Record of the
First Annual Maple Workshop
June 11-12, 1983
Wild Echo Lodge
Port Stanton, Ontario

Edited by
B.W. Char, K.0. Geddes & G.H. Gonnet

Research Report CS-83-31

Department of Computer Science
University of Waterloo
Waterloe, Ontario, Canada
N2L 3G1

Record of the First Annual Maple Workshop June 11-12, 1983,
Wild Echo Ledge, Port Stanton, Ontario

Edited by: Bruce Char, Keith Geddes, Gaston Gonnet

Participants

Stephen Watt Carolyn Smith Sophie Quigley Michael Monagan
Benton Leong Erich Kaltofen* J. Howard Johnson Marta Gonnet
Gaston Gonnet Keith Geddes Greg Fee Bruce Char Robert Bell

Department of Computer Science
University of Waterloo
Waterloo, Ontario

*Department of Computer Science
University of Toronto
Toronto, Ontario

ABSTRACT

This is an edited record of the discussion at the Maple retreat during the three
formal working sessions. Most of the discussion was focussed on extending
the Maple language[Ged82a, Cha83a] to deal with mathematical manipula-
tions it currently does not handle conveniently, as well as the implementation
issues arising from such extensions. Three main topics were discussed: han-
dling matrices characterized as conglomerations of matrix sub-blocks, possi-
ble ways of handling evaluation and unevaluation of expressions, and opera-
tor algebra.

1. Session 1: 9:30am-noon June 11, 1983

1.1. Matrices and arrays in Maple

The discussion started by considering the problem of manipulating matrices which are
conceived as having an internal structure of submatrices of assorted sizes. This problem has
been mentioned as something that the predecessors of Maple do not handle well. For exam-
ple, we might be thinking of a matrix A, consisting of three interesting blocks, A1, A2, and
B:

Al | A2
A=1__ | __
0 | B
Typically, we know that

rows(A1) = rows{(A2) cols(A1) = cols(0)

-9

but we may not know (or choose to define) more than that. Even so, algebraic manipulation
of such objects is found to be useful in such applications as the numerical analysis of linear
algebra algorithms, or with Strassen’s matrix multiplication algorithm.

It was noted that certain non-symbolic languages, such as PL/1, Algol68, and APL can
define and name sub-blocks of a matrix. For example, Algol68 allows subscripting and trim-
ming {collectively called slicing) as in:

[1:20, 1:20] real x
y := x[2:4, 18:20]
in which case y is a 3-by-3 matrix. Maple at this point has arrays and tables, [Wat83a] but

does not have any knowledge of matrices or arithmetic on them. The obvious way to
represent a matrix in Maple is by a two dimensional array.

1..10, 1..10 Hash table of values

A header index bounds for elements of A

Figure 1 -- schematic representation of a 10 by 10 matrix A

Using the natural representation has the advantage that unless the "Table of values" has
information to the contrary, "Ali,j]"” will evaluate to "Ali,j]". If B is a submatrix of A, the
indexing header/descriptor of the matrix B contains a description of how to map an address
of B into the corresponding address in the Table of values for A. This is similar to PL/1 with
definite array bounds.

B header m{def’b;unads c:g;re:szz A;:ndcc:;s
% Table of values
for elements of A
1..10, 1..10 identity map
A header index bounds | addressing function

Figure 2 -- schematic representation of A and submatrix B

However, this does not handle the situation when the dimensions of A and B are not known,
or intentionally symbolic. In such a case, all that may be declared to the system is that m
and n are positive integers which are symbols for the number of rows and columns of A
respectively.

What happens with assignments to elements of such objects, such as afi,i]: =3, where i
is a symbol? If we allow such assignments, (which all agreed would be useful), then we may
want to first use i as a symbolic index, and then later give it a value, For example, consider
the following sequence of assignments:

afali]] : = 4
afi] :=3
i:=3

What happens when the value of afi] (that is, a[3]) is requested? Isit 4 or 3? (Or something
else? If this is tried for a Maple table currently, the results of an assignment to a symbolic
element a[i] are only retrievable, subsequent to the assignment of a value to i, by the table
reference a[’i'].)

One school of thought (the "programming viewpoint™) is that assignments to arrays or
matrices should be time stamped, and the most recent assignment used, so that the semantics

-3-

of the above should be the same as the sequence a[3]: =4; a[3]: =3; -- 3 should result.

