A LOGICAL RECONSTRUCTION OF PROLOG II

M.H. van Emden* and J.W. Lloyd

*University of Waterloo
University of Melbourne

£S-83-35
November, 1983

A Logical Reconstruction of Prolog I¥

M.H. van Emden' and J.W. Lloyd*

HUniversity of Waterloo
*University of Melbourne

ABSTRACT

Colmerauer has proposed a theoretical model for Prolog II based on
tree rewriting rather than logic. In this paper, we show that Prolog II can be

regarded as a logic programming language.

1. Introduction

We take the view that a logic programming language is one in which a program is a
first-order theory and computed answers are correct with respect to this theory [1,8].

One can then pose the question: is Prolog 11 {2,3] a logic programming language and, if
s0, in what sense is it? This question naturally arises from Colmerauer’s account of his
theoretical model for Prolog II. There, all explicit connection with first order logic has been
severed. Instead, Prolog II is regarded as a system which manipulates infinite trees. Unifi-
cation is replaced by transformations on sets of equations. Roughly speaking, Prolog II is
standard Prolog without the “‘occur check”. Since it is well known that the lack of an occur
check in Prolog can lead to incorrect answers, it is not immediately obvious that Prolog II can
be thought of as a logic programming language.

We show that the answer to our question lies in making explicit Prolog II's theory of
equality. Once that is done, it is easy to demonstrate that answers computed by Prolog II are
correct with respect to a first-order theory consisting of (essentially) the program plus the
equality theory.

Section 2 contains a brief account of Prolog II. In section 3, we introduce the idea of
the"general procedure”, which is an SLD-resolution proof procedure underlying both Prolog
and Prolog II. In section 4 we show that Prolog is essentially the general procedure plus the
equality theory {x = x}.? In section § Prolog II is shown to be essentially the general pro-
cedure plus a rather more complicated equality theory. What distinguishes Prolog from Pro-
log II then is the different way they handle equality. Section 6 contains some concluding
remarks.

Throughout, 7 denotes a Horn-clause logic program not containing the predicate “=",
Similarly, G will always denote a goal which does not contain the predicate “*=",

2, ProloglI
The following brief description of Prolog II is taken from [2].

Definition An equation is an expression of the form 1, = ¢, where ¢, and 1, are terms.

Definition A set of equations is in substitution form if itis {x, = 1, . . . ,x, = ¢}, where
Xy, « + .+ 4%, #re distinct variables and none of 1, . . . , 4, is a variable.

§ The meaning of "Prolog” here excludes any form of negation.

-2

Definition A set {x, = ¢, . . . ,x, = t,} of equations in substitution form has a loop if for
some k = 1,...,n, #, has an occurrence of x, or if such an occurrence of x, can appear after
possibly repeated substitutions in r, using equations of the set.

In Prolog II, the solution of a set of equations is a substitution of trees for variables
that makes both sides of each equation the same tree. A set of equations in substitution form
is obviously solvable over the domain of rational trees. A set of equations in substitution
form without a loop is obviously solvable over the domain of finite trees, Thus, equations
can be solved by reducing them to substitution form by applying solution-preserving transfor-
mations.
Colmerauer lists the following transformations {2):
Compaction:

Eliminate any equation of the form x = x.
Variable Anteposition

If x is & variable and ¢ is not a variable, then replacer = x byx = ¢.
Splitting

Replace f(s;,.. 18 = fltys o aly by 8, =8, . . . 5, =1,
Confrontation

If x is a variable and 1,, ¢, are not variables and the size of ¢, is not greater than the size

of 2, thenxeplacex =, x =, byx =1, 4, = ¢,.

Variable Elimination
If x and y are distinct variables, x = y is in the system and x has other occurrences in
that system, then replace these other occurrences of x by y.

He asserts that for any finite set of equations, application of the transformations in any order
is only possible a finite number of times. Then either a set is obtained which is in substitu-
tion form or the set contains an equation of the form #, = #, where ¢, and ¢, have different
outermost functions symbols. In the latter case the set has no solution over the domain of
rational trees.

In Prolog II the clauses of a program are regarded as rules for rewriting a tree to a pos-
sibly empty sequence of trees. A query consists of a sequence of trees and a set of equa-
tions. A query is rewritten to another according to

<Ay ... A A AL, ... ALE > =
<Ay .. Ay By oo By Ay ..., Al E >

if there is a rule B~B,, ..., B, (m=0) in the program, if £ U {B = A} can be
transformed to substitution form and if £’ is such a form.

The final query in a derivation has an empty sequence of trees, The corresponding set
of equations is the answer.

