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ABSTRACT

Local control of the shape parameters B; and B, in a Beta-spline has previously
relied on quintic Hermite interpolation of the distinct B-values associated with the
joints in a geometrically continucus piecewise polynomial curve. Changing the
value of B, or B, at a given joint affected only the two immediately adjacent curve
segmenis. Such extreme locality was obtained at the cost of dealing with polynomi-
als of unusually high degree, as these “‘continuously-shaped Beta-splines” are the
quotients of 18" and 15" degree polynomials.

We here introduce an alternative means of obtaining local control of geometri-
cally continuous piccewise polynomial curves. The essential idea is to generalize
the truncated power functions suitably, from which the B-splings are obtained by
differencing. The “discretely-shaped Beta-splines” which result from differencing
these generalized functions are piecewise cubic, respond locally to changes in the
shape parameters (as well as the control vertices), partition unity and possess a con-
vex hull property. Moreover they are naturally defined over an irregularly-spaced
knot sequence.

The research reported here was supported in part by the Natural Sciences and Engineering Research
Council of Canada, the Province of Ontario’s BILD program, the University of Waterloo and the Com-
puter (raphics Laboratory.
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Beta-Splines With a Difference i

1. Intreduction

The Beta-splines introduced by Brian Barsky [Barskyl98ta, Barskyl983a] are a
generalization of the uniform cubic B-splines, They provide a means of construct-
ing parametric spline curves in which the shape of a curve is controlled by two ten-
sion parameters {3 and B, independently of the movement of contrel vertices. A
uniformly-shaped Beta-spline curve results when a single value of each B parameter
is used in evaluating an entire curve. In [Barsky1982a] and [Barsky1983b] a tech-
nique was introduced by which distinct vatues of B, and 8, denoted f,; and [3;;,
are associated with each control vertex so that altering a single such B value causes
only a local change in the shape of the curve being defined.

This local control was accomplished by interpolating between any two successive
values $y;-; & Py; of B; and By, -1 & By of B, followed by substitution of these
interpolated values into the equations for a uniformly-shaped curve. The result is
called a continuousiy-shaped Beta-spline curve. Very local control of shape is
achieved in that changing the value of any particular B,; or B;; alters only two
curve segments, but there is a substantial cost — continuously-shaped Beta-spline
curve segments are actually the quotients of 18% and 15" degree polynomials.

In this paper, an expansion of the approach introduced in [Bartels1983a)], we
shall sec that it is possible to obtain local control of the shape parameters in Beta-
splines without resorting to polynomials of higher than cubic degree. The tech-
nique introduced here has the added advantage of generalizing the cubic Beta-
spline curves to non-uniform knol sequences. The approach we take is to generalize
the definition of Bsplines as divided differences of truncaled power functions.

In the next section we will sketch the basic ideas and terminology we need from
the theory of B-splines; for a more leisurely development the reader is referred to
[Bartels1983b).

2. B-Splines
The curves in which we are interested are piecewise cubic parametric polynomi-
als Qi) = (X{(i),Y{if)) of the parameter & €]#g,iz,, ), where iy and @, are the
first and last values in the knot sequence

En{!?]<§2"‘ ‘(l—l_m .

For reasons which will become apparent later, we will need aquxiliary knots -,
1’7*2‘ E*h and 37m+1! §m+21 'Tm'!'i satisf)'ing

oy <y <Hoy <l Hy < Hpst < ihpay < Hpty .

If the length of each knor imterval [ii;.;,i%; ) is the same then the knot sequence,
and all curves defined over that knot sequence, arc said to be wniform.

B-Splincs



2 RH Bartels & JC Beatty

The i curve segment Q,(if) = (X;(&),Y;(¥)) is generated as & runs from ;-4
to &i; (u€]#;-1,5i;)) and each parametric component X, (i) and Y;(&) is a single
cubic polynomial. The knots @), . .. i, correspond to the joints between suc-
cessive polynomial segments. (See Figure 1.) The curve Q(iT) is a cubic C? spline
if the segments which meet at a joint do so with first and second derivative con-
tinuity; that is, if the first and second parametric derivatives of Q;—,(#) and Q;(it)
at # are identical for 1 <<i=<m. It is a fact that any such curve can be
represented as

Q) = T ViB(@) = X {(xB8i@,yBi)) 8]

i

for some scaling values V; = {x;,3;) and cubic B-splines B;(@).* The B,(if) are
local functions, such as the one shown in Figure 2, which are non-zero only on four
successive knot intervals. The V; are called control vertices because the curve
“passes near” them; generally one defines such a curve by placing and moving the
control vertices. The term “B-spline” is short for basis spline. The B, (@) were
given this name because any cubic spline can be represented as a scaled sum of the
B,{(it) as in (1), while no single B;(i6) can itself be represented as a scaled sum of
the remaining B;(i). :

Because each B;(if) is nonzero on only four successive intervals, if
i) =i <if; we may write {1) as

-1
Q@ = 3 Ve By, (@) (2)

re—sg

= V4B (@) + V1B (&)

+ Vg Bioo(@) + Vi Bioy() .

The functions B; (i) are themselves C? continuous piecewise cubic polynomials, like
the curves they define. Using the notation of Figure 2, on the interval
if;, <# <i#; we may replace each B-spiine with the segment polynomial which
yields its value on that interval:

m More commenly one does not require that the knot sequence be strictly increasing, so that if; ., =&
is ailowed. Fach time a knot is repeated the parametric continuity of the curve at that value of & is
reduced by one. In this more general case any piecewise cubic curve is acceptable, even if therc is 2
jump in position between curve segments. We will avoid this generality throughout.

& ‘We will adhere to standard mathematical terminology, using the term “B-spline” to refer to a basis
function. We will use the term “B-spline curve™ to refer to a parametric curve such as (1) that is
defined as a scaled sum of B-splines.

B-Splines



Beta-Splines With a Difference 3

QlT) = Viysi—q—alif) T Vioa5-35(#)
F Vi Sioa—al) + Viogs— (@) .

It is possible to show that

S, =1 () + 5pz,—2(#) + S a(@) + sog-4(@) = 1 3)
and

S, =1 (@) s S—g o)y S —3F), S qlif) = O 4)
so that the /* curve segment Q,{iZ) lies within the convex hull of the vertices V,_,
V-3, V;zand V; ;.
2.1, Divided Differences and the Truncated Power Function

There are a variety of ways in which the cubic B-splines B;(#) can be defined.
An approach which leads to cfficient and robust evaluation is to define them as
“divided differences” of “truncated power functions.” We shall first define these
terms, and then explain why they are interesting.

Let f{r) be a suitable function. Then the zeroth divided difference of fi1) at i,
denoted [iz:¢]f (1), is simply f(i%;). The first divided difference of fit) at 4; is
{2018 — [i#:2]1 ()

iy — 0

W my ) =

and in general the I™ divided difference of fitj at T; is
[ﬁ-h e !Ex"h':l]f{t} =

[ et Q) — (8 B2 1)

e — 0

The truncated power function of degree r at t is defined to be

0 ¥t

(1) =1 .

=

{Think of ¢ as being a constant, although this is really a bivariate function of &# and
t.) This function behaves like (& — )" to the right of ¢, and has the constant value
0 to the left of . The two functions (# —¢ Y and 0 have the same value and first
through {r —1)* derivative at z, namely 0, but their " derivatives at ¢ do not
agree, being the constants r! and 0, respectively.

Finally, the cubic B-splines are defined by

B-Splines



4 RH Bartels & JC Beatty

By = (W — 0 ) T aradipe 2B n Berast )@ — )3 (5
1t is essential for what follows that we motivate this definition, which we shall now

do.

We have mentioned two important properties of the B-splines B (i), ..,
By —1(7) (for any underlying knot sequence &f..y, .., Hy+3): they form a basis for
the cubic splines (C? piecewise cubic polynomials on [ifg,Hh,,) with joints at the
knots), and they have local support {in fact 8,(if} > 0 only on (i;,# (4)). However,
it is not entirely obvious how definition (3) manages this.

On the other hand, the truncated power functions
(F—w-3)h (@— 0% . (T ()

are easily seen to provide a basis for the cubic splines on the knot sequence #y, @y,
., Hy-y, @, over the interval [@y,i,). This is established with rigour in
[Schumaker1981a] using somewhat the following reasoning.

*  Assume that the first segment is given by
Q@) = quoR’ + qu@ + qu@® + qui . M

That is, suppose that Q,(#) is known in terms of powers of ii. If we can
find constants ¥y such that

viol# — )3 + yp (i — @i
+ sz(ﬁ“ﬁwz)i +ypli—a)l = @
for j = 0,1,2,3 then these power functions can be expressed, in turn, as
linear combinations of
(7 —#-3)) (F-0-)% (F—a-)% (F—i)i .

For each j the problem of finding the four corrésponding y's can be
expressed as a system of linear equations by expanding the cubics in (7) in
powers of #. For instance, for j =0, the coefficients ygo, ..., Yo3 are
determined by solving the equations

1 1 1 1 Yoo

0
—3iy -3 T3y T3 Yo 0
+3m2 +3a2, 32, 3, | {ve| |0
—gd —@l, —@t, —il; | |Ye !

For the other values of j, only the right—hand side of these equations will
change; the system matrix remains the same. Clearly the ¥'s can be found
if the system matrix is nonsingular. This matrix, however, is simply a
scaled version of a 4 X4 Vandermonde matrix

B-Splines



Beta-Spiines With a Difference 5

Uy -y H z"—a

1 z “~3

P
1

w
&

Eo Wiy J
which is well-known to have the determinant
(g — 7 Mgt Wilg— W3 )(H - — U W(F oy — TH3y Wy~ 3)

Hence, the system matrix is nonsingular if the knots are distinct, as we are
assuming them to be.

