6. NEWTON'S ITERATION AND
THE HENSEL CONSTRUCTION

by
K.0. Geddes
Research Report CS-83-36

Department of Computer Science
University of Waterioo
Waterloo, Ontario, Canada

December 1983

6. NEWTON’S ITERATION AND
THE HENSEL CONSTRUCTION

In this chapter we continue our discussion of techniques for inverting modular and
evaluation homomorphisms defined on the domain Z{x,, . . . ,x,]. The particular methods
developed in this chapter are based on Newton's iteration for solving a polynomial equation.
Unlike the integer and polynomial Chinese remainder algorithms of the preceding chapter,
algorithms based on Newton's iteration generally require only one image of the solution in a
domain of the form Zp[x;] from which to reconstruct the desired solution in the larger
domain Z[x;, . . . ,x,). A particularly important case of Newton's iteration to be discussed
here is the Hensel construction. It will be seen in succeeding chapters that multivariate poly-
nomial computations (such as GCD computation and factorization) can be performed much
more efficiently (in most cases) by methods based on the Hensel construction than by
methods based on the Chinese remainder algorithms of the preceding chapter.

6.1. P-ADIC AND IDEAL-ADIC REPRESENTATIONS

The reason for introducing homomorphism techniques is that a gain in efficiency can be
reglized for many practical problems by solving several image problems in simpler domains
(such as Z,[x)] or Z,) rather than directly solving a given problem in a more complicated
domain (such as Z[xy, . . . ,x,]) (cf. Figure 5.1). However the particular homomorphism
techniques discussed in chapter § have the potentially serious drawback that the number of
image problems that have to be solved grows exponentially with the size of the solution
(where by the “size’ of the solution we mean some measure that takes into account the magni-
tudes of the integer coefficients, the number of indeterminates, and the degree of the solu-
tion in each indeterminate). This fact can be scen by referring to the homomorphism
diagram of Figure 5.1 in which we see that the number of image problems that have to be
solved is (r+1)N, where n+1 is the nurmber of moduli required for the residue representa-
tion of the integer coefficients that can appear in the solution and where N is the number of
multivariate evaluation homomorphisms required. Noting that if the degree of the solution
in each of v indeterminates is d then N = (d+1)"~! (because d+1 evaluation points are
required for each of the v—1 indeterminates being eliminated), we see that the number of
image problems is given by

(n + 1)(d + 1)*"1
which grows exponentially as the number of indeterminates increases.

There is a homomorphism technique of a rather different natore in which only one
image problem is constructed and solved and then this image solution is ‘lifted’ to the solu-
tion in the original domain by solving some nonlinear equations associated with the problem.
Of course nothing really comes for free and this new method can be viewed as trading off a

sharp decrease in the computational cost of solving image problems with a sharp increase the
computational cost of ‘lifting’ the image solution to the larger domain. In other words, the

6-2

new algorithm will be rather more complicated than the interpolation and Chinese remainder
algorithms which perform the corresponding ‘lifting” process in the diagram of Figure 5.1.
However this new approach has been found to be significantly more efficient for many practi-
cal problems. (Actually the efficiency of the new approach lies mainly in its ability to take
advantage of sparseness in the polynomial solution, and as we noted in chapter 3 polynomials
which arise in practical problems involving several indeterminates will invariably be sparse).

P-adic Representation and Approximation

Consider the problem of inverting the modular homomorphnm b, : Z[x] - Z,[x]. The
starting pomt in the development of the new algonthm is to consider yet another represcnm-
tion for integers and polynomials. Recall that in applying Garner’s algorithm to solve the
Chinese remainder problem, the integer solution k is developed (in step 2 of Algorithm 5.1)
in its mixed radix representation:

k= vy + vilmg) + valmgmy)y + - - - + v,,(:[{:m,)

where m;(0=i=n) are odd positive moduli such that I'[m,>2[| and

v €Z, (0 < k =< n). The new approach is based on developing an mteger solution ¥ in its
p-adic represemauon

) usao*ulp+u7p2+ 7

where p is an odd positive prime integer, n is such that p""1>2|u|, and
u; €Z,(0=i=n) Asinthe case of the mixed radix répresentation, the p-adic represen-
tation can be developed using either the posmve or the lymmetnc representation of Z,.
Obviously if the positive representanon is used then (1) is simply the familiar radix p
rcpre:cntatwn of the nonnegative integer u (and it is sufficient for n to be such that
p *15 4). However as we have scen, the symmetric representation is more useful in prac-
tice because then the integer & is allowed to be negative.

There is a simple procedure for dzveloping the p-adic representation for a given integer
u. Firstly we see from (1) that w = yj(modp), so using the modular mapping
&,(a) = rem(a,p) we have

) Hg = ¢p(“)'

For the next p-adic coefficient u,, note that u — »; must be divisible by p and from (1) it fol-
lows that

B=Hug

=uytupt oo +unp"“1,

Hence as before, we have
" - llo

u= ¢p()
Continuing in this manner, we get

u=[ug+up+ -+ +u_p'Y
@ w = by = = i=1,2....n
where the division by p' is guaranteed to be an exact int.eger division. In formula (3) it is
important to note that the calculation is to be performed in the domain Z and then finally the
modular mapping ¢, is applied (unlike the ‘elgorithmic specification’ of the ¢, notation pre-
viously used).

Example 6.1.

Let & = —272300 be the integer which arose as the solution in Example 5.15 where a
mixed radix representation of &4 was developed. Let us develop the p-adic representation of
u choosing p to be the largest two-digit prime, namely p = 97. The p-adic coefficients are

up = $,() = —21;
u = uy
u = ¢p(-—;‘"") =6
u = [ug + uyp]
=) = =2
(If we try to compute another coefficient u; we find that u — [ug + uip + ugp?] = 030 we
are finished). Thus the p-adic representation of u = —272300 when p = 97 is:

—272300 = -21 + 6(97) -~ 29(97)2. @O

As in the case of a mixed radix representation, the concept of a p-adic representation
can be readily extended to polynomials. Consider the polynomial

u(x) = Fux* € Z[x]

and let p and n be chosen such that p®*1 > 2u .., where up,, = max | u, |. If each integer
coefficient u, is expressed in its p-adic representation
u, = E-u,"p' with ug; € Zp
i=0
then the polynomial u(x) can be expressed as
L L]
u®) = EQuep)s" = T Sup,aP"
o = =0 »
The latter expression for the polynomial u(x) is called a polynomial p-adic representation and
its general form is
@ ux) = uo(x) + wy@®p + w@p? + - -+ u,(x)p"
where ui(x) € Z,[x] fori=0,1,....n. Formulas (2) - (3) remain valid when w and
; (0 < i < n) are polynomials.
Example 6.2.

Let u(x) = 14x2 — 11x — 15 € Z[x] be the polynomial which arose as the solution in
Example 5.17 where a polynomial mixed radix representation of u(x) was developed. Let us
develop the polynomial p-adic representation of u(x) choosing p = 5. The polynomial p-adic
coefficients are:

upx) = $,(u(x)) = -5 — 3;

u@) = 6,y 2o n

vG) - [uoi:z) LT NP

"2(3) = ¢p(
(If we try to compute another coefficient w3(x) we find that
u(x) = [ug(x) + uy(x)p + uz(x)pZ] = 0 so we are finished). Thus the polynomial p-adic
representation of the given polynomial u(x) € Z[x] whenp = 5 is:

6-4
) = (=22 -+ (~22 -2+ 25+ (2-152 o

It is useful to introduce a concept of approximation which is associated with a polyno-
mial p-adic representation. Recall that the congruence relation
a(x) = b(x) (mod ¢)
defined on the domain Z[x] with respect to a principal ideal <¢> in Z[x] has the meaning:
a(x) — b(x) € <¢>

(i.e. a(x) — b(x) is a multiple of ¢). Using this congruence notation, it is readily seen that
the following relations hold for the polynomials appearing in the polynomial p-adic represen-
tation (4):

u(x) = uy(x} (mod p)
and more generally
u(x) = uo(x) + uy(x)p + - - + u,‘_l(x)p"'l (modpt), 1 s k= n+1.
We thus have a (finite) sequence of approximations to the polynomial u(x) in the sense of the
following definition.
Deflnition 6.1.

Let a(x) € Z[x] be a given polynomial. A polynomial b(x) € Z[x] is called an order n
p-adic approximation to a(x) if

a(x) = b(x) (mod p").
The error in approximating a(x) by b(x) is a(x) — b(x) € Z[x]. ©

Multivariate Taylor Series Representation

‘We now consider a generalization of the p-adic representation which will lead to a new

technique for inverting a multivariate evaluation homomorphism
& d1:Zyfxy,x] - zp["l] .

with kernel I = <x3 ~ a3, . . . ,%, = a,> for some specified values a; € Z, (25 i = v).
As before, the key to the development of the new algorithm is to choose an appropriate
representation for the solution. In this case the ‘solution’ is a multivariate polynomial & =
uExl. < eeoxy) €Zy0xy, ..., %) and the ‘first term’ of & is a univariate polynomial
MON Zp[xﬂ, where

©® uD = o).
Note that
u = ulxry @02,).
Corresponding to the previous representation, suppose that we choose a representation
for the solution & of the form
D i=u® A4 AL 4 2D 4 ..

with the first term &'ven by (6). In order to determine the remaining terms, consider the
‘error’ V) = & ~ 41 and note that from (6) we clearly have $;(e!)) = 0 whence

® Vel
Now any element of the ideal I can be expressed as a linear combination of the basis

elements of I, so (8) can be expressed as
9 D= E'C,(x, = ay), where ¢; € Z)[ry,x]
iz

For the first ‘correction term’ Au(!) in the representation (7}, we choose the linear terms in
the error expression (9) defined by

a0y A= 2'“1(31) (= o))
i=2
where the coefficients u,(x;) € Z,[x,] are given by
D uyx) = dilc), 2sisv.
Note that Au(l) € 1. At this point we have the ‘approximation’ to d
@ = 4O 4 AxD
defined by (6) and (10). Consider the new error term
G(z) =l - "(2) = c(l) - Au(l).
Applying (9) and (10) we have
e® =3 (e, - 4G —).

i=2
Now

- ufx) €l 2sisvy .
because from (11) clearly ¢{c; — #,(x1)) = 0, which implies that

12) @el

In order to understand the statement (12) (and similar statements in the sequel) let us

recall from chapter 5 the definition of the i-th power of an ideal I with finite basis. Specifi-
cally, P is the ideal generated by all pairs of products of basis elements of I, B is the ideal
generated by all triples of products of basis elements of I, and so on. In our particular case
since the basis elements of I = <x3 — &3, . . . , X, — a,> are linear terms, the basis ele-
ments of 12 will be multivariate terms of total degree 2 and, in general, the basis elements of

I’ will be multivariate terms of total degree i. As a clarification, consider the particular case
where v = 3 in which case we have:

I=<x;— azx3— ay>;
P = <(x; = ap)? (53 = ap)(x3 = @), (x3 = a3)®>;
P = <(x; = ap’ (53— @)(x3 ~ a3), (2 = a) (x5 = @3)?, (x3 = az)*>;

I‘; <(xy - az)’,(xz - az)"l(.q —a3), - .., (k- 0g)(xy— ag)"'l,(xs - ay)f>.

The result (12) should now be evident. Expressing e/® ¢ 12 as a linear combination of
the basis elements of I yields

v v
9(2) = Elz.‘ c,j(x, - af)(xj - ﬂj}, where CU € Zp[xl. PR ,Ivl.
The next correction term in the representation (7) is the term Au® € 12 defined by
13) A= ‘22 72: uy(x) (x5 ~ a)(x; ~ @)

6-6

where the coefficients u,,(x,) € Z,[x;] are given by
llu(xl) = ¢[(c,j), 2=sisj=<vy

We then have the ‘approximation’ to &
23 = 4@ 4 Ax@ = O 4 AL 4 AP

defined by (6), (10), and (13). Continuing in this manner, we can show that
(3) 3
e el

where ¢®) = i — 40 and we can proceed to define the next correction term Au®®) ¢ P in
the form

Au(a) = ‘22 ’2‘ ‘zl u,jk(xl)(x, - a,)(xj - aj)(xk - ak)
for some coefficients u,/,‘(x]) € Z,[x;]. This process will eventually terminate because the
solution & is a polynomial. Specifically, if d denotes the total degree of 4 as an clement of
ge do!':lhain Z[x]{x3 . . . ,x,] (i.e. as a polynomial in the indeterminates xj, . . . ,x,)
en wi

GO = 0 4 A D 4 L 4 A@
we will have ¢@*D = § — 4@+D) = 0 50 that w@* D is the desired polynomial. This must
be so because each correction term Au(®) ¢ ¥* is of total degree k (with respect to
L 7R 3
The representation (7) which we have just developed for a polynomial

=ulxy, ...,x)€ZJx, ..., x)is called the multivariate Taylor series representation
with respect to the ideal I = <x; — aj, . . . ,x, — «,> and its general form is
14 u(x, ...,x)=ulx,a ... ,0)+ E'z ux)(x; — o)
+3 3wl = @) = o)
+3 3 3 uple e = @l = aplep = @)+ -

The number of terms here will be finite with the last term containing d nested summations,
where d is the total degree of u(xy, . . . , x,) with respect to the indeterminates x,, . . . , x,.

Ideal-adic Representation and Approximation

The multivariate Taylor series representation (14) for a polynomial u(x) € Z,[x] can be
viewed as a direct generalization of a polynomial p-adic representation. Recall that the poly-
nomial p-adic representation of a polynomial & = u(x) € Z[x] can be expressed in the form

d= W+ AuD 4+ 4@ 4+ ... 4+ AL
where

W) = uy(x) € Z[x)/<p>;

Au®) = y (x)p* € <p>%, fork=1,2,...,n

Note here that Z[x)/<p> = Z,[x] and that <[>" = <p*>, We also have the property that
the coefficient »,(x) in the expression for Ax®) as a multiple of the basis element of the ideal
in which it lies satisfies :

uf(x) € Z[x)/<p>, 1sksn.

6-7

In the p-adic case, we may define a sequence of order k+1 p-adic approximations
u®+D ¢ Zx)/<p>ttl, fork=1,2,...,n

where
D = O 4 AL 4 L AB),

In defining the k-th element of this sequence, we have an approximation u®) ¢ Z[x}/<p>*
and we define the new approximation u#**U ¢ Z[x}/<p>**! by adding the term
Aul®) € <p>*; the addition

SED o) 4 AL

is an addition in the larger domain ZL!:]/<p>"+1 and is made valid by assuming the natural
embedding of the domain Z[x)/<p>* into the larger domain Z[x}/<p>**1. Thus the suc-
cessive p-adic approximations u ,u@,u® ... to i ¢ Z[x] lie in a sequence of sub-
domains of Z[x] of increasing size indicated by

Z[xl/<p> C Z[x)i<p>2 C Z[s)/<p>3C - - - C Z[x}.

Noting that a polynomial & € Z[x] has a finite qolynomial p-adic representation, it is clear
that for some k = n the subdomain Z[x]/<p>""! will be large enough to contain the polyno-
mial 4.

The multivariate Taylor series representation (14) for a polynomial & = u(x) € Z,[x]
can be viewed in an abstractly equivalent manner with the ideal I taking the place of the ideal
<p> above. The polynomial & was developed in the form

d=u®+ A+ A@D + ...+ 4@
where
#® = u(xpap . .. @) € ZEVT
AuB ek, fork=1,2...,.d
Here x = (x),x), I= <sp-ay ...,x—a,>, and note that Z,[x)/1 = Z,[x,].

Corresponding to the p-adic case, we have the additional property that for each k the coeffi-
cients in the expression for Au(%) as a linear combination of the basis elements of the ideal I*
all lie in the domain Z,[x]/I. (For example,

Au(z) = ‘22 12‘ u,j(xl)(x,--af)(xj—aj)
with u,(x)) € Z,[x)/], 2<i= j=v). Itistherefore appropriate to speak of a sequence of
approximations (see Definition 6.2) to i defined by
«&+D ¢ Z YT, fork=1,2,....d
where
[PLCES VI ¢) IR W ¢ | IR WA ()
ain we must assume & natural embedding of domains and the sequence of approximations
uD,u@,4®), . .. to i € Z,[x] lie in the following sequence of subdomains of Z,[x] of
increasing size:
Z,xVIC ZBVP CZ)P C - - CZx)
As in the p-adic case, since the multivariate Taylor series representation for & is finite there
is an index k = d such that the subdomain Z,[x])/1%* is lurge enough to contain the polyno-
mial &. :
In view of this close correspondence with the p-adic representation of a polynomial, the
multivariate Taylor series representation (14) of a polynomial u(x) € Z,[x] is also called the

6-8

ideal-adic representation of u(x) with respect to the ideal I = <x;—as, ... ,x,—a,>. The
concept of approximation mentioned above is made precise by the following definition which
is an obvious abstraction of Definition 6.1.

Definition 6.2.

