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ABSTRACT

We introduce a new variant of the cost measure usually
associated with binary search trees. This cost measure BCOST,
results from the observation that during a search, a decision to
branch left need require only one binary comparison, whereas
branching right or not branching at all requires two binary com-
parisons. This is in contrast with the standard cost measure
TCOST, which assumes an equal number of comparisons is
required for each of the three possible actions. With BCOST in
mind we re-examine its effect with respect to minimal and maxi-
mal BCOST trees, minimal and maximal BCOST-height trees,
and introduce a class of BCOST-height-balanced trees, which
have a logarithmically maintainable stratified subclass. Finally,
a number of other issues are briefly touched upon.

1. INTRODUCTION

Although binary search trees have been used and investigated since the
early days of computing there has always been a discrepancy between the
implementation of searching in such a tree and the analysis of the cost of
searching. On the one hand in Aho, Hopcroft, and Ullman (1983, p. 157),
Gotlieb and Gotlieb (1978, p. 193), Horowitz and Sahni (1976, p. 439),
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Knuth (1973, p. 424), Maurer (1977, p. 131), Standish (1980, p. 99) and
Wirth (1976, p. 204) searching and updating binary search trees is carried out
using binary comparators: with outcomes [=, #}, [<, =] and/or [>, =].
On the other hand in Gotlieb and Gotlieb (1978, p. 195), Horowitz and
Sahni (1976, p. 438), Knuth (1973, p. 427), Standish (1980, p. 101), and
Wirth (1976, p. 212) the analysis of searching and updating costs is carried
out under the assumption that a ternary comparator is used: with outcomes
{«, =, >] indicating whether x<,=,or > y.

It is this discrepancy between implementation and analysis that has led
us to consider a cost measure for binary search trees based on binary, rather
than ternary, comparators. Note that not all authors fall into this abyss, for
example. Aho, Hoperoft, and Ullman (1983) avoid it by considering the
number of nodes visited in a search., However we claim that this new cost
measure provides us, as we shall see in Section 2, with a model for search
trees which is more realistic than the classical ternary-comparator based
model.

The paper consists of a further four sections. Section 2 is motivational
in nature, while in Section 3 we study the basic propertics of BCOST. and
BCOST-height. In Section 4 we introduce the class of BCOST-height-
balanced trees, the natural analogue of the well known class of height-
balanced trees under TCOST. Finally in Section 5 we conclude with some
comments on other possible avenues of investigation for BCOST.



Binary Scarch Trees 3

2. SEARCHING IN BINARY SEARCH TREES

To see how a binary-comparator cost measure occurs in practice, it is
worthwhile examining the typical scarch procedure provided in Aho, Hop-
croft, and Ullman (1974, p. 117, 1983, p. 157), Gotlieb and Gotlicb (1978,
p. 193), and Standish (1980, p. 99), for example.

tunction Search1(x;key;p:node):node;
{ initially p is the root of the given search tree. Searchl returns
either the node containing x if x is in the tree, or the value nil }

begin {Searchl1}
it p= nil{ i.c. p is a leaf } then Searchl:= nll else
it x=selectkey(p) then Searckl:=p else
it x<selecikey(p)then Searchl:==Searchl(x,lefichild(p)) else
Searchl:=Search1(x,rightchild(p))
end {Searchl};

In PASCAL node is a pointer type, and selectkey, lefichild, and rightchild are
the corresponding selector functions.