Another school of thought (the "mathematical viewpoint”) is that when i is assigned a
value, either of the previous assignments has equal "right” to be the one which actually takes
effect. Thus, the result of the above is unpredictable/unspecified (either 3 or 4).

Another situation where this might arise is when the user wants to define a matrix as
"all zeroes,but with the diagonal equal to one”. This can be viewed as two separate assign-
ments, one modifying the other (the programming point of view). Or one could just use a
single "pseudo-mathematical” definition such as occurs in vaxima with "a[i,j] : = if i=j then 1
else 0".

1.2. Brief interlude: discussion on infinite objects

Infinite objects occur in many mathematical situations. For example, one may define a
set via:

a - {b}
b «~{a}
This object can be finitely represented as:
a
{1}
{}—"

Figure 3 -- representation of "{{{{{ }}}}"

There are other more useful instances of an infinite representation, such as using
x«1+Vx as a way of representing the equivalent notion

=1+ V1+VI+ Vit

or to represent a Taylor series by the function that describes how to produce the n-th term
from n.

The point was established that users of Maple might want to manipulate and program
with such things (e.g. manipulating infinite power series until one decides on a definite
order, or calling upon a stream of values using "lazy evaluation” -- see [Tur82a]). While not
strictly necessary, computing with infinite objects would give an expressiveness to the
language not currently available.

Another observation about the infinite was made regarding Maple’s current problem
with the fact that x := x-+1; x; causes a fault and termination. The observation was made
that a student-oriented, careful checking system analogous to WATFIV would do the neces-
sary work of marking the stack to check for recursive definition of a name, but that other
versions may not. It was left unclear why such checking can’t be done efficiently and why
such checking should not be put into any interactive version of Maple. (Are non-students
less likely to be upset when their Maple dies?).

1.3. Back to arrays and matrices

Currently, Maple arrays/tables are all implemented as hash tables -- they have no intrin-
sic fixed size or subscripting scheme that requires numerical declaration. It is thus easy to
implement objects with symbolic dimensions based upon the current implementation of
tables’. In general, the "symbolic matrix with symbolic structure” problem would start being
an implementation problem when the user defined the structure of the matrix -- subblocks of
a matrix A, some of whom overlap. One might imagine the following sequence of specifica-
tions:

a:= array (1..n, 1..n) #n a symbol

b := subarray(a, i..j, i..j) = #b is a subarray of a, row and
columns i through j. i and j are
symbols

c : = subarray(a, k..1, k..1) #c another subarray of a. kandl

again are symbols
b := {all zeroes}
¢ : = {identity matrix of size I=k+1}
followed by assignment of particular integer values to i, j, k, and], and then usage of a par-
ticular element of a, say, a[20,19].
The most definitive suggestion for implementing submatrices was to treat the indexing

and table for a matrix and all submatrices as one object, with pointers into the object made
by all:

A header B header

o

table of properties
of A

/

table of valueq

Figure 4 -- Representation of matrix/submatrix as one object

The "table of properties of A" would contain both dimensioning information and indexing
information for A and all submatrices. Changes in dimensions or indexing would alter the
table of properties. Presumably conflicting specifications for various submatrices would be
resolved by inspecting the table. This would be okay for changing indexing functions, but
not for array element assignments.

Another viewpoint is that a matrix a could be viewed as strictly the union of various

* Erich made the observation that we seem to spend a lot of time worrying about how to implement a
feature, long before we are finished discussing how we want the feature to work. He noted that in the
Scratchpad work, usually feature design was mainly completed before implementation details were worried
about. The danger with the latter approach is that one may want to conceive of the system as being based
upon features that can’t be implemented efficiently. The danger of the former approach is that the system
starts to take on an ad-hoc flavor -- the justification of the design is that it was easy to get to work, no
matter how many problems it causes for users. Avoiding falling into one of these traps requires constant
vigilance.

-5.

submatrices, some with symbolic names, and some without. The matrix m would therefore
have few properties itself; all such properties would be subordinate to the properties of the
submatrices, which would really do the work of defining the matrix. Implicitly this approach
will only work for disjoint unions, it is not clear how this would resolve the "overlapping
submatrix” problems,

Yet another view of submatrices is to view them as matrices of matrices. Thus the
object in Figure 1 would be viewed as a 2 by 2 matrix, each element of which is a matrix of
random size. It is not clear how this view allows one to do symbolic matrix arithmetic with
two matrices where the submatrices of one matrix are not the same size as those of the other.