Let D be a Noetherian integral domain and let I be an ideat in D. For a given element
a € D, the element b € D is called an order n ideal-adic approximation to a with respect to
the ideal I if

a=b(modI").
The error in approximating a by b is the elementa - b € D. O

Recalling that @ = b (mod I") means that @ — b € I", it is clear from the development
of the ideal-adic representation (multivariate Taylor series representation) (14) for

(e%,) € Zlxy,x)) that &) s an ‘order k ideal-adic approximation to
u(xy, %) wnt.htespectto the ideal I = <x3—-a3, . . . ,x,—a,>, where

ll(l) = u(xl,az, “ e .av),

ulk+l) = (0 4 Au("), fork=1,2,....,d;

with Ax®) defined to be the term in (14) of total degree k with respect to I (i.e. the term
represented by k nested summations). In connection with the concept of ideal-adic approxi-
mation it is useful to note the following computational definition of the homomorphism ¢
defined on the domain Z,[x], where I = <x3-aj, . . .,x,—a,>. Since

dp:Z,lx] - Z [T
denotes the homomorphism with kernel I?, if the polynomial a(x) € Z,[x] is represented in

its ideal-adic representation with respect to the ideal I then ¢I.(a(x)) is preusely the order »

ideal-adic approximation to a(x) cbtained by dropping ail terms in the ideal-adic representa-
tion of a(x) which have total degree equal to or exceeding n (with respect to I).

6.2. NEWTON’S ITERATION FOR f(u) =

Linear p-edic Iteration

We wish to develop a method correspondmg to the Chinese remainder algorithm for
inverting the modular homomorphism &y, : Z[x] = Z,[x]. In the new approach we assume
that we use only one prime p and that we know the i mmge ug(x) € Z,[x] of the desired solu-
tion u(x) € Z[x]. In the terminology of the preceding section, uo(xf:s an order 1 (or first-
order) p-adic approximation to u(x) and it is also the first term in the polynomial p-adic
representation of u(x). We will develop a method to compute successively the order &
approximation

ug(x) + uy(x)p + - - - + wy_y(xp* L€ Zp.g[x],

fork—lzn+ 1, Then the order a + 1 approximation which lies in the domain

..ﬂ[x] is the desired solution u(x) € Z[x] (assuming that » was chosen large enough). This

general process is called lifting the image u(x) € Z,[x] to the solution u(x) in the larger
domain Z{x].

The lifting process clearly requires more information about the solution u(x) than sim-

ply the single image ug(x). We will assume that the additional information can be specified in

the form of one or more equations (usually nonlinear) which u(x) must satisfy. For now, let

6-9

us assume that the solution u = u(x) is known to satisfy
1% f(u)=10

where f(u) € Z[x][u] — i.e. f(u) is some polynomial expression in u with coefficients lying in
the domain Z[x]. The basic idea of the new approach is to have an iterative method which
will improve the given first-order p-adic approximation uy(x) into successively higher-order
p-adic approximations to the solution u(x) of (15). The iterative process will be finite if (15)
has a polynomial solution u(x) since, in the above notation, the order » + 1 p-adic approxi-
mation to u(x) will be u(x) itself.

Let us recall the classical Newton's iteration for solving a nonlinear equation of the
form (15) in the traditional anal!tic setting where f(u) is a differentiable real-valued function
of a rea] variable u. Letting u'®) denote an approximation to a solution i and expanding the
function £{u) in & Taylor series about the point ¥*), we have

) = fW®) +)L - ¥®) + @)@ - B2 4 . ..

Setting u = i, the left hand side becomes zero and retaining only linear terms in the Taylor
series we have the approximate equality:

0= f(u®) + £@®)(@ - @),

Solving for & and calling it the new approximation u**1), we have Newton's iterative for-
mula:

S =) _ 1)
1)
{where we need the assumption that f'(u(")) # 0). The iteration must be started with an ini-
tial guess u()) and using techniques of real analysis it can be proved that if ¥ is ‘close
enough’ to a solution i of f(u) = 0 and if £'(i) # O then the infinite iteration specified above
will converge (quadratically) to the solution d. We will develop a similar iterative formula
for our polynomial setting and it will have two significant computational advantages over the
traditiona! analytic case: (i) the first-order p-adic approximation will be sufficient to give
guaranteed convergence, and (ii) the iteration will be finite.
We wish to solve the polynomial equation assuming that it has a polynomial solution
@ = u(x) € Z{x], given the first-order p-adic approximation ug(x) € Z,[x] to i. (Note that an
arbitrary polynomial equation of the form (15) would not in general ﬁm a polynomial solu-
tion but we arc assuming a context in which a polynomial solution is known to exist), Writ-
ing the solution in its polynomial p-adic representation

16) @ = ug{x) + uy(x)p + - - - + u,(x)p"
we wish to determine the polynomial ;:-adic coefficients u;(x) € Z‘p[x] fori=12...,n
(ug(x) is given). Let us denote by #*) the order k p-adic approximation to i given by the
first k terms of (16); thus ull) = ug(x) and in general

u® = ug(x) + wy(xp + - - - + uk_l(x)p""l,l sksn+1
We would like an iteration formula which at step k is given the order k approximation (%)
and which computes the polynomial p-adic coefficient u;(x) € Z,[x] yielding the order k + 1
approximation

an &= y® ¢ @)t 1sksa
By Theorem 2.8 of chapter 2 applied to the polynomial f(u) € Dfu] where D = Z[x], we
have the following ‘Taylor series expansion’:

a8) fu® + u@p*) = 16®) + £ E@EuEp* + gu®,u@p") @) P>
for some polynomial g{u, w) € D{u, w].

6-10

At this point we need to use a property of congruences. Recall the congruence proper-
ties developed in chapter § which show that congruences can be added, subtracted, and mul-
tiplied. As a direct consequence of these properties, it follows that if I is any ideal in a com-
mutative ring R and if h(x) € R[x] is any polynomial expression over R then fora, b € R:

(19) a = b (modI) = h(a) = h(b) (mod I).
Now since 4*) = § (mod p*), applying property (19) and the fact that £(ii) = 0 yields
£(u®)) = 0 (mod p*).
Similarly,
£(u® + uy(x)p*) = 0 (mod p**?)
if (17) is to define the order k + 1 approximation »*1), Therefore we can divide by p* in
(18) yielding
f(u(®) +p:k(l)P") - f(:(:)) + £ @y x) + gu®, u, ()P (012",

Now applying the modular homomorphism ¢, and noting that the left hand side is still a mul-
tiple of p, we find that the desired polynomial p-adic coefficient u;(x} € Z,[x] must satisfy

o8
0=4, [ﬁ;;l] + 6,0 GO (@) € Z,1x]

Finally since) = 4() (mod p) for all k = 1, it follows from property (19) that
£/(u®) = £ @) (mod p). :
Therefore if the given first-order approximation »(!) satisfies the condition
£ (V) » 0 (mod p)
then the desired polynomial p-adic coefficient is given by
o[
&, D))
The division appearing in (20) must be an exact division in the polynomial domain Z,[x] if
equation (15) has a polynomial solution, The iteration formula (17) together with the linear
update formula (20) is known as the linear p-adic Newton's iteration. Note that in formula

(20) the calculation of f(u(*)) must be performed in the domain Z[x], followed by an exact
division by p* in Z{x], before the modular homomorphism &, is applied.

20) wix)= - € Z,[x].

Example 6.3.

Consider the problem of determining a polynomial u{x} € Z[x] which is a square root of
the polynomial

a(x) = 36x* - 18013 + 9322 + 330x + 121 € Z[x]

(assuming that a(x) is a perfect square). Then u(x) can be expressed as the solution of the
polynomial equation

f(u) = a(x) -~ u2 = 0.

Choosing p = 5, the first-order p-adic approximation (1) = up(x) € Zs[x] must be a square
root of ¢s(a(x)) in Zs[x]. Now

ds(a(e) = 5* - 22 + 1

which clearly has the square root
u) = yy(x) = 22 =1 € Zs[x).
Now to apply the linear p-adic Newton's iteration, first note that
s (e) = ds(-2uM) = -2:7 + 2,

Then
£ 35x% — 180+ + 952 + 330x + 120
¢s(—("g—)-) o= —5)
uy(x) = = 2=2+2) (-262 + 2)
@t=P-2tx-1) _ 5,
= = 2—-1¢Z
D s(x]
yielding
4@ = (62 = 1) + (x% + 2x - 2)5 € Zygx).
Similarly we get
-3+ 2
uz(x) = —_((—szz)l = —x €Zs[x]
yielding

¥ = (22— 1) + (62 + 2x =2)5 + (—x)5% € Zyadlx].

If we proceed to calculate another polynomial p-adic coefficient uj(x) we find that
£(«) = 0 (in the domain Z[x]) so we are finished. The desired square root of a(x) is there-
fore

ux)=uP =62 -15x-11€2Zx]. ©

Quadratic p-adic Iteration

Newton’s iteration as specified by (17) and (20) increases the order of approximation by
one per iteration. However it is possible to develop Newton's iteration in such a way that the
order of approximation doubles per iteration and this corresponds to the concept of quadratic
convergence familiar in the analytic applications of Newton's iteration. In the quadratic ver-
sion, at step k we have the order n;, = 2¢~! approximation

uh) =) + uy(p + - - -+ gy P
to a solution i of f(u) = 0 and we compute an update Au(¥) such that
@) w®tD = 4 4 Ay®
is an order 2n, = 2* approximation; namely,
Aultl =,)p™ 4+ uz,,‘_l(z)pzn‘_l
= 0 [un 3+ - - < + w1 "]
Corresponding to formula (18) we have from Theorem 2.8 of chapter 2:
fu® + Au®) = 1u®) + £E®)ALE) + gu®, Au®)[au®)

for some polynomial g(u, w). Noting from above that Au*) can be divided by p™ end using
arguments similar to the linear case, we get the following formula which must be satisfied by

6-12

the update Aul®):
e ey A
@) o= ‘%‘*[—(ﬁl] + O €20

where n, = 2571, As before we have the result that for all k = 1,

£'(u®) = £ (uD) (mod p).
This time this result does not yield a simplification of the derivative since the modular
homomorphism being applied to the derivative is now ¢ ., rather than ¢,. However we
again wish to divide by the derivative term in (22) and the condition needed to guarantee that
it is nonzero is precisely as in the linear update formula:

(V) » 0 (mod p),
since from above this guarantees that f'(u(¥)) # 0 (mod p) whence £'(x*)) % 0 (mod p™).

(In other words, if the derivative term in (22) is nonzero for & = 1 then it is nonzero for all
k = 1). Finally, solving for the update term in (22) yields the guadratic update formula

® [f!u(k)!]
Au(*) - _ P'& pn'
® T ¢ 1@ 6®) ¢ Zulel

As in the case of the linear update formula, the division in (23) must be an exact division in
the polynomial domain zp.‘[x] if there exists a polynomial solution to the original problem.

Theorem 6.1 formally proves the quadratic convergence property of the p-adic
Newton's iteration (21) with the quadratic update formula (23). In most practical problems
requiring a p-adic Newton's iteration, the linear iteration is used rather than the quadratic
iteration. Note that the quadratic iteration would require fewer iteration steps but the cost of
each iteration step beyond the first is significantly higher than in the linear iteration because
the domain Z ,,[x] in which the update formula (23) must be computed becomes larger as k

increases. Moreover, the derivative appearing in the divisor in (23) must be recomputed at
each iteration step while the divisor in the linear update formula (20) is fixed for all iteration
steps. For these reasons the linear iteration is often preferable to the quadratic iteration in
terms of overall efficiency.

Theorem 6.1.

Let £(u) € Z[x][u] be such that the polynomial equation f(u) = O has a polynomial solu-
tion d = u(x) € Z[x]. Let uy(x) € Z,[x] be a first-order p-adic approximation to the solution
i so that

f(up(x)) = 0 (mod p).
Further suppose that ug(x) satisfics
£'(ug(x)) % 0 (mod p).
Then the sequence of iterates defined by
M= u(x);
kD) = 0 4 Ay® k= 1,2,3, - -

where Au®®) is defined by the quadratic update formula (23), is such that u®*1) is an order
2* p-adic approximation to the solution @.

6-13

Proof: The proof is by induction on k. The basis holds trivially: »(!) is an order 1 p-adic
approximation to 4.
For the induction step, assume for k = 1 that «*) is an order n; = 2*~! p-adic approxi-

mation to i. This means that

i = u®) (mod p™)
or, defining the error e®) = § —~ u®) we have

e®) m 0 (mod p™).
Applying Theorem 2.8 of chapter 2 yields

fw® + e®) = fu®) + £EE)e® + gu®),)02
for some golynomial g(u, w). Now u® + ¢*) = i so the left hand side becomes zero and,
since f(u®)) and ¢®) are multiples of p™, we have
®
p"l
Applying the modular homomorphism ¢p., then yields

£ &) K k)
0= "'p'*['ngl] + bl (u J))¢P., i
where we note that the last term vanishes because ¢ 'e(‘(k)) = 0. Now applying the defini-
tion of the quadratic update formula (23), this becomes

£(u® ,)
0= —%)- +f (u(k))i;; + g(u®), et E— (),

A «®
0= —p—"‘ + ¢p'k PT € an‘{l].
Hence
k) — A®
€ n‘Au -0 [m od Pn‘,]
P
or

e® — Au® = 0 (mod pz"*].
Finally, since e®) = i — 4®) we have

- @® + Au®) m 0 (mod p2%)

& = u®*D (mod p?%)
which proves that u®*+1) is an order 2n = 2% p-adic approximationto . O

Ideal-adic Iteration
We now turn to the problem of inverting a multivariate evaluation homomorphism
LYER ACTRRNNIPS B 42
with kernel I = <x; — a3, . . . ,x, — a,> for some specified values «; € Z, (2S5 i s v).

The inversion process will be accomplished by an ideal-adic version of Newton's iteration.
We are given the order 1 ideal-adic approximation

u = &) € Z,[x)] = Z,fx] /1

6-14

to the solution i € zp[:} and, as before, let us assume for now that the additional informa-
tion about the solution i is that it satisfies a polynomial eqiation

f(w) =0

where f(u) € Z,[x][u]. We wish to define an iteration formula such that at step k the order k
ideal-adic approximation u) is updated to the order k+1 ideal-adic approximation »®**1) by
the addition of the correction term Au®) ¢ I, By Theorem 2.8 of chapter 2 applied to the
polynomial f(u) € Z,[x][u], we have the following ‘Taylor series expansion’:

20 f(u® + Au®) = 1u®) + £ EEYALE + gu®), Au®l[AL®}2

for some polynomial g{u, w). Now if #«® + Au® js to be the order k + 1 ideal-adic
approximation u(¥*1) then using property (19) we deduce that

fu® + Al ¢ L
Also since Au™®) ¢ I* it follows that
[Au®)? € 2%,
Hence applying the homomorphism $+1 to (24) yields the equation
(25) 0= dun(fE®) + dpi(f' ®))Ar® € Z,[x] / 1t+!
which must be satisfied by the correction term Au®) € I¥,
Consider iteration step k=1. In this case the correction term Au® € I takes the form

26 A= é,“*("l)(“ -a)

where the coefficients u;(x;) € Z,[x;] are to be determined. Using property (19) and the fact
that u® = § (mod I), we deduce that f(u1)) € I and therefore we can write

@n 10 = S - o)
s
for some cocfficients ¢; € Zy[x], 2 < i < v. Now the homomorphism being applied in equa-
tion (25) is &> when k = 1 and since the effect of ép is to drop the ideal-adic terms of total
degree equal to or exceeding 2, it follows from (27) that
) = Zeils = @)

where the coefficients ¢,(x;) € Z,[x)] are defined from the coefficients ¢; € Z,[x] appearing
in (27) by

ci(x)=¢/c),2sisv.
Equation (25) is now

@9 0= Sl - @) + b6 (S uete -)] € 21/
Now the ideal-adic representation of ép(f'(u(V)) can be written in the form
D) = oD + S —)
for some coefficients dj(x)) € Z,[x)], 2 = i = v. Putting this form into equation (28) yields
@) 0= gzc‘(xa)(x‘ - a) + & E DY) [‘%ui(xl)(x, - a,-)] € Z,0x]/ P

where we have noted that
[é‘,zdt(xl)(xa - ui)] [gui(xl)(x, - “i)] ¢ 2

Equating coefficients on the left and right in equation (29) yiclds finally
__stx)

)]
Equation (30) is the desired update formula which defines the correction term (26) and the
division appearing in (30) must be an exact division in the univariate polynomial domain
Z,[x,] if the given equation f(u) = O has a polynomial solution. Note that the coefficients
¢{(x;) appearing in g30) are simply the coefficients of the linear terms in the ideal-adic
representation of f(u(t),

Turning now to the general iteration step, the k-th correction term Au®) € I* is the

term of total degree k in the ideal-adic representation of the solution 4 = u(x;, . . . ,x,) and
its general form consists of k nested summations as follows:

v v &
Oy A® =3 - 3 ueIE -)
4y=2 T J=1
where the subscript | denotes the vector of indices L= (iy, . . .,i;). The coefficients
ui(x1) € Zy[x,] are to be determined. We are given the order k ideal-adic approximation u*)
and the correction term Au®) must satisfy equation (25). As before, we deduce that
£(u*)) € 1* from which it follows that

30) u,—(xl) = € Z_,,[xll, 2sisv,

v v &
(@@ =3 --- 3 (e)T] (xy) = o)
=2 LS =
for some coefficients ¢j(x;) € Zy[x;]. Also, the term ¢]h1(f'(u“‘))) in equation (25) can be
replaced by ¢;(f'(u*))) because just as in the case k = 1, the terms of order greater than 1 in
the ideal-adic representation of ¢I.+;(f'(u("))) disappear when multiplied by Au®) ¢ I* (since
the multiplication is in the domain ZPLx]II“'I). But for all k= 1, &®) = x@) (mod I)
which implies by property (19) that £'(s'*)) = £'(u()) (mod I); i.e.

& (™)) = &' (M) for all k = 1.