Because Q(i) is C? continuous, Q{#) — Q,(#) must have the value zero
and have zero first and second derivatives at i7;. By means of a Taylor
expansion we therefore have

@ = @ + 1 [ P@y-oP@) @~y
for &, =i <<u; Thus

Q) formg=u <,
Q) =

Q,@) for#, = & < ii, (as above)
and this can clearly be written equivalently as
@ = Q@ + + [ Q@) - [@—apl
for iy <@l <ii,

Simitarly
Q@ = Q) + L[ Q@) — Q@) | (7 - @) |
for iT, <t < i, whence
Qi = @ + H[e¥@) - e | —a3
+ 4] QW - of@» [ -m

for <& < #;, and so on,

None of the functions in {6) can be represented as a linear combination of
the others on [#o.%,,). For the first four truncated powers, an argument
involving a Vandermonde system like that given above establishes that they
are linearly independent on the [if,#,,) interval. For the remaining trun-
cated functions independence follows inductively from the fact that

B-Splines



6 RH Bartels & JC Beatty

(& — ;)3 cannot be written as a lincar combination of the (& — 7).
ooy (T — Ty 1)} since the latter are all zero on [&,744) and (i — i; )} is
not.
The utility of the extra knots 75, #_3, #—;, and ¥ should now be clear. They
enable us to define the initial segment Q,(i) entirely in terms of truncated power
functions, and this is desirable (for purposes of consistency) becausc the remaining
segments are defined in terms of Qq{#) by adding in more truncated power func-
tions.

We observe in passing that the m+1 knots @, ..., if, encompass m Segmenis
Q(#@), ..., Qn{i) and require #m-+3 coefficients for the basis functions (6) to
represent an arbitrary cubic spline.

Unfortunately these truncated power functions are neither safe nor convenient
ta use. Near the end Q(&,) of a curve the power functions which become nonzero
near its beginning Q(ify) have grown very large, and must be cancelled by large
negative values of later power functions, with a consequent likelihood of overflow or
loss of precision. (See Figure 3. A simple example illustrating this point appears
in [Boor1978a, pp 104-105]). They are also non-local, in that altering the ampli-
tude of a single truncated power function will cause a change in the entire
remainder of the curve. The B-splines suffer from neither of these deficiencics, and
in fact we can regard them as being obtained from the truncated power functions
by “symbelic pre-canceilation” to avoid such loss of precision. The essential idea is
to replace each truncated power function by a linear combination of several such,
computed s¢ as to avoid unbounded growth, and thus replace the truncated power
funciions with a more tractable basis. Let us see how this is done.

First we shall replace (7 —i7;)}. Consider (i — if;)} and (@7 —#;)}. For
u =1, we have

(F—)% = & — 3da + 3aca — @
and ‘
(F—)) = @ — 3@, + 3w — @3 .
We can cancel the cubic term by subtraction — for @ =i, we have:
(F—m)) — @~k = &)
- (@ — @) [ 38 - 3agE+E) + @+ Eh]
Of course, for #; <# < ¥, we still have a cubic term:

(F~8p3 — (@ -3 = —(@-a@)

B-Splines



Beta-Splines With a Difference 7

= — B+ i - 3EEE + E .

Since (& — &)} and (& — i)} are lincarly independent {neither is a scalar multi-
pic of the other), this quadratic may replace (& — &)} in our basis.

We may deal with the remaining truncated power functions (7 — #3)3, ...,
(i — 1)} similarly; in each case (F—%+)} — (#—#%)) may replace
(i — )3, The resulting functions all behave quadratically for sufficiently large @
(ie, for T =4

We can repeat the process, replacing the quadratics with functions which are
eventually linear, but 1o do this conveniently we must first modify our quadratics
slightly. Netice that in equation (8) the coefficient of #° depends on the knot spac-
ing., In order to cancel quadratic terms in the same way that we cancelled cubics,
we want each of the quadratic terms to have the same cocfficient, Evidently we
should replace (& — i, )% not by (¥ — &)} — (¥ — &)}, but by

P = =3
(F—7)} — (@ —a)i

~

— = [l i@ )T — 1)L
T —

~
=)

= = 3@ + Jaliy + 7)) — (FF + iy + i)
for @ = #,
Similarly we should replace (# — if;)3 by
(@—@)} — (@ — i)}

iy — @iy

[ m i — )t

— 38 + IF(Ey+ ) — () + wawy i)
for & = U,

to obtain a constant cocfficient of —3 for the quadralic term, which can then be
cancelled by further subtraction. Thus we see that

(7 — @)% —

Wy —

i — i)k _ (#—i)} — (F—a)i

ity — i)

—~

w
=
- H

= (- w37 —u;— i, — &)
cancels the quadratic cocfficient, but that to obtain a constant coefficient for the
linear term we should in fact replace [if,#y:¢](# — 1)} by
[ @yt (i — )} — (@it i — 1)}

iy

= [Eiiiligfi;r](i’; —! )«3#

and so on,

The general scheme, then, is to:

B-Splines



RH Bartels & JC Beatty

replace each cubic truncated power function (T-—&)} by
[#;,7% ¢1:6)(# — 1)} to obtain a function that eventually grows guadrati-
caily, and in which the coefficient of # is identical for all i;

replace each such “eventually quadratic” function [&;,F;411](# — )3 by
[, 4 oz 4220 J(— 1) to obtain a function that eventually grows
linearly, and in which the coefficient of i is identical for all I3

replace each such “eventually linear” function {&},#; ¢ it 4.2:£](i — ¢ B by
a difference of itsell with [#; 4,5 1 42:£](# — £)1, scaled so that each
such difference eventually settles to the same constant value - in fact
[; ;4 15y 2.5 +3: 1 (7 — £ )} works, resulting in a constant of -1;

replace each such “eventually constant™ function
[ 40T v et ](E—2)L by & difference of itsel{  with

B4 03 400 130y 444 1(7 — 1)1, 10 obtain a function that is eventually

ze1o — in fact [, 41,7 428 +3.0: +4:1 107 ~— )3 works, although the divi-
sion by @44 — @ is performed simply so that this can be expressed as a
divided difference like the preceding steps.

These “eventually zero” functions, maultiplied by an appropriate scale factor, are
exactly the B-splines we wanted; the scale factor of (& 44 — ii;) in {5) is selected so
that the cubic B-splines wili be non-negative and sum to one.

It is now casy to see why the extra Knots ifp, 41, Hp 43 80d ¥, 43 are convenient
- they allow us to transform the truncated cubics at ¥, 3, fy—2 and &, in the
same way, avoiding the nced to discuss special cases. We are free to adopt such a
notational convenience, as our curve is defined only on [f#g,#,). Thus

in computing the eventually zero function beginning at #,,.., we need the
constant function beginning at if,;

which in turn requires the eventually linear function beginning at &, 41,
which in turn requires the eventually quadratic function beginning at

Uy 25

which in turp requires the truncated cubic beginning at 7, +3.

We are left, as one would expect, with m +3 basis functions B._(#), ...,
B, (i), linear combinations (1) of which yield an arbitrary C? piecewise polyno-
mial curve on [i7y,i,) of m pieces.

B-Splines



Beta-Splines With a Difference 9

3. Uniformly-Shaped Beta-Splines
The details of what follows may be found in [Barsky1981a].

The unit tangent vector of a curve Q@) is

a Q{i)(g)
Ty = —a W &)
@ = To%m] @
and the curvature vector is
P L ()
K@) = (@) N@) = x(7) o] (10)

where k(i7) is the curvature of Q at @ and IA‘J(E ) is a unit vector pointing from Q&)
towards the center of the osculating circle at Q(iF).1?! ’f(l?) and K(&) capture the
physically meaningful notions of the direction of motion and curvature at a point on
the curve,

Qi) 'f‘(z?) and K(&F) are easily seen to be continuous away from the joints of a
piecewise polynomial. It is possible to show that, in order for Q(i7), "’f{i) and K(ir)
to be continuous also at the joints between consecutive curve segments of Q(i¥)
(which is called G? or second degree geometric continuity), it is sufficient that

Q) = Qi) an
B Qi) = Q&) (12)
BPQE ) + BQ0E) = Q) (13)

at every knot #; and for any B, >0 and B, [Barsky1981a]. These equations are by
definition less restrictive than simple continuity of position and parametric deriva-
tives (§; =1 and B, = 0), the special case corresponding to the C? splines.

Equation {11) enforces positional continuity. Equation {12) requires that the
first parametric derivative vectors from the left and right at a joint be colinear, but
allows their magnitudes to differ. There is an instantanecus change in “velocity” at
the joint, but not a change in direction.

A sufficient condition for curvature continuity is that Q&) = B2Q2.(#H),
the factor of B,® arising from the assumption that equation (12) holds (scc
{Barskyl1981a, Barskyl983a, Bartels!983b] for details.) However, Q!¥(if;) may
have an additional componeat directed along the tangent Q{Y,(&;) since accelera-
tion along the tangent does not “deflect™ a point traveling along the curve, and so
does not affect the curvature there.

Curves possessing G* continuity result if they are defined using equation (1) in

&) The asculating circle at Qi) is the circle whose first and second derivative vectors agree with those
of Q at it. The curvature x(i7} is then the reciprocal of the radius of this osculating circie.

