and it is an error if m > n+1.
If m = n+1 then the value of the product is 1.

8.1.65. quo(s, b, x)orquo(a, b, x,r)

This function returns the quotient q of a/b and optionally the remainder r where
a, b, q, and r are in Q[x] (polynomials with rational coefficients) and where a = beq
+ r. If the argument r is specified, it must evaluate to a name; it is to this name that
the remainder is assigned. (Also see rem()).

Example:
quo(x3+x+1,x2+x+1,x) yields x-1

8.1.66. radsimp (expr) or radsimp (expr, ’ratdenom’)

This function simplifies expr which may contain radical expressions. If the
second argument is present, then it must evaluate to a name and it will be assigned
the simplified expression with its denominator rationalized.

radsimp((1 + 2+x + x"2) * (1/2)); yields 1+x
radsimp((1 + 2ex + x°2) *(—1), 'd’); yields Q+2712) " (-1
d; yields -1 +2f(1/2)

8.1.67. rand (), rand (n),orrand{m..n)

This function returns a random ten digit integer if it was called without argu-
ments; otherwise it returns a procedure that will generate random integers in the
range 0..n or in the range m..n if called with an integer or a range argument respec-
tively.

100 - Geddes, Gonnet, and Char

bit : = rand(2) yields a procedure
bit(); yields a first random bit
bit(); yields a second random bit

8.1.68. readlib { ’f) or readlib ('?, file,, file,, ..., file_)

Each argument to this function must evaluate to a name. If there is only one
argument then the following read statement is executed:

read ** . libname . f. *.m"; (or read cat(libname, f, *.m");)

and the value returned is the value of the argument '’ after the read statement has
been executed. If there is more than one argument then the following read state-
ments are executed:

read file,; read file,; ...; readfile,;

and the value returned is the value of the first argument ‘f’ after the the read state-
ments have been executed. It is an error if ‘f* is not assigned a value in the file (or
one of the files) being read. For further details, including a complete definition in
Maple code, see section 5.7. - ‘

8.1.69. rem{(a, b,x)orrem(a, b, x,q)

This function returns the remainder r of a/b and optionally the quotient q where
a, b, q, and r are in Q[x] (polynomials with rational coefficients) and where a = bsq
+ r. If the argument q is specified, it must evaluate to a name; it is to this name
that the quotient is assigned. {Also see quo()).

Example:
rem(x3+x+1,x2+x+1,x) yields x+2

8.1.70. remember (f(Xx,y,...) = result)

This is a special function to be used in conjunction with the option remember
facility in procedures (see section 5.3). The argument to this function must be an
<equation> and its left-hand-side must take the form of a procedure invocation.
The name ‘f" must evaluate to a procedure definition in which option remember has
been specified. The effect of this function is to place an entry in the system table
known as the partial computation table which associates the specified procedure invo-
cation with the specified ‘result’. If there is ever another invocation of this procedure
with actual parameters that have the same values as those specified here then the
Maple system will immediately retrieve the ‘result’ from the partial computation table
without performing any computation. This function generalizes the option remember
facility since it may be invoked cither from within the body of the procedure ‘f’ or
externally.

Note that this function has special rules for the evaluation of its arguments.
The name ‘f” will be evaluated to a procedure definition and each of the specified

MAPLE User's Manual 101

arguments x, y, . . . will be evaluated, but the procedure will not be invoked. The
right-hand-side of the equation, ‘result’, will be evaluated.

8.1.71. RETURN (expr,, expr,, . . .)

This function is a special function whose purpose is to cause an immediate
return from a procedure (see section 5.5). Upon execution of this function, control
returns to the point where the current procedure was invoked and the value of the
procedure invocation is the expression sequence expr,, expr,, Itis anerrorifa
call to the function RETURN occurs at a point which is not within a procedure defin-
ition.

8.1.72. saveonly (filename, *name,’, *name,’, ... ’name,’)

This function selectively saves the values of the list of variables specified in the
parameter list. If the special name ‘notprocs’ is given as the second parameter, then
ALL names which do not evaluate to a procedure are saved. The value returned by
saveonly is the NULL expression sequence.

If the filename given ends in ‘.m’, the information is saved in internal format;
otherwise, the external format is used.

A call to saveonly has the side-effect of creating a file with the name ‘.temp.m’.
Examples:
After executing the following statements
a:=2; b:=x+y;
pl := proc(x) x end;
p2 := proc{ x) x2 end;
saveonly(mydata, 'a’, evaln(p.a));
the file ‘mydata’ contains
ai=2;
p2 := proc(x) args[1]++2 end;
Subsequently executing
saveonly(mydata2, notprocs)
places the following information in ‘mydata2’
a:=2;
b:= x+y;

8.1.73. seq (expr, i = range)

This function returns the expression sequence produced by substituting each
value of the range for i inside the expression expr. The variable The range specified
may be any valid increasing range the bounds of which are an integer value apart.

Examples:

102 Geddes, Gonnet, and Char

seq(i2,i=1..4) yields 1,4,9, 16
seg('a.1’, i = 1,.3)yields al, a2, a3
ri=x..x+2;

seq(5,j=1r) yields 55,5

seq(j2,j=r1) yields x2, (x+1)2, (x+2)2

8.1.74. sign (expr), sign (expr, x) , or sign (expr, x, ¥, ...)

