E BEPARTMENT

AERRS &

E DEPARTMENT
CE DEPARTMENT

c

UTE

QHEGIER <CIEN
OMPUTER SCIEN

WA
W,
IVERSITY OF WATERLOO C

B

Linear Hashing with
Linear Probing

Per-Ake Larson

CS-83-38

January, 1984

Linear hashing with
linear probing *

-]
Per-Ake Larson

Data Structuring Group
Department of Computer Sctence
University of Waterloo
Waterloo, Ontario
N2L 3G1

Technical Report CS-83-38

ABSTRACT

A new, simple method for handling overflow records in connec-
tion with linear hashing is proposed. The method is based on linear
probing and does not rely on chaining. No separate overflow area is
required. The expansion sequence of linear hashing is modified to
improve the performance. This requires changes in the address
computation. A new address computation algorithm and an expan-
sion algorithm are given. The performance of the method is studied
by simulation. The overall performance is competitive with that of
other variants of linear hashing up to a load factor of 0.80-0.85.

1. Introduction

Linear hashing is a file structure intended for files that grow and shrink
dynamically. The technique was originally proposed by Litwin [L180]. Larson
{LA8O] and subsequently Ramamohanarao and Lioyd [RL82] developed more gen-
eral schemes based on a technique called partial expansions. These schemes are
able to maintain good retrieval performance and high storage utilization indepen-
dently of the file size, and without requiring periodic reorganization.

Linear hashing requires some method for handling overflow records. Not zll
of the methods developed for traditional hashing schemes are applicable, because
linear hashing requires that all records hashing to a page can be located. The
three schemes mentioned above were all developed assuming that separate chain-
ing is used, that is, records overflowing from a page are placed somewhere in a

* This work was supported by Natural Sciences and Engineering Research Courcil of Canada, Grant
A2460.

2 P-A. Larson

separate overflow area and linked into an overflow chain emanating from the
home page. In this paper an overflow handling method based on open addressing
is presented. The technique used is linear probing, that is, if a record does not fit
into its home page, the next higher page is tried, etc. until the first non-full page
is found. There is no dedicated overflow area, and no pointers are used.

Using linear probing for handling overflow records has a number of advan-
tages. The retrieval and insertion algorithms are extremely simple. Linear prob-
ing preserves locality of reference, thus (potentially) avoiding long disk seeks.
Insertions and file expansions can easily be speeded up by allocating more buffer
space, reading in several pages at a time. This will be discussed later. Gonnet
and Larson [GL82] developed a method that, by using a small amount of extra
internal storage, guarantees retrieval of any record in one access. See also [LK83|
where implementation aspects are discussed. The method is not, however, able to
handle dynamic files. Linear hashing with linear probing gives the basis for a simi-
lar one-access method for dynamic files. Those results will be presented in a
forthcoming paper.

Several other techniques for handling overflow records in comnection with
linear hashing have been studied. Mullin [MUS1] investigated prime area chain-
ing, that is, chaining is used but overflow records are stored in non-full primary
pages, ot in dedicated overflow pages. Larson devised [LA82b| and analysed
[LA83] a method for combining the overflow area and the primary pages in the
same file. He also suggested using several overflow chains per page.
Ramamohanarao and Sacks-Davis [RSD83] proposed recursive linear hashing
where overflow records from a linear hash file are stored in another (smaller)
linear hash file, overflow records from the second level file go into a third level
linear hash file, etc.

The rest of the paper is organized as follows, Section 2 gives a brief over-
view of linear hashing with partial expansion. In section 3 the basic ideas of the
new method are presented. The necessary algorithms are given in section 4 and
performance results are presented in section 5.

The new method is here presented as a modification of Larson’s scheme
[LA8D), but the same ideas can be applied to the scheme of Ramamohanarao and
Lloyd [RL82].

2. Linear hashing with partial expansions

Linear hashing is a technique for gradually expanding {or contracting) the
storage area of a hash file. The file is expanded by adding a new page at the end
of the file and relocating a number of records to the new page. The basic idea of
the method are briefly outlined in this section. More details can be found in
[LI8O, LASO).