Uniformly-Shaped Beta-Splines



10 RH Bartels & JC Beatty

terms of G2 continuous basis functions whose segment polynomials 5(#) themselves
satisfy scalar versions of the vector constraint equations (11), (12) and (13);

sleﬁ'(i‘-i) = sn’ght(ﬁi) (14)

Busk@) = sigh(@) (15)

BesiR@m) + Bosiim) = sEuld@) - (16)
For a uniform knot sequence {#; — #;— = 1) and fixed values of B; and B, such a
basis function is defined by

s q{u) = % ( 2u3 ) {17)

s = £ 2+ 6o + 0By +6p2

~ @B+ 2B+ 2B+ 2’ )

sa) = & Batap 4B + (68— 68w
— (3B, + 6B+ 6B, u?
+ @B+ 2B+ 2B+ 26’ )
sa) = 5 (@B = 6B + 6B - B )
where

=B+ 2B+ APP 4P +2 # 0.

For simplicity these expressions have been individually parametrized via the substi-
tutions ¥ =& —@; for j = {, i+1, i+2, i+3; u =0 yields the left end of cach
segment and ¥ = 1 yields the right end of each segment. The composite

0 for @ << i;

sp—{u) for u =@ —&; and i =T < #y4

) $i~1) for u = U —fy4y and Hy ST < g

Gy = N . -
i Sj-3u)  for u =T — W4y and Hey ST < W4

Si~q(@) for w =TTy and By SH < Fgy

0 for W =W

is the uniformly-shaped Beta-spline introduced in {Barsky1981a), which was con-
structed over a uniform knot sequence. Because the knots are equally spaced the
uniformly-shaped Beta-splines are translates of one another, so that s; . {(u)=s; (),
and it is perfectly safe to write 5,(u). Use of the basis function defined by (17)

Uniformly-Shaped Beta-Splines
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results in a wniformiy-shaped Beta-spline curve,

4, Discretely-Shaped Beta-Splines

We seek a simple and computationally efficient means: (a) to attach distinct
vajues of By and B, to each joint in a piecewise cubic polynomial curve, in such a
way that changing a single § parameter will alter only a local portion of the curve
being defined; and (b) to generalize the wniformly-shaped Beta-splines to non-
uniform knot sequences. Our approach is analogous to the development of cubic
B-splines sketched carlier,

4.1. A Truncated Power Basis for the Beta-Splines

Our first task is to define an analog of the truncated power function. (# —1)}
itself will not do, since its first and second derivatives are continuous across all
knots, What we want is a function that undergoes a jump in i{s first and second
derivatives as it cresses each knot, sufficient to satisfy (14}, (15) and (16). Con-
sider a function of the form

P+ o (I — B )b+ b G Fae)d .

Its first and second derivatives from the left at iy, are simply p%{(&) and p®(&,).
{We assume that these exist.) Its first and second derivatives from the right at &4,
are

PO ) + g (18)
PO ) + 2654 (19)

Thus there is a jump of 4;;4, in the {irst derivative and of 2b;;4, in the second
derivative. If we want to satisfy (15) then we must have

Briw1p D@y = pOE ) + @i
or

Girr = Brin = 1) pO@ad) (20)
To satisfy {16) we must have

Bl PP +1) + Brinr P i) = PPH1) + 2hyyay
or

brjrr = ';—[(512.:'-;—1 = 1p @ 1) + Bz,rﬂ?m(ﬂi—n)] - (21

These equations tell us how to modify an arbitrary function so that it will satisfy
our G? continuity conditions as it crosses a knot. To construct a truncated power

Discretely-Shaped Beta-Splines



12 RH Bartels & JC Beatty

basis for the Beta-splines, we begin with a truncated power function (# — &; )1 and
modify it as above each time if crosses a knot. Consider the function
&@) = (@)} + (T =T )h + 0t as(F e
b (T E)i ot s ()3
Since (14), (15) and (16) will necessarily be satisfied by any linear combination of

functions individually satisfying (14), (15) and (16), it is sufficient to ensure that
the functions g;(&) each do so.

(& — @ )3, itself has zero value, as well as zero first and second derivatives, at
#; and at all knots left of &, and so trivially satisfies our G? constraints. It is
therefore sufficient to define the a;; and &;; from left to right, for i <j =m+3,
using equations (20) and (21). Thus when computing a; ;4 and b, ;4, p(&) is sim-
ply (# — iI;)}; more generally, when computing a, s and & ;, p(if) has the value

i1 o izl .
@—@P+ 3 au@-—m) + % b (d—m),
k=i+l &gl

the preceding g;°s and ;" having already been computed. Consequently the first
derivative P[}) of p(i) at &; is

=)+ X @+ 2 Y b (i)
k=itl k=il

and the second derivative PfF) is

j—1
S, —~ &) +2 Y big .
k=i+1

The following algerithm computes the a;; and &, ;.

Discretely-Shaped Beta-Splines



Beta-Splines With a Difference 13

Algorithm

I: fori — O step 1 until m+2 do

2 Sa 0

kH 56 0

4 for j «— i-+1 step | until m +3 do

5 P 30—+ S0 +2 S ha—w)
6 Pl o 6(i, &) + Sb

T “1;*—-([-31.}7])},}21}3

3 by = L[ B = 12PEL + BoyPl ]
9: Sa — Sa + a;

10: Sb  Sb + 2b;;

1 endfor

12: endfor

The outer loop steps through the g;(&) in turn. For each g;(#) the inner loop com-
putes the a;;’s and b, ;’s; Sa and Sb keep a running total of the ;s and b;;’s
which have been computed thus far.

It is not hard to see that the functions g,{7) form a basis for the G? splines over
some particular knot sequence and associated shape parameters B,; and By, — the
argument is very much analogous to that given in the case of C? splines for the
truncated cubics, and is therefore omitted.

4.2, A Local Basis for the Beta-Splines

The g;{#) have the same deficiencies — namely rapid growth and non-locality —
that the truncated power basis for the C? splines suffers from. The abvious next
step, then, is to see whether some form of differencing can be applied to the g;(#)
50 as to abtain a local basis.

Just as when constructing the B-splines, the cubic term in each g{i&f) is easily
cancelied for # sufficiently far to the right. We need only compute

Discretely-Shaped Beta-Splines
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&) — g(@) (22)
&i+2(0) — (i) , (23)

and so on. In order to cancel the quadratic terms in (22) and (23) by computing a
further difference we need to arrange for the coefficient of 72 in (22) and 23) o
have the same value. Unfortunately, these coefficients depend not only on the knot
spacing (as was true for the B-splines), but also on the particular knot interval con-
taining i since we pick up an additional g;; and b; ; each time we move rightwards
across a knot. In particular, if #; <# <if;y, and i <j then

(@ = &+ B[ byt o +by) =37 |
7 (@t Fay)
= Wbl + b)) +3E ]
+ [(bi.i+l'—4-i2+l +oe +bjjl'l}2)
= (Tt o tain) — & ] )
while the truncated power basis used for the B-splines is simply
(@-@y = @ +a[ -3 |
+a [+ 3@ |
+ [-a]

for all @ >#&,. Thus for (¥ —#,)} the coefficient of 7° is a constant, while for
& (i) the coefficient of 7~ alters each time we move rightwards across a knot.

This difficulty can be overcome, however. For the B-splines we needed to take
a fourth difference in order to obtain a local function, and the B;{i) became zero
for # 2 #;+4. At cach step we arranged for the leading coefficients to be identical
for @ = #; 14 so that they would cancel when performing the next difference.

For the Beta-splines, then, we will normalize the leading coefficients after cach
difference so that for #; ., =¥ <75 these coefficients will be identical, except
for the fourth difference, which will be identically zero “on this interval”, Let

Ay = Chir F b + bijes + byypg)
- 37
B = (arier + aa2 + s + a1504)

Discretely-Shaped Beta-Splines
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— 20h e Bipaaliiey F brgasties t brivaliivg)
+ 387
C,; = (Bspqiiies + bipgaiiteg + byjsaiies + byipalites )
¥ (EESLIEN (REFLTES i+ 38 +3 i +4ali+4

~ (@afier + prallien ¥ Gueaiiey © Gaalicg)

— gi]

Airr = Chippirr T b + Biygee)
— 34

Biivy = (@isrir2 T Giaries + @rergea)

— 2( bt ritaliez F il T Brrri el )
=2
+ 3E5
- =2 w2 =2
Cijvr = Chioraliivs  bigyasiling F Brepsvallies )

~ { @ergalie2 T Givasien T Qyiralfivg)

— 3
Uit
Aigpq = — Il
- —2
Biive = + 305y
Ciiva = —
fit+4 Uiyg

Then we may write
gl@) = @+ AT BT+ Cy for e S W < @iy .

Similarly we have

GiellT) = &+ A b B @+ Gy for iy, =0 <y
G} = B+ Al + Brgall + Cuug For By = << lpys
Giasl@) = B+ Ajyus@ + Bysil + Cypy for gy = 0 < Wy
Givalll) = W+ Apjrghe + BiipaR + Ciypq foTHypg <7 < Bys -

From these we form the four functions Alg (&), Algi+ (&), Algis(ff) and
Algyy (it} defined by

Discretely-Shaped Beta-Splines
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gin\(i) — g;(#@)
Aijer — Aiy

Alg, (@) forall Tand j = i, i+1,i+2,i+3
B,-J+] - B,‘J . CiJ+l - Gy

—2
= g+ i
Apjer — Ay Ajjer — Ay

for ljpvg =0 < W15,

= LTZ—}‘D;JE%"E,‘J

thus implicitly defining the D;; and £;;. The index / with which we subscript A
reminds us that we are eventually going to replace g,(i7) with an appropriate linear
combination G;(if) of g{#), g+1(@), g+2(#). g+3(i) and g;+4(#), computed in
such a way as to cnsure that G;{(it) will be zero on il 44 <7 <#; 4.