This function computes the sign of expr in the sense of the sign of the leading
coefficient of expr. The leading coefficient of expr is determined with respect to a
set of indeterminants. If sign is called with only one argument, then indets(expr) is
used as the set of indeterminants for expr. Otherwise, the second and succeeding
arguments are used as the set of indeterminants for expr. (See the function lcoeff).
Specifically, the definition of the sign function when called with one argument is:

if Jcoeff(expr) < O then —1 else 1 fi

The definition for sign called with more than one argument is similar to the one
above.

sign(x*y—x"2, x, ¥); yields -1
sign(x»y—x"2, y, x); yields 1
sign(—3.4); yields -1
sign(0); yields 1

8.1.75. solve (eqn, var) or solve ({eqn,, ..., eqn,}, {var,, ..., var,})

This function takes two arguments. The first argument is either a single equa-
tion or a set of equations, and correspondingly, the second argument is either a sin-
gle name which is the variable to be solved for or a set of names which are the vari-
ables to be solved for. Whenever an equation is expected in the input arguments, if
it is instead an ordinary algebraic expression e then the equation e = 0 is understood.
In the case of a single equation and a single variable, it is valid to specify one of the
arguments as a set or both arguments as sets, The value of this function is an expres-
sion sequence of the solutions, and in the case where the second argument is a set the
value is a sequence of solution sets.

As of this writing, the solve function is able to solve single equations involving
elementary transcendental functions, systems of linear equations, single polynomial
equations, and equations requiring the inversion of taylor series.

Examples:

MAPLE User's Manual 103

solve(cos(x) + y =9, x); yields arccos(9—y)

solve(2'a + G, a); yields In(~ G)/In(2)

solve(taylor(arcsin(x)—y, x), x); yields
1ey+(—1/6)+y"3+ 1/120+y"5+ O(y"6)

solve(x*2 — 46ex + 529, x); yields 23,23

solve(1/2+a+x"2 + bsx + ¢, x); yields

(—b+(b"2—2+axc)"(1/2))/a, (—b—(b"2—2+a+c)*(1/2))/a

eqnl 1= x + 22y + 32z + 42t + Seu = 6;

eqn2 := Sex + Sey + ez + 3at + 2eu = 1;

egn3 1= 3oy + 4ez — 8st + 2eu = 1;

eqnd :=x+y+z+t+u=9;

eqnS ;= 8ex + 42z + 3ot + 2eu=1;

solve({eqn. (1..5)}, {x,y,z,t,u}); yields
{u=8589/110,x~=56,z= —13983/110,y=168/5, t= — 1736/55}

8.1.76. subs (old, = new,, ..., old, = new,, expr)

This function takes an arbitrary number of arguments and each argument except
the last one must be an equation. The value of this function is the expression result-
ing from applying the substitutions specified by the equations to the last argument,
expr. The substitutions are performed sequentially starting with the first argument
old, = new,. Thus, the following two statements are equivalent:

subs(old, = new,, old, = new,, expr)
subs(old, = new, , subs(old, = new,, expr))
More specifically, the semantics of the function subs{ old = new, expr) are that

every occurrence in ‘expr’ of the subexpression ‘old’ is replaced by the expression
‘new’.

Examples:
subs(x=1, 3ex«In(x"3)); yields 0
subs(a+b = y, (a+b)"(4/3)); yields y“(4/3)
subs(a=b+1, b=3, a+b); yields 7

subs{ x2=9, x2+y"3); yields Gey*3

8.1.77. subsop (1 = newexpr, expr)

The value of this function is the expression resulting from replacing op(i, expr)
by newexpr in expr. The first argument must be an equation and the left-hand-side
of the equation must evaluate to a nonnegative integer not greater than nops(expr).
In the special case where op(i, expr) does not occur anywhere in expr except as the
i operand, the result of this function will be equivalent to the result of

subs(op(i,expr) = newexpr, expr).

104 Geddes, Gonnet, and Char

8.1.78. substring (string, m..n)

This function returns a substring (which is of type ‘name’) of the first parameter
which must of type ‘name’, i.e., which must be a string. If m and n do not both
evaluate to integers, then the function call remains unevaluated. If they do evaluate
to integers, then they must both be greater than zero and m must be less than n.
Moreover, m must be no greater than the length of the first parameter. If n is
greater than the length of the string then substring will return the substring from posi-
tion m o the last position of the string.

8.1.79. sum (expr,i) or sum (expr,i= m..n)

If the second argument is not an equation then this function attempts to compute
the ‘indefinite summation’ of expr with respect to the second argument ‘i’ which must
evaluate to a name. Specifically, if we denote the functional dependency of expr on
the variable ‘i’ by the notation expr(i) then the indefinite summation is defined to be
an expression g(i), containing the variable ‘i’, such that

g(i+1) — g) = expr(i) .

In other words, ‘indefinite summation’ is the inverse of the forward difference opera-
tor.,

If the second argument is an equation then its left-hand-side must evaluate to a
name ‘i’ and its right-hand-side must evaluate to a range ‘m..n’, and this function
attempts to compute the definite summation of expr with respect to ‘i’ with lower
limit i = m and upper limit i = n. The limits ‘m’ and ‘n’ may evaluate to arbitrary
expressions. Note that the definite summation over the range m..n can be obtained
from the ‘indefinite summation’ g(i) as the value:

g(n+1) — g(m)

and this method is used whenever m — n does not evaluate to an integer or m — nis
a very large integer; otherwise, direct summation is performed. Note that the value
of the definite summation is zero whenever m = n+1.

If Maple is not successful in performing the summation then a FAIL return
occurs, meaning that the value of the function invocation is the unevatuated function
invocation,

Examples:

sum(i'2, i); yields 1/3%i"3—1/20i"2+ 1/6+i
expand(subs(i=i+1, ") — "); yields i2

€= (Sei = 3)a(2ei + 9); :
sum(e, i = 1..5000); yiclds 417279137500
sum(e,i=1..n); yields

103+(n+1)"3 + 2972+(n+1)"2 — 269/6en + (—107/6)
expand("); yields 10/3+n"3 + 49/2+n°2 — 35/6+n

MAPLE User’s Manual 105

sum(i2 — 2+a+i, i = a..5); yields
55 — 181/6+a — 1/3#a"3 + 1/2+a"2+2+as(1/2+a"2—1/2+a)
expand("); yields 55 — 181/6ea - 1/2#a"2 + 2/3«a"3

sum(x4, i = 0..n); yields (a+ D/(x+(-1))-(x+(-1))(-1)

8.1.80. system (s)

This function takes one argument which must of the type name. It transmits
this name as a command to be executed by the host system on which Maple runs.
The value returned by this function is the return code given by the host system after
executing the command. (Also see escape character.)