First observe that the test for whether or not p denotes a leaf is an extra
comparison at every node on the scarch path. We can avoid this by using the
sentinel search technique (see for example Wirth (1976)). We would then
introduce a new node named Stop, before creating the search tree. When
constructing the tree, we have each leaf node point to Stop. Before each
search, we insert the sought key in Srop. In this way we ensure that unsuc-
cessful scarches terminate at Stop and nced not be tested for at each node.
Specifically we have:

functionSearch2(xkey; p: node): node;

{ On entry p is the root of the given search tree. On exit
Search?2 returns either the node containing x if x is in the tree, or
the value nil. A subsidiary function Srch2 is used }

var ¢: node;
function Srch2(x:key;p:node):node;
begin {Srch2}
if x=selectkey(p) then Srch2: =p else
it x<selectkey(p) then
Srch2: =Srch2(x,leftchild(p)) else
Srch2: =Srch2(x,rightchild(p))
end {Srch2};
begin {Search2}

assignkey(Stop,x); q: =Srch2(x,p);
If g=Stop then Search2:= nil else
Search2:=q
end {Search2};

Observe that we place x in the node Stop before carrying out the search,
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using an assignment procedure, which ensures that Srch2 is always successful,
but if Srch2 terminates at Stop, then x is not in the scarch tree. The use of
the sentinel node Stop has removed the extra comparison at each node on the
search path that was present in Searchl. However a further improvement can
still be made, by noting that equality holds only at the final node on the
search path. In other words since we have inequality at all nodes but the last
one we should first test for in=quality. We choose to test for < first, giving
Srch3:

function Srch3(x:key;p:node): node;
begin {Srch3}
if x < selectkey(p) then Srch3:=Srch3(x,leftchild(p)) else
if x = selectkey(p) then Srch3:=p else
Srch3: =Srch3(x,rightchild(p))
end {Srch3};

which replaces Srch2 in Search2 to give Search3. Essentially this version of
the search procedurc is found in, for example, Knuth (1973) and Wirth
(1976). Interestingly if we are only allowed to use the while and repeat loop
constructs in PASCAL, then no iterative version of Searck3 with the same
number of comparisons per search is possible, since any such would have to
be similar to:

assignkey(Stop,x);
while x<>>selectkey(p) do
if x < selectkey(p) then p:=leftchild(p) else
pi=righichild(p};
if p= Stop then Search4:= nil else Searchd. =p

and immediately the test for equality is always carried out before the branch-
ing test. Only if we allow the use of a goto or an unconditional repeat with
exit, can we obtain the same number of comparisons,

Returning to Search3, we see that a branch to the left results from one
comparison, while a branch to the right results from two comparisons.
Morecver equality results from two comparisons, plus & further comparison
in Search3 to decide membership. Thus the number of comparisons required
to decide membership of x in the search tree given by p does not depend only
on the length of the search path as it does in Search2, for example, but also
on the number of left branches (and hence right branches) on the search path.
Hence if the search path contains m nodes, of which ¥ are left-branching
nodes, then the total number of comparisons is:

k+2(m=-k)+1 ,

although there are only k+2(m—k) key comparisons. It is this asymmetric
measure of search cost that we study in the following sections.
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3. EXTREMAL BCOET TREES

We first need:

Definition A binary tree T, of n nodes is cither the empty tree if n = 0
or, alternatively, consists of a triple (T}, »,T,) where I+r+1=n, u is the
root node, T; is the left subtree of u, and 7, is the right subtrec of ». A
binary search tree for a distinct keys taken from a totally ordered key
universe, is a binary tree T, with each key associated to a unique node of T,
such that:

All the keys in the left subtree of each node
< the key associated with
< the keys associated with the right subtree of u.

The height of a binary (search) tree T, is 0 if #=0 and (1+ the maximum of
the heights of the left and right subtrees), otherwise.

We are now in a position to define the binary-comparator based search
cost as well as the usual ternary-comparator based search cost. In each case
the search cost is the total cost of searching for every key in the tree.

Definition  Let T, be a binary search tree with n nodes and keys. Then

0, if n=0
BCOST(T,) =
2 + I + 2r + BCOST(T;) + BCOST(T,),
otherwise , where T, = (T),u,T,) ,
and
0, n=0
TCOST(T,) =

n + TCOST(T)) + TCOST(T,) , otherwise,
where T, = (T,u,T,)

are the binary-comparator and ternary-comparator scarch costs, respectively.
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Note that (with both BCOST and TCOST) we ignore the extra comparison
required to cxamine a leaf, since it isn’t a key comparison, In Figure 3.1 we
display the cost of searching nodes in a prefix of the infinite binary tree.