Now that we have given a brief overview of Prolog II, we are in a position to explain in
what sense it is possible to give a logical reconstruction of Prolog I1,

The domain of interest for Prolog II is the set of infinite trees. What we have to do is
find a first-order theory for which the intended interpretation is a model and alsc for which
every answer computed by Prolog 1T is correct with respect to this theory. Naturailly, the
main part of this theory is the program itself. The remainder is simply a theory of equality.
We have to find an equality theory so that each of the transformations employed by Prolog 11
(compaction, etc.) can be justified because they always produce a set of equations that is a
logical consequence of the parent set of equations pius the equality theory.

3. The General Procedure

Definition The homogeneous form of aclausep(t,, ..., 1) « B, ..., B, is
Py X)) Xy =8, .., X, = 0,B,, ..., B,
where x,, . . ., x, are distinct variables not appearing in the original clause.

Definition Let P be a program. The komogeneous form P’ of P is the collection of homo-
gencous forms of each of its clauses.

Definition An atomic formula, whose predicate symbol is "=", is called an equation.

We now describe the general procedure. We call it “general" because, depending on
the theory of equality invoked after it, we get Prolog, Prolog II or other specialized
languages,

The general procedure uses the homogeneous form P° of a program P and produces an
SLD-derivation [7,4]. It consists of constructing, from some initial goal G, an SLD-
derivation using input clauses from P', while never selecting an equation. The general pro-
cedure terminates if a goal consisting solely of equations is reached. Note that because of the
homogeneous form of P’ the general procedure never constructs bindings for the variables in
the initial goal.

For a particular language, the general procedure needs to be supplemented by a theory
E of equality. E is used to prove the equations resulting from the general procedure, Dur-
ing the proving of the equations, substitutions for the variables in the initial goal are pro-
duced. If the equation-solving process is successful (that is, the empty goal is eventually pro-
duced), then these substitutions for the variables in the initial goal are output as the answer.

The equation-solving process would normally be done by resolving goal clauses with
clauses from the equality theory. However, other methods are possible. For example, the
last step in the equation solving process for Prolog II is not a resolution step.

The introduction of the general procedure is purely a didactic device to explain which
parts of Prolog and Prolog I are the same. Obviously, it would be very inefficient in prac-
tice since unsolvability of a set of equations is not detected until near the end of a computa-
tion. A practical system must perform some equation solving throughout 2 computation and,
of course, this is what both Prolog and Prolog I do.

4. Equality theory for Prolog

on 1. Let P be a program, G a goal and P’ the homogeneous form of P. Then
P U {G} is unsatisfiable iff P’ U {x = x} U {G} is unsatisfiable.

Proof We first prove that P is a logical consequence of P* U {x = x}. Let M be a model for
P'U{x=x} We have to show M is a model for P. Take in P any clause

pty, ..., 4) « By, ..., B, with variables y,,...,y,. Suppose that for some assignment

of these variables By o -« - A B, is true in M, Consider the homogeneous form
PEu . X)) e X =, =, By ..., B,

of this clause in 7', Let x, be the element assigned to ¢, for the above assignments of the

y/'s, for § = 1,..., n. By the axiom x = x and the assumption that B, » - - - A B, is true

in M, we have that p(x;, . . ., x,)is truein M. Thatis, p(r,, . . ., t,) istrue in M. Con-

sequently, M is a model for P and so P is a logical consequence of P* U {x = x}.
It follows from this that if P U {G} is unsatisfiable, thensois P’ U {x = x} U {G}.
Conversely, suppose P’ U {x = x} U {G} is unsatisfiable. Let A/ be a model for P.
Then we can extend M to a model M’ for P’ U {x = x} by assigning the identity relation to
"=". Thus G is false in M’ and hence in M. Hence P U {G} is unsatisfiable. 0

-4-

Proposition 1 shows that the equality theory for Prolog is the single axiomV x x = x.

5. Equality theery for Prelog 11
The equality thecry £ for Prolog II is rather more complex than the one for Prolog and
consists of the following axioms:

1l Vxx=1x
VxVy x=y »y=1x
3. VxV¥yVzx=y A y=z~x=12

4 Vx - V5, ¥y - Yy, @m=y)a oo Ax,=y,)
=@ 2= O Y
for all function symbols f.
5. 3x ---3x, 3y, - Ty j=y)r - Az, =),
where the x’s are distinct variables, the £'s are terms and
50 <« o4 Xy Yo+« o, Yibis the set of all variables in the formula,

Note that axioms 4 and 5 are actually axiom schemas. The first task is to show that all
the above axioms are true for the intended interpretation of * = " as the identity relation on
the domain of infinite trees. Axioms 1 to 4 are the usual axioms for = and are certainly
true in the intended interpretation. Axiom 5 is true by Colmerauer's solvable-form theorem
{2]. This theorem states that a system of equations {x; = t,, . . ., x, = ¢,} has a solution
in the domain of infinite trees, provided the x,’s are distinct variables.