Examples:

system(who);
system(“msg mbmonagan "Where’s your plot package?™);

8.1.81. table (indexing function, init list)

To create a table which is not an array, a call is made to this function. The
parameters are an indexing function, and a list for initializations. Both of these are
optional and they may appear in either order in the parameter sequence.

The indexing function is given as cither a procedure or as a name. If one is not
given, then a default of NULL is used. (Actually, that is the only way to obtain a
NULL indexing function.)

The initializations are given either as a list of equations or as a list of values.
(To avoid ambiguity, if a list of values is used, none of the values may itself be an
equation.) If a list of equations is given, then for each equation, the left-hand side is
used as the index of a component and the right- hand side is used as its value, With
a list of values, consecutive integer indices are used starting at 1. The default for ini-
tializations is the empty list.

Examples:
table(); yields table([])
table({22,33]); yields table({(1)=22,(3)=33])
table(j2=22,3=33)); yields table([(3)=133,(2)=22])
table([—9= —99, sin(s)=cos(x)]); yields table([(—9)=—99,(sin(s))w cos(x}])
table([(1,2)=12, (2,1)=21]); yields table([(2,1)=21,(1,2)=12])

table(symmetric,[(C,1)ma, (c,b,c)=x]); yields table([(1,0)=a,(b,c,c)=x])

106 Geddes, Gonnet, and Char

8.1.82. taylor (expr, x = a) or taylor (expr,x=a,n)

The purpose of this function is to compute a Taylor series (more generally,
Laurent series) expansion of expr. If the second argument evaluates to an equation
then its left-hand-side must evaluate to a name ‘x’ which will be the variable of
expansion and its right-hand-side ‘a’ will be the point about which the expansion is
taken. If the second argument is not an equation then it must be a name ‘x’, and the
effect is the same as if the second argument had been the equation x = 0. If there is
a third argument ‘n’ then it must evaluate to an integer which specifies the ‘truncation
degree’ to be used. If there is no third argument then the ‘truncation degree’ is
specified by the current value of the global variable Degree (which initially has the
value 5 in the Maple system). An ‘order term’ appears in the result of the taylor
function whenever the result is not known to be exact. (See section 4.1.8 for a
description of the series data structure).

Examples:
fi:= (3ex2 - 5x) / (x3~x+ T);
taylor(exp(f), x=0); yields

1+ (—5/7)#x+57/98+x"2+ (— 509/2058)»x"3+ 12841/57624+x"4+
(-~ 18971/134456)»x"5+ O(x"6)
taylor(f, x=1, 2); yields
(—2/7)+11/49+(x+ (— 1)) +167/343+(x+(~ 1))"2+ O((x+(—-1))"3)

e:= (x2 + asx — 1)/ (a+1-x);
taylor(e, x=a, 2); yields
(20224 (- 1))+ (3ea+2+a"2+ (—1))*(x—a)+ (3+a+2+a"2)*(x—a) 2+ O((x—a)"3)

h := y=exp(y)+sin(x)/x"3 + yeln(sin(x});
taylor(h, x=0); yields
yrexp(y)*x (~2)+ (— 1/6»ysexp(y) + yeln(x))+ (— 1/6+y+1/120sysexp(y})+x"2+ O(x"3)

taylor{ 1/x + y + x°3, x); yields lex*(—1)+y+1+x"3
taylor(x + x"3 + O(x"2), x); yields 1ex+0(x"2)

*diff/g> := proc (a,x) "g""(a) + diff(a,x) end;
*diff/g" := proc (a,x) ‘g""(a) = diff(a,x) end;

Degree : = 2;
taylor(sin(g(x)), x=0); yields
sin(g(0)) +cos(g(0))»g’(0)+x+ (— 1/2+sin(g(0))+g’(0) 2+ 1/2+c0s(g(0))»g" (0))*x"2+ O(x
User Interface:

New functions can be made known to Maple’s faylor function by the following
mechanism. If the user assigns a procedure to the name ‘taylV/newfcn' (where
‘pewfcn’ is any name chosen by the user) as in

MAPLE User’s Manual 107

“tayl/mewfen® : = proc (expr, x)
taylor(expr, x);
Code to compute taylor series for
newfcn(expr)
from the taylor expansion of expr
about x = 0 using global variable Degree
to specify the ‘truncation degree’.

end;
then the function invocation
taylor { newfcn(expr), x)
will cause the function invocation
“tayl/newfen® (expr, x) .
In the case of a more general invocation of the taylor function:
taylor (newfen(expr), x = a, n)

the internal taylor function will perform a transformation of the variable x, and will
set the global variable Degree, before invoking the “tayl/newfcn™ procedure. If
“tayl/newfcn’ is not assigned then Maple looks for it in the Maple system library at
the pathname

cat(libname, “tay/newfcn.m")
and if it is not found then the mechanism described below comes into effect.

A second mechanism for making a new function known to Maple’s taylor func-
tion is to define the derivatives of the function via the user interface for tie diff func-
tion. If Maple is not able to find a definition for the name “tayl/newfcn® then it looks
for a definition of the name “diff/newfcn® and, if it is found, then the taylor expan-
sion is generated via differentiation and substitution.

Functions whose series expansions are currently defined in the Maple system
library include the elementary functions (all of the circular, inverse circular, hyper-
bolic, and inverse hyperbolic functions, as well as the functions exp and In), and the
factorial function (which interfaces to the GAMMA function known to diff).