The original scheme proposed by Litwin [LI80] proceeds by first splitting
page 0, then page 1, ete. Consider a file consisting of N pages with addresses
0,1,.., N — 1. When page 7,5 =0,1,.., N = 1, is split the file is extended
by one page with address N + j. Approximately half of the records whose
current address is j are moved to the new page. A pointer p keeps track of
which page is the next one to be split. When all the IV original pages have been
split the file size has doubled. The pointer p is reset to zero and the process

Linear hashing 3

starts over again, A doubling of the file is called a full expansion.

The key idea is to split the pages in a predetermined sequence. After split-
ting of a page, it should be possible to locate the records moved to the new page
without having to access the old page. The essence of the problem is to design an
algorithm which, based solely on the key of the record, determines whether a
record remains on the old page or is moved to the new page. It must also achieve
the goal that approximately half of the records are moved. There are several
solutions to this problem; the interested reader is referred to [LI80, LA80, RL82].

The development of linear hashing with partial expansions was motivated
by the observation that linear hashing creates a very umeven distribution of the
load over the file. This slows down retrieval and insertions by creating a large
number of overflow records. The load of a page that has already been split is
expected to be only half of the load of a page that has not yet been split. To
achieve a more even load, the doubling of the file (a full expansion) is carried out
by a series of partial expansions. If two partial expansions are used, the first one
increases the file size to 1.5 times the original size and the second one to twice
the original size.

f f !
N N O |

0 N 2N

f t 1 ¥

[I N I

0 N 2N 3N
(6)

t ? Y
l || Il |) | |

0 2N 4N

Fig. 1: Illustration of linear hashing with two partial expansions

Assume that two partial expansions per full expansion are used. This is
llustrated in Fig. 1. We start from a file of 2N pages, logically divided into N
groups of two pages each. Group j conmsists of pages
(L N+35),7=0,1,.., N =1, see Fig. 1(a). To expand the file, group 0 is
first expanded, then group 1, etc. by one page. When expanding group
5, 7=0,1,.., N — 1, approximately 1/3 of of the records from page j and
N + j are relocated to the new page 2N + j. When the last group,
(N = 1,2N — 1), has been expanded the file has increased to 3V pages. The
second partial expansion starts, the only difference being that now groups of three

4 P.-A. Larson

pages, (j, N + j, 2N + j), are expanded to four pages, see Fig. 1(b). When the
second partial expansion is completed, the file size has doubled from 2N to 4N
pages. The mext partial expansion reverts to expanding groups of size two,
(7, 2N+ 5),i=0,1,.,2N — 1, see Fig. 1(¢c). The one after that expands
groups of size three, ete. This approach can immediately be extended to any
number of partial expansions per full expansion.

To implement linear hashing with partial expansions an address computa-
tion algorithm is required. Such an algorithm is given in [LA8C]. It computes the
{current) home address of a record at any time, given its key. It is designed for
any number of partial expansions per full expansion.

The scheme outlined above gives a method for expanding the file one page
at a time. In addition, rules for determining when to expand (or contract) the file
are needed. A set of such rules is called a control function because they control
the expansion and contraction rate of the file. Several alternatives are possible,
but we will here consider only the rule of constant storage utilization. According
to this rule the file is expanded whenever the overall storage utilization rises
above a threshold a, 0 < @ <1, selected by the user. When computing the
storage utilization the space allocated for overflow records, if any, is also taken
into account.

The results reported in [LA82a] show that increasing the numbet of partial
expansions improves the retrieval performance as expected. On the other hand,
insertion costs tend to increase. Two partial expansions per full expansion seem
to be a good compromise in many situations.

3. Linear hashing with linear probing

An overflow handling method based on open addressing must satis{y certain
requirements to be applicable to linear hashing. As will become clear from the
discussion in this section, linear probing satisfies these requirements. It also offers
a number of other advantages.