We can now cancel the quadratic term by forming the three functions Alg; (&),
Algy (@) and Alg;+o(7) as

Algya (@) — Alg;(in)

]

Afg)(@) forall @ and j = i,i+1,i+2

D1 — Dy
., B T Ey
= i B—"——-—-—-—-—-‘L for ;44 = 4 < H;ys
i1 T Dig
=§+F,J fGIEg+4S§<L—l};.5

and then cancel the lincar term by forming the two functions Afg{i#) and

Algr (i) as

Algy (i) — Algi(i)
Fi,j+1 = Fp

I

Alg;(#) forall @ and j = i, i+1

= 1 for Wipq = 0 < Hjys .
Finally we compute the function
Alg(@) = — [Algi (@) — Algi(d)]
= { for g =0 < Ujys,

with which we replace g;{#). The pattern of this computation is shown in the fol-
lowing diagram.

Discretely-Shaped Beta-Splines
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&i{i) &i+1(i) &ir+2() &i+3() 8i+4(#)
Alg() Algi (@ Algialin) Algia@)
Atgi(i) Algi (i) Algi+oiD)
Algi(ir) Algy @)

Algd)
Now Afg;{(i7) is defined for any value of 7, but we have only ensured that it is zero

when # lies between #;44 and #; 45, or is less than #;. To arrange for locality we
simply define our discretely-shaped Beta-splines G,(i) to be

¢ H<<ify or # = lj4q
G;(@) =
Alg(@) & =T < g
Since by construction Al'g,(i7) is zero on [#f,iis), the rightwards extension by zero
leaves us with a function satisfying the G? continuity constrainis.

We have still to argue that the G;(i7) are a basis for the Beta-splines. Since
each of the G;(#) is a linear combination of G? functions, each of the G,{#) is a G*
function, and there are as many G;(if) in [#g,i4,,) as there are g,(i¥). 1t remains to
be shown that the G;(i) are linearly independent, which we will leave to a later
section.

Discretely-shaped Beta-spline curves are now defined by the obvious analog of
cquation (1):

Qit) = LV, G) = X (xG#), yGl)) .
i i
The i curve segment is

—1
Q@) = T Vie, Gy, (il)

re=—q

VioaGi—y(H) + V3G 5(H)

+ Vi Gy + Vo Gy (i)

Discretely-Shaped Beta-Splines
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4.3. Evaluation

For the C? splines onc defines basis functions B; (i) of arbitrary order &, and
develops a recursive definition of B, (i) in terms of Big—(iF) and Bj 4y (@)
This provides both an efficient means of computing the value of a basis function,
and (it turns out) of computing its derivatives. Given the latter one can then
develop an efficient algorithm for converting from a “control vertex™ representation
such as (1) to a power representation

o+ el T —T) + e @ — &Y + es(F 7)Y,

from which one can efficiently compute poinis along a curve segment by using for-
ward differences. Unfortunately we have not been able to develop such a recursive
definition of the Beta-splines, and indeed we rather doubt that a natural such defin-
ition exists. This is not, however, a fatal problem. One can simply pre-compute
the coefficients a;;, b; j, 4ij» Bij» Ciy» Digs E;j, Fi; and then compute the differ-
ence Afg;(if) directly whenever a point on the curve is required. Doing so does not
require an &;; or b;; for any value of j other than §+1, i-+2, i+3 or i+4
Hence Algorithm I can be made somewhat more efficient by replacing the expres-
sion m +3 in line 4 by min{i +4,m +3).

Moreover, since differencing and differentiation commute, we may compute
derivatives of the G,{iF) by differcncing derivatives of the g}, and so abtain a
power representation of the basis scgments which can be evaluated by using for-
ward differences.

4.4, Properties

Practically speaking the most important properties of spline basis functions arc
summation to one (because this ensures translation invariance) and positivity
(because together with summation to one this provides a convex hull property).
From a theoretical point of view we must also show that the basis functions we
have constructed are, in fact, linearly independent.

4,5. Linear Independence

To consider the question of the linear independence of the functions we are con-
structing, let us take a look at the differencing process [tom another point of view.
‘We have established that

gl = @+ 4,8 +Byi +C, for f4q = @ < Fies
gal@) = T + Ay + By + G for #r4q = # < Hits
giaa@) = B + Ayl + Biyaadi + Craa for @4 = # < 45
giaa@) = B+ A+ BiinsH + Criaa for Hirq = # < Hyas
Giralll) = @+ Apppallt + Biprait + G for fy4q = 0 << s -

The differencing process seeks to find nontrivial coefficients

Discretely-Shaped Beta-Splines
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Yoo Yivrs Yivzs Yitas Yida
such that
Vi &) + Vi1 & ) + Yis2&i42(F) F Yitsg+300) + Yigagiaali) = 0

for all #;44 == # < W45 This implies a scparate equation for cach power of i,
which yields, in matrix format,

1 1 | ! 1 L
® A A Aniva Aiira Aiira Yo
MPy = Yier| = 0.

By Biyay Biiva Bii+s B
Ci Gt Cu+r Cuva Crita Ti+s
Ti+a
Since this system of equations is underdetermined, we are assured that a nontrivial
solution will exist.
The differencing computations are, by inspection, equivalent to performing cle-
mentary columan operations on the matrix of this system so as to bring it to echelon
form. Computing the first differences is equivalent to subtracting the j® column of

MD from the j-+1" column, replacing the j™ column by the result, for
j=0,1,2,3. The matrix representation of this is

0 0 0 o l
Aiiv1— A Agivr— A+ AT A Apsa— Ay A
Biper—Biy  Biiva—Biin Biiws—Biivr  Biivsa— By Biiva
Cini Gy GieamCunt G Cuia CuraCiivs G

The left four columns are then scaled by their respective topmost nonzero ¢lements
to vield

0 0 0 0 1
1 ! 1 1 Ay
MO =
Dy Diier Drgaa Dz Bijag
Ey  Eysr Eiva Euvs G
In the second step the j™ column of M is subtracted from from the j-+1¥ for
J=0.1,2 to yield
0 ¢ 0 0 {
0 0 0 1 Aise
DDy D~ D+ DrivsDiiir Dy Biiva
Ejjri—E;  Eivr B Evs—Eiva Eiws Givao

and then the left threc columns are each scaled by their respective topmost nonzero
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¢lements to yield

0 0 0 0 1
oo | ° 0 0 1 Ayse
1 1 1 Dij+s  Biita

F;  Fiwy Friva Eigpy Gss

In the third step M® is similarly transformed to

0 0 0 0 1
0 0 0 1 Aiiee
M =
0 0 i Diivs  Biita
Ll L Fae Eyss G

In the fourth and final step a difference of the first and second columns replaces
the first to yield

0 0 0 0 1
o o 0 0 I A
= 24
M 0 0 1 Dijss  Brive 24
0 1 Fva Eiypry Guaa

The matrix of this system clearly has rank 4.

Every step of the process has taken place using a nonsingular clemeatary
transformation on the right since we have assumed that the denominators
A; i1 — Ay, etc. are non zero, Thus

M = MOgOT®
M? = pibghTd

where
-1 0 0 00
1 -1 0 00
sO = 0 1 -1 00
0o 0 t —-190
0 0 0O 11
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1 0 0 0 0

Aiivi—Ai;
1
0 — 0 0 0
A~ A+
1
10 - 0 0 —t 0 0
Aiiva™Aige2
1
[¢] 0 Q e
Aiira—Ari+
0 0 0 0 1|
-1 [¢] 000
1 -1 00 0
s = 0 1 —-100
Q 0 1 10
0 0 0 0t
—1 0 0 0 0
Dy — Dy
1
0 e 0 00
Dy By
™ = 0 0 —L 90
Dii+3—Diita
0 Q0 0 i 90
L0 0 0 0 1

and so on. In total:
MY = MOsOTOgHTO5ATASO TMGH (25)

where the matrices S provide the column subtractions and the matrices T do the
scaling. The original system becomes

lw(d)q) = 0

where
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&
Pi+1
= 1di+2
Gi+3
bi+a
Ti
Yit+i
= S@)“IT(S)*iS(S)“lrl-{z)—ls(z)—lT(i)ﬂs(l)-;T(o)—-:S(e)-\ Yiaa
Yi+3
Yita

1t is easily determined that

& = Vildio1— A Y Dygay— D Y Frjmy— Fry)

A number of observations are possible from the above:

From (24) and (25) it is clear that ¢;44>=0, whence ¢;+3=0, whence
;42 =0, whence .+ = 0 (by successive substitution).
If the solution is to be nontrivial it must therefore be the case that vy; is
nonzero, which means that G;{&) has a nontrivial contribution from g;(i).
The right-hand four columns of M®™ are transformed in a way which is
completely independent of the first column. That is, if we were to carry
out the same steps on the submatrix
1 i 1 1

Ariv1 Anivr Aivy A

Biivi Bij+a Bis+s Bijva

Ciir1 Giavz Gtz Ciive
then the same sequence of operations restricted to this submatrix would
yield the nonsingular matrix

0 0 0 1

0o 90 1 Ajira
0 1 Dyss Biise
1

Fi,i'i'l Ei,i+3 Ci,i+4

As a result of this last observation, we may conclude that

&i+1(7) , 842() , gr3(@) 5 & +4()

are linearly independent on the interval [ 44H;45), since if constants
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8i41s .. - . Bj3q are to be found satisfying
Ber1gie (@) + 0+ Bpaferd(@) = 0

for ;44 = I <0 @45, then these constants must solve the system

o 0 0 1 8i41
6 0 1 Aiiva | |82
0 1 Dijes Bijsa | 184a] 0
1 Fiivz Eiges Giiva |84

and the only possible solution is the trivial one.