8.1.83. trunc (expr)

The value of this function when expr evaluates to an integer, & rational number,
or a floating point number is the ‘integer part’ of expr which would be obtained if
expr was expanded in a decimal expansion. For example,

trunc(8/3); yields 2
trunc(—8/3); yields -2
trunc(—2.4); yields -2

108 _ Geddes, Gonnet, and Char

8.1.84. type (expr, typename) or type (expr, ratfunc, arg)

This is Maple’s type-checking function. The value returned is true if expr is of
type typename and the value returned is false otherwise. Except when the second
parameter is ‘ratfunc’, the first form of the function calls shown above is used. The
following typenames known to the fype function correspond to Maple's data types
which are described in section 4.1:

8, Y, tK=t, tK>S, 4, et teet, 1Y andt, “not', “or', array, equa-
tion (alternatively “="), range (alternatively °.."), float, function, indexed, integer,
list, name, procedure, rational, series, set, table, uneval.

Additionally, the following typenames are known to the fype function and they are
defined in terms of the basic data types as indicated:

algebraic (any of the following types: *.%, *+°, ", ** °1*, float, function,
integer, name, rational, series)

constant (any of the following types: float, integer, rational, or any expression
whose operands are all of type constant)

Any object which is of type array is also of type table since arrays are a subclass
of tables.

If the second parameter is ‘ratfunc’, then type determines whether the first argu-
ment is a rational function of the third argument.

User Interface: -

New type-checking procedures can be made known to the fype function by the follow-
ing mechanism. If the user assigns a procedure to the name ‘type/newtype’ (where
‘newtype’ is any name chosen by the user) as in

“type/newtype" : = proc (expr, <extra parameters>). .. end
then the function invocation

type (expr, newtype, <extra parameters>)
will cause the function invocation

“type/newtype’ (expr, <extra parameters>) .
If “type/newtype’ is not assigned then Maple looks for it in the Maple system library
at the pathname

cat(libname, “type/newtype.m")
and if it is not found then an error occurs.

One additional typename is currently defined in the Maple system library:

polynom. It can be used in either of the two forms:

type(expr, polynom)

type(expr, polynom, domain)
where in the latter case, the extra parameter ‘domain’ can take any one of five

MAPLE User’s Manual 109

possible forms:

typename [X, y, . . .]
typename [{x, v, ... }]

[xy...]
{x,y,...}
x

The expression expr is checked as a polynomial in the indeterminate(s) specified by
‘domain’. In the case of the first two forms of ‘domain’, there is an additional check
that expr, as a polynomial in the specified indeterminates, has coefficients of type
‘typename’. In the case where the argument ‘domain’ is omitted, the implied value
of ‘domain’ is indets(expr). In all cases, the concept of a ‘polynomial’ is that expr is
not of type ‘series’ and the degree of expr in each of the indeterminates is finite (i.e.,
not equal to the largest word-size negative integer).

8.1.85. unames ()

This function takes no arguments. It returns an expression sequence consisting
of all of the active names in the current Maple session which are unassigned names,
meaning names which have no value other than their own name. Note that in Maple
every ‘string’ is equivalent to a ‘name’, so the result of the unames function will
include every ‘string’ that has been defined in the session (including file names and
error messages). (See also the function ananmes).

8.1.86. whattype (expr)

This function returns the typename of expr. The typename returned for both
exponentiation operators "+’ and ' is "ss’,
EXAMPLES

whattype(x+y) yields +
whattype(x+y) yields .

8.1.87. writeto (filename)

This function has the effect of making the Maple system redirect standard out-
put to the file the name of which is passed as the argument. If the file already exists,
its previous data is overwritten. If the file does not exist, it is created. The special
name ‘terminal’ can be used to redirect output to the user’s terminal device.

110 Geddes, Gonnet, and Char

8.2. Miscellaneous Library Functions
The following functions reside in the Maple system library but they are not

automatically loaded. In other words, the names of these functions are not initially
defined in the Maple system. If the user wishes to load one of these functions,
named ‘fname’, then he may use the read statement:

read cat(libname, ‘fname.m")
or he may use the readlib function to initiate an ‘automatic loading’ facility by speci-
fying the assignment:

fname : = ’readlib(’fname’)’ .

8.2.1. bernoulli{ n)

This function computes the nth Bernoulli number. The argument n must evalu-
ate to an integer value.

8.2.2. binomial(n, r)

This function computes the binomial coefficient nl/(r!+(n—1)!). The two argu-
ments must have integer values.

8.2.3. cfrac (f) or cfrac (f, maxit)

This function prints the sequence of quotients and convergents to f. If maxit is
given as a second argument, then no more than maxit values are printed.

8.2.4. content (a, varlist)

This function returns the contents of the multivariate integer coefficient polyno-
mial a with respect to the variables in varlist. The argument varlist may be a list,
set, or expression sequence of variables and it may be empty.

Examples:
content(w2x"3 + w'3ex"dey"5¢2°6, [y, z]) yields w2+x"3
content(3exsy + 6ax"2+y"2, X) yields 3y
content(4 + 2ex, {x}) yields 2
content(3 + 3»x) yields 3+3ex

8.2.5. convergs (=, b, n) or convergs(a, b)

This function finds and prints the convergents of a continued fraction. The con-
tinued fraction
b,
al+-b—’+ﬁ+-—‘+ <o
8y &6 _
is entered as: convergs(a, b, n); where a and b are cither lists ([a,, a,, ..],
[1, b;, ..]) or functions which compute the respective coefficients. If all the b

MAPLE User’s Manual 111

cocfficients are 1, b can be omitted. n is an optional parameter which indicates the
number of convergents to compute.

8.2.6. EML(f, x,n)

E_ML(f, x, n) computes an n* degree Euler-Maclaurin summation formula of
f (an expression in x). In general, E_ML(f, x, n) is an asymptotic approximation
of sum(f, x).