Now we are in a position to prove our main result, which amounts to the soundness of
Prolog II. Intuitively, it states that every answer computed by Prolog I is correct with
respect to the first order theory eonsisﬁng of the homogeneous form of the program plus the
equality theory E.

Proposition 2. Let P be a program, P’ its homogeneous form, G a goal and E the above
equality theory for Prolog II. If Prolog II solves the goal G, then P’ U E U {G} is unsatisfi-
able.

Proof Since the general procedure uses resolution, it produces intermediate goals all of
which are a logical conseguence of P’ U {G}. We now verify that each of the five transfor-
mations of Prolog II can be justified on the basis of resolution steps using the equality theory
E,

Compaction

Consider agoal «y =y, e, ..., ¢, wheree,, . . ., ¢ are equations. Elimination
of y =y is justified by resolving the goal with the equality axiom ¥x x = x. Thus
« &€y, . .., & isalogical consequenceof {~y =y, e, ..., g} UE.
Variable Anteposition

This is justified in a similar way to compaction, but using axiom 2.

Splitting

Resolve with axiom 4.

Confrontation
It suffices to show that «x=1, f,=1 i3 a logical consequence of
{~x=1,x= 1} UE. Indeed we have the following derivation:

~XFH, X"
ex=t,x =4, =& (resolving with an instance of axiom 3)

X = h, =

Variable elimination
We let s{x/y] denote the result of replacing in s all occurrences of x (if any) by y. The
following lemma will be useful.
Lemma
x=y -~ 5= slxhy]
and x=y ~ sxtyl=gs
are Jogical consequences of E.

The proof is by repeated applications of axioms 1 and 4, plus an application of axiom 2.

To justify variable climination, it suffices to show that «x = y, s{x/y] = t[x/y] is a
logical consequence of { ~+x = y, 5 = ¢} U E. Indeed we have the following derivation:
-x=y, s=1
«x=y, 8=s[xfy],slxiy] =t (axiom 3)
~x=y, x=y,s[x/iy}=t (lemma)
~x=y, slxiy]=1
- x=y, saly] = t{zly], tix/y] =t (axiom 3)
~x=y, slxiy]l=tzly],x =y (lemma)

«x =y, sixiy]= txtyl.

Finally, the last step in a Prolog II computation is the application of the solvable form
theorem. From a Jogical point of view, this is equivalent to an application of axiom 5 above.

This completes the proof of the proposition. O

6. Concluding Remarks

In [3], Colmerauer extends the theoretical model of Prolog II to cope with inequalities.
We have not attempted to deal with these.

Note that the general procedure can be followed by the use of any theory of equality.
We have given two useful theories in this paper. It should be interesting to consider other
equality theories, We are particularly interested in theories suggested by two existing sys-
tems related to Prolog. The first is Goebel's DLOG [5] logic-based database management
system which uses two different equality theories: one for equality of descriptions and the
other for heuristic evaluation of queries. The second is Kornfeld’s version of Prolog [6] with

“6-

an extended unification.

7. Acknowledgments

We are indebted to Imperial College of the University of London for its hospitality

which made this work possible. MHVE gratefully acknowledges support from the UK Sci-
ence and Engineering Research Council. We also acknowledge our debt to the Canadian
National Science and Engineering Research Council for providing document preparation
facilities.

8. References

By
2

B3]
[

{31
6}
7
[8]

K.L. Clark: Predicate logic as a computational formalism. Research Report 79/59,
Department of Computing, Imperial College, 1979,

A. Colmerauer: Prolog and infinite trees. pp. 231-251 in: K.L. Clark and S. A. Tarn-
lund (eds.): Logic Programming. Academic Press, 1982.

A, Colmerauer et al.: Prolog II documentation.

M.H. van Emden: Programming with resolution logic. pp. 266-299 in: E.W. Elcock
and D. Michie {eds.): Machine Intelligence 8. Ellis Horwood, 1977.

R.G. Goebel: A logic data model for the machine representation of knowledge. PhD
Dissertation, Dept. of Computer Science, University of British Columbia, 1983,

W.A. Kornfeld: Equality for Prolog. Proc. 8th International Joint Conference on
Artificial Intelligence. A. Bundy (ed.), William Kaufmann, Los Altos, 1983.

R.A. Kowalski: Predicate logic as a programming language. Proc. IFIP74, pp. 569-
574,

J.W. Lloyd: Foundations of logic programming. Technical Report 82/7, University of
Melbourne, revised May 1983,

	
	
	
	
	
	
	