2

Figure 3.1

In [CW] binary search trees are investigated under a cost measure based
on a cost of a to branch left, and a cost of B to branch right. These are
called a—p binary search trees. Clearly we are investigating 1-2 binary
search trees in this notation, and hence some of our results are subsumed by
the more general investigation of [CW]. However the case a=1,8=2 is
easier to deal with directly and, moreover, the majority of our results are
completely new.

Tt is well known (see Knuth (1973), for example) that:

nllogznl = TCOST(T,) = 3—('%1)—

and that these extremal values are obtained with complete binary trees and
degenerate binary trees (that is of height ), respectively.

Regarding BCOST we have:
? = BCOST(T,) = n(n+1)

where the maximal or pessimal value is given by a degenerate right branching
tree, see Figure 3.2. The minimal or optimal value is easily obtained from
the following observation in Figure 3.1:

A node u is reached from the root of a tree via k binary com-
parisons if and only if u is the root of the tree and k = 2, u is
a left child whose parent is reached via k—1 comparisons, or
u is a right child whose parent is reached via k-2
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Figure 3.2

comparisons. We say « is at binary distance k from the
root, meaning that k binary comparisons are needed to verify
that the sought key resides there.

Hence the number of nodes at binary distance k > 3 from the root, is
equal to the sum of the numbers of nodes at binary distances k—1 or k-2
from the root. Recalling that the i-th Fibonacci number

0,ifi=0
Fib(i) = { 1,ifi=1
Fib(i—1) + Fib(i—2) , otherwise

then we have:

Lemmsa 3.1  In the infinite binary tree, for all k=2, there are Fib(k—1)
nodes at binary distance k from the root.

Proof: By the above remarks together with the fact that the root is at
binary distance 2 and its leftchild is at binary distance 3 and these are the only
nodes with these distances. D

Since branching to the left is less B-costly than branching to the right we are
led to the following:

Definitlon  The left Fibonacci tree Fy, i=0, is defined recursively by:
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Ty if i=0
Fp=4{T1 , if Q=1

(Fi-1,u,F;_3), for some new node u ,if i =2 .

As an example Fg is shown in Figure 3.3. Note that F; has height i and
Fib(i+2) leaves.

Figure 3.3

Lemma 3.2 For all n=2 with n=Fib(i+2)-1, for some i = 1, and for
all trees T, :

BCOST(T,) = BCOST(F)) .

Moreover BCOST(F,) = iFib(i+2)—Fib(i+1)+1.

Proof: (by induction on i) We claim that F;, i> 0, contains
exactly Fib(k—1) nodes at binary distance k from the root, for all &k ,
2=k=i+1. The claim is obvious for i <2. Assume the induction
hypothesis holds forall i, 1={<j, forsome j>1. In F;., thereare,
for 3sk=j+1, Fib(k—2) nodes at distance k—1 from the root of
F;_; and, for 4 = k=< j+1, Fib(k—3) nodes at distance k—2 from the
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root of Fi_s. Hence  there  are, for 4=k=j+1,
Fib(k—2) + Fib(k—3) = Fib(k—1) nodes at distance k from the root of
F;. For k=3 there are trivially Fib(k—1) nodes at distance k from the
root of F;.

Second, BCOST(F;)=iFib(i+2)~Fib(i+1)+1 holds for i=0 and 1.
Assume it holds for all i<m, for some m=1. Then

BCOST(F,,) = Fib(m+1) + 2-Fib(m) + BCOST(F,,_,) + BCOST(Fy,_y) — 1

from the definition of BCOST. Substituting for BCOST(F,_;) and
BCOST(F,,_,) and rearranging terms we obtain the desired result. D

This leads to the characterization of minimal BCOST trees for all n=0.

Theorem 3.3 Let nx2 be a given integer  satisfying
Fib(i+2)=n+1<Fib(i+3), for some i=0. Then a binary tree T, has
minimal BCOST iff either T, equals F, if n=0 or 1, or T, has F; as a prefix
and the remaining n+1—Fib(i+2) nodes in T, are at binary distance i+2 from
the root.