The cost of expanding a linear hash file is directly affected by the cost of
locating all records hashing to a given page. An expansion involves locating all
records hashing to a number of existing pages and relocating some of them to the
new page. A method generating a large number of possible probe sequences, like
double hashing, for example, would make this too costly. Each probe sequence
emanating from a page participating in the expansion must be checked. Linear
probing generates only one probe sequence from a page. Furthermore, the probe
sequence is the same as the physical address sequence. Provided that sufficient
buffer space is available, several pages can be read or written at the same time,
thus speeding up insertions and expansions.

When expanding the file the existing probe sequences must somehow be
extended to include the new page created. It is desirable that this can be done
without any actual relocation of records. This is easily achieved by modifying
linear probing so as not to wrap around to the first page when reaching the
(currently) last page of the file. If there are overflow records from the last page
in the current address space, they are allowed to go into the first unused page(s)
at the end of the file. In effect the page has, prematurely, been taken into use by
receiving overflow records before receiving any “native’ records. The next time

Linear hashing 5

the file is expanded it will be within the address space of the file. It is very
unlikely that more than one such overflow page would be needed. The effect of
this modification is that each record has, in principle, an infinite probe sequence.

Linear hashing with partial expansion extends the file by one page by
increasing the size of one group. The expansion sequence discussed in the previ-
ous section was group 0, group 1, etc. This particular sequence is not crucial for
the method; it merely simplifies the address computation. The only requirement
is that the sequence is predetermined and that all groups are eventually expanded.

unsplit unsplit 1
split l split new

p
Fig. 2: Illustration of the load distribution, n, = 2.
The expansion sequence 0,1, - - - has a serious drawback when overflow

records are handled by linear probing. As illustrated in Fig. 2 for the case of two
partial-expansions, it creates blocks of consecutive pages with a high load factor
(the unsplit pages). In these areas long islands of full pages are very likely to
occur. Long islands of full pages slow down insertions, subsequent retrieval and
also expansions. They can be avoided, to some extent, by changing the expansion
sequence in such a way that the split pages with a lower load are spread more
evenly over the file. The expansion sequence 0, 1, - - - uses a step length of one.
We can instead use a larger step length and make a number of sweeps over the
groups. If a step length of &, 8 = 1, is used, the first sweep would expand groups
0, s, 2s,..., the second sweep groups 1,8 + 1,2s + 1,.. and the last sweep
would be s — 1,28 — 1, 35 = 1,.... This achieves the desired effect of-spreading
the split pages more evenly over the file.

One further modification of the expansion sequence is proposed: to have
each sweep go backwards instead of forwards. If the file consists of N groups,
the first sweep would be N — 1, N — 1 — 8, N = 1 — 2s,..., and correspond-
ingly for the other sweeps. This reduces the risk of having a very long island to
check during an expansion, because it is likely to have been shortened by previous
expansions.

Group:
0 1 2 3 4 5 6 7
6 3 8 5 2 7 4 1

Expansion sequence:
Fig. 3: Expansion sequence when three sweeps are used.

The expansion sequence for a file consisting of 8 groups when 3 sweeps are used is
shown in Fig. 3. The first sweep expands groups 7, 4, and 1 (in that order), the

6 P.-A. Larson

second sweep groups 6, 3, 0 and the last one groups 5 and 2.

The following control function is suggested: the file is expanded whenever
the overall load factor increases over a user-selected threshold o, 0 < a < 1.
Because there is no separate overflow area, this rule will result in a storage utili-
zation that, for all practical purposes, is constant and equal to o. The perfor-
mance analysis in section 5 assumes the use of this rule.

4. Algorithms

In this section algorithms needed to implement the basic file operations are
discussed. It is assumed that the expansions sequence discussed in the previous
section is used and that overflow records are handled by linear probing. Only two
algorithms will be given in detail: an algorithm for address computation and an
algorithm for file expansion. Insertion, retrieval and deletion are basically the
same as for traditional linear probing and will be discussed only briefly, A linear
hash file with linear probing is defined by a cumber of parameters, and its current
state by a number of state variables;

Parameters

5 page size in number of records

N original rumber of groups

ny number of partial expansions per full expansion

8 number of sweeps per partial expansion (or step length
used)

State variables

cpz current partial expansion. Initial value: ¢cpz = 1

sw current sweep, 1 = sw = 3. Initial value: sw = 1

P next group to be expanded. Initial value: p = N — 1

n number of pages in an unexpected group,

ng = n = 2n, = 1. Initial value: n = n,

mazaedr highest address in current address space. Initial value:
mazadr = ny N = 1

lstpg highest page in use, lstpg = mazadr. Initial value:
lstpg = mazadr

Two of the state variables are not absolutely necessary: mazadr can be com-
puted from n,, N, ¢pz, sw and p, and n can be computed from epz and n.