Equation (25) therefore becomes
v v &
G) 0=3 - 3 qull(y,— ay)
I=1 =iy =

+ @[3 -+ 3 weple - o) € Z,x/ P4
f=t oy o 4T

Finally, if the given first-order approximation 4 satisfies the condition
@))y wo@modn

then by equating coefficients on the left and right in equation (32) we get the linear ideal-adic
Newton's iteration:

(34) u®+D) = &) 4 Ay
where Au(*) is the correction term (31) with coefficients defined by
ci(xy)
@35 wx) =~
oD = e
Once again, the division appearing in (35) must be an exact division in the univariate

€ Z,[x].

6-16

polynomial domain Z,[x,] if the given equation f(u) = 0 has a polynomial solution. Note
that the coefficients cj(xy)y appearing in (35) are simply the coefficients of the terms of total
degree k in the ideal-adic representation of f(u®)) and note further that £f(u*)) has no terms
of total degree less than k (with respect to I).

The linear ideal-adic Newton's iteration (34)-(35) proceeds by computing in iteration
step k afl ideal-adic terms in the solution @ which have total degree k (with respect to I). It is
possible to define a quadratic ideal-adic Newton’s iteration just as in the p-adic case. Such an
iteration would produce an order 2* ideal-adic approximation u**1) in iteration step k. In
other words, the quadratic iteration would comPute in iteration steg k all ideal-adic terms in
the solution @& which have total degrees 2¢71,2"1 41, , . 2% — 1, However as was
noted in the p-adic case, the quadratic iteration entails a cost per iteration which is so much
higher than the linear iteration that in terms of overall efficiency the linear iteration has been
found to been generally superior.

Example 6.4.
Consider the problem of determining a polynomial u(x,y,z) € Zsx,y,z] which is a
square root of the polynomial

a(x,y,z) = z* + x3y2 - xzy“ + xzyz + 2% = 2% = 2% + oyl - p?
-y222+yzz—yz+ -2 +1¢ Zslx,y,z]

(assuming that a(x,y,z) is a perfect square). Then u(x,y,z) can be expressed as the solution
of the polynomial equation

f(u) = alx,y,z) — wt=0.

Choosing the ideal I = <y,z> (i.e. choosing the evaluation points y = 0 and z = 0), the
first-order ideal-adic approximation u) = u(x,0,0) € Zs[x] must be 8 square root of
a(x,0,0) in Zs[x]. Now

a(x,0,0) = 3%~ 22 + 1
which clearly has the square root
u = u(x,0,0) = 22 — 1 € Zgfx].
Now to apply the linear ideal-adic Newton's iteration, first note that
St () = dy(-2uM) = ~2:% + 2.
It is convenient to express a(x, y, z) in its ideal-adic representation with respect to I, which is:
a(x,y,2) = [* — 222 + 1)] + [(262 = 2)2] + [(x® = 2)y® + (a2 = Dyz + (1))
+ ()% + (y2?] + [(=2* + (=2x)y°z + (-1
Now
dp(t@®) = dplatx,y,2) ~ (2 = 1)) = (% - 2)z € Zylx,y, 3]/ P
The first correction term is
Aull) = us(x)y + us(x)z
where u,(x) = 0 (because the corresponding term in $p(f(x™)) is zero) and where
el (a?-2)
(-2x2 +2) (=222 + 2)

u3(x) = =1 € Zsx].

Hence
u®@ = 4D 4 Au® = (2 - 1) + 7 € Zgfx,y,2] /PP

For the next iteration, we have
$p(fa®) = dpla(z,y,2) = [(P-1) +) = (& = 2? + (% - Dz € Zglx,y,]/ P,
The new correction term is
Au® = uzz(x)yz + un(x)yz + u33(x)22
where u33(x) = 0 (because the corresponding term in $;(f(u @)y} is zero) and where

_ ©39(x) - (x3 -x _ _ .
uz() = (-222+2) (-2%+2) 2z € Zl);
up3x) =) - G2 -1 = =2 € Zx].

TC2¥+2) (%2 +2)
Hence

¥ = @ 4 Au® = (62 = 1) + z + (20)y? + (~2)yz € Z[x,y,2]/ P.
If we proceed to the next iteration we find that f(u®)) = 0 (in the domain Z([x,y,z]) so we
are finished. The desired square root of a(x,y, z) is therefore

uix,y,2) = uPD =2 -2 -2z +z-1¢ Zdx,y,z]. ©

A Homomorphism Diagram

Finally in this section, Figure 6.1 shows a homomorphism diagram for the case of solv-
ing a multivariate polynomial problem using the p-adic and ideal-adic Newton’s iterations.
‘This diagram should be compared with the diagram of Figure 5.1 where many image prob-
lems had to be constructed and solved rather than just one image problem. Note that in order
to apply Newton's iteration it is assumed that the desired polynomial can be expressed as a
solution of a polynomial equation f(u) = 0.

Given problem in Z[xy, ..., xy] Desired solution in Z[xy, . . ., xy]
t ép 1 p-adic Newton's
iteration
Image problem in Z,[xy, x,] [Solution image in Zplx 1. %]
* &1 t Ideal-adic Newton’s
iteration
Image problem in Zp[x] I I Solution image in Zpfx 1]
I Solve image problem I
in Zp[x]

Figure 6.1: Homomorphism diagram for p-adic and
ideal-adic Newton's iterations.

6.3. HENSEL'S LEMMA

Bivariate Newton's lteration

In the preceding discussion of Newton's iteration for lifting an image polynomial
by, p>(u) € Zy[x1] up to a desired polynomial u € Zfx,, . . . ,x,] — i.e. for inverting a
composite homomorphism

(36) ¢<I,p> tZxy, .. %) "zp[Il],

it was assumed that the polynomial u could be expressed as the solution of a polynomial
equation

6N fw=0

for some f(u) € Z[x;,x][u). However the most common applications of Newton's
iteration for such a lifting process involve problems which cannot generally be expressed in
the form (37), but rather can be expressed in the form

(38) F(u,w)=0

for some bivariate polynomial F(u,w) € Z[xy, . . ., x,})[u,w]. An equation such as (38) will
have a pair of solutions u and w 8o we will in fact be lifting two polynomials, not just one.

The fundamental problem which can be expressed in the form (38) is the polynomial
factorization problem. Suppose we wish to find factors in the domain Zfx;, . . . ,x,} of a
polynomial a(x;, . . .,x,) € Z[x}, . . . ,x,]. By applying a composite homomorphism of
the form (36), the factorization problem is reduced to a problem of factoring a univariate
polynomial over the field Z, (which as we see in chapter 7 is a comparatively simple prob-
lem). Let ag(x;) denote the image of alxy, . . . ,x,) in Z,[x;] and suppose we discover that
ug(x;) is a factor of ag(xy) in the domain Z,{x]. Then we have the following relationship in
the domain Z,[x;]:

ao(xl)
a(xq) = uylx;)wglx)) where wy{xy)) = oty € Z,[x].

We therefore pose the problem of finding multivariate polynomials ufx),x),
wixy, . . .,x,) € Z{xy, . . . ,x,] which satisfy the bivariate polynomial equation

(39) Fu,w=aly,....5)~uw=0
such that

u(xy, . . . o x,) = up(xy) (mod <I,p>);

40 w(xp, . . . o X,) = wo(xy) (mod <I,p>).

In other words, we wish to lift the factors wg(xy),wy(x;) € Zp[x;] to factors
u(zy,x%)wlxyx,) € Z[xy, . . ., 3] by applying a form of Newton's iteration
to the nonlinear equation (39). (Note that this process could be applied recursively to further
factor the polynomials u(xy, . . . ,x,) and w(xy, . . . ,x,) in order to ultimately obtain the
complete factorization of a(xy, . . . ,x,) in the domain Z[xy, . . . ,x,]). Sufficient condi-
tions for such a lifting process to be possible will be determined shortly. A detailed discus-
sion of the polynomial factorization problem is given in chapter 7.

Another problem which can be posed in the form (39) is the problem of computing the
GCD of multivariate polynomials a(xy, x),b(xq, %) € Z[xy, x}. Apply-
ing a composite homomorphism of the form (36) the problem is reduced to computing
GCD(ag(x1), bp(x;)} in the Euclidean domain Z,{x;], which can be easily accomplished by
the basic Euclidean algorithm (Algorithm 2.1). Thea if uy(x;) = GCD(ay(xy). by(xy)), we

X
define the cofactor wy(x;) = % and pose the problem of lifting the image polynomials
ug(xy), wo(xy) € Z,[x,] to multivariate polynomials
u(xy, . Lax),wixg, L. Lx)) € Z[xg, ... L))
which satisfy (39)-(40). (Note that the polynomial b(x;, . . . , x,) could as well play the role
of ax;, . . . ,x,) in this lifting process). The problem of computing the GCD of polynomi-

als by this method {(and other methods) is discussed in more detail in chapter 7).

In this section we discuss how, and under what conditions, Newton’s iteration can be
applied to solve the problem (39)-(40). Noting that (39) is a single nonlinear equation in two
unknowns, we would expect from general mathematical principles that it would not have a
unique solution without imposing additional conditions. Rather than imposing the additional
conditions explicitly as a second equation of the form G(u,w) = 0, the additional conditions
will appear more indirectly in the following development.

The general form of Newton's iteration for the bivariate polynomial equation

F(u,w) =0

can be determined by applying Theorem 2.9. Suppose that we have a pair of approximations
u(")lw(*) to the solution pair U, w and that we wish to compute a pair of correction terms
Aul®), Awk), Theorem 2.9 yields the equation

Fu® + Au®), w® + Aw®) = F®),w®) + F (u®), wth) Au®)
+ Fw(u("),w("?)Aw[") +E

where the term E involves higher-order expressions with respect to Au®), Aw®), By argu-
ments which can be formalized as before (or loosely speaking, setting the left hand side to
zero and ignoring the higher-order term E), we find that the correction terms should be
chosen to satisfy the following equation (modulo some ideal):

“) F,u®, w®)au® + F u®, wthaw®) = —Fu®),wk)),

Thus we see that the basic computation to be performed in applying a step of Newton’s itera-
tion will be to solve the polynomial diophantine equation (41) which takes the form

A®AL®) 4+ BOAR® = c®

where A®), B®),) gre given polynomials and Au®), Aw®) are the unknown polynomials to
be determined. Equation (41) will in general have either no solution or else a whole family
of solutions. However Theorem 2.6 of chapter 2 shows that under certain conditions the
polynomial diophantine equation (41) has a unique solution.

From now on, we will specialize the development of Newton's iteration to the particular
bivariate polynomial equation (39). As we have seen, the problem of polynomial factoriza-
tion and also the problem of polynomial GCD computation can be posed in the particular
form (39). Other problems may lead to different bivariate polynomial equations F(u,w) = 0
but the validity of Newton's iteration will depend on the particular problem. This is because
of the need to introduce additional conditions which ensure the existence and uniqueness of a
solution to the polynomial diophantine equation (41} which must be solved in each step of
Newton's iteration.

Hensel's Lemma
Let us consider the univariate case of solving the problem (39)-(40). Thus we are given
a polynomial a(x) € Z[x] and a pair of factors ug(x), wy(x) € Zp{x] such that
a(x) = 1g(x)wgfx) (mod p)
and we wish to lift the factors ug(x), wg{x) from the image domain Z,[x] up to a pair of

6-20

factors u(x), w(x) € Z[x]. In other words, we wish to invert the modular homomorphism
¢p : z[x] i zy[x]
by applying Newton's iteration to compute the solution @ = u(x),% = w(z) in Z{x] of the
nonlinear equation
(42) F(u,w) = a(x) —uw =0
such that

u(x) = ug(x) (mod p);
“3) o) = wylx) (mod p).

Writing the solution polynomials if and W in their polynomial p-adic representations

i = ug(x) + wx)p + - - - + uy(=)p";
@5 W= wy(x) + w{x)p + - - - + w,(x)p"

(where n must be large enough so that %p""’l bounds the magnitudes of all integer coeffi-
cients appearing in a(r) and its factors i and W), we wish to determine the polynomial p-adic
coefficients u;(x), w;(x) € Zy{x] fori = 1,2, . .. ,n. Let ul), w(*) denote the order k p-adic
approximations to U,W given by the first k terms in (44) and let
Au®) = u,(x)pk, Awk) = w,(x)p*. Note that u® = u(x) and w() = wy(x). We find that
the correction terms must satisfy the polynomial diophantine equation (41) modulo p**1,
which for the particular nonlinear equation (42) takes the form

W BAL® — yBAw® m = (ae) - uBw®) (mod .

Since u*'w®) must be an order & p-adic approximation to a(x) we can divide through by p*,
and also removing the negative signs we get

w(")uk(x) + u(“)w,‘(x) - &);p‘:—(*—)!ﬂ (mod p).

Now we may apply the modular homomorphism ¢, to the left and right (because this is a
congruence modulo p) and, noting that ¢p(w(*)) = wp(x) and ¢p(u(")) = ug(x), we get the
following polynomial diophantine equation to solve in the domain Z,[x]:

= plEhy®)
o) + wlewite) = [HL=AD).

Now since Z [x] is a Euclidean domain (we choose p to be a prime integer), Theorem 2.6
shows that if ug(x), wg(x) € Z,[x] are relatively prime then we can find unique polynomials
o(x),7(x) € Z,[x] such that

— uEy®

and

deglo(x)] < deg[wg()].
We then define uk+1) = y@®) + 'r(x)p",w(""'” =wih) 4+ o(x)p* and we clsim that these are
order k-+1 p-adic approximations to the solutions @I, W respectively.

The following theorem formally proves the validity of the above method. This theorem
is a standard result in algebra known as Hensel's Lemma and it dates back to the early

6-21

1900’s. The proof of Hensel’s Lemma is a constructive proof which follows naturally from
the above development and this process is referred to as the Hensel construction.

Theorem 6.2. Hensel’s Lemma.

Let p be a prime in Z and Iet a(x) € Z[x] be a given polynomial over the integers. Let
u(x), wl)(z) € Z,[x] be two relatively prime polynomials over the field Z, such that

ax) = uD(x)w(x) (mod p).
Then for any integer k = 1 there exist polynomials u(")(x),w(")(x) € ng{x] such that

@95 ax) = u®z)w"x) (mod p)
and

u®)(z) = u)(x) (mod p);

“6) {w(")(x) = w(z) (mod p).
Proof: The proof is by induction on k. The case k = 1 is given. Assume for k = 1 that we
have u®)(z), wlk)(z) € Z 4[x] satisfying (45) and (46). Define

@n B = %[am = “(;)f’)w(k)(x)]

where all operations are performed in the domain zpﬁ+1[1] before applying &,. Since
nm(.t),wm(x) € Z,[x] arc relatively prime, by Theorem 2.6 we can find unique polynomials
o} (x),7#)(z) € Z,[x] such that

@8 o®a)uDk) + 1 ®OE)WD(x) = c*i(x) (mod p)

and
(49) deglo®)(x)] < deglw(x)).
Then by defining
0 {u(*“)(x) = 1) + 1 Oept;
wk(x) = wk)(x) + oB)x)p*
we have by performing multiplication modulo p*+1:
ukH D)W D) m uEEw(x) + (@) + +Ox)wi(x))pk (mod p**7)
= uEw®(x) + @ ()pt (mod p**Y), by (48)
= a(x) (mod p**1), by (47).
Thus (45) holds for k+1. Also, from (50) it is clear that
u*D(x) m y®)(x) (mod p);
wt*1(x) m wk)(x) (mod p)
and therefore since (46) holds for k it also holds for k+1. D

Corollary to Theorem 6.2. Unigueness of the Hensel Construction.

In Theorem 6.2, if the %iven polgnomia} a(x) € Z[x] is monic and correspondingly if
the relatively prime factors u'X(x),w{!)(x) € Z,[x] are chosen to be monic, then for any
integer k= 1 conditions (45)-(46) uniquely determine the monic polynomial factors
u®d(z), wikl(z) ¢ Zp;[x].

Proof: The proof is by induction on k. For the case k=1, the given polynomials

6-22

u(x),w)(x) are clearly the unique monic polynomials in Z,[x] which satisfy conditions
(45)-(46). For the induction assumptiont, assume for some k = 1 that the uniqueness of the
monic polynomials u*)(x), w*)(x) € Z,,{x] satisfying (45)-(46) has been determined. Then
we must prove the uniqueness of the monic polynomials u** I(x), w+1)(z) ¢ Z,p1[x] satis-
fying the conditions
61 a@x) = v H)wE () (mod p+
and
wt*D(x) m uB(x) (mod p);
¢ {w(""'l)(x) = w(x) (mod p).
Condition (51) implies, in particular, that
a(z) = u** Dex)w®* V() (mod p)
which together with (52) yields, by the induction assumption,
u®+Dx) m u®)(x) (mod p4);
wt*+D(x) = wk)(x) (mod p*).
We may therefore write
- {u‘**”(x) = u®G) + 2(x)pt;
wt () = wh) + o(o)pt
ftzr)some polynomials o(x), 7(x} € Z,[x] and it remains to prove the uniqueness of o(x) and
T(x).

Since a(x),u{!)(x), and w(!)(x) are given to be monic, it follows that for any k = 1 the
polynomials o(x) and 7(x) appearing in (53) must satisfy

(54) deglo(x)] < deg[wV(x)] and degfr(x)] < deg[u®(x)]

G.e. v**D(x) and w*D(x) must always have the same leading terms as u)(x) and
wil)(x), respectively). Now by multiplying out the two polynomials expressed in (53) and
using (51), we get (performing the multiplication modulo p**1):

a(x) = u®EwB(E) + (V) + TwO(x))p* (mod p*Y
which can be expressed in the form

69 o) + 1(xwh) = 2= “(;)k(")“’m(") (mod p).