Proof: This follows directly from Lemma 3.2 and the observation that
the n+1—Fib(i+1) remaining nodes should be placed at the cheapest points,
that is the positions at binary distance i+2 from the root. There are
Fib(i+1) of these positions, and because Fib(i+1)>n+1—Fib(i+2), there
are sufficiently many positions. O

It is worth noting at this point that the minimal BCOST trees are exactly
the trees of a Fibonaccian search, see Knuth (1973).

After characterizing the optimal and pessimal BCOST trees, we turn to
their average behavior. To begin with we first define the extended search
costs, that is the total cost of searching a tree of # nodes for each of the n+1
gaps between the keys.

Definition  Let T, be a binary search tree of n nodes, n=0. Then

0, if n=0

EBCOST(T,) =
14+1+2(r+1)+EBCOST(T))+ EBCOST(T,)
otherwise, whereT,=(T},«,T,) ,
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and

ETCOST(T,) =
n+1+ETCOST(T;)+ETCOST(T,) otherwise
where T, = (T,,u,T,)

are the extended BCOST and TCOST respectively.
The relationships between the cost measures are captured in:

Lemma 3.4  For n=0, and T, a binary search tree:

EBCOST(T,) — BCOST(T,) = ETCOST(T,) — TCOST(T,) = n .
Proof:  Straightforward. O

When considering the average behavior of BCOST and EBCOST, we
assume all n! permutations of the integers 1 to n are equally likely insertion
sequences for the standard insertion procedure when given an initially empty
tree. Thus in the usual way (for example, see Knuth (1973)) we find, using
ABCOST and AEBCOST to denote the average values of BCOST and
EBCOST, respectively:

AEBCOST(n) = AEBCOST(n—1) "EBCO':T 2=1) L3

= —Q':—llwacasr(n—n +3

assuming an insertion is equally likely to take place to the left of a frontier
node as it is to the right. This recurrence can be solved using
AEBCOST(0)=0 to give:

AEBCOST(n) = 3(n+1)[H,1~1]
which should be compared with:

AETCOST(r) = 2(n+1)[H,.1—1] .
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Applying the relationship given by Lemma 3.4 we obtain:

Theorem 3.5
ABCOST(n) = 3(n+1)H, .1 —2n — 3 .

Recalling that each ternary comparison is usually implemented as two
binary comparisons, ¢f. Srch2, this result implies that the expected search
time should be 25% faster when using Srch3 as far as key comparisons are
concerned. Furthermore since the expected search trees constructed by ran-
dom insertions, as in the above model, are nearly optimal with respect to
TCOST, we would expect a greater reduction in search time if the constructed
trees are more nearly left Fibonacci. In the next section we introduce a class
of balanced trees, balanced with respect to BCOST, which have this property.
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4. BALANCED BCOST TREES

One may consider balanced varieties of BCOST trees, each member of a
particular class having a near-optimal BCOST. In this section after providing
an appropriate modification of the definition of height we define a class of
height balanced trees which are nearly opnmal It is also possible to consider
a modification of the definition of weight in order to obtain BCOST-weight
balanced trees, but we leave this for the interested reader.

Definltlen  Given a tree T, , its BCOST height denoted by Bht(T,), is
defined recursively as:

0, if n=0

Bhi(T,) =
max {1+Bht(T)) , 2 + Bht(T,)} otherwise
where T, = (T,u.T,) .

Intuitively Bht(T,) denotes the maximal number of comparisons needed
to locate a key in T,, and is therefore a natural generalization of the usual
height measure.

We may now define the class of BCOST-height balanced trees, or Bhb
trees.

Definition A tree T, is a Bhb tree if and only if:

either n=0
or T, = (T;u,T,) , T; and T, are Bhb trees and
—1 = Bhi(T))— Bhr( -1=1.