The address computation algorithm given below makes use of two hashing
functions. The first one, denoted by k, is a normal hashing function,
0= h(K)= ny N — 1, and is used for distributing the records over the original
file {of size ny N pages). The second one, denoted by D, returns a sequence of
values, D(K) = (d,(K), do(K),...), where the values d; are uniformly distributed
in (0,1). The value d;(K) is used to determine whether to relocate the record

Linear hashing 7

with key K to the new page during the itk partial expansion. Assume that the
ith partial expansion expands each group from n to n + 1 pages. To achieve a
uniform distribution of the load over the file (at the end of the expansion) approx-
imately 1/(n + 1) of the records should be relocated to the new part of the file.
This can be achieved by relocating a record if d;(K) = 1/(n + 1) (changing its
address), otherwise not. The group size during the ith expansion is
n = n; + (i — 1)mod ny. The address computation algorithm given below is
based on this idea. The hashing function D can easily be implemented by a ran-
dom number generator to which the key is provided as the seed.

address (K')

ha: = A(K); fs2: = ny*N;
ngrps: = N,

for x: = 1 to cpz do begin
if 4,(K) = V(ny + (x — 1) mod n,) then begin
k: = ngrps — 1 — (ha mod ngrps);
swp: = k mod s;
swpl: = ngrps div s;
fsw: = swp*swpl + min (swp, ngrps mod s);
npg: = f5z + faw + (k div s) + 1;
if npg =< mazadr then ha: = npg;
end;
fsz: = fs2 + ngrps;
If (x = 1) mod ny = ny — 1 then ngrps: = 2 * ngrps;
endloop;
return (ha);
end {address};

The current address of a record is computed by tracing all the address
changes up to the current partial expansion. If the record was moved during the
xth expansion, that is, if the condition of the first if-statement evaluates to true,
the address of the new page must be computed. This is done by adding the file
size when the xth expansion started (fsz), the number of pages created by fully
completed sweeps (fsw) and by the current sweep (the term (k div s) + 1). I
npg S mazadr the new address is within the current address range. This test
can fail only when x = ¢pz.

Once the home address has been computed, insertion or retrieval of a record
is done in the same way as for traditional linear probing. The only difference is
that the probe sequence of a record does not wrap around when reaching the last
page of the file. If the last page is reached during an insertion and it is full, then
the next page is (prematurely) taken into use and [stpg is increased by one.

It is assumed that the file is expanded as soon as the overall load factor
rises above the threshold a. An algorithm for expanding the file by one page is
given at the end of this section. File expansion necessitates some (local)

8 P.-A. Larson

rearrangement of records. When records are moved to the new page, space will
be freed up in the old part of the file. To retain searchability these holes must,
whenever possible, be filled by moving overflow records back to, or at least closer
to, their home pages.

Consider a page participating in an expansion and denote its address by pg.
All records whose (current) home address is pg must be checked because some of
them will be moved to the new page. To find these records page pg is first
checked, then pg + 1, etc. up to and including the first non-full page. The
expansion algorithm scans over this area twice. The first scan collects every
record that is not stored on its home page. The set of collected records will
include those that are to be moved to the new page, and records that possibly will
be moved closer to their home pages. The collected records are temporarily
stored in a record pool until reinserted during the second scan over the area. In
addition to the record itself, its home address is also stored. To avoid writing,
pages are not modified during the first scan.

The second scan goes over the same area as the first scan, restoring the
records collected during the first scan, Whenever there is an empty slot on a-
page, the algorithm attempts to fill that slot with a record from the record pool.
The record selected is the one with the lowest home address.