By theorem 2.6, the polynomials o(x), 7(x) € Z,[x] satisfying (55) and (54) are unique. O

6.4. THE UNIVARIATE HENSEL LIFTING ALGORITHM

Description of the Algorithm

The Hensel construction of Theorem 6.2 is based on a linear p-adic Newton’s iteration.
Zassenhaus [Zas69) was the first to propose the application of Hensel’s Lemma to the prob-
lem of polynomial factorization over the integers and he proposed the use of a quadratic p-
adic Newton’s iteration. This quadratic iteration is usually 2{cferrcd to as the Zassenhaus
construction and it computes a sequence of factors modulo p“, for k = 1,2,3, - - - . How-
ever as we noted in section 6.2, a quadratic iteration is not necessarily more efficient than a
linear iteration because the added complexity of each iteration step in the quadratic iteration
may outweigh the advantage of fewer iteration steps. For example, in each iteration step of

6-23

the quadratic Zassenhaus construction one must solve a polynomia! diophantine equation of
the form

®6 o ®Eu®G) + 1w EG) = c®x) (mod p')
for o®)(x),*®(x) e Z p,e-l[x]. The corresponding computation in the linear Hensel construc-

tion is to solve the same polynomial diophantine equation modulo p for
o®)(x),7®)(x) € Z,[x]. The latter computation is simpler because it is performed in the
smaller domain Z,[x] and another level of efficiency arises because the u®)(x) and w*)(x) in
(56) can be replaced by the fixed polynomials u(*)(x) and w(!)(x) in the linear Hensel case. A
detailed comparison of these two p-adic constructions was carried out by Miolz and Yun
[M&Y74] and their analysis showed that the computational cost of the quadratic Zassenhaus
construction is higher than that of the linear Hensel construction for achieving the same p-
adic order of approximation. Therefore we will not present the details of the quadratic
Zassenhaus construction.

The basic algorithm for lifting a factorization in Z,[x] up to a factorization in Z[x] is
presented as Algorithm 6.1, In the monic case Algoritﬁm 6.1 corresponds precisely to the
Hensel construction presented in the proof of Hensel’s lemma, since by the Corollary to
Theorem 6.2 the factors at cach step of the lifting process are uniquely determined in the
monic case. However in the non-monic case the nonuniqueness of the factors modulo p*
leads to the ‘leading coefficient problem’ to be discussed shortly, and as we shall see this
accounts for the additional conditions and the additional operations appearing in Algorithm
6.1. For the moment, Algorithm 6.1 may be understood for the monic case if we simply
ignore the stated conditions (other than the conditions appearing in Hensel’s lemma), ignore
step 1, ignore the ‘replacelc’ operation in step 3 (using instead the initialization
u(z) ~ uVz); wz) ~w)(x)), and note that no adjustment of u(x) and w(x) is required in
step 5 for the monic case.

Algorithm 6.1, Univariate Hense] Lifting Algorithm.

comment INPUT:
(1) A primitive polynomial a(x) € Z[x].
(2) A prime integer p which does not divide Lc[(agx)].
(3) Two relatively prime ?olynomia.ls uW(x), wili(x) € Z,fx] such that
a(x) = ut)(x) w)(x) (meod p).
(4) An integer B which bounds the magnitudes of all integer coefficients appearing
in a(x) and in any of its possible factors with degrees not exceeding
max{deg[u)(x)], degwI(x)}}.
(5) Optionally, an integer y € Z which is known to be a multiple of Lefu(x)], where
u(x) (see OUTPUT below) is one of the factors of a(x) in Z{x] to be computed;

comment OUTPUT:
(1) If there exist polynomials u(x), w(x) € Z[x] such that
a(x) = u(x) w(x) € Z{x]
and
n[u(x)] = n[u{)(x)] (mod p), n[w(x)] = n[w((x)] (mod p)
where b denotes the normalization ‘make the polynomial monic as an
element of the domain Z[x]’, then u(x) end w(x) will be computed.
(2) Otherwise, the nonexistence of such a factorization will be determined. ;

6-24

Algorithm 6.1. (continued). Univariate Hensel Lifting Algorithm,
comment 1. Define new polynomial and its modulo p factors;

o - Lefa(x)};

if 4 is undefined then ¥ - a;
a{x)) -y % a(x);

wWix) - o0y X afu@@); wix) « b (a x n[w)]);

comment 2. Apply extended Euclidean algorithm to u®)(x), w()(z) € Z,fx];

s(x), t(x) ~ polyncmials in zp[x] computed by Algorithm 2.2 such that
3(x) u(x) + W w() = 1 (mod p);

comment 3. Initialization for the iteration;

u(x) ~ replaceLc(u((x), v); w(x) ~ replaceLe(wV(x), a);
e(x) ~alx) = u(x) x w(x);
modulus « p;

comment 4. Iterate until either the factorization in Zfx] is obtained or else the
bound on modulus is reached;

while e(x) # 0 and modulus < 2 X B X y do
begin

comment 4.1. Solve in the domain Z [x] the polynomial diophantine equation
o®ul@) + 1@ whx) = c(x) (mod p)
where c(x) = e(x)/modulus;

c(x) ~ e(x)/modulus;

a(x) « d(s(x) X e(x)); 7(x) = dy(t(x) X (x));

q(x), r(xg « polynomials in Z [x] computed by Euclidean division such that
&(x) = wl(x)q(x) + r(x) € Z [x];

o(x) - 1(x); 7(x) - $,(F(x) + q(x) x uD(x));

comment 4.2. Update the factors and compute the error in the new factorization;
u(x) « ufx) + 1(x) X modulus;

w(x) « w(x} + o(x) X modulus;

e(x) - a(x) = u(x) x wix);

modulus ~ modulus X p

end;

comment 5. Check termination status;
if e(x) = O then
begin comment Factorization obtained — remove contents;
& -« cont[u(x)];
u(x) - u(x)/8; wiz) - w(x)/(v/8);
comment Note that a(x) « a(x)/y would restore a(x} to its input value
end
else comment No such factorization exists;
termination status is ‘there exists no such factorization’

end.

Example 6.5.
Consider the problem of factoring the following monic polynomial over the integers:

a(x) = x> + 10x2 ~ 432x + 5040 € Z[x].
Choosing p = 5 and applying the modular homomorphism ¢ to a(x) yields
ds(a(®)) = =* - 2x € Zylx).
The unique unit normal (i.e. monic) factorization in Zs[x] of this polynomial is
ds(a(x)) = x(x2 - 2) € Zs[x].
We therefore define
W) = z; wllx) =% -2
and since u(z) and w{l)(x) are relatively prime in Zs[x}, the Hensel construction may be
applied.
Applying Algorithm 6.1 in the form noted above for the monic case, we first apply in
step 2 the extended Euclidean algorithm which yields

3(x) = —2x; t(x) = 2.

The initializations in step 3 yield
ulx) = x; w(x) = P2-2
e(x) = 10x% — 430x + 5040;
modulus = 5.

Step 4 then applies the Hensel construction precisely as outlined in the proof of Hensel’s
lemma. (For now we are ignoring the second termination condition of the while-loop). The
sequence of values computed for o(x), 7(x), u(x), w(x), and e(x) in step 4 is as follows.

center;
End of
iteration no. o(x) (x) | ulx) w(x) e(x)
0 - - x x<=2 10x* — 430x + 5040
1 x-1 1 [x+5| 2+5x-7 —450% + 5075
2 —x+2| 1 |x+30]| x2~20x+ 43 125x + 3750
3 1 0 | x+30|x2—~20x+ 168 0

Note that at the end of each iteration step k, e(x) is exactly divisible by modulus = 5**1 as
required at the beginning of the next iteration. The iteration terminates with u(x) = x + 30
and w{x) = x2 — 20z + 168; we therefore have the following factorization over the integers:

x3 + 1022 — 432x + 5040 = (x + 30)(x> — 20x + 168). O

Example 6.6.

In this example we shall see that the Hense! construction may apply even when the
given polynomial cannot be factored over the integers. Consider the monic polynomial

a(z) = x* + 1 € Z[x)
which is irreducible over the integers, Choosing p = 5 and applying the modular homomor-
phism ¢ to a(x) yields $s(a(x)) = x* + 1. The unique unit normal factorization in Zs[x] of
this polynomial is

2+ 1= (% + 2)(x2 - 2) € Zsfx). :
Since the polynomials uX(x) = x2 + 2 and wi)(z) = x — 2 are relatively prime in Zgx],

6-26

the Hensel construction may be applied. In this case we get an infinite sequence of factors
a(z) = uPx)w(z) (amod p*)

fork=1,2,3,---.

If we apply Algorithm 6.1 to this monic case as in Example 6.5, the result of step 2 is

s(x)=-1; tizx) =1

and the initializations in step 3 yield
u(x) = % + 2; wx) = x2—-2;
e(x) = 5;
modulus = §.

If we allow the while-loop in step 4 to proceed through four iterations (again we are ignoring
the second termination condition of the while-loop), the sequence of values computed for
o(x),7(x),u(x), w(x), and e(x) is as follows.

End of
iteration no. | o(x) | 7(x) u(x) w(x) e(x)
0 = - >+ 2 > -2 5
1 -1 1 2 +7 xZ -7 50
2 -2 | 2 2+ 57 | x2-587 3250
3 -1 | 1 | x*+18 | x*-182 | 33125
4 2 | =2 | z%- 1068 | x2 + 1068 | 1140625

These iterations could be continued indefinitely yielding an infinite sequence of factors satis-
fying Hensel's lemma. Note that at the end of iteration step k we always have

u(x)w(x) = x* + 1 (mod 5¢*1)
as claimed in Hensel's lemma. However we will never obtain quadratic facters
u(x), w(x) € Z[x] such that

uEw(x) =z*+1¢€2ix]. o

The Leading Coefficient Problem
The Hensel construction provides a method for lifting a factorization modulo p up to a
factorization modulo p! for any integer { = 1. Example 6.6 shows that this construction does
not necessarily lead to a factorization over the integers. However if the monic polynomial
a(x) € Z[x] has the modulo p factorization
a(x) = u®(x)w)x) (mod p)

where u¥)(x), w{)(x) € Z,[x] are relatively prime monic polynomials and if there exists a
factorization over the integers

67 alx) = u(x)w(z) € Z[x)
such that
(58) u(x) = u() (mod p); w(x) = will(x) (mod p)

then the Hensel construction must obtain this factorization. Specifically, let be large enough
s0 that %p! > B where B is an integer which bounds the magnitudes of all integer coefficients
appearing in_a(x) and in any of its possible factors with the particular degrees deg{u{!)(x)]
and deg[w(l](z)]. (For a discussion of techniques for computing such a bound B see
[Mig82]). Then the Hensel construction may be applied to compute monic polynomials
(), whix) € Z /{x] satisfying

6-27

69 a(x) = uxwO() (mod p)

and
{u"’(x) = ul(x) (mod p);

6 twOx) = wV() (mod)
and by the Corollary to Theorem 6.2 the factors u(z),w?(z) € Z ,[x] are uniquely deter-
mined by conditions (59)-(60). Now if there exists a factorization (57) satisfying (58) then
another such monic factorization in ZP;[x] is provided by ¢P;(u(x)) and ¢p,(w(x)) and hence
by uniqueness

) = @) W) = S W),
But since %p’ > B we have ¢p;(u(x)) = ufx) and ¢p;(w(x)) = w(x), which proves that u)(x)
and w¥)(x) are the desired factors over the integers.

The above discussion shows that in the monic case, the Hensel construction may be
halted when %p' > B at which point either uDx)wl)(x) = a(x) over the integers or else
there exists no factorization satisfying (57)-(58). The second termination condition of the
while-loop in step 4 of Algorithm 6.1 is, in the monic case, preciscly this condition. Note
that since the bound B given to Algorithm 6.1 will invariably be very pessimistic, the first
termination condition of the while-loop is required to avoid extra costly iterations after a fac-
torization has been discovered.,

In the non-monic case the situation is not quite so simple. The Hensel construction
requires (in step 4.1 of Algorithm 6.1) the solution o(x),7(x) € Z,[x} of the polynomial
diophantine equation .

61 o)) + 1(@x)wdE) = ¢(x) (mod p).
The solution of this equation is not uniquely determined but uniqueness is (somewhat artifi-
cially) imposed by requiring that the solution satisfy
©62) deglox)] < deglw()(x)]
(see Theorem 2.6). Noting that the update formulas (in step 4.2 of Algorithm 6.1) are then
u(x) - u(x) + 1(x)p; w(x) - wix) + o(x)p,
it is clear that the degree constraint (62) implies that the leading coefficient of w(x) is never

.

updated. In the monic case, this is exactly what we want. Moreover, since

= 8x) = u)w(x)
63) () = TR

it follows in the monic case that

degle(x)] < degla(x)} = degu®(x)] + deg[wDx)]
and therefore the solution of (61) also satisfies, by Theorem 2.6,

deg[r(x)] < deglu(x)];
it follows that the leading coefficient of u(x) also is never updated in the monic case. Turning
to the non-monic case, we must first assume that the chosen prime & does not divide the
leading coefficient of a(x). With this ussum)ption we are assured that ul)(x) and w(!)(x) have
‘correct’ degrees in the sense that deg{uP(z)] + deg[w(!)(x)] = degla(x)]. Then we have
from (63) that

deglc(x)] = degla(x)] = deglu(x)] + deglw((z))
from which it follows exactly as in Theorem 2.6 that

(64) deglr(x)] = deglu(x)].

6-28

The degree constraint (64) allows the leading coefficient of u{x}) to be updated since, unlike
(62), the inequality here is not strict inequality. Now at the end of each iteration step k, we
have the relationship

a(x) = u(x)w(x) (mod p**?)
and therefore since (62) forces the leading coefficient of w(x) to remain unchanged, all of
the updating required by the leading coefficient of a(x) is forced onto the leading coefficient
of u(x). (Note that any unit in the ring Z : can be multiplied into one factor and its inverse

multiplied into the other factor without ing the given relationship). This is referred to
as the leading coefficient problem and it can cause the factors in the Hense! construction never
to yield a factorization over the integers even when such a factorization over the integers
exists. The following example will clarify this leading coefficient problem.

Example 6.7.
Consider the problem of factoring the following polynomial over the integers:
a(x) = 12x3 + 10x% ~ 36x + 35 € Z[x].

In order to understand the leading coefficient problem which arises we start by presenting the
correct answer; namely, the complete unit normal factorization of a{x) over the integers is

alx) = u(x)w(x) = (2x + S)(6x2 — 10x + 7) € Z[x].

Let us attempt to solve this factorization problem by the method used in Example 6.5.
Choosing p = § and applying the modular homomorphism & to a(x) yields

b5(alx)) = 2 = x € Zslz]. :
The unique unit normal factorization in Z[x] of this polynomial is

$s(a(x)) = 2(x)(x? + 2) € Zslx]
where 2 is a unit in Zgx]. Now in order to choose the initial factors u(!)(x), w()(x) € Z[x)
to be lifted, we must attach the unit 2 either to the factor x or else to the factor x2 + 2. This
is precisely the problem of non-uniqueness which exists at each stage of the Hensel construc-
tion; at this initial stage we have

ds(a() = 2x)(F + 2) = ()27~ 1) € Zlx).
Since in this problem we are given the answer, we can see that the ‘correct’ images under ¢
of u(x), w(x) € Z[x] are

ul@) = 2¢; W) =22+ 2.
However it is important to note that this ‘correct’ attachment of units to factors is irrelevant;

the other choice for uY)(x) and w(l(x) in this example would be equally valid and would
lead to the same ‘leading coefficient problem’ which will arise from the above choice.

The polynomials uB(x) and wl)(x} defined above are relatively prime in Zs[x] s0 the
Hensel construction may be applied. Let us apply Algorithm 6.1 in the form used for the
monic case of Example 6.5 (i.e. the unmodified Hensel construction as presented in the
proof of Hensel's lemma)). In step 2 of Algorithm 6.1, the extended Euclidean algorithm
applied to u(V(x) and w()(x) yields

0(x)=x; tlx) = -2.
The initializations in step 3 yield
u(x) = 2r; w(z) =22+ 2;
e(x) = 102> + 1022 — 40x + 35;
modulus = §.

6-29

If we allow the while-loop in step 4 to proceed through four iterations (again we are ignoring
the second termination condition of the while-loop), the sequence of values computed for
o(z),7(x),ulx), w(x), and e(x) is as follows.

End of
iteration no. o(x) 7(x) u(x) wix) e(x)
0 - - 2 242 10x° + 10x° — 40x + 35
1 “2x—1]|2x+1| 122+5| 2X-1x-3 125x2 + 50z + 50
2 2t + 1 1 12 + 30 | 2%+ 40x + 22 —~500%2 — 1500x — 625
3 —2x -1 0 12x + 30 | x? — 210x — 103 2500x2 + 7500z + 3128
4 2 +1 0 12x + 30 | x° + 1040x + 522 | —12500x2 - 37500x — 15625

These iterations could be continued indefinitely yielding an infinite sequence of factors satis-
fying Hensel’s lemma — i.e. at the end of iteration step k we always have

u(x)w(z) = a(x) (mod 5**1).
However these factors will never satisfy the desired relationship

u(x)w(x) = a(x) € Z[x]
because w(x) is always monic and there does not exist a monic quadratic factor of a(x) over
the integers. O

It is clear in the above example that the leading coefficient of a(x) is completely forced

onto the factor u(x) since w)(x), and hence each updated w(x), is monic. Noting the correct
factorization of afx) over the integers, we see that the leading coefficient of a(x) needs to be
split in the form 12 = 2 X 6 with the factor 2 appearing as the leading coefficient of u{x) and
the factor 6 appearing as the leading coefficient of w(x). Algorithm 6.1 contains additional
statements which will force the leading coefficients to be correct and we now turn to an
explanation of these additional operations.