8.2.7. expandoff (<fcn name,>, <fcn name, >, ... <fcn name >)

This function can be used to supress Maple's knowledge of how to expand the
functions listed in the parameter list. If the parameter list is empty, then knowledge
of all functions is supressed. The function expandoff returns the NULL expression
sequence as its result. (See also expand and expandon.)

Examples:

expandoff(exp, In) yields NULL

expand(exp(a+b)) yields exp(a+b)

expandon() yields NULL

expand(exp(c+d)) vyields exp(c)+exp(d)

expand(exp(a+b)) yields exp(a+b)

gc0) yields NULL

expand(exp(a+b)) yields exp(a)*exp(b)
WARNING: The expand function uses the remember option which is why the second
call of expand(exp(a+b)) did not expand. Garbage collection (c.f. gc) clears the
partial computation table; subsequently the third call of expand(exp(a+b)) does
expand its argument.

8.2.8. expandon (<fcn name,>, <fen name, >, ... <fen name >)

This function can be used to reassert Maple’s knowledge of how to expand the
functions listed in the parameter list. If the parameter list is empty, then knowledge
of all functions is reasserted. The function expandon returns the NULL expression
sequence as its result. (See also expand and expandoff.)

8.2.9. invfunct { fname)
This function returns the name of the inverse of the function fname.
Examples:
invfunct(cosh) yields arccosh

invfunct(exp) yields In
invfunct(arctan) yields tan

112 Geddes, Gonnet, and Char

8.2.10, mged(a, b, p)

This function returns the modular ged of the univariate polynomials a and b
with respect to the modulus p.

Example: .
mged(x+2, x+3, 7) yields 1

8.2.11. mgcdex(a, b, p) or mgcdex(a, b, p, k)"

This function applies the Extended Euclidean algorithm in Z/p*[x]. The argu-
ments a and b are interpreted as polynomials in the domain Z/p*[x] and p must evalu-
ate into a prime integer. If the fourth parameter k is not given in the argument list,
then the default value of 1 is used for k. This function produces a list [s,t,g} with
the following properties:

1) g = GCD{ a mod p, b mod p) in Zp{x].
2) If k=1, then s and t are polynomials in Zp[x] such that

s+a + teb = g (mod p)

3) If k>1 and g=1, then s and t are polynomials in Z/p*{x] such that
s+a + tsb = 1 (mod p*)

4) 1tis an error if k>1 and g+#1.

If k=1, then this is the standard extended Euclidean algorithm in the Euclidean
domain Zp[x] for a prime integer p. If k>1, then first the standard extended
Euclidean algorithm is applied to a mod p and b mod p in Zp{x] and if the ged is 1 in
Zp|x] then p-adic lifting is applied to lift the solution to the domain Z/p{x].

8.2.12. mpower (x, n, p)
This function returns imodp(x"n, p). (Also see imodp.)

Examples:
mpower(2, 10, 1000) yields 24
mpower(3, 4, 11) yields 4

8.2.13. orthog.p

All the orthogonal polynomials in this package are generated by their
recurrences. This seems to be the most efficient procedure. It is better than the gen-
erating function, even if you want all of the polynomials from 1 to n.

H(n, x) generates the nth orthogonal Hermite polynomial.

P(n, x) generates the nth orthogonal Legendre polynomial.

T(n, x) generates the nth orthogonal Tschebysheff polynomial of the first kind.
U(n, x) generates the nth orthogonal Tschebysheff polynomial of the second kind.

MAPLE User’s Manual 113

8.2.14. psqrt(a)

This function returns a square root of the multivariate integer coefficient poly-
nomial a, if a is a perfect square; otherwise it returns the name @NOSQRT.
Examples

psqri(9); yields 3

psqrt(x*2 + 2+x 4+ 1); yields x+1

psqrt(x°2 + 2exey +y'2); yields x+y

psqrt(x+y); yields @NOSQRT

8.2.15. randicm ()
This function returns random integers after it has been initialized by the call
randlem_init (m, a, ¢, X);
where the linear congruentiai method is used with
X[n+1] = (a+X[n] + ¢) modm .

Example:
randlem_int(10°10, 4219755981, 9893258573, 4806771896) yields NULL
randlem() yields 7341968549

randlem() yields 6849900142

114 Geddes, Gonnet, and Char

9. MISCELLANEOUS FACILITIES

9.1. Debugging Facilities

The current version of Maple does not have the sophisticated syntax error mes-
sages that we envision for Maple in the future. The best mode of operation for
detecting syntax errors in procedure definitions is to develop the procedure definition
into a file (using a text editor external to Maple) and then to use the read statement
to read the file into Maple. In this mode, when a syntax error is encountered the
corresponding line number in the file is displayed with the syntax error message.

One name whose value determines the amount of information displayed to the
user during execution of a Maple session is yydebug. The default value for yydebug
is 0. If the user assigns the value 1 to yydebug as in the statement

yydebug := 1;

then the system displays a very large amount of information which is a trace of the
Maple session from the basic system viewpoint.

A more useful facility from ‘the user viewpoint is the printlevel facility. The
default value for printlevel is 1. Any integer may be assigned to the name printlevel
and, in general, higher values of printlevel cause more information to be displayed.
Negative values indicate that no information is to be displayed. More specifically,
there are levels of statements recognized within a particular procedure (or in the main
session) determined by the nesting of selection and/or repetition statements. If the
user assigns

printlevel : = 0;
then the following statements within the main session
b:=2;
forito Sdoa.i:= b od;
will generate the printout b : = 2 after execution of the first statement and there will

be no printout caused by the for-statement (the value of the for-statement is null). If
the user assigns

printlevel : = 1;

before the above statements are executed (or equivalently, if no assignment to
printlevel has been made) then each statement within the for-statement will be
displayed as it is executed (in the same manner as if these statements appeared
sequentially in the ‘mainstream’), yielding the following printouts for the above state-
ments:

MAPLE User’s Manual 115

b:=2
al:=2
a2:=4
a3 :=8
ad:= 16
as:= 32

The statement b : = 2 is considered to be at level 0 while the other assignment state-
ments in this example are at level 1 because they are nested to one level in a repeti-
tion statement. If statements are nested to level i then the value of printlevel must be
i if the user wishes to see the results of these statements displayed.