The above process is repeated for every old page participating in the expan-
sion. The records remaining in the record pool are those that are to be moved to
the new page. They are inserted in the last part of the algorithm.

A page in the file consists of & record slots and each slot consists of three
parts: a status field, the key of the record and the rest of the record. The status
field indicates whether the slot is empty or full. As written the algorithm uses
only one buffer with the same size and format as a page. However, expansions
can be significantly speeded up by using more buffer space, reading and writing
several pages when accessing the file. The effect of additional buffer space will be
studied further in the mext section.

The structure of the record pool is intentionally left unspecified. The actual
implementation will (mainly) depend on the amount of internal storage available.
If main memory space is abundant, all records in the record pool can reside in
main memory, otherwise some or all of them will have to be temporarily stored
on disk. The size of the record pool is one of the variables studied in the next
section.

Linear hashing

expand (p);

g = piop: = 1n;
Ivl: = |(cpz ~= lynol;
ngr: = N %2 ¥ |y|;

{update state variables}
mazadr: = mazadr + 1;
p-=p =g
if < 0 then begin
sw: = gw + 1; p: = ngr — sw;
if sw > ¢ then begin
epr:=cpr + L;n:=n+1;
sw:=l;p:r=ngr— 1,
it n = 2 * n, then begin
ni=ngp:=2%ngr—1;
end;
end;
end;

for i: = 1 to np do begin
pg: = gr + (i = 1) * ngr;

{collect all records to be relocated and store them in rerdpool}
cp: = pg — 1; lmdf: = pg — 1;

repeat
cpr=cp+1;
read page cp into buffer;
cnt: = 0;

for j: = 1to b do
If buffer.slot|j].status==full then begin
cnt: = cnt + 1;
adr: = address(buffer.slotj].key);
if adr # cp then begin
Imdf: = cp;
insert (buffer.slot[j], adr) into rerdpool;
end;
end;
until cat < b or cp = latpyg;

10 P.-A. Larson

{reinsert all records whose address is = lmdf}
for cp: = pg to Imdf do begin
read page ¢p into buffer;
for j: = 1 to b do begin
if buffer.slot|j].status=full and address(buffer.slot [j}.key) # cp
then buffer.slot]j].status=empty;

If buffer.slotj].status==empty and not empty{rcrdpool)
then begin
{note: the records in rcrdpool ate assumed to be sorted
in ascending order on home address}
adr:=[home address of first record in rcrdpool];
if adr = cp then begin
buffer.slot[j|:=|first record in rerdpool];
buffer.slot|j].status:=full;
delete first record from rcrdpool;
end;
end;
end {j-loop};
write buffer into page cp;
end {cp-loop};

end {i-loop};
{all records remaining in rcrdpool have home address = mazadr}

cp: = mazadr — 1;
repeat
cp: = cp + 1;
i ep = latpg
then read page cp into buffer
elze for j: = 1 to b do buffer.slotfj].status:==empty;

=0
while j < & and not empty (rcrdpool) do begin
=i+

If buffer.slot(j}.status—empty then begin
buffer.slot|j}:=={first record in rerdpool];
buffer slot|j.Jstatus:=full;

end;

endloop;
write buffer into page cp;
untll empty (rerdpool);

If istpg < cp then lstpg: = cp;

end {expand};

Linear hashing 11

5. Performance

In order to study the performance of the new method and the effects of
parameter changes, a simulation model was built. Results obtained by a series of
simulation experiments are presented and discussed in this section. The following
performance measures are considered: average number of accesses for successful
and unsuccessful searches, average number of accesses for insertion of a record
and average size of the record pool used during an expansion.