6.5. SPECIAL TECHNIQUES FOR THE NON-MONIC CASE

Relationship of Computed Factors to True Factors

The first step towards solving the leading coefficient problem is the realization that the
factors computed by the Hensel construction are ‘almost’ the correct factors over the
integers, in the following sense. Let ! be large enough so that %p" > B where B bounds the
magnitudes of all integer coefficients appearing in a(x) and in its factors. Then Theorem 6.4
below proves that the factors u()(x) and w{)(x) computed by the Hensel construction such
that

uOE)w() = a(x) (mod p)
differ from the true factors over the integers only by a unit in the ring zp;[x] (if an appropri-
ate factorization over the integers exists). In Example 6.7 of the preceding section we see by

inspection of a(x) and its known factors that B = 36 and therefore ! = 3 is sufficient, so the
factors

u®(x) = 12z + 30; wO(x) =22+ 40x + 22

computed in iteration step k = 2 must be the correct factors apart from units in the ring
Z15¢[x]. Note that

uI)wO(x) = 1253 + 51022 + 1464x + 660 € Z[x]
30 that u@(x)w®(x) # a(x) but
1)w(x) = afx) (mod 5%).

6-30

Now i m this example it is known that the correct leading coefficient of w(x) is 6, so we multi-
Ply w®)(x) by 6 in the domain Z55[x] and correspondingly multiply u@r) by 6l e Zyo5[x]
80 as to maintain the relationship

(6™ ()) (6w ()] = a(x) (mod 57).
Since 671 = 21 €Z45[x] we obtain the factors

u(x) = 21uCx) = 2x + 5 € Zypfx];

w(x) = 6w(x) = 6x2 - 10x + 7 €Zpdfx].
Then u(x)w(x) = a(x) in the domain Z[x] and the desired factors have been obtained.

The above example makes use of the knowledge that 6 is the correct leading coefficient
of w(x) and it would scem that such knowledge would not be available in the general case.
However we will shortly describe a general method which, by slightly altering the original
problem, leads to a situation in which the correct leading eoefﬁciem; of both factors will

always be known. For the moment we must prove the result that uf Dx) and w()(x) are asso-
ciates in the ring Z [x] of the true factors over the integers. To this end, recall that the units

in a polynomial ring are prensely the units in its coefficient ring and therefore we must
understand which elements in a ring of the form Z ; are units. Unlike the ficld Z,, in which

every nonzero element is a unit, the ring Zp;, (for k > 1) has some nonzero elements which
fail to have multiplicative inverses (e.g. the element p € ng is not a unit). The following
theorem proves that most of the elements in the ring Z, are units and identifies those ele-
ments which are not units.

Theorem 6.3.

Let p be a prime integer and let k be any positive integer. An element a € Zpusanmt
mzp;nfandon!ydpdoesnotdmdea(mthemtegraldomamz)
Proof: We first claim that the integer p is not a unitin Z ;. For k = 1, p is the zero element
in Z, 50 the claim is obvious. For & > 1, if p is a unit in Z s then there exist integers p?
and ¢ such that in the domain Z

ppl=cpt+1

whence
PO -t h =1
which implies p | 1. The latter is impossible so the claim is proved,
‘only if: Supposep | @ so that a = px for some integer x. If @ lsaumtmzp;then there
exists an integer a~ ! such that
aa~! = 1 (mod p*).
But since @ = px it follows that
pxa~1 m 1 (mod p¥)
which implies that p has an inverse modulo p*. This contradicts the claim proved above.

i;{ Sup?ose p does not divide a. Then GCD{a, p*) = 1 since the only nontrivial divisors of
p~ are 7 (1=<i s k). Therefore the extended Euclidean algorithm can be applied to com-
pute a 1 (mod p) o

Theorem 6.4.

Let a(x) € Z[x] be a given polimom.ial over the integers, let p be a prime integer which
does not divide Lea(x)], and let u‘li(x), w(x) € Z,[x] be two relatively prime polynomials
over the field Z, such that

© a(x) = vIRwh(x) (mod p).
Let ! be an integer such that %p' > B where B bounds the magnitudes of all integer coeffi-
cients appearing in a(x) and in any of its possible factors with degrees not exceeding
max{deg[uD(x)], deg{w((x)]}. Let u®)(x) and w*)(x) be factors computed by the Hensel
construction such that

©6) a(x) = uBx)wH(x) (mod p¥)
and

- {u‘*’(x) = u®(z) (mod p);

w®)(x) = wl)(x) (mod p)

fork = 1,2, ...,1. If there exist polynomials u(x), w(x) € Z[x] such that

(68) a(z) = u(x)w(x) € Z[x]
and

n[u(x)] = n[u(x)] (mod p);
(69)),
[w(x)] = n{w'"(z)] (mod p)
where n denotes the normalization ‘make the polynomial monic as an element of the domain
Z,[x] then the polynomials u(x) and u?)(x), as well as w(x) and w{!)(x), are associates in the
ring Z ,fx]. More generally, for each k = 1 the polynomials ¢P¢(u(x)) and u(")(x), as well as
¢ x(w(x)) and w(®)(x), are associates in the ring Z,[x].
Proof: Let k =1 be any fixed positive integer. The assumption that p does not divide
Lefa(x)] implies, by Theorem 6.3, that Lc[a(x)] is a unit in ng[x]. We may therefore define
the monic polynomial
() = {(Lefa(a)]}la(x) € Zale).
Now (66) implies that

Lefa(x)} = Lefu®(x)]Lelw®)(x)] (mod p*)
so clearly p does not divide Lc[u®)(x)] and p does not divide Lefw*)(x)] (for otherwise
p | Le[a(x)]), so we may also define the monic polynomials

i®(x) = Lefu®()] B € Z,40x);

wWhG) = Lw®()]) " w®(x) € Z,4[x).
Obviously we may normalize the polynomials u(*)(x),w(!)(x) € Z,[x] yielding the monic
polynomials

i) = au®@); ¥V) = afw).

It is easy to verify that conditions (65), (66), and (67) remain valid when
a(x),u(l)(x).W(Y)(x),u(")(x),w(*)(x) are replaced by ﬁ(x),?l)(x),v'd(lf(:)l?l'l:h)(x),ivm(x),
respectively. Then by the Corollary to Theorem 6.2, conditions (66)-(67) in the monic case
uniquely determine the monic polynomial factors i®(x), w®)x) € Z ,[x]. Now suppose
there exist polynomial factors u(x), w(x) € Z{x] satisfying (68)-(69) and consider the polyno-
mials ¢p4(u(x)),¢pg(w(x)) € Z s{x]. By reasoning es above, we may normalize these two
polynomials in the ring Zp;[x yielding monic polynomials 1(x), W(x) € Zp.[x] and these

6-32

monic polynomials provide another factorization in ng[x] satisfying the monic versions of
(66)-(67). Hence by uniqueness,
i®) = d0); wE(x) = % (x).
It follows that u®)(x) and ¢ (u(x)) are associates in the ring Z 4[x] and similarly w(*)(x) and
¢pk(w(x)) are associates in the ring ng[x].
The above proof holds for any fixed k = 1. In particular when k = [, note that since
%p' > B we have ,4(u(x)) = u(x) and (w(x)) = w(x). ©

The Modified Hensel Consiruction

The result of Theorem 6.4 can be used to ‘fix’ the Hensel construction so that it will
correctly generate the factors over the integers in the non-monic case. To this end we wish to
create a situation in which the correct leading coefficients of the factors are known a priori
and this can be achieved as follows. Let us assume that the polynomial a(x) € Z[x] to be fac-
tored is a primitive polynomial. (Note that this assumption simply means that to factor an
arbitrary polynomial over the integers we will first remove the unit part and the content so
that the problem reduces to factoring the primitive part). Let a(x) have the modulo p factori-
zation (65) and suppose that there exist factors u{x),w(x) € Z[x] satisfying (68)-(69). The
leading coefficients

a = Lefa(x)]; w = Lefu(x)); v = Lefw(x)]
clearly must satisfy
a = pv .
but at this point we do not know the correct splitting of « into u and v. However if we
define the new polynomial
i(x) = aa(x)
and seek a factorization of é(x) then we have the relationship
i(x) = pru(x)w(x) = [u@)][ww)]
In other words, by defining i(x) = vu(x) and W(x) = pw(x) we see that there exists a fac-
torization
a(x) = d(x)w(x) € Z[x]
in which the leading coefficient of each factor is known to be a.

The Hensel construction ?m now_ be modified for the polynomial d(x) so that for any
k= 1, it computes factors 5%(x), #**)(x) € Z,[x] which satisfy not only the conditions of

Hensel's lemma but, in addition, satisfy the relationships
a0 iM0) = o) ¥ = duRG)

where i(x), W(x) € Z[x] are the (unknown) factors of &(x) over the integers. (Note that the
relationships (70) do not hold in Example 6.7). The modification which can be made to the
Hensel construction is a simple adjustment of units in each iteration step. For if u*)(x} and
w®)(x) denote modulo p* factors of ?SI) satisfying the conditions of Hensel’s lemma then the
modulo p* factors of 4*)(x) and %'*(x) which maintain the conditions of Hensel's lemma
and, in addition, satisfy (70) can be defined by

§90x) = ¢ (@ x Lefu®@)] ™ x u®(m));

a1 WB() = ¢ ax Lefw®(x)] " 1xw®)(x))

6-33

(where the modulo p* inverses appearing here are guaranteed to exist by assuming the condi-
tion that p does not divide Le[a(x)]). The associativity relationships stated in Theorem 6.4
bave thus been strengthened to the equality relationships (70) by employing the knowledge
that the correct leading coefficient of each factor is «. Finally when k = {, where [is large
enough so that %p’ bounds the magnitudes of all integer coefficients appearing in a(x) and its
factors, the relationships (70) become

i) = i6); %OG) = W)

so the factors of (x) (which were assumed to exist) have been obtained. Note that if the
bound B is defined for the original polynomial a(x) as in Theorem 6.4 then since the modi-
fied Hensel construction is being epplied to the larger polynomial &(x)}, we must now require
I to be large enough so that

%p' > B Lefa(x)].

The final step of this modified Hense] construction is to deduce the factorization of a(x)

from the computed factorization

A(x) = d(x)w(x) € Z[x].
Since a(x) was assumed to be primitive, we have the relationship a(x) = pp[a(x)] from which
it follows that the desired factors of a(x) are defined by

u(x) = ppli(x)]; w(x) = ppl¥(x)].
The modification of the Hensel construction which is actually used in Algorithm 6.1 is a

more efficient adaptation of the above ideas. Before discussing the improved version we con-
sider an example. -

Example 6.8.

Let us return to the problem of Example 6.7 where the Hensel construction failed to
produce the factors over the integers. We have

a(x) = 12x3 + 1022 — 36x + 35 € Z[x]
and
azx) = uD)w(x) (mod 5)
where ul)(z) = 2x; wl)(z) = x2 + 2. Note that a(x) is a primitive polynomial, and that the
prime 5 does not divide the leading coefficient 12. In the new scheme, we define the new
polynomial
i(x) = 12a(x) = 144z + 120x2 — 432x + 420.
We know that if there exists a factorization of a(x) satisfying conditions (68)-(69) then there
also exists a corresponding factorization such that 12 is the leading coefficient of each factor.
The initial factorization
i(x) = ix)%(x) (mod 5)
such that the case k = 1 of (70) is satisfied can be obtained by applying the adjustment (71)
to the given polynomials u(!)(x) and w(D(x); we get
aV(x) = dg(12 x 271 x (1)) = 25;
wWiz) = ¢s(12 x 171 x (32 + 2)) = 262 - 1.
Applying iteration step k = 1 of the usual Hensel construction to the polynomial &(x},
we get .
@) = i) + (~x + D5 = ~3x + 5;

6-34

wO(x) = D(x) + (x - 15 = 22 + 5z - 6.
Applying the adjustment (71) yields
i0@) = ¢p5(12 X (=3)" I X (=3 +) = 125 + 5;
wOE) = ¢p5(12 x 271 x (252 + Sx — 6)) = 1242 + 5x — 11.
In iteration step k = 2 we get
u®) = §@) + (1)5? = 12¢ + 30;
wO() = W) + (—x + 1)5% = 1202 — 20x + 14

g the ndjustmgl (71) leaves the factors unchanged - i.e.
(x) = 12x + 30; WO(x) = 12x2 — 20x + 14. At this point,

ax) ~ i)W Ia) =0

so the iteration halts and the factorization of &(x) has been obtained. Thus the desired fac-
tors of the original polynomial a(x) are:

u(x) = ppla®(x)] = 25 + 5;
w(x) = ppw®(x)] = 6x2 - 10x + 7. O

Applying a Smaller Multiplier

In the scheme described above and applied in Example 6.8, note that the polynomial
(x) which is actually factored may contain integer coefficients which are significantly larger
than the integer coefficients in the original polynomial a(x). This may lead to a decrease in
efficiency compared to & scheme which works directly with the original polynomial a(x).
Exercise 6-xx considers a scheme in which the Hensel construction is applied to the original
polynomial a(x) (exactly as in Example 6.7) until / is large enough so that

7 4%p' > BLda(z)),

and then at the end a ‘restore leading coefficient’ operation is performed. One disadvantage
of such a scheme is that the iteration then loses its ‘automatic’ stopping criterion — i.e. it is
not generally possible in such a scheme to recognize that enough iterations have been per-
formed prior to satisfying the bound (72). This disadvantage is aggravated by two additional
facts: (i) in practice the bound B almost always will be a very pessimistic bound; and (ii)
each successive iteration step is usually more costly than the previous step (e.g. in Example
6.7 note the growth in the size of the coefficients of e(x) and the factors with successive
iteration steps). Therefore the potential saving of costly iterations offered by an iterative
scheme which can recognize termination independently of the bound (72) can be very signifi-
cant. An even more serious disadvantage of a scheme using a final ‘restore leading coeffi-
cient’ operation arises in the multivariate case (see Exercise 6-yy).

The problem of coefficient size in the scheme which factors a(x) rather than directly
factoring a(x) can be partially alleviated in certain circumstances as follows. Suppose we
choose a multiplier vy which is smaller than Le[a(x)] in defining the new polynomial

3) &) = va(x).
Suppose it is known that vy is a multiple of the leading coefficient of one of the factors to be
computed, let us say u(x) — i.e. suppose it is known that

04 Lefu@®)] | v.

Then the polynomial (x) defined by (73) has a factorization in which the leading coefficients
of the factors are known, where as usual we are assuming the existence of an appropriate
factorization of the original polynomial a(x). (Note that the choice 4 = Lc[a(x)] used previ-
ously is a particular case of a multiplier which satisfies (74)). In order to see this fact, let

the assumed factorization of a(x) be

a(x) = u(x)w(x) € Z{x]
and as before let us define the following leading coefficients:

a = Lefa(x)]; » = Lu(x)]; v = Lefw(x)].
In addition, by (74) we may define the integer

B = v/
Then the polynomial a(x) defined by (73) satisfies the following relationship:

i(x) = pru(x)w(x) = [Bu(x)][kw(x)].
Hence by defining {i(x) = Bu(x) and w(x) = pw(x) we sce that there exists a factorization

i(x) = U(x)w(x) € Z{x]
in which

Ldi(x)] = gp = v; Lf¥@)]=pv =«
where a is the known integer Lc[a(x)] and where y has been specified. It is this generaliza-
tion of the previously discussed scheme which is implemented in Algorithm 6.1, where y is
an optional input. If y is unspecified on input then step 1 of the algorithm sets y = Lc[a(x)]
by default. It might seem that the specification of a y smaller than Lcfa(x)] satisfying (74)
would be impossible for most practical problems. However it turns out that in the applica-
tion of the Hensel lifting algorithm to the important problem of polynomial GCD computa-
tion, the specification of + is always possible (see chapter 7). Finally, note that by (73) the

termination condition (72) (for the case when the factorization of a(x} does not exist) can be
changed to the condition

%p’ > By.

The replacel.c Operation

The design of Algorithm 6.1 has now been fully explained except for one very signifi-
cant modification. The scheme we have described (and applied in Example 6.8) requires that
formulas (71) be applied to adjust units in each iteration step. However it can be seen that
step 4 of Algorithm 6.1 contains no such adjustment of units in each iteration of the while-
loop. Indeed step 4 of Algorithm 6.1 is simply an implementation of the pure unmodified
Hensel construction. The reason that Algorithm 6.1 is able to avoid the extra cost of adjust-
ing units in each iteration stems from the yet-to-be-explained ‘replacelc’ operation appearing
in step 3. This new operation is an ingenious modification described by Yun [Yun73] and
attributed to a suggestion b¥ Moses, Consider the polynomial d(x) defined by (73) and con-
sider its modulo p factors i)(z), #")(x) € Z,[x] adjusted (as in stcp 1 of Algorithm 6.1) so
that

9 06) = 6, W) = 4, 60)
where G(x) and W(x) are the factors of a(x) over the integers as discussed above such that
(76) Lefi(x)] = v; Le[w(x)] = Lefa(x)].
Writing the modulo p factors in the form
G00) = ppt™ + g™ g
W) = Vx" + v e g

where p, #0 and v, #0, it follows from (75)-(76& “that p, = $,(y) and
vy = &,(Lefa(x)]). Now suppose that the factors @"X(x) and w!)(x) are changed by simply

6-36

replacing the leading coefficients ., and v, by ¥ and & = Lcf[a(x)], respectively. To this
end we define the algorithmic operation replaceLe as follows:

Given & polynomial a(x) € Rfx] over a coefficient ring R and given an element
r € R, the result of the operation replaceLe(a(x),r) is the polynomial obtained
from a(x) by replacing the leading coefficient of a(x) by r.