In Figure 4.1 we display a Bhb tree with 8 nodes. Observe that the left
Fibonacci trees are Bhb trees, since a left subtree of a left Fibonacci tree has
a Bht exactly one greater than the Bkt of its right brother, Hence the optimal
BCOST trees are in the class of Bhb trees as we require.

Lemma 4.1 Let Npyi(d) be the minimum number of internal nodes neces-
sary for a Bhb tree T which satisfies Bat(T) = d , forall d = 2.

Then
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Figure 4.1
2%*-1, if d=2k

Npin(d) =
3.2 19, if 4= 2%k+1 .

Proof: By induction on k. Consider the basis k=1, then either d=2 or
d=13. The only possible trees are:

2

/\ and 2 o
o Yo

In the first case Ny (2)=2'-1=1, and in the second
Npin(3) = 3-29-1 = 2, hence the lemma holds for k=1.

Now assume the lemma holds for all k, 1=k<k,, for some ky=2 and
consider the case k=kj.
Casel: d=2%;.

Clearly a Bhb tree T (with Bhb(T) = d ) having a minimum
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number of nodes must have left and right subtrees of the root with
a minimum number of nodes. Thus we only need to consider the

three possible cases:
2kg 2kg nZke
2k5!  2kz2 2k53 2kg2  2k52

determined by the Bhb condition. Of these three the first clearly
has more nodes than cither of the other two, Moreover, because
(2kg—1) = 2(kg—1)+1, 2ky—=3 = 2(kg=2)+1, and

2kg!

3.9%72 4 30073 o g.0ke3 5 oo

the second contains more nodes than the third. But this implies
Ngin(d) = 291 as desired.

Case2: d = 2kyt+1

A similar analysis yields three possible trees:

2kt 2k°+l 2k°+l

2k, 2k 2ky 252 2l 2!

of which the first can be immediately discarded. Now
1420 g4kl g 30k7l
and
1432020143202 1307y

hence both the second and third possibilities minimize the number
of nodes, demonstrating that
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Noinfd) = 3-27

Observe that the proof of Lemma 4.1 also implies that complete binary
trees mammze the BCOST height over all Bhb trees for a given number of
nodes n=2%—1 or 3-2¢~1-1, for all k=1. For all other values of n, the
right complete binary trees fulfill this condition, where a right complete
binary tree is a complete binary tree in which all nodes on the bottommost
level are as rightmost as possible.

Hence we have:

Theorem 4.2 Let T bea Bhb tree with n nodes.
Then Bht(T) = [2 logy(n+1)].

Proof:  Since
Npin(d+1) > 1 = Ny (d)
for some d=2, and
logsx = logy(n+1)

where x is either 2 or 3-25~1 depending on the evenness of d. The result
then follows. O

Similarly just as among the height balanced trees the Fibonacci trees are
the trees of maximal height (for the given number of nodes) so it is for the
Bhb trees. For a given n the Bhd trees of maximal BCOST height are the
right complete binary trees.

Having analyzed the static behavior of Bhb trees it remains to demon-
strate that Bhb trees can be updated in logarithmic time, that is insertions and
deletions of keys can be carried out in O(log #) time in an n node Bhb tree.
For this purpose a subclass of the Bhb trees is defined. The subclass is strati-
fied in the sense of van Lecuwen and Overmars (1982) and Ottmann,
Schrapp and Wood (1983).

To define a class of stratified trees we need a number of tops and some
trees which may appear in a straum. For our purposes let
TOP = {T :T,isaBhbtrecand 0sn s 33} and STRATUM = {Ts, T6}
where Ts and Tg arc the Bhb trees of Figure 4.2. A stratified BCOST tree (or
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Figure 4.2

SB tree) S, with respect to TOP and STRATUM belongs to TOP if 0=m=33,
and othcrwxse consists of some tree T from TOP with Tss and Tgs attached to
its leaves to form a stratum, and to the leaves of this first stratum T'ss and T¢s
are attached to form a second stratum, and so on. See Figure 4.3 for an
example of 5135 .