It is obvious that the performance will vary cyclically where a cycle
corresponds to one full expansions. The performance behaviour over a full expan-
sion is illustrated in Fig. 4 to Fig. 7. The parameters for the example file are:
page size 20, storage utilization 0.8, and 2 partial expansions per full expansion.
The results plotted are the averages from 100 runs. Two different cases are
shown: 2 sweeps (solid line} and 4 sweeps (dotted line) per partial expansion,

1.2

I T T T

10

1000 1500 2000 '
File size (pages)

Fig. 4: Successful search

12

® D M®m a6 S

w o m B A S

P.-A. Larson

4
3
2
1 T T T
1000 1500 2000
File size (pages)
Fig. 5: Unsuccessful search
8
6
4
2 T T i
1000 1500 2000

File size (pages)

Fig, 6: Insertion costs (including expansion costs)

Linear hashing 13

60

» = o o o 0

0 T T 1

1000 1500 2000
File size (pages)

Fig. 7: Size of the record pool

Notice that the insertion costs in Fig. 6 include both the accesses required to in-
sert a record and the accesses required for file expansion. The size of the record
pool during an expansion (increasing the file by one page) equals the maximum
number of records kept in the pool at any time during the expansion. The results
plotted in Fig. 7 are then the averages over a number of expansions.

The full expansion from 1000 to 2000 pages depicted in Figs. 4 to 7 consists
of two partial expansions: the first one from 1000 to 1500 pages and the second
one from 1500 to 2000 pages. Both retrieval costs and insertion costs are Jower
during the second partial expansion. Each “bhump” in the graphs represents one
sweep. A local maximum occurs close to the end of each sweep. Increasing the
number of sweeps, in this case from 2 to 4, clearly improves the performance. It
reduces the overall average and, perhaps more importantly, it also reduces the
variations.

Table 1 shows how increasing the number of sweeps improves the perfor-
mance. The figures are averages over a full expansion. As seen from the table
the performance first improves and then slowly deteriorates again. Around 5
sweeps per partial expansion appears to be optimal.

14 P.-A. Larson

Sweeps | Successf. | Unsuccessf. | Insertion Size of
search search (total) | record pool
1 1.48 9.66 16.43 91.6
2 1.07 1.92 4.19 23.6
3 1.06 1.65 3.77 21.1
4 1.06 1.59 3.67 20.7
5 1.06 1.59 3.67 20.7
6 1.06 1.61 3.69 21.0
8 1.07 1.66 377 21.7
10 1.07 1.70 3.82 22.1

b=20,a=08ny=2
Table 1: Average performance as a function of the number of sweeps.

Table 2 shows the (overall) average performance for a few combinations of
page size, storage utilization and number of partial expansions. The number of
sweeps is 5 in all cases. Increasing the page size clearly improves the perfor-
mance, especially if the required storage utilization is high. This effect is typical
for linear probing. Unless very large pages are used, a target storage utilization
of 0.9 seems too high. Retrieval costs are still reasonable, but insertion costs are
rather high. A storage utilization of at most 0.8, or perhaps 0.85 for large pages,
is a more realistic goal. Up to this level the retrieval petformance of the current
method is comparable to that of other versions of linear hashing [LA82a, LA83,
MUS1, RL82]. A comparison of insertion costs for different versions is more diffi-
cult, because the results reported in [LA32a, LA83, MUSL, RL82] omitted some of
the costs involved.

ng | o Successful search Unsuccessful search

b=10 b5=20 b=40 | b=10 b=20 b=40
2 {07 106 1.02 1.01 1.40 1.17 107
08 | Li4 106 103 | 222 160 1.32
09 | 151 1.25 113 9.93 5.49 3.42

3 107 | 105 1.01 1.00 1.36 1.13 1.03
08 | 112 1.056 1.02 2.10 1.49 1.22
09 | 140 1.18 1.08 6.81 3.85 2.38

ng | @ Insertion cost (total) Size of record pool
b=10 b=20 b=40 | b=10 b=20 b=40
2 {07 430 294 241 8.7 143 25.9
08| 613 367 277 146 207 348
09 | 220 9.87 5.59 53.2 556.2 70.2

3 |07 490 312 2.44 9.3 14.7 26.1
08 689 3.84 2.75 155 21.2 347
09 | 189 8.20 4.50 45.3 46.4 59.0

3 = 5 Buffer space: 1 page
Table 2: Average performance over a full expansion

Linear hashing i5

In the current method it iz advantageous to read or write several consecu-
tive pages in one access, provided that the necessary buffer space is available.
This is a consequence of using linear probing. Doing so is particularly attractive
during expansions when several consecutive pages must be scanned and reorgan-
ized. Table 3 shows how the insertion costs are affected by using more buffer
space during expansions. The figures are averages over a full expansion. The
improvement is considerable; using 3 buffer pages instead of one cuts the expan-
sion costs by half.