In this algorithmic, notation, the polynomials iV(x) and w(”§x) are replaced by the polyno-
mials replaceLe(d b (x),y) and replaeel.c(ﬁ'(l)(x), a). Let a (x) end v'l(l)(x) now denote the
modified factors — i.e.

G00) = "+ T g

@ Wz} = ax” + V"l 4y

Then the leading cocfficients of ﬁ(l}(x) and v'v(l)(x) are no longer represented as elements of
the field Z, in the usual representation, but nonetheless we still have the property

i(x) = i)W D(x) (mod p).
The Hensel construction can therefore be applied using (77) as the initial factors.

Let us consider the form of the successive factors which will be computed by the Hensel
construction based on (77). Using the notation of step 4 of Algorithm 6.1, we first compute

oe) =) _ 80 = F 0w (x)
P 4 :
{where the domain of this computation is Z{x]). Now since Le[d(x)] = va, it is clear from
(77) that we will have

degle(x)] < degli(x)] = deg[iV(x)] + deglw V().

This strict inequality implies that the Hensel construction wil! then perform exactly as in the
monic case in the following sense. The solution ofx),r(x) € Z,[x] of the polynomial
diophantine equation solved in step 4.1 of the algorithm will satisfy (gs usual) the condition

deglo(x)] < deg[#V(x)]
and, in addition, we will have the following condition
deg[(z)] < deg[a™(x)]

(see Theorem 2.6). Therefore when the factors are updated in step 4.2 of the algorithm the
leading coefficients of both factors will remain unchanged. This is a desirable property since
the leading coefficients are already known to be the correct integer coefficients. By the same
reasoning, each successive iteration of the Hensel construction will also leave the leading
coefficients unchanged. Finally since the successive factors computed by this scheme must
satisfy Hensel's Jemma, Theorem 6.4 guarantees that after a sufficient number of iterations
the computed factors will be associates of the true factors of d(x) over the integers (if such
factors exist); but since the computed factors have the same leading coefficients as the true
factors over the integers, they can be associates only if they are identically equal, Therefore
the desired factors of (x) will be computed (and will be recognized) by the iteration in step
4 of Algorithm 6.1 and no further adjustment of units is required. (For & discussion of
further efficiency improvements to Algorithm 6.1 sec Exercise 6-zz).

Example 6.9.

Consider once again the problem of factoring the non-monic polynomial of Example
6.7:

a(x)} = 12c3 + 1022 - 36x + 35 € Z[x].
This time we will apply Algorithm 6.1 in its full generality. The input to the algorithm is the
primitive polynomial a(x), the prime p = 5 (note that p does not divide Lc&a(x)]), and the
two relatively prime modulo § factors of a(x) given by pW(x) = 2x and W &) = x2 + 2.
The value of the bound B required by the algorithm is not needed in this example because the
iterations will terminate by finding a factorization. The integer v is undefined on input.

In step 1 of Algorithm 6.1 the following values are assigned:

a = 12;

v =12

a(x) = 144x% + 120x2 — 432 + 420;

W) = 25; w(x) = 222 - 1.
In step 2 the extended Euclidean algorithm is applied to u)(x} and wﬂ)(x) in the domain
Z;[x] yielding

s(x) = x; 1x) = —1.

In step 3 the leading coefficients of u(l)(:c) and w(x) are replaced by the correct integer
coefficients; we get:

u(x) = 12x; wix) = 12x2 ~ 1;
e(x) = 120x2 — 420x + 420;

modulus = 5.
In step 4 the sequence of values computed for a{x),7(x), u(x), w(x), and e(x) is as follows.
End of
iteration no. ofx) | 1(x) u(x) wix) e(x)
0 - - 12x 12x = 1 120x° — 420x + 420
1 x=2 | 1 [12x+5 | 122 +5-11 —325x + 475
2 ~x+1| 1 |12c+30| 1222 - 202 + 14 0

Finally in step 5 the following values are obtained:
8 = cont[12x + 30] = 6;

u(x)=-12x—;39-=2:+5;
2 _
wi) = 22 62 10a 7,
6

Note that this computation was essentially equivalent to the computation in Example 6.8
except that we have avoided the cost of adjusting units in each iteration step. 0O

6.6. MULTIVARIATE GENERALIZATION OF HENSEL’S LEMMA

We return now to the general multivariate lifting problem which was discussed at the
beginning of section 6.3. Specifically, we wish to find multivariate polynomials
u(xy,x),wixy,x,) € Z[xy, ..., x,] which satisfy equations (39)-(40) where
ug(x;) and wg(x,), the images mod <I,p>, are given. Here I = <x3—a3, . . . ,X,—ay> is
the kernel of a multivariate evaluation homomorphism and p is a prime integer.

A Homomorphism Diagram

We consider the lifting process in two separate stages. Firstly, the solution in Z,[x,] is
lifted to the solution in Z /{x,] for some sufficiently large / such that the ring Z, can be iden-
tified with Z for the particular problem being solved. This first stage of lifting is accom-
plished by the univariate Hensel lifting algorithm (Algorithm 6.1). Secondly, the solution in
zpllxll is lifted to the desired solution in Z j[x,, . . ., x,] (which is identified with the origi-
nal domain Zfx,, . . .,x,]) by the multivariate Hensel lifting algorithm to be described.
The latter algorithm is given the solution mod <I, p’> and, using an iteration analogous to
the univariate case, it lifts to the solution mod <I**1,p!> for k = 1,2, . .. ,d where d is
the maximum total degree in the indeterminate x5, . . . , x, of any term in the solution poly-
nomials.

Figure 6.2 shows a homomorphism diagram for solving a problem using the univariate
and multivariate Hensel lifting algorithms. It should be noted that the order of the univariate
and multivariate operations has been reversed compared with the homomorphism diagram of
Figure 6.1 presented at the end of section 6.2.

Given probiem in Zfx,, x,] Desired solution in Zfx;, xy]
,L & 1& Multivariate (I-adic)
Hensel consTruchion
Image problem in Z[x,] Solution image in z’;[xlj
‘ $, f Univariate (p-adic)
Hensel construction
Image problem in Zp[x 1] I I Solution image in Zplx 1
l Solve image problem I
in Zp(x)}

Figure 6.2: Homomorphism diagram for univariate and
multivariate Hensel constructions.

In the setting of section 6.2 (solving a polynomial equation f(u) = 0 via Newton's iteration),
the computation could be organized in either order. In the current setting (solving a bivari-
ate polynomial equation F(u,w) = 0 via Hensel constructions), there is a fundamental reason
for organizing the computation in the order specified by Figure 6.2. Before pursuing this
point some further remarks about the diagram in Figure 6.2 should be noted. In the box at
the end of the arrow labelled “Univariate (p-adic) Hensel construction”, the domain is speci-
fied as Zp;[xl]. As we have already noted, ! will be chosen to be sufficiently large for the
particular problem so that the ring Z; can be identified with Z (an identification we have
made in the box following the multivariate Hensel construction). The specification of the
domain in the form Zpa[xl] is deliberate, in order to emphasize the fact (to be seen shortly)
that the domain of the operations required by the multivariate Hense! construction is ZP;[xI]
and not Z[x;]. Another point to be noted about the organization of this diagram is that the
multivariate problem has been conceptually separated from the univariate problem, such that
a diagram for the multivariate problem could read: “Apply the homomorphism ¢, solve the
univariate problem in Z{x;] (by any method of your choosing), and finally apply the

6-39

multivariate Hensel construction.” However the operations for the multivariate Hensel con-
struction require that the univariate domain Z[x;] must be replaced by a domain Zp;[xI] for
some prime p and integer I, even if the univariate problem was solved by a non-Hensel
method.

Recall from section 6.3 that the basic computation to be performed in applying a step of

a Hense) iteration (i.e., Newton's iteration applied to the equation
F(u, w) = a(x;, . . .,x) —uw=10)
is to solve a polynomial diophantine equation of the form
@78 a®au® 4+ pEAwk) = c)

for the correction terms Au®®), Aw®) (where A%),B®), C%) are given polynomials). Now if
the order of the univariate and multivariate lifting steps is to be that of Figure 6.1 (i.¢. I-adic
lifting preceding p-adic lifting) then during I-adic lifting equation (78) will have to be solved
in the domain Z[x,], and during p-adic lifting equation (78) will have to be solved in the
domain Z,[x;,x]. As we have already seen in the development of Algorithm 6.1,
Theorem 2.6 shows how to solve equation (78) in the Euclidean domain Z,[x)]. However
the necessity to solve equation (78) in the multivariate polynomial domain Z,[x;, %]
poses serious difficulties. Theorem 2.6 does not apply because this multivariate domain is
certainly not a Euclidean domain. It is possible to develop methods to solve equation (78) in
multivariate domains but the computational expense of these methods makes the Hensel con-
struction impractical when organized in this way, On the other hand, if the computation is
organized as specified in the diagram of Figure 6.2 then during p-adic lifting equation (78)
will be solved in the Euclidean domain Z,{x], and during I-adic lifting equation (78) will be
solved in the ring Z ,[x;]. Again we have the apparent difficulty that the latter ring is not a
Euclidean domain. ﬁowever this univariate polynomial ring is “nearly a Euclidean domain”
in the sense that the ring Z ; is “nearly a field” (see Theorem 6.3 in the preceding section).
The constructive proof of Theorem 2.6 (which is based on applying the extended Euclidean
algorithm) will often remain valid for solving equation (78) in the univariate polynomial ring
zp;[xﬂ, with a little luck in the choice of the prime p for the particular problem being solved.
In general though, we cannot guarantee the existence of the inverses required by the
extended Euclidean algorithm when it is applied in the ring zpl[xﬂ-

Polynomial Diophantine Equations in sz{xd
A general solution to the problem of solving polynomial diophantine equations in the

ring zp;[xll is obtained by applying Newton's itcration to lift the solution in Z[x;] up to a
solution in Z ,[x;]. The “extended Euclidean” problem to be solved is to find polynomials
s0(x)), 1)) € Z [x;] which satisfy the equation

@9 sOG)uls) + O)w(x)) = 1 (mod p)
where u(x;), w(x,) € Zp;[x]_] are given polynomials such that ¢,(u(x,)), &, (w(x,)) are rela-
tively prime polynomials in the Euclidean domain Z,[x;]. The equation to which we will
apply Newton’s iteration is

G(s,t) = su(xy) + tw(x;) - 1=10.
Proceeding as in previous sections, if we have the order-k p-adic approximations s, t®) 1o
the solution pair 3,1 and if we obtain correction terms As*), At*) which satisfy the equation

80) G, A + G (B, *hAK) @ —G(s™),t*)) (mod pt*Y)
then the order-(k+1) p-adic approximations are given by

s+D) = g8) 4 Ag(k) (k1) = (B 4 AglE),

Writing the correction terms in the form
as® = g Geppt, A = 4Gt
where s,‘(xl), t,(x;) € Z,[x;], substituting for the partial derivatives, and dividing through
by p*, equation (80) becomu
1~s®u(x;) = tEhw(x))
81 ul(x)s(x) + wlxdtlx) = e (mod p).

The order-1 p-adic approximations s(1),t®) ¢ Z_[x,] for the solution of equation (79) are
obtained by the extended Euclidean algorithm (or, in the context of Figure 6.2, they have
already been computed in Algorithm 6.1 for the univariate Hensel construction). For
k=1,2,:-+,1-1, equation (81) can be solved for the correction terms
s‘(xl). ti(xy) € Z,[x;] by Theorem 2.6, thus generating the desired solution of equation
(79).

The following theorem shows that we can solve, in the ring zp,[xll, the polynomial
diophantine equations which arise in the multivariate Hensel construction.

Theorem 6.5.
For a prime integer p and a positive integer I, let u(x;), w(xy) € Z[x,] be univariate
polynomials satisfying the following conditions:

(&) p 1 Lelu(xy)] and p I Lefw(x))];
(i) &p(ulx))) and &,(w(x;)) are relatively prime polynomials in Z,[x)].
Then for any polynomial cxq) € zpa[.q] there exist unique polynomials
o(x), 1(x1) € Z[x,] such that
82) ofx)ulx;) + T(x)w(zy) = c(x;) (mod p')
and
®3) deglo(xp)] < deg[w(xy)].
Moreover, if deg[c(x;)] < degfu(x;)] + deg{w(x;)] then 7(x;) satisfies
(84) degfr(x))] < deglu(xp].

Proof:
Exisrence

xtended Euclidean algonthm can be applied to compute polynomials
3(1)(.:1) t(l)(xg € Z,[xy] satisfying the equations
85 sOixpux) + tDxw(x;) = 1 (mod p).
By Theorem 2.6, equation (81) can be solved for polynomials s,(x,), t,(x;) € Zy[x,] for suc-
cessive integers k = 1, where we define

s(k)(;l) = ’(1)("1) +axdp + - + ‘k-l(-‘l)Pk_l;
t(")(xl) = t(l)(xl) + tl(xl)p + -+ tk,]_{.tl)pk—l;
and we must prove that

®6 O)n(x) + 1®(x)w(xy) = 1 (mod p¥).

We will prove (86) by induction. The case k = 1 is given by equation (85). Suppose (86)
holds for some k = 1. Then noting that

6-41

s+ 00y = s®(x)) + 5, Gt and t**D(x)) = t®)(z) + ()Pt
where s;(x,) and t;(x,) are the solutions of equation (81), we have
s®+ DG uey) + (& D wiey) =
s ulzy) + G)w(zy) + pHslxulsy) + t(xwiz))] = 1 (mod p**1)

where we have applied equation (81) after multiplying it through by p*. Thus (86) is proved
for all k = 1, and in particular for k = 1.

Now the desired polynomials o{xq), 1(x;) € zp,[xl] satisfying equation (82) can be cal-

culated exactly as in the proof of Theorem 2.6. Specifically, the polynomials

a(xy) = sO(x))e(x;) and F(xy) = tO(x))e(xy)
satisfy equation (82) and then to reduce the degree we apply Euclidean division of &(x;) by
w{x;) yielding q(x,), 1(z)) € Zp;{xlj such that

&(xy) = wixy)q(xy) + r(;) (mod p')
where deg[r(x;)] < deg[w(x;)]. This division step will be valid in the ring Z fx,] because
condition (i) guarantees that Le[w(x,)] is a unit in the ring zp, (see Theorem 6.3). Finally,
defining

o(x;) = r(zy) and 7(x;) = ¥(x)) + qlxJulx;) € ZP;[xL]
equation (82) and the degree constraint (83} are readily verified.

Unigueness:
Let o4(x1), i(x)) € Z [xl] and o,(xq), To(x;) €Z [x1] be two pairs of polynomials
satisfying (82)-(83). Subtractmg the two different equauons of the form (82) yields
6N (o1(x) — oalx))ulx;) = = (1y(xy) = 73(x1))w(xy) (mod p’).
Also, the degree constraint (83) satisfied by oy(x;) and o4(x;) yields
88) degloy(xy) — oy(sp)] < deglw(xy)].

Now taking the congruence (87) modulo p we have a relationship in the domain Z {11]
which, together with condition (i), implies that &,(w(x))) divides ¢,(o1(x)) — o(x,)) in
the domain Z [xl] Noting from condition (i) that £p(w(xl)) has the same degree as w(xy),
(88) implies

t71("1) = 03(xy) = 0 (mod p)
and then it follows from (87) that
71(x1) — 73(x1) = 0 (mod p)

We now cla|m that the polynomials o,(x;) — o5(x;) and 14(x;) — 72(x;) satisfying (87)
are divisible by p* for all positive integers k < /. The proaf is by induction. Thecasek =1
has just been proved. Suppose that they are divisible by p* for some k < . Then we may
define the polynomials

a(xy) = (o1(x)) = o(x1)) 7 p* and Bx) = (1)(x)) — 720xp) / P
and, dividing through by p* in congruence (87) we have

a(xpu(z;) = —Blx)wlx;) (mod p'~4).
By repeating the argument used above, we conclude that

6-42

a(x;) = 0 (mod p) and B(x;) = 0 (mod p);
i.e., o1(x;) = oa(x;) and 74(x;) — 7o(x,) are divisible by p**1, which proves the claim.
Finally, we have proved that
oy(xy) = 05(xp) (mod p') and 7y(xy) = 75(xy) (mod p)
which proves uniqueness in the ring Zpg[xll.