In this fashion the success of the differencing process itself verifies the linear
independence of

&GN, g @) gi42(i) , gr+a(#)  on [ 13,0 44)

for = —3,...,m—1. Since G_4(if) is a linear combination of
g-{#@). . ... go(i)} with a nonzero contribution from g (i7), we may conclude that

G_3(0) , g-2(F), g-{7) , gol@)

are linearly independent on [#y%,). It may be shown similarly that G_,(#) is a
lincar combination of g_,(&),g-(i7). and goli7) on [Fe,&,) with a nonzerc contri-
buticn from g..5(#). Hence

G3i) s Go(i0) , g-1(&) . golid)

are lincarly independent on [ig,#;). Proceeding in this fashion, we find that
G (@) Gpfit) , G (i), GoliD)

are lincarly independent on [ify,i7,), and by a gencralization of this argument, that
G(#) , Giga(l) , Gia o) , Gy 42(8)

are lincarly independent on [if;43.0;44) for i = —3, ..., m—4, The locality of
the functions G;(&) allows us lo argue that they are linearly independent on the
entire interval [ig,il,,) as follows: if

B3G5f) + - + 8y G (@) = 0

for all & in [uy,ii, ), then when & Talls in the subinterval [ig,%; 4), this sum reduces
to

8i-3Gi—5(l) + B2 G;—o(F) + 8-\ Giy(H) + ,G(iT) = 0

and linear independence of G;..4(i), . . ., G;(&) on this subinterval implies that
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6j43= v =6,=0

4,6. Partition of Unity

Because the constant polynomial 1 is trivially a G? spline for every knot
sequence, no matter what values of B, and {3, are required at the joints, it is clear
that scale factors ¢ exist such that 3e;Gi() = 1." We are certain from compu-
tational experience, although we do not yet have a proof, that in fact ¢; = | for all
i.

4,7, Locality

Consider a B value at the joint corresponding to the knot & (See Figure 4). By
construction it is clear that no basis function prior to G;_4(#) or subsequent to
G, (i) could possibly be affected by a change in By, or §;; because no use is made
of them in the truncated power functions from which G;.4(#§) and G;(¥) are
formed (on the intervals of interest). Hence we know immediately that the effect
of changing B values at & must be restricted at least to the eight intervals compris-
ing [ - 4,1 +4)-

We can show substantially greater locality if we assume that

Gi—y(#t) + G;—() + G (F) + Gi{#) = 1
on [i;,d;+,) without the need of further scale factors, as is almost certainly the
case. We make this assumption throughout the remainder of this subsection.

It is clear from our construction that no use is made of f;; or B,; in construct-
ing G;(if) and G;(ir) must therefore be independent of $;; and f,;. With some-
what more effort we can also show that G;..4(i) is independent of B;; and Py;.

*  We are assuming that
Gi iy -3) + Gi-gllli—3) + Gys(H—3) + Groglily-3) = 1

*  We already know that G;.4(#), G;-s(#) and G;.s(#) are independent of
B and By,

»  Hence G;_4{if;—3) has some fixed value K, regardiess of the value assigned
to By or Pa,.

*  But G;.#) is composed of the four segment polynomials s;_4— (@),
Sy gAY, §—4,~3(F) and 5,4 —4(%) (having sixteen coefficients) which
are the necessarily unmique solution to the fifteen equations obtained by
applying the constraints (14), (15) and (16) at #;—4, ¥;~3, &g .y and

] We are indebted to Tony DeRose for pointing this out.
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i; together with the (scaling) constraint that G, _ (& -3) =K.
»  Hence G;_.4(#) cannot change for any value of & if B, or By; is altered.

Since neither G;—,4(7) not G;{(iF) is dependent on the shape parameters at i;, we
may conclude that the effect of changing these values at #; must be restricted at
least to the six intervals comprising [&; .3, +3).

By a similar argument we can easily show that G;..;(if) is independent of
and B,; on [if;-3,8-), and that G;_,(i¥) is independent of §;; and Py; on
[#; +3,; 43). Finally, then, we conclude that the affect of changing B values at #; is
restricted to the four intervals comprising [if;—,,i;4,), under the assumption that
the G;(#) sum to one without further scaling.

Thus the amount of re-computation required by the change of a shape parame-
ter is independent of the number of control vertices defining the curve, and the
change in shape is local.

4.8. Positivity

In order to demonstrate a convex hull property for the discretely-shaped Beta-
splines we need to establish that the basis functions are non-negative. The argu-
ment we will givel™ relies on an assumption that By, §,=0. G? continuity prohibits
negative values of By, for in such a case the unit tangent vector changes direction.
Negative values of B, do not viclate G? continuity, but can result in basis functions
which change sign.

For the time being we shall assume that G,{(&) goes positive at @&, that is,
G, (f; +8) = 0 for all sufficiently small € > 0. I this is not the case then we con-
sider — G;(#) below. Thus we are actually about to show that (i) does not
change sign on [&,#;+4). When this preliminary efforl is complete we shall see
that, in fact, G;(i¥) must be non-negative.

Writing out the segment polynomials for G;(#) we have

s () for H =T <y

G S~} for ¥y T U < iy,

() = - = -

&) Si-a(#) for @y =T < iy
S;’._.‘(E) for EH._-; =# < 1714.4 .

Since G(i7) is a linear combination of

051 1he argument given here expands upon one suggesicd to us by Larry Schumaker, for which the
anthoss express their thanks.
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(@)} for j = ii+Li+2it3,itd

(F—@)% for jo=i+1,i+2,i+3,i+4

(F—)k for j=i+1i+2,i+3,i+4
it follows that
s = (i — &)

for some constant ¢; > 0. This establishes that s; .;(#) cannot have a zero within
the interval (i, &;44)-

Since G;(i) is a linear combination of G? functions, it must also be G2 This
means that

0

BlirasiZa(@isg) + Briaasida(di+a)
Prorasia(fieg) = 0
Si,-aflira} = 0
since G;(#) has been constructed to be identically zero from the right at s
These equations imply that
81, —a(#; 10} s ) = Bl = 0.
Since s;,-.4(F) Is a cubic polynomial, this implies (by Taylor’s theorem) that
5;,—4() can be expressed as
St—all) = iy~ F4a)

for some constant d;4; (whose sign is yet to be discovered). As in the case of
5;—{if), this guarantees that s;—4(&) cannot have a zero within the interval
(F43,F14). Our goal is to establish that ; —(7), 5, —3(#), and 5; ~.4(i1) are each
positive on their respective segment intervals.

We will consider these segment polynomials from left to right, or from right to
left, as circumstances dictate, studying each transition from one to its neighbour
across the joining knot. Of importance in establishing the number of zeros a poly-
nomial ¢an have within an interval is the pattern of signs which its derivatives have
at the endpoints of the interval:

Theorem (Budin-Fourier):

If p(if) is a polynomial of exact order k (its k —1*' derivative is a nonzero con-
stant), then Z, 4(p), the aumber of zeros of p (counting multiplicities) on the
interval @ < & < b satisfies

Zanp) = k-1
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= 87 [pta),—pMa). .. .. (—1)* " p¥* " Na)]
= 8t [p).pM). . ... p% 8]

where St{vg,....v;_;] stands for the count of sign changes which is
obtained for the sequence of numbers vg. ..., v, by regarding each zero
value as +1 or — 1 as needed to maximize the count.

We have, for instance,

si,() =0 Si—{@i+1) = 0 -
s () = 0 st (@) > 0
s @) =0 s (@G > 0
Sf(,Jli(Ef) >0 S'('Sll(mri) =90
| {
i; ;41
or, in brief,
| 1
| 1
! 0 + 1
; |
H Q + 1
| {
i
: 0 +
! |
1 1
i+ o
| i
| ;
J i
i 41
for which

ZggSi-) £ 4-1-3-0 =0,

The Budin-Fourier theorem is proved and discussed in [Schumaker1981a].

The G? conditions let us infer how the value and the first two derivatives of a
segment polynomial influence the value and first two derivatives of its neighbouring
polynomial. For instance,

Si—2li4) = s,{f+) > 0
st (@) = Bunisi (@) > 0
§25(@ 1) = Bleors®i@a) + Bunsii (@) > 0

which may be depicted as
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+ o+ o+ o+

+ o o o

O + + +

7 1

where the small box indicates that sf2,(i5; ¢} is unknown. We will proceed on a
case—by—case basis to determine what sign configurations are legal over the seg-
ment intervals. Where signs are unknown, we will examine each of the possibilities
in turn. Where obvious impossibilities show up, we will backirack and alier earlier
choices until all avenues have been explored, In all cases, since the sign of s; —.4(# }
is unknown on the interval (i +3.%14), We must investigate both of the possibili-
ties

; 1
) 0
i i
1 i
| 04
i i
i 0,
i i
i i
i ]
; |
f 1

3 vy
.