More generally, statements are nested to various levels by the nesting of pro-
cedures. The Maple system decrements the value of printlevel by 2 upon each entry
into a procedure and increments it by 2 upon exit, so that normally (with printlevel =
1) there is no information displayed from statements within a procedure. If the user
assigns

printlevel : = 2;

in the main session then statements within procedures called directly from the main
session (but not nested statements) will be displayed as they are executed, because
the effective value of printlevel within the procedure is 0. If the user assigns

printlevel : = 3;

in the main session then, in addition, statements nested to one level of selection
and/or repetition statements in the procedure will be displayed because the effective
value of printlevel within the procedure is 1. Alternatively, the user may explicitly
set the value of printlevel within the procedure for which the information is desired.

It is often useful for debugging purposes to set a high value of printlevel in the
main session if information is desired from within procedures to various levels of
nesting. When the effective value of printlevel upon entry to a procedure is 3 or
greater, the printout will display the entry point and exit point for that procedure as
well as the values of the arguments at the entry point. It is not uncommon to use a
debug setting such as

printlevel : = 1000; - ’ o
in which case entry and exit points and statements will be displayed for procedures up

to 500 levels deep. For more selective debugging information, the value of printlevel
should be assigned within specific procedures.

A program called profile is available for processing the output produced by
Maple with a high setting of printlevel. This program is separate from the Maple
system and is available under the same directory where the Maple system resides. It
is used in the form:

profile <outfile
where ‘outfile’ is a file containing Maple output produced with a high setting of

116 Geddes, Gonnet, and Char

printlevel (in particular, entry and exit points of Maple functions must be displayed).
The output from the profile program is a table showing the name of each Maple pro-
cedure (including the Main Routine) that was entered, the number of entries to the
procedure, and the number of lines (also the number of characters) of output in ‘out-
file' originating from the procedure. This information can be useful to pinpoint
‘bottleneck’ procedures which should be candidates for efficiency improvements.

9.2. Monitoring Space and Time

As execution proceeds in a Maple session the user will see lines displayed in the
form “words used n" for integer values n. This information indicates the number of
words of memory that have been requested up to that point in the execution of the
session. This information is also displayed at the end of a session when the quit
statement is executed, where the phrase “Final ‘words used’=n" is displayed. It
should be noted that this measure of memory usage is not directly related to the
actual memory requirements of the Maple session at any point, but rather is a cumu-
lative count of all memory requests made to the internal Maple memory manager
during execution of the session. Typically, a significant proportion of the ‘words
used’ at any point may have been re-allocations of actual memory that was previously
used and then released to Maple’s memory manager.

A second measure of memory requirements is displayed at the end of a session
when the quit statement is executed, in the form of the phrase “‘storage=n" for some
integer n. This measures the memory space actually occupied by the Maple system
plus the data area, and the unit of measurement is the ‘natural’ unit of memory for
the particular host system (e.g., bytes on the Vax machine and words on the
Honeywell machine). Note that Maple’s internal memory manager requests ‘storage’
from the host system in large chunks and then allocates it as needed, so that the final
“storage=n" measure typically includes a significant number of memory units that
were never actually required by the Maple session.

Monitoring timing information for a Maple session can be accomplished by
using the timing facilities of the host system. Typically there is a time command on
the host system and it is often convenient to use this command along with the host
system’s facilities for re-direction of input and output. For example, if infile denotes
the pathname of a file containing the Maple session to be timed and if outfile denotes
the pathname of the file where the Maple output is to be directed then the UNIX com-
mand

time /wmaple/bin/maple <infile >outfile
or the Honeywell TSS command
time : maple/maple <infile >outfile

will cause the Maple session in infile to be executed, with output into outfile, and
after completion the host system will display the timing information for that session.
Of course, the time command may also be used without necessarily using re-direction
of input and/or output.

MAPLE User’s Manual 117

9.3. Session Initialization

When a Maple session is begun, the Maple system first searches for an initiali-
zation file before it starts receiving any input. Any Maple statements may be placed
in this file and these statements are executed before any statements from the input
file. If there is no initialization file, then the Maple system begins directly by read-
ing statements from the input file. If there is an initialization file, the printlevel vari-
able is set to —1 before the initialization statements are executed so that initialization
will proceed silently. We recommend that the last statement of the initialization file
be “"printlevel := 1:" to reset the variable. The silent statement terminator (:) is
used so that the result of the assignment statement is not printed either.

On UNIX systems, the initialization file must be placed in a user’s home direc-
tory under the name ".mapleinit”. On the Honeywell system, the initialization file
must be placed in the file "userid/_sysfiles/maple” where "userid” is the userid of the
user.

The use of the load option (c.f. section 9.4) on the command line invoking
Maple will prevent any initialization file from being read.

9.4. Other Facllities

Escape Character

The character ! when it appears as the first character in a line is treated as an
‘escape to host' operator. This allows one to execute any command in the host sys-
tem from within a Maple session. The line need not terminate with a Maple state-
ment separator (“:* or *;*) before the carriage-return character terminates the line.

Garbage Collection

Maple’s automatic garbage collection facility has not been implemented at the
time of this writing. However, there is a function ge() which can be invoked by the
user. This has the effect of deleting all data structures to which no references are
made and also of deleting the partial computation table. The function returns the
NULL expression sequence and it also prints a message showing three values:

words returned words available words allocated

The first value is the number of words that were released during garbage collection.
The second one is the total number of free words available. The third value is the
total amount of memory that has been allocated by Maple so far.