_ToP

__ STRATUM

STRATUM

Figure 4.3

Lemma 4.3 For all mz0 there is an SB tree S,,. Furthermore every SB
tree is a Bhb tree.

Proof:  The proof of the first part is by induction on m. The inductive step
is constructive, that is to show that there is an S for given k, we begin with
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an §;_; and replace a Ts in the lowest stratum with a T¢. If no such T
exists, then 5 T¢s, having 35 leaves, are replaced by 6 T'ss, having 36 leaves,
in the lowest stratum, passing the problem up to the penultimate stratum, see
Figure 4.4.

Figure 4.4

At worst this is repeated until the top T of the tree is reached. At this point
if 7 has fewer than 33 nodes it is replaced by a new top with one more node
than T, otherwise it is replaced by five 7' s hanging on a four-node tree from
TOP, sce Figure 4.5,

Figure 4.5

This yields a new top and a new stratum containing 34 nodes as required.



18 Ottmann, Rosenberg, Six, and Wood

The only remaining problem is that when there is no Ts in a stratum there
should be at least 5 T¢ s to enable the problem to be passed up the tree at
each stratum. Now if there are no T s and fewer than S Tgs then we must
be in the stratum below the top. Clearly the top has at most 4 T s hanging
from it. Hence k = 27 and a new top can be constructed directly.

The second part follows by observing that Bh(Ts) = Bht(Tg) = 5,
hence adding trees from STRATUM to all the leaves of a Bhb tree T only
affects the heights of the nodes in T, not the differences of heights of brother
nodes. Moreover T and Ty are both Bhb trees, hence each SB tree is Bkb.
a

‘Theorem 4.4  For all n=0, every SB tree S, can be updated in O(logn)
time.

Proof: We consider insertion only, deletion follows in a similar manner.
We are given an SB tree T and a value x, which is to be inserted. As usual
first search for x in 7 to determine that it is not present (if it is present the
insertion is redundant).

Case 1:  This occurs when T belongs to TOP. If T contains less than 33
nodes, then simply replace T by a new tree T’ from TOP having
one more node and fill in the corresponding values. If T has 33
nodes then we must replace it by a 7’ having 34 nodes consisting
of a top and one stratum. This is the tree of Figure 4.5, This
requires constant time. Otherwise T* has at least one stratum. In
this setting we say two subtrees of T are siblings if they belong to
STRATUM, are in the same stratum, and are attached to the
leaves of a tree, its parent, cither in TOP or again in STRATUM.
Now the value x_is to be added at the leaf level of the botiom
stratum within a Ts or a Ty, that is a new node is to be added.
Consider these cases in turn;

Case2: Anodeistobeaddedtoa Ts.
Simply replace 1'5 by a T and fill in the values appropnatcly

Case 3: Anodeistobeaddedtoa Tg.

(3.1)One sibling of the T, is a T5. Modify the parent and its
siblings such that one Tg sibling is replaced by a Ts. Fill in the
values appropriately.

(3.2)All siblings are T¢s and there are five siblings. Replace the
five s1bhngs by five Tss and one T ( = 31 nodes). This causes a
recursive insertion into the parent.

_{3.3)All siblings are T¢s and there are six siblings. Replace the
six T¢s by five Tss and two Tgs ( = 37 nodes). This causes a recursive
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insertion into the parent.

It is not difficult to see that this node insertion algorithm performs
correctly taking O(log #) time, Moreover the ordering of the keys at each
step is maintained by considering only the current “window”, that is a parent
and all its children, D

Whether or not O(logn) time update algorithms exist for the whole
class of Bhb trees is an open question. It is, however, possible to design
O(log?n) time update algorithms in this case.