1

§
't
i
1-
|
i
i

and
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i 1
|+ 0
| |
;' O|
L 1
- 0!
i 1
P l
i 1
; |
f T
43 Hiv4

Clearly the first possibility, consistent with choosing + from left to right at
every opportunity, is

i

1o 0 +1+ +1+ !
i 1 i i }
i o 04 S + 1+ !
i 1 1 1 I
i 0 +t i+ +i+ l
i 1 i H 1
P+ + | +1 M + 1| l
i [} i i 1
i | H i

{ | i 1 1
) Ty Uita 43 Tiva

This yields a sign pattern on the right of #;;, which is inconsistent with cither
option for §; _4(#). (Note that the choices of + for the third derivatives may be
regarded as including the possibility of a zero value.)

The next possibility is

i ; 1 ) f
Lo + +1+ +1+ ;
i i 1 1 i
Lo +i+ 1 + 0 !
i 1 i 1 1
1 0 + 1+ + i+ + i+ ;
i 1 H 1 i
|+ + M + M +iE :
i i i i i
] | ; ; P
i T i I T

] a1 Hita [IES) Hiia

which is also inconsistent with either option far 5; _4(i7).

The next set of choices from left to right causes us to consider
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4+ <o o o
+ + o+ o+
B o+ o+ 4+
+ o+ o+ 4+
m o+ + +

i
i
3
|
|
1
1
1
]
|
1
1
1
|
1

# #iy 42 43 Hite
By Taylor’s expansion, s; —3(&) is given by
5 7)) = 5-3(#e2)
+ st (Fa) (T— 0
+ 5B F ) (T T 40
+ 525 (F e )T~ F12)

Since 5; —3(if 420, {2 3{f42), and s (i +) are assumed to be positive, with
5 3(f4.2) assumed negative, it is easy to se¢ that 5 _3(#) has precisely one zero
to the right of #4,. The question of interest is whether that zero falls in the inter-
val (!7;+2,!71+3] or not.

In case it does, we have by inspection

o o+ + +

1
1
1
1
1
1
i
1
1
|
1
|
i
|
T

Hiv2 W43 T4

O

where the first minus sign in each column under %, 45 may be regarded as including
the possibility of a zero value. Clearly, this is incompatible with s; ().
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In case the zero of 5; _3(&) does not occur in the segment interval, we have

L+ + 1+ 0
'+ aojo o
E oo 0]
= -io o
A
Uity i3 Ujta

Note that this situation is compatible only with the sign pattern (0,0,0,—) for
81,—4(i; +4) and not with the pattern (0,0,0,+). In the compatible case we would
have

1 1 1 i 1
1o + 1+ + o+ + 01
1 i i i i
' o + 1+ 1+ S 0!
i i i H 1
Lo 14 + o+ + o+ 0!
1 i i i 1
b +1+ +1 - - - -
1 i i 1 1
| ; i ] 1
T f 7 i T
u; 4 42 43 Bigq

The sign pattern which this reveals for (& +2,%;+3) suggests that s; _3(if) can have
no more than 4 —1—5 = —2 zeros in this interval, which is nonsense. This
means that the sign patiern in the interval is incompatible with a cubic,

The next possibility is

1 i ] 1 1
) o4 i i |
1 i i L 1
1 1 1 1 :
to i : | |
i J i | ;
Y o+ . . q
1 1 | 1 i
i
P+ i E i i ;
i 1 1 1 i
; | | | i
i T 1 t !
i Ui+ 49 Hiy3 Uit

As was established in a similar case above, 5; _,(i) has precisely one zero to the
right of i ;, which may or may not occur in the interval (&4, & 42}

In the case of no zero in this interval, we have
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1
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1
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1
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1
|
T

£~ [ R ——

i 4y W42 13 7

In this case, we begin by considering the first of the two possibilities for s; —4(i7),
which yields

1 1 i

Lo + 1+ + 0+ i 0
1 1 1 1 i
;0 Tk 0,0 o 0]
i i i i i
HY + 1+ oa + 1+ 0|
i i ] 1 1
. 1B ! o - B
1 i I 1 i
H | l ! i
T I I i 1
& it Hity 43 Uiga

if a zero is to accur, then it can only take place in the interval (if; 42, +3). This
requires that 53 (&) > 0, since from Taylor’s Theorem we know that a sign pat-
tern of { +,—,+,—) at &+ would force 5; .3(#F) to go monotonically to +oo as
7 goes goes to -co. Hence in this case §; —3(#) must have the sign pattern
(+,0,0,+) at @4, and the pattern {+,-—,+,-+) at #43 The Budin-Fourier
theorem would already imply, on this information alone, that s; .3(if) could have no
more than one zero within the interval in question. In fact we know that it cannot
have one zero since we have assumed that s; a(ig14) > 0; hence it must have no
zeros on (42,7 +3). The sign pattern we may infer from the discussion of this
case is the following:

i | ] | i
1 0 +;+ ++ +’l+ 0||
i i | | i
L I SRS
i 1
;0 +t 0. o Pt 0
i | | | i
EE P P
i i ] ) ]
| \ | | |
T T 1 T T
i U1 #j 42 3 Biaq
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Since we have seen that no zeros exist on [#;,%; 4] for this sign pattern, we have

1 1 i i I
1 1 | i 1
| | | 1 1
1 1 | i |
1 1 | i :
1 1 _ 1 —
| 5@ >0 3 SimaD>0 1 5 A@)>0 1 5 @>0
1 i 1 1 1
1 i 1 1 1
1 i 1 1 1
1 i 1 ] 1
1 i 1 I 1
] ] ] ! ]
1 f T T 1
i L7 42 B +3 Wi+a
for this case, which is exactly the situation we desire.
Considering the second possibility for s; _4(&) yields
1 i 1 1 1
1o ++ +1+ : 0!
1 1 1 1 1
Lo+t oo ! 0!
i } 1 1
i Tt oo i 0,
1 1 1 1 i
Pt a8 -0 i |
| 1 i 1
i ! ! 1 i
T 1 T i 1
i #i4 ;42 ;43 Hyva
i
- i -
1
+ 1+
1
- 1 -
1
1
ot
i

We may remain compatible with the sign pattern at the right of &4, only if
5;,—-3(@) has a zero in the interval (#45,%43). The sign patterns are enough to
ensure that only a single zero is possible, since §; —3(ff) must otherwise have three
inflection points. When the Budin-Fourier Theorem is applied to (&40 +3) the
sign pattern at the right of if;4, already implies that the number of zeres in the
interval could be no more than one, and this fixes the sign pattern atl the right of
@ity to be (+,—,+,—). This gives us the following information about
(#; 41, #;4+2), the adjoining interval to the left:
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[} i
L+ 1+
i 1
K -
1 1
[ + 0+
1 ]
Hch -
H 1
i 1
j ;
Hray Uity

This shows that s;‘lﬂz(ﬁ) must have a zero in this interval, The Budin-Fourier
theorem would give the number of zeros of s;("lz, based upon this information
alone, to be bounded by -2, which is impossible. The sign patterns which we have
inferred for this interval are incompatible for a cubic.

All cases have now been covered. The final outcome is that enly the case in
which §; _4(lf) > 0 for F4+3 = ¥ < #f; 44 is compatible with any of the possibili-
ties from left to right. And in all of the compatible cases

Gy > 0
throughout the interval (&, +4). This establishes the result we wanted.

Next we enquire a bit further into the sign structure of the compatible cases.
We have seen that

1 1 1 1 1
:0 +:+ +:+ +:+ 0:
1 1 1 1 1
| 0 + 4 L[ Sk o1
1 H
o «i+ mim i+ o
1 1 1 i 1
R .
1 1 1 1 1
| | | | |
T 1 T f 1
i Uity IR 43 Uitq

in these cases. Consider the interval (& +4,%;+32). Since the sign count at the left
end is 2, the Budin-Fourier theorem would allow at most one sign change on the
right. That s, only the following possibilities exist on the left side of &4,

+ + +
+ + -
ar Qr
+ : .
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The first of these implics the top-to-bottom pattern {+,+,+, +) on the right
of &@; 44, which is incompatible with the sign pattern at & 4.

The second of these possibilitics implics a pattern of (+, +,03, + ) on the right
of & 1,, and the sign-patterns in (#;4,,%;4+1)} will be legal only if the undetermined
sign is —.

The last possibility implies a pattern of (+,—,—,+) on the right of &4,
which is compatible with the pattern at i ..

This means that we are permitted either of the following situations at &; 4.5

Bt

or else

+

i
i
i
1
|
|
1
1
1
1
1
1
1

.__________.*_________m

s

Finally we resolve the question posed at the beginning of this subsection,
namely the question of whether G;(ir) is non-negative or non-positive. An argument
nearly identical to that used for G;(&) suffices to show that Ajg{&) is also either
entirely non-negative or entirely non-positive; since in fact we have Mgl =1,
Alg;(#) must actually be non-negative. But since

CAg(D) = - [Algw(®) — Alg@)] = Alg(E) — Algin(@)

on [#;,8; 14), and
*  Algio (@) is zero on [, 4), and

+ APg(iE) is positive on [#,5 1),
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it follows that G;{&) is positive on [&,%+,) Since G;(#) cannot change sign, it is
therefore positive throughout {if;, i +4).

4.9, A Closed Symbolic Representation

Analyzing the properties of the discretely-shaped Beta-splines, and the rendering
of discretely-shaped Beta-spline curves, would be facilitated if we could obtain a
compact symbolic representation of their basis functions. Unfortunately we have
not, as yet, been able to do so for non-uniform knot sequences, and it seems likely
that any such representation will prove to be quite complicated. However, we have
been able to analyze two significant special cases: the quadratic Beta-splines over
arbitrary knot sequences and the cubic Beta-splines over a uniform knot sequence.