Wrap Program

"~ There is a program called wrap which will insert <newline> characters at
appropriate intervals in files containing very long lines of output. (Note that it is not
uncommon for Maple to produce very long expressions in its output). This program
is necessary on some host systems as a pre-processor before the host system’s editor
will accept the file for editing. The wrap program is separate from the Maple system
and is available under the same directory where the Maple system resides (on those

118 Geddes, Gonnet, and Char

host systems where it is required). It is used in one of the following two forms:

wrap <filel >file2
wrapn <filel >file2

where ‘filel’ is the original Maple output file, ‘file2’ is the file into which the
‘wrapped’ output will be deposited, and ‘n’ (if present) specifies the maximum
number of characters to be allowed in a line before a <newline> character. (The
default value of ‘n’ is 240). The wrap program uses some knowledge about
mathematical expressions in attempting to insert the <newline> characters at
‘natural’ break points (when possible), rather than breaking after exactly ‘n’ charac-
ters.

Lead Option

Maple has a load option which must be used whenever functions are being
loaded into the Maple system library, and which should be used whenever an
internal-format (‘.m’) file is created by a user. This option is activated by specifying
‘~1" immediately following the ‘maple’ command. For example, on the Vax UNIX
system a typical command for loading a library function named ‘f* would be

/w/maple/bin/maple —1 </w/maple/lib/src/f
where the source file for ‘f’ should end with the statements

save ** . libname . ‘f.m";
quit

In Maple’s normal mode of operation (without the load option), when an
internal-format save is done the Maple <name>s which correspond to
automatically-loaded library functions (readlib-defined functions) are not saved.
Therefore, in this normal mode it is impossible to update the ‘.m’ files which define
the Maple library functions. The effect of the load option is to initiate a Maple sys-
tem in which none of the library function names is initially defined (and the global
variable names printlevel, Digits, and Degree are also undefined). It follows that
such a Maple system is of limited value for ordinary use; its sole purpose is for load-
ing ‘.m’ files. .

It is recommended that every user should use the load option when creating a
‘m’ file. Otherwise, the readlib definition of each Maple library function which is
referenced, and also the current values of any of the above-mentioned global vari-
ables which are referenced, will be stored in the user’s file. This may lead to several
undesirable effects: the value of the global variables will be ‘mysteriously’ redefined
when the user’s ‘.m’ file is loaded; there may be unwanted re-loading of library func-
tions (which not only is costly but also destroys previously-remembered values for
functions with option remember); and, even more seriously, there may arise a circu-
lar loop loading and re-loading files!

MAPLE User’s Manual

10. APPENDIX A

119

UNITS USED BY METRIC CONVERSION FUNCTION

The following units are the ones which are known to the convers function when
it is called upon to convert from a non-metric expression to a metric one.

acre
acres
bu
bushel
bushels
chain
chains
cm
cord
cords
feet
foot

ft
furlong
furlongs
gal
gallon
gallons
Gals
gill
gills

er

hr

in

inch
inches
kg

km

b

lbs
light_year
light_years
mi

Mile
miles
MPG
MPH
ounce
Ounces
oz

Ozs

pint

pints

pole
poles
pound

120 Geddes, Gonret, and Char

11. APPENDIX B

EXAMPLES OF TABLES

This appendix contains edited versions of the procedures “table/initbds" and
“table/initvals’ from the Maple system library. These are given as model programs
upon which a user may wish to base his own procedures.

MAPLE User's Manual 121

This function is called to deduce the bounds when an array is being

created and no bounds are given but some initializing values are.
Input -~ the list of initializations supplied in the call to ‘array’.
Output -- a sequence of zero or more integer ranges.

The action taken depends on whether we have values or equations:

-~ If only values, then give bds for a 1-dimensional array.

-- If only equations, then deduce the dimensions from the LHS's.
(All LHS's must have the same number of components.)

- Otherwise, the input is erroneous,

HEEEEEEEER®

“table/initbds" :=

proc(init_list)
local i, j, rank, bds, lo, hi, err_msg;
err_msg ;= ‘improper array initializations";

determine whether initializations are equations or values
{op(map(type, init_list, “="))};

if " = {false} then # list of values
1..nops(init_list)

elif " = {true} then # list of equations
verify that all indices have same number of components
{op(map(proc(eqn) nops([op(1,eqn)]) end, init_list))};
if nops(") <> 1 then ERROR(err_msg) fi;

find smallest “box” containing the indices

rank := op(");
bds := NULL;
for i to rank do

lo := op(i,[op(1,0p(1,init_list))]); hi:= lo;
for j to nops(init_list) do
op(i, [op(1, op(j,init list))});
if not type(", integer) then ERROR(err_msg)
elif "< lothenlo:= "
elif "> hithen hi:= "
fi :
od;
bds : = bds, lo..hi
od;
bds

else ERROR(err_msg) # list has some equations AND some values
fi
end;

122

B EREESE

Geddes, Gonnet, and Char

This procedure is used to install the initial values in a table.
The first parameter is the table, the second is the list of
initializations from the call to ‘array’ or ‘table’.

This function is not called if the list of values is null.

The action depends on whether we have values or equations:
-- If only values, install with integer indices.

-- If only equations, install with the LHS’s as indices.

- Otherwise, the input is erroneous.

‘table/initvals® : =
proc(tbl, init_list)

local i, "lo—1%, err_msg;
err_msg : = ‘improper initializations for table or array";

{op(map(type, init_list, *="))};

if " = {true} then
for i to nops(init_list) do
q tbl[op(1, op(i, init_list))] : = op(2,0p(i, init list))
o

elif " = {false} then
if type(tbl,array) then
if nops([op(2,tbl)])<>1 then ERROR(err_msg) fi;
lo—1' := op(1,0p(2,tb])) — 1

else
lo-1":=0
fi;
for i to nops(init_list) do tbl['lo—1"+i] : = op(i,init_list) od
else
ERROR(err_msg)
fi

end;

MAPLE User’s Manual 123

12. REFERENCES

Bou7la. S.R. Bourne and J.R. Horton, ““The Design of the Cambridge Algebra
System,”” pp. 134-143 in Proceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, ed. S.R. Petrick, Special Interest Group on Symbolic
and Algebraic Manipulation, Association for Computing Machinery (1971).