Final Degree Constraint:
It remains to prove (84). From (82) we can write
7(x)) = (c{x]) = o(xpulxy)) / w(xq) (mod D)
and the division here is valid in the ring zp;[xl} because Lefw(x;)] is a unit in Z,, by condi-
tion (i). By this same condition, we have
(89) degfr(x))] = deglc(x)) — o(xpulxy)] ~ deglwlxy].
Now if deg{c(x)] = deg[o(x;)u(xy)] then from (89)
deg[(x))] = degle(x;)] — deg[w(x1)] < deglu(xy)]

as long s deg[c(x;)] < deglu(x;)] + deg[w(xy)] as stated. Otherwise if
deg[c(x)] < deg[o{xu(x;)] (in which case the stated degree bound for ¢(x;) also holds
because of (83)) then from (89)

deg[r(x))] = deglo(x)u(xy)] — degw(xy)] < degfulxy)]
where the last inequality follows from (83). Thus (84) is proved. D

Multivariate Hensel Construction
We are now ready to develop the multivariate generalization of Hensel's Lemma. We

pose the problem of finding multivariate polynomials
ulxy, . ..Lx), Wik ... LX) € Zpg[xl, .« « , x,] which satisfy the congruence

99) a(x, .. .,x,)— uw= 0 (modp’)
such that

uxy, . ..,x,)= u(l)(xl) {(mod <I,p'>);

O Yoyx) = wix) (mod <I,p'>);

where u(l)(xl), w(lJ(xQ €Z [11] are given univariate polynomials which satisfy (90) modulo
I. Here, p is a prime mteger, 1 is a positive integer, a(zy,x,) € Z [xl. ceesx)]isa
given multivariate polynomial, and I = <x3—a3, . . . ,x,—a,> is the kemel of a multivari-
ate evaluation homomorphism. Denoting the desired solution polynomials by © and W, we
will develop these solutions in their I-adic forms:

i=u® + Au® + Au@ + - - . + AUl
6D %= w4 Aw® + AW® 4 . . . 4 AW@
where d is the maximum total degree of any term in @ or 7, u¥) = ¢;(@), W) = ¢(#), and
Au®) Aw®) € ¥, for k=1,2,---,d. From section 6.1 we know that the I-adic
representation of the po]ynomal U is precuely the muitivariate Taylor series representation

(14). The k-th correction term Au®®) ¢ I* is the term in (14) of total degree k with respect to
I and it is represented by k nested summations in the form:

6-43

v v v
O aW=3 F - B wylln, - a)lmey) - (g0
W2 k-1
where | = (i, - + + ,i}) is a vector subscript and y(x)) ¢ ij[x]]. Similarly, in the I-adic
representation of W the k-th correction term takes the form

v v v
089 AawEl=3F 3 - T wladln-e)nmay) - (g-ay)
=2 i~y VLR

where Wi(‘l) € Zx)].

oblem now is to comEutc foreach k = 1,2, . ,d, the k-th correction terms
Au(*) Aw) in (92). Let u®), w(*) denote the order-k T-adic appronmauons to U, W given by
the first k terms in (92). Lettmg F(u w) denote the left-hand-side of (90), Newton’s iteration
for solving F(u,w) = Oin zp;[xl. . . .,x,] takes the form of the congruence equation

©5) w®Au® 4+ y®EAWE) = afxy,x) — u®®) (mod <IF+1,pl>)
which must be solved for the correction terms Au®) Aw(®) ¢ I* and then
D) = B 4 Ag®), wk+D) = 0 4 A

will be order-(k+1) I-adic approximations to @,W. Now since u® w® are order-k I-adic
approximations we have

alxy,x)— v®w® ¢
and therefore the right-hand-side of (95) may be expressed in the form

T3 3 g ma)mmey) - ey

iy =ty !l"t-i i 1 r] 2) (4 {3

for some coefficients c;(x;) € ZP:[xI} Substituting into (95) this nested-summation represen-
tation for the right-hand-side and also the nested-summation representations (93)-(94), the
congruence (95) may be solved by separately solving the following congruence for each term
in the I-adic representation:

whly(x)) + u®hwy(x;) = (xy) (mod <1, p'>)

yielding the desired I-adic coefficients w(x;), wi(x;) € Z [x1] which define the correction

terms (93)-(94). Now note that since this is a congruence modulo I we may apply the evalua-
tion homomorphism ¢ to the left-hand-side, yxeldmg the following polynomial diophantine
equation to solve in the ring zp;[xl] for each term in the I-adic representation:

©6) w(x ulx) + uWixPw(x) = ¢xy) (mod p')
where u(l)(xl), wm(xl) €Z [x1] are the given polynomials in the problem (50)-(91) being
solved. Theorem 6.5 states the conditions under which the congruence (96) has & unique
solution w(xy), wi(x;) € sz[xll

The following theorem formally proves the validity of the above method which is
known as the multivariate Hensel construction.

Theorem 6.6. Multivariate Hensel construction.

Let p be a prime integer, let ! be a positive integer, and let
a(xy,x)E€ zp,[xl, ...,x] be a given multivariate polynomial. Let
1= <zx;-ay ...,x,~a,> be the kernel of a multivariate evaluation homomorphism such
that p 7 Le[di(alxy, x))]. Let u(n(xl) w(l)(xl) € Zp;[xl] be two univariate polynomi-
als which satisfy the following conditions:

G) 8, - . .x) = e v () (mod <1p'>);

6-44

(i) ¢P(u(1)(x1)) and ¢p(wm(x1)} are relatively prime polynomials in Z,[x,].

Then for any integer k=1 there exist multivariate polynomials
u®)) ¢ sz[xl. < ..%,]7T* such that

N alxy,x5)= u®® (mod <k, pi>)
and

u® = u@(z) (mod <I,p'>);
B8 1o®) = wl(x,) (mod <I,p'>).

Proof: The proof is by induction on k. The case & = 1 is given by condition (i). Assume
for k = 1 that we have u®), wl) ¢ Zlsy . %)/ I* satisfying (97) and (98). Define

9 W= afxy,x)— u®w® ¢ Zpg[xl, k]
and from (97) it follows that e®) ¢ I*. Define the polynomial coefficients ¢(x,) € Zlx,] by
expressing ¢ in I-adic form:

an H=3 T -0 T) -a)le) o goay).
hm2 4=y ™1

By Theorem 6.5 {(noting that since p 7 Lc{d{a(xy, . . . , x,))], condition (i) implies the first
condition of Theorem 6.5 and condition (ji) is the second required condition), we can find
unique polynomials @y(x), 7y(xy) € Z y[x,] such that

101 oy(xPuD(x) + 7xwll(z)) = ¢x;) (mod ph
and

102) degloy(r))] < degiwD(zy],
for each index | which appears in the I-adic representation of e®), Then by defining

WDay®+ 3 F .0 3 TE)), —ay) - - (g ay);

103) iy=2 =iy ™1
W=l + 3 3 -0 3 oGy - ey
=2 L=y =gy

we have by performing multiplication modulo I**1;
alEF Dk +1) RN (k) 4
S 2 3 (@eeWe) + rzpwOE))m —edmma) - - ey,
Iy=lg_1

Q=2 ig=iy

(mod <I**1 pi>)
= uEy®) + e®) (mod <FF*1,p>), by (101) and (100)

= azy, . . . ,x,) (mod <I**1p'>), by (99).

Thus (97) holds for & + 1. Also, from (103) it is clear that

u* 1) m y®) (mod <I,p'>);
w1 m W) (mod <I,p'>)
and therefore since (98) holds for kitalsoholdsfork + 1. D
The multivariate Hensel construction of Theorem 6.6 generates unique factors ut)» w®)

in the case where a(x;, . . ., x,) is “monic with respect to x;”; i.e., in the case where the
coefficient in a(xy, . . . ,x,) of x}d‘ is 1, where d, denotes the degree in x;. For in such a
case, we may choose u*) and w*) each to be “monic with respect to x,” and uniqueness fol-

lows just as in the univariate case. This result is stated as the following corollary, whose
proof is a straightforward generalization of the proof of the Corollary to Theorem 6.2 and is
omitted.

Corollary to Theorem €.6. Unigueness of the Multivariate Hensel construction.

In Theorem 6.6, if the given polynomial a(x;, . . . ,x,) € Zpa[xl. « « « + ;) has leading
cocfficient 1 with respect to the indeterminant x4 and correspondingly if the univariate factors
u(n(xl), wm(xl) € Zpg[xl] are chosen to be monic, then for any integer k = 1 conditions
(97)-(98) uniquely determine factors u®) w(®) ¢ Zxyx)/ I* which each have lead-
ing coefficient 1 with respect to the indeterminate x;.

6.7. THE MULTIVARIATE HENSEL LIFTING ALGORITHM

The algorithm which follows directly from Theorem 6.6 has some deficiencies which
must be corrected before we can present an efficient algorithm for the multivariate Hensel
construction. One such deficiency is the leading coefficient problem. For this problem, we
will adopt a solution which is directly analogous to the solution developed in section 6.5 and
implemented in Algorithm 6.1 for the univariate case. Less obvious are the efficiency prob-
lems associated with the construction presented in the proof of Theorem 6.6. This construc-
tion exhibits poor performance in cases where some of the evaluation points a; are nonzero
and this problem is sometimes called the bad-zero problem. We will examine this problem
now.

The Bad-Zero Problem

The source of the performance problems is the requirzment in the proof of Theorsm
6.6 that the error ¢*) must be expressed in the T-adic form (100). This step can lead to very
large intermediate expression swell resulting in an exponential cost function for the algo-
rithm. The following example will serve to illustrate.

Example 6.10.
Letp =5, 1=1,
a(x,y,7) = % — 0% + xy® + 20 — yO4 - 2%,
and I = <y—1,z-1>. Noting that
a(x,y,z) = x2+2x +2 (mod <I,5>)
we have
a(x,y,z) = (x=2)(x—1) (mod <I,5>).

Choosing u{!)(x) = x—2 and w()(x) = x~1, the conditions of Theorem 6.6 are satisfied.
Since a(x,y,z) is not monic we might expect the Hensel construction to fail to produce true
factors in Z[x,y,z], but in this example the factor w(x,y,z) is monic so the Hense] construc-
tion will succeed even though we are ignoring the leading coefficient problem.

The effect of representing the error at each step of the iteration in I-adic form can be
seen by considering the I-adic form of a(x,y,z):

a(x,y,z) m- (x2+21+2)
+(~x2=1)(y= 1)+ (2 +x=1)(z=1)
+(FF=2) (= 1R+ (=22 + D) (y-1)(z=1) + (Zx~1)(z-1)2
+(=x2+2) (=10 + (2= 22) (y = 1)2(z~ 1) + (~x— D) (y= 1) {z = 1>+ (x+ 1) (z— 1)°
+ (=) (= 1)+ (=224 20) (= 1)’z - 1) + (=x) (= 1)2(z= 1)+ (x+ D) (y = 1)z = 1)+ (- 1) (z-
+(=x+2) (= 1)°+ (P~ 22) = D} - D+ (1) 0~ D3~ 1P+ (- D -1 - 1)
+E=DO-D84+ (-~ 1)1’ -1+ (=) -4 z-1)?
+(=2) (=1 + e+ 1)~ 15z~ 1) +(~5- 1) (y—1)°(z - 1)2
+(@D0=18+ (~22) - 1) -)+ =D = 1)8 =12+ () - 1)’z ~1)>
+ (=0~ 1+ @) -4 1)+ (=0 0=1)7 =12+ Q) -1z~ 1)*+ (- D-1)5(z~1)
+(~22) -1’ -)+ @O~ 13-+ (-1 -1)%-1)*
+(=x)y-1)°(z—1)* (mod 5).
We see that the I-adic representation contains 38 terms compared with 6 terms in the original
expanded representation (which is an I-adic representation with respect to the ideal

I= <y,z>). The number of polynomial diophantine equations of the form (101) which
must be solved is proportional to the number of terms in the I-adic form of a(x,y,z).

Carrying out the Hensel construction for this example, the factors are developed in I-
adic form as follows:
o) = (x=2)+ (=2 + 1) (= 1)+ (x=2)(z = 1)+ &) (=)2+ (=x=2)(y = 1)z~ 1) + (- 2) z— 1)?
+(=)0 -1+ @ 0- 2D+ (=) -DE- D>+ 1) -1
+@ 0=+ (=)~ 1~ D+ DO - D=1+ @) - 1) e-1);
W) =@ =14 (=)= D+ (DO - 1+ (-1~ 1G~1).
Expressing these factors in expanded form (and noting that the coefficient arithmetic is being
done modulo 5), we have
v = xy4z + y2* + 2 (mod 5);
wDmx—y5 (mod 5).
At this point the iteration can be halted because
D = g(z,y,2) - v = 0,
Again note that there are many more terms in the I-adic representation of the factors than in
the expanded representation. O

It is clear from Example 6.10 that the use of nonzero evaluation points can cause a
severe case of intermediate expression swell. However it is not always possible to choose the
evaluation points to be zero because in the applications of the Hense! construction (sce
chapter 7), a necessary condition. is that the leading coefficient must not vanish under the
evaluation homomorphism. The original implementation of the multivariate Hensel construc-
tion (the EZ algorithm) degraded significantly on problems requiring non-zero evaluation
points.

One method of dealing with the I-adic representation in an implementation of the mul-
tivariate Hensel construction is to initially perform the changes of variables:

xj-xj+aj,25j5v,
if the ideal is [= <xy — a3, . . . ,x, — @,>. The required I-adic representation is then a

6-47

straightforward expanded representation based on the new ideal <x,, . . . ,x,>. However
it is important to note that this method suffers from the problem of intermediate expression
swell exactly as exhibited in Example 6.10. For in the original polynomial a(x,y,z) in
Example 6.10, the result of performing the changes of variables:

yey+1l zez+1

and then expanding, is precisely the 38-term form of a(x,y,z) displayed in the example, with
y — 1 replaced by y and z — 1 replaced by z.

An improvement to the algorithm can be obtained by avoiding the changes of variables
(or any other explicit representation of the I-adic form) as follows. At iteration step k let
e®) be represented as a multivariate polynomial in expanded form. It is desired to compute
the coefficients ¢;(x;) appearing in (100), the I-adic representation of e®), for all order-k
vector indices

1= (!'1,!'2, AR !‘k)‘

Noting that some of the indices in the vector | may be repeated, let the term in ®)
corresponding to a particular vector index 1 be of the form

e G, =)"y =)™ e (g,)™

where all factors appearing here are distinct. Then the coefficient ¢y(x,) can be computed
directly from the expanded representation of e®) by using the following differentiation for-
mula:

S SR (70 LU A 1 L
104) ¢y(xy) = Al omy q"[[&xh] a“f.])

This leads to an organization of the main iteration loop of the Hensel construction which can
be expressed as follows (where d is the maximum total degree with respect to the indeter-
minates x5, . . . , x, over all terms in the input polynomial a(xy, . . . ,x,)):

for k from 1 to d white ¢*) # 0 do
for each order-k vector index1= (i}, - - - ,{;)suchthat2 < {; s i) =<... =i <vde
Calculate ¢;(x;) using (104);
Solve equation (101% for ay(x;) and 7(x,);
Update u*) and w(¥) according to (103);

od
Update e(");
od.

This organization of the iteration loop is in contrast to the organization which follows more
directly from the proof of Theorem 6.6, using the “changes of variables” concept, as fol-
lows: (In both of the above program segments, it is understood that

e®) = a(xy, .. .0x) - ulkly®)
computed in Z{x;, . . . , x,] in expanded form).

A careful examination of these two organizations of the iteration loop shows that nei-
ther one is fully satisfactory for dealing with sparse multivariate polynomials. Recall our
observation at the beginning of this chapter that, in practice, multivariate polynomials are
generally sparse and the advantage of the Hensel construction over Chinese remainder (inter-

polation) algorithms is the ability to take advantage of sparseness. In the approach which
applies the changes of variables, there is potentially a serious loss of sparsity because the

Substitute x; ~ x; |||1’¢(2 <j=v)ina(x,x);
forkfmmltodw ® £ 0do
for each term of total degree k which appears in the expanded form of e* do
Pick off the coefficient c;(x;);
Solve eqmmon (101% for oy(xy) and 7y(x});
Updatc u®) and w®) according to (103);

Update e®);
od.
Substitute x; - x; = a; (2 5j = v) in u® and w)

representation of the polynomial a(xj, . . ., x,) after substituting the changes of variables
can have many more terms than the original representation (see Example 6.10). Note, how-
ever, that after this substitution step, the iteration then goes on to perform calculations only
for terms that actually appear in the expanded form of), In contrast, in the approach
which avoids the changes of variables but uses instead the differentiation formula (104), the
inner for-loop iterates over all possible order-k vector indices 1 = (iy, - - - ,i}) and, in prac-
tice, a large proportion of the coefficients ¢;(x;) will be found to be zero. Since the differen-
tiations and substitutions required by formula (104) can be performed relatively efficiently
for polynomials (particularly if it is programmed to ‘remember’ computed derivatives since
higher-order derivatives rely on lower-order derivatives) and since we would program the
inner loop to check if ¢(x;) = 0 and avoid any additional work in that case, the method
using formula (104) is generally preferable. However, the overhead of calculating ¢ (x;) for
all possible choices of the vector index | is significant and the cost of this overhead grows
exponentially in the number of variables, independently of the sparsity of the polynomials.
In particular, note that in the (relatively common) case where all of the evaluation points are
zero the method using (104) will be much more costly than the direct approach.

Polynomial Diophantine Equations in Zpl[xl. s X))

A significantly more efficient organization of the multivariate Hensel construction was
developed by Paul Wang [Wang78] and he called it the EEZ (Enhanced EZ) algorithm. The
main feature of the new algorithm is that it uses a variable-by-variable approach to avoid the
“exponentlal overhead” discussed above. In the context of Figure 6.2, the multivariate Hen-
sel construction lifting the solution from zp;[xl] to Z[x;, . . . ,x,] is replaced by a sequence
of v—1 single-variable Hensel constructions to lift the solution

from Z y[x1] to Z[x) xo;
from Z [x), x5} to Zpl[xl,xz,xﬂ;

from Zp;[xh R LY NN SR L

(As usual, p' is chosen large enough so that the final solution over the ring Zp; is equated
with the desired solution over Z).