5. Quadratic Discretely-Shaped Beta-Splines

The G' continuous quadratic Beta-splines are significantly simpler than the G?
continuous cubic Beta-splines discussed above, For the quadratic Beta-splines the
truncated power basis consists of

m+3
gl = (T—0)} + ‘Ela,-‘,(ififj)#
=

= (=)} + auedT—Te )b + 0 F Qs (T~ Fma)k
and Algorithm 1 becomes

Algorithm 11

i: for i« O step | until m-+2 do

2: Sa 0

3 for j « i-+1 step | until m+3 do

4 gy — (Bry— 1) [ 2 — @) + Sa |
5 Sa — Sa + a

& endfor

7. endfor

Since we expect quadratic basis functions to be non-zero over three rather than
four successive intervals, the differencing is arranged so as to cause the third differ-
ence to be zero for 43 <& <14 If we fix i, the computationa] differencing

Quadratic Discretely-Shaped Beta-Splines
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proceeds as follows,

gi0) = w4 A u+ By forj=1i,i+1,i+2,i+3,

where
Aig = (i Ty T @) — 20
_ _ . - -2

Biy = —(uwily+ T+ Givalliva + Giiaailli43) — &
A1 = (Farr + g3 ) — 284

- — = = =2
Bijyy = (@ rallez T @ eailics ) — &5y
Ager = (Gp41) — 2842

- = a2
Biivr = (@ iv3liey ) = Uiy
Arj+a = — 243

- —2
Bi.i'+4 =7 Uiy .

Just as for the cubic case, the first differences Alg, (), Algi+1(iT) and Alg; ()
are defined by

g+ () — g;{ih)

Algitiy = forall# and j = #,i+1,i+2

Apjr — Ay
— Bijr1— By
- g L for ffj43 << i < W;44
Aij+1 — Aij
= §+C, for sy < 1 < Hing -

We can now cancel the linear term by forming the two functions Alg(i7) and
Algi (@) as

Algy () ~ Algiit)
CIJ+1 - CIJ

Ag; () forall#and j = {,i+1

= 1 forz'ﬂ+3w<_37<§,+4 .
Finally we compute the function

Alg(iny = — (g () — Alg(D)]
= 0 forall gy, = &0 < W44,
with which we replace g;(if); Afg{iT) is our quadratic discretely-shaped Beta-spline.

With the aid of Vaxima [Bogenl977a, Fatemnanl982a] we have been successful
in obtaining reasonable symbolic representations of these differences and of the
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quadratic Beta-splines. In particular, we have

g () — glih)

Alg(i) = — ———
= 2B+ Brita B (f — 1)
A;’g,.H(Ii) - gi +2(7) —_gi+l(u1
2By +2Bri+alifer— i +1)
Algr o) = 8’1+3(“)“* gHi(a)
2B1+3( 43— Wiaa)

Mg = — 2By 441 Br +2Bui 13 {8 g (@) — Al g (@)]
- Brittfart (1 = Bua)i4 — i
Mg @) = — 2ﬁi,:‘+2£3i.f+3[Ai;gi+2(17) "—A}&’:ﬂm(ﬁ)]

BritoFieat (= Biis2)lar ™ Hrey
Algi(@) = — [Alga@) — Hlg(iD] .

Explicit formulae for the three basis segments comprising the non-zero portion of
the /™ basis function Afg () are as follows (see Figure 5).

(@—)

Si-1 T T p - -
(i) — #o) [Bryw1fiaz T {1 Bryeditie — ]
s 2B — Dy~ E @ — F ) — G (I -5
— = — n - = .
' (T — E) Brj+r Bzt U= Briv )i — 7
_ Brw T — 1)’
(T~ L) By Bz — B — Ve — i)
_ (# =)
(@ = T ) Bryrafits = Buirz — D2 = i1
Bri+a(# — Fi+3)
Si-3 T

Brgt 1Ty — B2 (Wi #y42) (W02 ™ B 41)
By definition these functions have compact support — Alg i) is non-zero only on

(#;,H;+3). Using Vaxima, one can verily by direct evaluation of the three basis
functions which are non-zero on a given interval that they sum to one.

It is interesting to see how easily we can show directly that they are non-
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negative for B;=>0. Consider s; —(&;). First we note that 5; _(ii;) is 0. More-
over, {iF —if;)? is positive so long as # > i and (if, —ifp) is positive by assump-
tion. Let us rewrite the remaining term [Py ;4 F4y T (U —Bia)iio — &) as
Bii+(#i4a—# )+ (41— %) Clearly this expression is linear in i;4,, has
positive slope, and has a zero at — (&4, — &) /(12— #4+,)<<0. Hence this
expression will be positive for all By;4+,=0. Consequently 5; (&) will be positive
for it << <44

It is similarly casy to see that 5; —3(#) is positive so long as &4, <& <43
and ;4> 0, which suffices,

The complexity of s;,;..,{i7) makes a direct analysis painful, However, it is easy
to see that the first derivative of s5;;-1(if) at ;4 is positive, and that the first
derivative of 5; _y(if) at &i; 4, is negative. Since 5, _,() is a quadratic and positive
al both i, and ;. ,, it cannot then be negative for ;4o <# << ;43

Thus the quadratic Beta-splines are non-negative. Because we already know
that they sum to one, we can conclude that the i'™ curve segment of a quadratic
Beta-spline curve lies within the convex hull of V;_;, V;_; and V,_, since these are
the control vertices which are weighted by non-zero basis functions on [ ... %;).

6. Uniform Cubic Discretely-Shaped Beta-Splines

Now let us return to the cubic Beta-splines, and suppose that the underlying
knot scquence is uniform, so that & — #..; = 1 for all {. If, for an arbitrary set of
positive ;s and B,,'s, we compule the four segments which are non-zero on the
interval [+ +4) (see Figure 6) and sum them using Vaxima, we find that they
sum to one. As for the quadratic Beta-splines, it is interesting lo sce how we can
show dirccily that they arc non-negative. Two of the basis segments are trivial.
We find that

iz, i) = '51‘," [ 2(Boi+s + 2BTies + 2By sde ]
where
81 = PBorpaBaies + 2BLwaBrivs T 4PriwaBrivs + 2Boiss
+ 2B 1 sBoiva + 4BEiasBrita + 2BuiesBaiva T 4BTieaBlivs
+ 4By +aBlivs + 8BLi+aBlivs + 1281 104Bias + 4B ias

+ 4B s aBrivs + BBriwaBrivs + 4Briss

and
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Si4a-allE) = gl; [ 2B +3(Briva + 2842 + 2Brie) (1 —u) ]
where
34 = BaisaBaiss T 2BFwaBaivs + 4BuiwaPoies + 2Puns
+ 2B Bz + ABRisaBriea + 2Bui+aBaia T 4B +2Blies
+ 4By aBlias + 8Bl aBlies + 12B1paBlies + 4BEis
+ 4B aBrivs T 8BravaBrivs 4B

It is easy to see that these two basis segments will be positive since all of the (s
are positive and 0 =<u < 1. The denominators 81 and 84 can, of course, be factored
further, but we have left them in this form for simpiicity.

The remaining two segments requirc more effort. The segment 5i+3,-2{i} may
be written as

Spas—au) = (c., + e + czuz] - [cgua) . (26)

The following argument establishes that §;43 —2() is positive en (0,1):

+Cy 03 €3 Sir3—20)=cp and 54 1) =cot ety T 0¥ dy are all
sums of products of positive values, fike 81 and 84, and are therefore them-
selves positive;

«  hence we may represent ¢3 a5 ¢o+ ¢yt oy~ dy
+  since 0<<u << 1, we have 1 >u >u’>u

+  therefore

£y > C{)HJ
cu > o’
cu? > equ’
0 > —dut

»  therefore

g+ ou tout+0 > (cu+c,+c2~d3)u’ = cyu’

+  therefore {26) is positive on (0,1), as desired.

An exactly analogous argument suffices for the right middle segment if it is
writien in the form

st = (ot ei=n) + im0 ) = {a-w?) @0

A variety of important properties follow from the fact that the uniform cubic
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Beta-splines are non-negative and sum to one:
«  the i segment Q;(i7) lies within the convex hull of V;_4, Vi3, ¥;2 and
Yi-u
s if V;_4=V,_3=V,_, then this point wili be interpolated, and the curve
segment defined by these three points and V;_; will be a straight line;
» if V;.4==V;.; then the first point on the curve segment defined by these

two points, together with V;_, and V;_; must lie on the line segment join-
ing V;._3 and V;_; and the curvature there will be zero.

{If one assumes that the G;(¥) do not need further scaling in order to sum to one,
or if one computes the scale factors which produce a partition of unity, then these
results apply also to discretely-shaped Beta-splines over a non-uniform knot
sequence.)

It is possible to verily, with the aid of Vaxima, that as §,,;+, is made arbitrarily
large Q(ii;+,) converges to V. This behaviour, which the uniformly-shaped and
continuously-shaped Beta-splines display as well, naturally associates the joint at
iI; +2 with the control vertex V,, and so we sometimes speak loosely of the “§; value
associated with V;" when referring to ;4 , (and similarly for p,).