Hal7la. Andrew D. Hall, Jr., “"The ALTRAN System for Rational Function Mani-
pulation - A Survey,”” in Proceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, ed. S.R. Petrick, Special Interest Group on Symbolic
and Algebraic Manipulation, Association for Computing Machinery (1971).

Hea7la. Anthony C. Hearn, “‘Reduce 2: A System and Language for Algebraic
Manipulation, ”” pp. 115-127 in Proceedings of the Second Symposium on Sym-
bolic and Algebraic Manipulation, ed. S.R. Petrick, Special Interest Group on
Symbolic and Algebraic Manipulation, Association for Computing Machinery
(1971).

Joh83a. Howard Johnson and the 28 flavors, Margay reference manual, (Margay is a
type of cat native to South America.), 1983.

Mar71a. W. A, Martin and R.J. Fateman, ““The MACSYMA System,* pp. 59-75 in
Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation,
ed. S.R. Petrick, Special Interest Group on Symbolic and Algebraic Manipula-
tion, Association for Computing Machinery (1971).

Mera. Meg Merrill, Know Your Ocelots and Margays, The Pet Library Ltd, New
York.

abs

actual parameters
addition

algebraic
algebraic operator
analyze

anames

args

array

assigned
assignment
asympt

bernoulli

binary

binomial

blank

Boolean expression
Boolean procedure
break
break/interrupt

C

cat

Catalan’s constant
cfrac

character set
circular functions
coefl

comment
concatenation
constant

content

continued fraction
convergents
convergs

convert

copy

data types

-124 -

INDEX

118

72,79
47
23
108
12
72
73
47

30 , 68,73, 75, 120
74
7
74

110
75
110
4
24
54
8

8

82
74
82
110
2
79 , 82,107
74
4
10 ,28
9,108
110
110
110
110
75
77

22 , 59, 108

MAPLE User’ s Manual

debugging
degree
Degree
denom

diff

Digits

divide

do statement
done

€

empty list
empty set
emptly statement
equation
ERROR

escape
Euler-Maclaurin
evalb

evale

evalf

evaln

exp

expand
expandofl
expandon
expression
expression sequence

Extended Euclidean algorithm

E_ML

factor

factorial

FALL

false

files

Float

floating point number
for statement
formal parameters
frac

function

GAMMA

garbage collection

114
77
106
78
78
9,80
79

82
11
11

12,24
82,79
117
111
80
80
80
80
79 , 82, 107
82
m
111
9
11,23
112
111

25,107

BaB &

-ﬁ@mg

16 ,25

79 , 82
117

125

126

ged
grammar

has

hashing

Hermite polynomial
hyperbolic functions

icontent

if statement
ifactor

iged

ilem

imodp

imods

indets

indexed expression
indices

inequality
initialization file
int

integer

internal functions
internal organization

inverse circular functions
inverse hyperbolic functions

inversion of series
invfunct

iquo

isprime

isqrt

ithprime

keyword

lem’

lcoeff

Idegree

Legendre polynomial
length

lexorder

libname

library functions
limit

line

Geddes, Gonnet, and Char

84
27

84
66
112

79 , 82,107

84

7
84
85
85
85
86
86
11
87

12,24

117
88
9,22
58
58

79 , 82, 107
79 , 82, 107

102
111
88
89
89
89

2

89
89
90
112
90
90
55
72
91
4

MAPLE User! s Manual

linear equations
list

In

load option
local variables
logical operator
Iprint

map
maparray

Margay

max

member

metric conversion
mged

mgedex

min

minv

modp

mods

mpower

mquo

mrem
multiplication

name
nargs

natural integer
nextprime
nops

normal

NULL

numerator

(o]

octal

op

operator

options

order term

orthog.p

orthogonal polynomials

parameter passing
parser

12

102
11 ,23,75
79 , 82, 107
18
49
12
9

91
92
65
93
93
75
12
112
94
94
9
95
112
95
95
23

10 , 22,75

48

4
95
95
96
23
97

23
75
97
2
49
23
112
112

47
58

Geddes, Gonnet, and Char

partial computation table 49 , 68, 100, 117
partial fraction convergents 110
Pi 82
polynom 75 , 108
polynomial 75
polynomial equations 102
portability 65
positive range 85
power 23
precedence of operators 16
prem 98
prettyprint 1
prevprime 99
print 99
printlevel 1,114
procedure 15 , 24, 46
product 29
profile 115
Psi 79 , 82
Psil 82
psqrt 113
punctuation mark 4
quit 8
quo 99
quote (double) 12 , 54
quote {single) 15
rand 99
randlem 113
randsimp 99
range 13 ,24
rational 75
rational number 9,22
read 7,55
readlib 55 , 1C0
relation 12
rem 100
remember 49 , 100
repetition 8
RETURN 53 , 101
save 7,5
saveonly 101
selection 7

MAPLE User’ s Manual

selection operator
series

session

set

set operator

sign

simplification table
solve

space

special characters
statement
statement evaluator
statement terminator
stop

storage

string

style

subs

subsop

substring

sum

symmetric range
syntax

syntax errors
system

table
taylor
time
token
true
trunc

Tschebysheff polynomial

type

unames
unassign
unevaluated expression

whattype

while statement
words used
wrap

writeto

14
23,75
17
11 ,23,76

102

67
102
116

116

69
103
103
104
104

86

27
114
1056

30 , 68, 105, 120

106
116

2
13
107
112
108

109
15
15

109

8
116
17
109

129

130

Geddes, Gonnet, and Char

yydebug

zeta

114

82

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