Recall that the basic computation to be performed in applying & step of a Hense! itera-
tion is to solve a polynomial diophantine equation in the “base domain”. For the univariate
Hense! construction in Figure 6.2, the “base domain” is Z[x,] and Theorem 2.6 gives a
method for solving the polynomial diophantine equations. lg the “base domain’ zp.[xl]

6-49

we developed a method in Theorem 6.5 for solving the polynomial diophantine equations.
In order to carry out the variable-by-variable Hensel construction, we need a method for
solving polynomial diophantine equations in multivariate *“base domains” Z y[x;,
and we turn now to the development of such a method. Just as in the proof of Theorem 6.5,
we will apply Newton's iteration to the problem and indeed we will employ a variable-by-
variable technique for solving this sub-problem.

The polynomial diophantine equation to be sclved is to find multivariate polynomials
Uj(xl. e ,xj), 1'1(::1. e ,Ij) € Zp;[xl. - .Sj] such that

(105) G’J(Il. - ,xj)u(xl. PR ,Ij) -+ ‘I'J(Il, PO .XJ)W(Il. s .II)
™oz, ... ,3) (mod <IfYY pl>)

where I; = <x3 — ay, . . ., % = a;>, d is the maximum total degree of the solution poly-
nomials with respect to the indeterminates E ST N and
ey, .o x), Wley, L) elxy L) € Zp;[xl. .. .,%] are given polynomials
with &y o (u(xy, - . . ,2))) and ¢<I‘e>(w(x1. < + - +X;)) relatively prime polynomials in
the Euclid‘e’an domain Z,[x]. The equation to which we will apply Newton's iteration is

Gloy 1) =onlry .oz + Wiy, o .Lx) mcfxy L Lx) =0

Choosing the particular variable x, for lifting and proceeding as in- previous sections, if we
have the order-k approximations af*), {0 satisfying

Glof),7{)) = 0 (mod <(x; -~)k, 11¥], p'>)
and if we obtain correction terms AO}”’AT}” which satisfy the equation
106) ch(qjk).,jk))Ajk) + G,‘,(cr}"’.-r}"))A'rj"} - _G(cjk)_,jk))
(mod <(x;— aj)“l, If_"'ll, 7'>).
then
a}.H'l) = cj&.) + Aa}k)' T}k+1) = Tj(t) + Afjk}
will be order-(k+ 1) approximations satisfying
G(cj“l),-r}kﬂ)) w0 (mod <(xj—uj)"+1,l}’:11,p'>).
Writing the correction terms in the form
Aol = LT COTRIRIe) [€ Py aj)*,
ArfH) = LI €TINS) [€ T ctj)l
where 8; (1, . . ., x-p), Yl ... Epmp) € th[xl. « .., x_g), substituting for the

partial derivatives, and dividing through by (x; —)%, equation (106) becomes
(lm u(xl. “ e ,xj)sj.k(xi, P 'xj-l) -+ w(xl. N ,xj)tj.t(xl, e "tf‘l)
- ofxy, ... x) = ﬁjk)ll(.tl. cae X)) - -rj‘)w(xl. cee X))

d+1
- cj)" (mod <(x; = a)), I77;,
(Note that I;_; = <x; =~ ay, %j—y=a;_1>, the interpretation of I, is as the empty
ideal, and note that the above development assumed j > 1 since if j = 1 then the solu-
tion of the polynomial diophantine equation (105) is given by Theorem 6.5).
We thus have a recursive algorithm for solving the polynomial diophantine equation
(105). The order-1 approximations cjnw}l) with respect to the ideal <x; — a;> are
obtained by solving equation (105) modulo <x; — a;> - i.e., by solving the (j — 1)-variable

problem

Gy e ulrg e e) F (e I W(E 3oy ag)
= c(xy, F-py) (mod <If:11, p'>)
and then setting
e ¢ S
Then for k = 1,2,...,d, we solve equation (107) which, noting that it is to be solved modulo
<x; - a;>, takes the form of the (j— 1)-variabie problem

I.l(xl, [,xj_l,aj)sj’k(xl. PR ,xj_l) + w(xl, . s ,xj_l,aj)tj_k(xl. PN 'xj—l)
- e,‘(xl, . e .xj_l) (mod <Ij4:11! p’>)
where ;(xy, . .., x;_1) denotes the coefficient of (r; — @) in the <x; - o;>-adic

representation of the polynomial
e(xy,x)=clxy ..., x) - c}")u(xl. R N e 7}‘w(xl, DR
The base of the recursion is the univariate polynomial diophantine equation in zp,[xl] which
can be solved by the method of Theorem 6.5.
This recursive algorithm for solving multivariate polynomial diophantine equations is
presented as Algorithm 6.2. The conditions which must be satisfied by the input polynomials
are the conditions required by Theorem 6.5 for the univariate case at the base of the recur-

sion. Note that the solution of equation (105) computed by the algorithm satisfies the degree
constraint

foylxr, . . X)) < Bylwlry, - .. %))

(where 3, is the “degree in x," function) since the solution of the univariate case of (105)
satisfies such a constraint (by Theorem 6.5), as does the solution of the univariate case of
equation (107) which defines the correction terms, leading by induction to the general result.

¥#
#
#
#
#
#
#
#
#
#
#
#
#*
¥#*
#
#
#
#
#
#
#
#
#
#
#
#
#
OUTP
#

6-51

Maple Implementation of Algorithm 6.2

diophant: Multivariate polynomial diophantine equations.

Algorithm 6.2 in Geddes textbook.

Solve in the domain Z/<p"k>[x1,...xv] the (multivariate)
polynomial diophantine equation

sigma*a + tau*b == ¢ (mod <I"(d+1),p’k>)
for sigma,tau satisfying degree(sigma,x1) < degree(b,x1) .

Necessary conditions:

amod <Ip> and bmod <I,p> must be relatively prime in Zp[x1);
lcoeff(b mod I) must be a unit in the ring Z/<p"k> .

INPUT:

a, b, ¢ - polynomials in the domain Z[<p'k>[xl,...,.xv];

I - list of equations [x2—a.lph32 , xv=alphav]

(possibly null, in which case if. is a univariate problem)
representing an evaluation homomorphism —-
mathematically, we view it as the ideal

I = <x2-alpha2, . xv-alphav)

d - a nonnegative integer specifying the maximum total degree
with respect to x2,...,xv of the desired result {the
value is irrelevant if I is null);

P - a prime integer;

k - (optional) a positive integer specifying that the coefficient
arithmetic is to be performed modulo p°k, and if this
parameter is not specified thenk = 1.

The value returned is the list |sigma, tau] .

6-52

diophant := proc (a, b, ¢, I, d, p, k)
local modulus,n,eqn,monomial,anew,bnew,cnew,Inew,sigma,tau,e,
m,cm,deltas deltat x1 terms,i;
if nargs<6 or nargs>7 or not type(Llist) or
not type(d,integer) or d<0 or not type(p,integer) or p<2 or
nargs=7 and (not type(k,integer) or k<1} then
ERROR(‘wrong number (or type} of arguments in diophant‘)

fi;
if nargs < 7 then modulus := p else modulus := p’k fi;
= nops(I);
if n > 0then
eqn := op(n,I); monomial := op{l,eqn} - op(2,eqn);
anew := subs(eqn,a); bnew := subs{eqn,b);
cnew := subs{eqn,c});
Inew := [op(1..0-1, IJ];
diophant(anew, bnew, cnew, Inew, args|5..nargs]);
sigma := op(1,”); tau := op(2,”");
e := mods(c - expand(sigma # a) - expand(tau * b), modulus);
for m to d while e <> G do
cm ;= coeftayl(e, eqn, m);
if em <> 0 then
diophant{anew, boew, cm, Inew, args|5..nargs]);
deltas := expand(op(1,”j*monomial"m);
deltat := expand(op(2,”” PPmonomial m};
sigma == sigma + deltas; tau :== tau + deltat;
¢ := e - expand(deltas ¥ a) - expand(deltat * b);
e := mods(e, modulus)
i
od
else
Univariate case.
indets(a) + indets{b) + indets{c);
if nops(”)=1 then x1 := op(”) else
ERROR(‘invalid indeterminates in procedure diophant‘)
§;
Method: For each power of x1, call procedure "diophantl’
which will return remembered values after the first pass.
if type(c,'+*) then terms := |op(c)] else terms := [c] §;
sigma := 0; tau:=0;
for i to nops(terms) do
op(i, terms);
m = degree(”, x1});
em = leoel(””);
diophant1(a, b, x1, m, args|6..nargs]);
sigma = sigma + op(1,”) * em;
tau = tau + op(2,”") * cm
od
ﬁ.

{mods(sigma, modulus), mods{taw, modulus)]
end;

#
#
#
#
#
#
#
#
#
#
#

6-53

diophantl: Solve in the domain Z/<p"k>[x| the polynomial diophantine

equation
sigma*a + tau*b == x"m (mod p’k)
for sigma,tau satisfying degree(sigma,x) < degree(bx}.
Necessary conditions:
amod p, b mod p must be relatively prime in Zplx};
lcoeff(b) must be a unit in the ring Z/<p'k> .

The sixth parameter is optional, and if it is not present then k == 1.

The value returned is the list [sigma, tau] .

diophant} :== proc (a, b, x, m, p, k)

end;

local modulus,s,t;
option remember;

if nargs<5 or nargs>6 or not type(x,zame) or not type(m,integer)
or m<0 or not type(p,integer) or p<2 or
nargs=6 and (not type(k,integer) or k< 1) then
ERROR(‘wrong number (or type) of parametets in diophant1')
fi;
if nargs < 6 then modulus := p else medulus := p°k fi;

Apply mgedex to a,b in Zf<p k> [x] yielding 8,t such that
s*a + t*b == 1 (mod p'k)

(if GCD(a mod p, b mod p) = 1 in Zplx| , else error)

where degree(s,x) < degree(b,x) .

mgedex(a, b, args{5..nargs));
= op(L,”); t:= op(2,”");
it op(3,""”) <> 1 then
ERROR('polynomials in diophantl are not relatively prime'}
fi;)

'quorem’ computes q, r such that

x'm#*s = b*q + r (mod modulus)
with degree(r,x) < degree{b,x).

Then sigma =r and tau = x"m*t + q*a .

quorem(x, m, 8, b, modulus);
[op(2, ”), mods{expand(x*m*t + op(1,”}*a), modulus)]

quorem: Compute q, r such that

x'm*s = b*q + r (mod modulus)

with degree(r,x) < degree(b,x).

Use recursion on m, and termination is guaranteed by the assumption:
degree(s,x) < degree(b,x).

The value returned is the list [q, r].

quorem :== proc (x, m, s, b, modulus)
local q,r,const;
option remember;

if m + degree(s,x} < degree(b,x) then
[0, expand(x"m * &)]

else
It x"(m-1)*s == b*q + r with degree(r,x) < degree(b,x)
then x"m*s = be¥(x#q) + (x*r).
CASE 1: degree(x*r,x) < degree(b,x) and we are finished.
CASE 2: degree(x®r,x) = degree(b,x) so use the fact that
x"m*s = b¥(x*q + const) + (x*r- const*b)
where const is chosen to decrease the degree of the
remainder, namely: const = lcoefl(r)/lcoel(b).

quorem(x, m-1, s, b, modulus);
q:=op(L,”); r:= op(2""});
if degree(r,x) < degree(b,x)-1 then

{ expand(x*q), expand(xer) |
else

const := mods(lcoefi(z)/lcoei(b), modulus);

| expand(x*q) + const,

mods(expand(x*r - const*b), modulus) }

end;

mgedex := ‘readlib(’mgedex’)’;
coeftayl := ‘readlib('coeftayl’)’;

Maple Implementation of Algorithm 6.3

Multivariate Hensel lifting algorithm.
Algorithm 6.3 in Geddes textbook.

#

INPUT:

a - multivariate polynomial in Z|x1,x2,...,xv] which is
primitive as a polynomial in the special variable x1;

I- list of equations [x2=alpha2, x3=alpha3, . . . , xv=alphav]
representing the evaluation homomorphism used;
mathematically, we view it as the ideal

I = <x2-alphaZ2, x3-alpha3, . .., xv-alphav>
and the following condition must hold:
lcoefl(a, x}} <> 0 (modI).

p - prime integer which does not divide lcoeff{a mod I};

1 - positive integer such that 1/2*p°1 bounds the magnitudes of
all integers appearing in a and in either of its factors
to be computed;

u,w - univariate polynomials in Z/<p*1>>[x1] such that u mod p and
w mod p are relatively prime polyromials in Zp[x1), and

a==u*w (mod <Ip’1>);

gamma - (optional) a polynomial in Z[x2,...,x¥] which is known to
be a multiple of lcoeff{U,x1), where U (see OUTPUT below)
is one of the factors of a in Z[x1,x2,...,xv] to be computed
— gamma should be not larger than lcoeff(a,x1), and if
gamma is not specified then the value lcoefl{a,x1) is used.

OUTPUT:
If there exist polynomials U,W in Z[x1,x2,...,xv] such that
a=UsW
and

Uflcoefi{U,x1) === uflcoefl{u,xt} (mod <Lp"i>)
W/lcoefi{W,x1) == w/lcoefi(w,x1) (mod <Lp’I>})
(where the divisions here are in the ring of integers mod p°1)
then the list [U, W] will be the value returned.
Otherwise, the value returned will be GFAIL.

Functions required: replcoeff, coeftayl, diophant, content.

R RCE R R SR S R RS R R R OE R R R R R o

KOG (Oct./83)

6-56

hensel := proc (a,l,p,],u,w,gamma}

local x,modulus,v,lca,G,A,U,W j,eqn,alpha,imaxdeg, U1, W1 lcU,lcW,e k,c,
sigma, tau,deltaU,deltaW,contU,q;

if nargs <6 or nargs>7 or not type(L list) or has{map{type,l,'="),false} or
not type(p,integer} or p<2 or not type(l,integer) or 1<1 then
ERROR(‘wrong number (or type) of parameters in hensel')
fi;

convert{map(indets,I), ‘+');
indets(a)-+indets{u)+indets(w);

if nops(”)=1 then x[1] := op(") else
ERROR(‘inconsistent indeterminates in hensel'}

fi;

if degree(a,x|1]) <> degree(u,x[1})+degree(w,x[1]) then
ERROR(‘inconsistent degrees in hensel'}

f;

Define new polynomial A]v] and its factors modulo <Lp’1>.
modulus :==p°L;
v := nops(l) + 1;
Ica := lcoefi(a, x[1]);
if nargs < 7 then G := lca else G := gamma fi;
if G = 1 then Alv]:= a else A[v]:= expand(G#a) fi;
leoefi{u);
if » = 1 then 1 else modp(”**(-1), modulus) &;
if G=12and " = 1 then U := u else

U := mods{subs(op(I),G) * ” * u, modulus)
i
lcoefl{w);
it * = 1 then 1 else modp{”**{-1), modulus} fi;
iflca=13and " = 1 then W := w else

W := mods(subs(op(l),lca) * ” * w, modulus)
fi;

Initialization for the multivariate iteration.
for j from v by -1 to 2 do
eqn := Ij-1];
Afi-1] := mods(subs(eqe, Alj}), modulus);
] xli] := op(L,eqn); alphalj] :== op(2,eqn)
od;
map({ proc(x,¢) degree(e,x) end, {seq(xlil, i = 2..¥v}}, Alv]);
maxdeg := max(op{"));

Variable-by-variable Henael iteration.
for j from 2 to v do
Ul:=U; Wl:=W,;
if G <> 1 then
if j == v then
IeU := G; kW :=lea
else
1eU := mods{ subs(l|j..v-1], G), modulus);
1cW := mods(subs(I[j..v-1}, lca), modulus)

f;

U := repleoef{U, x{1], keU); W := replcoefl(W, x[1], IcW)
fi;
¢ := Alj} - expand(UsW});
for k to degree{Alj], x[j]) while e <> 0 do

¢ :== coeftayl{e, x|j|=alphalj], k);
ifc <> 0 then

diophant(U1, W1, ¢, [op(1..j-2,1)}, maxdeg, p, 1);

sigma := "[1}; tau:= ""[2];

deltaU := expand(tau * {x[j]-alphalj])"k});

deltaW := expand(sigma * (x[j]-alphalj]) "k);

¢ ;= mods(e - expand(deltaUsW) - expand{deltaWsU) -

expand(deltaUsdeltaW), modulus);

U := mods{U + deltaU, modulus);

W := mods(W + deltaW, modulus);

if ¢ <> 0 then

if deltalU = 0 then divide{A[j),U,’'W’)
elif deltaW = 0 then divide(Alj],W,"U’)
fi;

if ” = true thene: =0 f

fi
od
od;

Check termination status.
if Alv]-expand(U+W} = 0 then # Factorization obtained — remove contents
if G <> 1 then
contU := content(U, x[1]);
divide(U, contU, 'U’);
divide(G, contU, °q’); divide(W, q, 'W');
RETURN([U,W])
Note that the value Alv]/G is the criginal input a

else
. RETURN([UW])
else # No such factorization exists
RETURN{GFAIL)
fi
end;

repleoedl ;= ’readlib{’replcoeff’)’;
coeftay] := 'readlib('coeftayl’)’;
diophant := ’readlib("diophant’)’;
content := ’readlib('content’)’;

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