If By; =By and By; =B, for ail i, we then obtain the uniformiy-shaped Beta-
spline for B, and B,

In many applications the ability to manipulate B; may be sufficient, and we
therefore list the basis segments on the interval [¥;13,T; 4+4) lor the special casc in
which the knots are spaced one unit apart and the [} values all have the value one:

2(Boses + 903
Siva-{u) = i’%‘(‘_
2(Birat4)
Siva—ou) = — —Zalli‘gz— [32;+3[32,r+4ﬁ21+5+sﬂuHBLfH
+ 8Bis3Brivat 3BoiraBries T 4By
+ 24Py 4 2Py as 144 | u?
(Brivatd)
+ e (3@t DUl + 6w + 2 |
2(B +4)
Sean-3u) = “%’é‘;‘“ [ﬁaﬁzﬁzﬁsﬁuH"’8ﬂz,r+zﬂz.f+4
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+3B52B0i 3 8Boiw3Priva T 28B40
+ 24Py 4+ 4By sat 144 | (- u)

(Baiast 4

R

[3Bueat 0w+ 60—u) + 2

2Byiaa DU —u)

s —a{u) = 53

where
81 = (Bay+aPries T 8By a T8PoyasT48)
82 = (Boi+3Boi+atBByi43+8By,44148)
83 = (Byi+2Bas+3 T 8Baisat 80243 +48) .

By inspection it is clear that so long as By;,B,; = 0 the above representation for
discretely-shaped Beta-splines over a uniforin knot sequence are necessarily well-
defined — the denominators cannot vanish, cven though the differencing representa-
tion of the discretely-shaped Beta-splines admits of this possibility.

7. Examples

Figures 7-16 illustrate various of the properties discussed above. It is illuminat-
ing to see how changes in the basis functions shown in Figures 8, 10 and 14 pro-
duce the curves shown in Figures 7, 9, 11 and 13. One sees alsc how the curves lie
within the convex hull of their corresponding control vertices; Figures 17 and 18
illustrate the failure of a curve 1o lic within the convex hull of its control points
when a 3, value is negative.

Figure 19 demonstrates the similar, though not identical, tensionlike cffects
produced by manipulating §; and ;. Figure 20 is produced by varying several
shape parameters simultaneously.

Figures 21 and 22 ilustrate the locality provided by the discretely-shaped Beta-
splines.

Examples
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8. Conclusions

The discretely-shaped Beta-splines which we have defined offer an attractive
alternative to the continuously-shaped Beta-splines defined in [Barsky1983b]. Since
they rely on the controlled introduction of discontinuities of the first and sccond
parametric derivatives at joints, we may think of them as providing an intuitive
means of utilizing a portion of the B-splines over knot scquences containing multi-
ple vertices, much as the continuously-shaped Beta-splines provide an intuitive
means of utilizing certain relatively high degree polynomials.

For uniformly spaced knots we have seen that the gross behaviour of discretely-
shaped and continuously shaped Beta-spline curves is similar as the shape parame-
ters arc varied, and as multiple vertices are introduced. Since the discretely-shaped
Beta-splines are composed of purely cubic polynomial scgments, however, they can
be efficientiy rendered by forward differcncing.

We have not yet obtained 2 closed-form symbelic representation for the
discretely-shaped Beta-splines over non-uniform knot scquences, although we are
still attempting to do so0, Other questions which we are exploring include:

+ a proof that the differencing construction we have presented directly yields
basis functions which partition unity, without the need for further scaling;

+ a characlerization of the values of the shape parameters [or which the dif-
ferencing fails because of a zero division (for non-uniform knot sequences),
and a suilable extension of our definition for G;(i7) to cover these cases;

+  a representalion of the G;(&) in terms of B-splines, and consequently a gen-
eral subdivision scheme for the Beta-splines;

«  an optimal factorization of the closed form representation of the uniform
cubic discretely-shaped Beta-splines;

* a comparison of the cost of rendering curves defined using B-splines,
uniformly-shaped Beta-splines and discretcly-shaped Beta-splines.

Goodman has independently investigated the existence and properties of local
basis functicns for a variety of spline which contains the G? cubic splines as a spe-
cial case [Goodmani983a], Without providing compuiational descriptions, his
results show thal there exist basis functions with support on four successive inter-
vals, that these basis lunctions are unique up to a scale factor, have no zeros, and
sum to onc. He shows that his devclopment can gencrate the uniformly-shaped
cubic Beta-splines (over a uniform knot sequence). In an even more abstract set-
ting, chapter 11 of [Schumaker1981a] provides a general context for analyzing
classes of piecewise functions which includes the Beta-splines as a very special case.
His results can be used to provide the dimensionality of the space of Beta-splines,
as well as conditions under which we may expect a local basis to exist.

Conclusions
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9. Pictures

Pictures
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Figure 1. An example of a curve defined by a sequence of control vertices, represented here by small
circles, near which the curve passes. The lightly dotted line connecting the control vertices forms the
control polygon, and indicates the order in which the control vertices are to be approximated, The solid
and heavily dotted curves represent distin¢t curve segments. Fach is a single parametric cubic, The
point at which two successive segments mect is called a joims. The value of the parameter @ which
corresponds to a joint is called a knot. This particular curve was construcied from uniform cubic B-
splines.

Figure 2. The uniform cubic B-spline B;(#¥) centered at &4, It is zero for ¥ =< #&; and for I¥ 2 ) 4q.
The nonzero portion of B;(%) is comprised of the four cubic polynominl segmeats s; (i), 5; (&),
51, —3(#) and 5; _4{i}.
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I -
v = ™ I,AP iy i:.?“' o
7 v {
&/ &) &) & & /@ /@
+ -~ t += + + t U
U_g w_, u_, Uy u, U, Uy

Figure 3. The “onc-sided cubic spline basis functions.” All of these functions grow unboundediy large as
we move from left to right, Since the x or y coordinale of a curve will lie in some modestly bounded
range, it will be necessary to cancel large positive values of some of these functions by using large nega-
tive values of others, a likely source of numerical error (if not of overflow).

Gi— 4 Gi

-3 -2

e i
Uy g i3 Yig Uyq % Uiy Uivn Uyya Uit
Biaesa  Braz Fraa  Fra By Bign Bige Bina P
Boss  Pays  Bosa  Fas Bos  Bognr Pasnz Pans Pai

Figure 4. The basis segments which are effected by the change in § or By at @,
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u
Figure 5. A quadratic Beta-spline, Notice that it consists of only three nonzero segments.
Gi Gi«H G$+2 Gﬂ-)
=
1 " 1
Yyra 45 Yirs Uiy

Figure 6. The four basis functions G;(#), G; 4 ((#), G;+3(F) and G, ,.3(#) which are nonzero on the par-
ticular segment {@; 41,8, 14).
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Figure 7. The solid line is 2 uniform cubic B-splinc curve {f; and B, have the values 1 and 0 at every
joint). The dotted curves result when the value of P, at the joint nearest’'Vy is set to 2, 10 and 100,
respectively. Increasing values of P, draw the joint in question towards V;. For clarity the control

polygon is shawn, but not the control vertices.
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Figure 8. The basis functions corresponding to the four curves of Figure 7. §, and B, have the values 1
and 0 at all knots except the one explicitly labeled.
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Figure 9. Starting from the same umiform cubic B-spline curve as appears in Figure 7, we succossively
increase By at the joiat between the soiid and dotled portions of the curve, so that it has the values 1, 4,
16 and 256. As P, is increased the joint is pulled lowards V.
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Figure 10. The basis functions corresponding o the four curves of Figure 2, B, and §, have the values
1 and 0 at all knots except the one expiicitly labeled.
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Figure 11, Symmetric behaviour oceurs if we set By to the values 1, 1/4, 1/16 and 1/256, respectively,
with §;, =0. This time the joint is pulled towards V.
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Figure 12. The basis functions corresponding to the four curves of Figure 11. P, and J3, have the values
1 and 0 at all knots except the one ¢xplicitly labeled.
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Figurc 13. The $, values herc are the same as in figure § cxcept that the value of 8 at the joint in
guestion s 10 in each case instead of {. Again the joint is pulled towards Vg, Recall that increasing B,
at that joint has the effect of pulling the curve towards V).
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Figure 14, The basis funclions corresponding to the four curves of Figure 13. B; and §; have 1he values
1 and Q at all knots cxcept the one explicitly labeled.
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Figure 15. The P, values here are the same as in figure 11 except that the value of B, at the joint in
question is 10 in cach case instead of 8. Note that in this case the joint does ot converge 10 V,. Tens-
ing the curve toward V, by sctting a high valuc on B, at the joint has inhibited the convergence,
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£,=10

Figure 16. The basis functions corresponding to the four curves of Figure 15, $, and B, have the values
1 and 0 at all knots except the one explicitly labeled.
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Figure 17. For ncgative valucs of B, the curve may pass outside the convex hull. P, has the value 1 and
@, the value O at every joint cxcept the one explicitly indicated.

Figure 18. These are the {unscaled) Beta-splincs with which the curve of Figure 17 is defined. Notice
the negative basis function centered over the knot at which B, = —5.1. This is not a violation of the con-
vex hull property established in the text, which holds only for positive values of B; and By,



Beta-Splines With a Difference 59

Figure 19a. A uniform discretely-shaped Beta-spline curve. Actually this is a C? spline curve since By
and B, have the values 1 and 0 throughout the curve, which shouid be compared with the curves below.

Figure 19b. The solid curve here is obtained from the curve of Figure 192 by increasing By at ¥, from 1
to 10,000. The dotted curve is obtained from Figure 19a by instead increasing @, at V, from @ to
10,000. In both cases a further increase in the shape parameter produces no observable change in the

figure.



Figure 22.
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In this case we have changed the knot spacing for the third segment.
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Figure 20. Some compound variations in the shape paramcters. f; and B, have the values 1 and O

cxeept as shawn.

o T ¢
1)
Vgo

Figure 2). Here we see the ¢ffect produced by moving onc of the vertices defining the curve of Figure
20. Notice that only four curve segments are altered. {The control polygon has been omilted here 10

enhanee visibility of the curves.)
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