We provide a sketch of the O(log?n) time insertion algorithm for Bhb
trees; the 0(1052n) time deletion algorithm is similar. Both algorithms may
call a subsidiary procedure Down at every node on the search path. It is this
procedure, which requires O(logn) time, that causes O(log®s) time per-
formance in the worst case. -

To insert a new value x into a Bhb tree T, we first search for its associ-
ated leaf with parent p. A new node g is then created having value x. We
always arrange for ¢ to be added as the left child of p, viz:

?/?p
:/Y

If g is to be added as the right child of p, then the Bhb condition implies that
p is:
e
2

P 2
either /\ or '

and the values in p,q (and r) can easily be rearranged so that p is increased
in BCOST height by one in all cases.

Now call Restructure(p). For convenience we use Ap,pp , and mp to
denote the left child, right child, and parent of a node p.

Algorithm Restructure(p);

On entry p's children are Bkt balanced and before the insertion let
Bht(p) = h+2 .

On exit all nodes on the path from the root to p are Bht balanced.
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begin There are four cases to consider.

Case 1: The insertion occured in the right subtree of p, Bht(pp) has
increased from A to A+1, and, hence, Bht(Ap) — Bht(pp) — 1= —-2.

Case 2: The insertion occurred in the left subtrec of p Bht(Ap) has
increased from h+1 to h+2, and, hence,
Bht(\p) ~ Bhi(pp) — 1= 2.

Case 3: Bhkt(p) = h+3 and the subtree at p is balanced. If p is the root
then return otherwise Restructure{wp) .

Case 4: Bht(p) = h+2. Return.

We examine the first two cases in more detail.

Case 1.1: Bht(\pp) has increased by 1.
Thus Bht(\pp) = h and Bht(ppp) = h—2 is the only possibility.

Case 1.1.1: Bht{phpp) has increased by 1. We must have:

xh+3

We perform a double rotation on p to the left, yielding:

o N+2

and p is not only balanced but also retains the same BCOST height,
hence the tree is now rebalanced.
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Case 1.1.2: Bht(AM\pp) has increased by 1. We must have:

p oth+3

Again performing a double rotation on p to the left, we cbtain:

P o h+2

and p has the same BCOST height as before, but pp is now unbal-
anced. However a call of procedure Down(pp) resolves this,
resulting in Bhkt(pp) = h—1. Thus p remains balanced.

Case 1.2: Bht(ppp) has increased by 1. We must have:

#h+3
P

xh+l

Perform a left rotation on p:
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poht2

in which case the tree is now rebalanced.
Now turning to insertion in Ap:

Case 2.1: Bht(A\p) has increased by 1. We must have:

wh+3,p
xh+2 h=1
xhe+l h—1
A right rotation at p yields:
xh+3_p
h+l h+|
h-1 h-t

and we call Restructure(np) .
Case 2.2: Bht(p\p) has increased by 1. We must have:
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®h+3,p

wh2 h-l

and a right rotation at p yields:

#h+3 _p

A call of Down(p) gives Bht(p) = k+2, hence the resulting subtree
at p is balanced, and so is the whole tree.

end of Restructure.

We now specify Down(p) .

Algorithm Down (p);

On entry let Bht(p) =h+3. Then either Bht(\p) =4 and
Bht(pp) = h+1, or Bht(\p) = h—1 and Bht(pp) = h+1. The latter pos-
sibility only occurs within recursive calls of Down.

On exit Bht(p) = h+2 and the subtree at p is Bhr-balanced.

begin
Case 1: Bht(Ap) = h and Bht(pp) = h+1.

Case 1.1: Bht(\pp) = Bht(ppp) = k—1. Apply a left rotation:
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p,ht2

and return.
Case 1.2: Bht(App) = h and Bht(ppp) = h—2 , that is:

h+35P

Apply a double left rotation yielding:

Case 1.2.1: Bht(u) = h~1 or h—2 and Bht(v) = h—2.
Return,

Case 1.2.2: Bht(u) = h—1 and Bhe(v) = h=3 .
Down(pp) .

Case 1.3: Bht(\pp) = b and Bht(ppp) = h—1, that is:
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h+3,p

Applying a double rotation:

Case 1.3.1: Bht(u) = h—1 or k=2 and Bhi(v) = h—2.
Down(pp) .
Case 1.3.2: Bht(u) = h—1 and Bht(v) = h-3.
Down(pp) .
Case2: Bht(\p) = h—1 and Bht(pp) = h+1.