The results in Table 3 are based on the assumption that additional buffer
space is used only during expansions. If additional buffer space is used during
insertions as well, the costs can be reduced even further. For the example file the
following results are obtained: using 2 buffer pages reduces the total insertion
costs to approximately 3.4 accesses and 4 pages results in approximately 2.9
accesses.

Buffer | Insertion | Expansion | Total
pages
1 297 1.21 4.19
2 2.95 0.76 3.70
3 3.00 0.60 3.60
4 2.97 0.53 3.50
5 2.96 0.50 3.45
b=20 s=2

a=08 ny=2
Table 3: Effects of using additional buffer space during expansions.

6. Conclusions

A new method for handling overflow records in connection with linear hash-
ing has been presented and its performance analysed by means of sumulation.
The method is based on linear probing and does not require a dedicted overflow
area nor chaining. The expansion sequence of linear hashing was modified to
avoid creating large clusters of full pages. This significantly improved the overall
performance,

The algorithms needed to implement the basic file operations are quite sim-
ple. An address computation algorithm and an algorithm for expanding the file
by one page were given. Retrieval, insertion and deletion can be done in the same
way as for traditional linear probing.

The overall performance of the new method is competitive with that of
other variants of linear hashing, up to a load factor of 0.80-0.85. One of the
advantages of using linear probing is that all the basic file operations can be
speeded up simply by using more buffer space, reading or writing several pages in
one access. Linear probing also preserves locality of reference, thus avoiding long
seeks to some extent.

The reason for changing the expansion sequence of linear hashing was to
rapidly spread out pages with a low load over the file. This prevents long clusters

16

P-A. Larson

of full pages from forming. The expansion sequence proposed is one possible
implementation of this idea. It has the advantage of being simple, but some
other sequence may very well achieve a better overall performance, However, the
margin for performance improvements is rather narrow.

References

[GL82]

[LAS0]

[LA82a}

[LA82b]

[LAg3]

[LK83]

[LIg0]

{MUS1]
[RLB2|

[RSD&3

]
Gonnet, G.H. and Larson, P.-A.: External hashing with limited internal
storage, Technical Report CS-82-38, University of Waterloo, 1982.

-]
Larson, P.-A.: Linear hashing with partial expansions, In Proc. Gth
Conf.. Very Large Data Bases (Montreal, Canada), ACM, New York,
1980, pp. 224-232.

o
Larson, P-A.: Performance analysis of linear hashing with partial
expansions, ACM Trans. Database Systems, 7, 4 (1982), 566-587.

o
Larson, P.-A.: A single-file version of linear hashing with partial expan-
sions, In Proc. 8th Conf. Very Large Data Bases (Mexico City, Mexico),
VLDB Endowment, California, 1982, pp. 300-309.

-]
Larson, P.-A.: Performance analysis of a single-file version of linear

kashing, The Computer Journal (to appear).

Larson, P.-X. and Kajla, A.: File organization: Implementation of a
method guaranteeing retrieval in one access, Comm. of the ACM (to
appear).

Litwin, W.: Linear hashing: A new tool for file and table addressing, In
Proc. 6th Conf. Very Large Data Bases (Montreal, Canada), 1980, pp.
212-223.

Multin, JK.: Tightly controlled linear hashing without separate over-
flow storage, BIT, 21, 4 (1981), 389-400.

Ramamohanarao, K. and Lloyd, JK.: Dynamic hashing schemes, The
Computer J. 25, 4 (1981), 478-485.

Ramamohanarao, K. and Sacks-Davis, R.: Recursive linear hashing,

Technical Report 831, Dept. of Computing, Royal Melbourne Institute
of Technology, Melbourne, Australia, 1983.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