Case2.1: Bht(App) = Bht(ppp) = h~1.
As Case 1.1.

Case 2.2: Bht(\pp) = h and Bht(ppp) = h—1.
A double left rotation at p is followed by a call of Down(pp) ,
similar to Case 1.2.

Case 2.3: Bht(App) = b and Bht(ppp) = h—2.
After a double left rotation at p we have:
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Case 2.3.1: Bht(u) = h~1or h—2 and Bhi(v) = h-2.
Return.
Case 2.3.2: Bht(s) = h—1 and Bht(v) = h—3.
Down(pp) .
end of Down.

We close this section by observing that there is an interesting duality
between height balanced trees and BCOST-height balanced trees as far as
their optimal and pessimal heights are concerned. We conjecture that this
table also holds for comparison costs as well, that is TCOST for height bal-
anced trees and BCOST for BCOST-height balanced trees.

DUALITY Optimal Pessimal

height complete | Fibonacci
balanced binary tree

trees tree

BCOST-height | left right complete
balanced Fibonaca | binary

trees tree tree
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5. CONCLUDING REMARKS

We have introduced a new cost measure for binary search trees, namely
BCOST. We have investigated some of the theoretical aspzcts of this new
cost measure, while leaving many questions open. Before briefly discussing
some of these, we mention one experiment which needs to be carried out.
If, as we claim, BCOST is a more realistic cost measure, then it is to be
expected that this would show up in practice. For example computing the
total time taken to perform many random searches of a complete binary tree
with Search2 and Search3. These times should then be compared with those
taken by searches of a left Fibonacci tree with Search2 and Search3. In both
cases our theoretical results lead us to expect Search3 to perform better than
Search2, and Search3 on a left Fibonacci tree should outperform Search3 on
a complete binary trec of the same size. Such an experiment is currently
being mounted.

Our new cost measure distinguishes between the number of binary com-
parisons required in a search and the number of nodes visited. Such as
approach has been taken for 2-3 trees, see [RS] and the papers cited therein.
The traditional cost measure is, in reality, a node visit cost. The time taken
to search a tree should probably be modelled by a combination of these two
cost measures rather than either alone.

If BCOST is indeed a more appropriate cost measure than T7COST, then
the class of Bhb trees attains a greater significance than the traditional class of
hb trees. Hence it becomes crucial to find efficient, that is O(logn), update
algorithms for Bhb trees or, alternatively, to find a new class of trees which
is BCOST-balanced and has O(logn) update algorithms. (For example is it
possible to define a class of BCOST weight-balanced trees?) In [ORSW] the
class of left-sided hb trees is considered as a possible candidate since it has
O(logn) update algorithms. However, it shown in {ORSW] that the Bht of a
left-sided hb tree T of n nodes, can be up to 44% greater than the maximal
Bht of a Bhb tree of n nodes, However, this may, in practice, be a small
price to pay for obtaining a BCOST-balanced class of trees with reasonably
simple and logarithmic updating algorithms. The average or expected BCOST
of left-sided hb trees remains an open problem, as indeed it is even under
TCOST.

If the keys to be represented have weights associated with them, then
the cost of constructing an optimal weighted binary search tree under BCOST
is an obvious problem. It appears that the standard dynamic programming
approach, see [K], will suffice. However it is conceivable that the monotoni-
city principle does not hold in this case, thereby preventing the speed up
obtainable under 7COST.

Apart from the a—p binary trees of [CW], (recall that BCOST binary
trees are a— P binary trees with a=1 and g=2), the only other investiga-
tion of a biased search cost measure is that of {RS]. [RS] investigate minimal
cost 2-3 trees, in which the cost of matching the second key of a ternary node
is twice that required to match the first. However their cost measure is still
based on ternary comparisons. Clearly minimal BCOST 2-3 trees may be
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investigated along the iines of {RS] and the present paper leading, one would
expect, to similar results.
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