2. Session 2: 3pm-6pm, June 11

2.1. Parameter passing in Maple

Sentiments were expressed that parameter passing for Maple procedures is still not
"right”. The design should be motivated by more conceptual elegance.

For those who had never thought it through, Gaston presented a fairly precise model of
parameter passing in Maple,

Originally, when a procedure was invoked, a copy of the entire procedure was made
and each actual parameter (without evaluating it) was substituted into the procedure every-
where the formal parameter occurred. This was an implementation of "call by name" in one
of its purest forms but there were various difficulties: (a) Some variables are environment-
dependent, so something like f(a,b,") was causing the " to be substituted textually inside the
procedure, producing a result which was hardly ever the desired one. (b) There is an intrin-
sic lack of efficiency in this approach; for example, f(very_expensive_function(x)) may pro-
duce several evaluations of the expensive function (one each time the first parameter of f is
evaluated). The writer of f(..) should not be held responsible for this. (c) The copying pro-
cess in itself is very expensive. Sometimes large functions do some testing and return
immediately without ever executing most of the code, but the copying has to be done for
each parameter, and everything "higher up" in the expression tree, which means effectively
copying everything.

It should be noted that parameter passing in a symbolic language is much trickier than
in normal programming languages due to the lack of a final "evaluated” form for expres-
sions.

The current solution is to fully evaluate parameters at the time of procedure call, plac-
ing the values in an internal table to be consulted during invocation of the procedure. This
has the same effect as the previous version except for parameters which depend on the
environment. Most of the efficiency problems of the previous version are eliminated since
parameters are evaluated only once (although parameters which are never used are evaluated
needlessly). "Naive" users sometimes encounter this "feature” of Maple when one of the
parameters to a procedure is an unevaluated name to which a value is to be assigned, but the
user also uses that parameter like a programming variable in the procedure code as in the fol-
lowing example.

f := proc (x,y,returnval)
returnval : = x**2;
while foo(..) do

returnval ;= returnval + 1
od
end;

Figure 5 -- Example of erroneous use of formal parameter in Maple

-6-

A legal version of the above procedure would be:

f := proc (x,y,returnval)
local t;
ti= x**2;
while foo(..) do

t:=t+1
od;
returnval ;= t
end;

Figure 6 -- Example of correct use of formal parameter

or alternatively, forcing an evaluation by the use of " as follows:

f := proc (z,y,returnval)
returnval : = x**2;
while foo(..) do

returnval;
returnval := " + 1
od
end;

Figure 7 -- Alternative example of correct use of formal parameter

2.2. The uses of the notlon of "varlable” in symbolic computsation languages

Variables in symbolic algebra are used for three main purposes: (a) as programming
variables whose values are other expressions, constants, etc. during the process of computa-
tion; (b) as mathematical symbols or names with no value assigned to them; (c) as macros
which stand for a pattern (or expression tree) of symbols without evaluation.

The concept of "lazy evaluation” can be viewed as the mode of "macros” as mentioned
in (c) above. Basically, there would be a syntax for setting up macro names, such as

pisx? + 1.
This would build an expression tree labelled "p":
- P
+
NN 1
PN
X 2

Figure 8 -- expression tree for p

A sequence of assignments (macro-definitions)

pisx? + 1
qisp + 35

would just build a structure for q that would include a reference to p, without doing any so-
called "evaluation™:

P
+

~
LN
PN
X 2

Figure 9 -- lazy evaluation expression tree for g

If one wanted to actually view the "value” of q, that would be evaluation, and require more
work (in this case, just following pointers around). Unlike the current scheme of
evaluation/simplification, nothing would be done until requested, in which case everything
might be done. Maple does not explicitly differentiate between modes (a) and (b); the
differences arise simply by the assignment (or unassignment) of names. As for mode {(c),
Maple supports a limited (one-step) "lazy evaluation” realized by the quoting mechanism. In
some cases where mode (c) is needed for more than one step of computation, the quoting
mechanism has been found to be inadequate.

Another observation was that the problem in symbolic manipulation language semantics
comes from mixing evaluation with expression formation. The “"lazy evaluation" proposal
could explicitly separate the two; e.g.,

pisx®+1
xis5
gisp*+ 1

would just create expressions, with the representation doing a job of representing what was
typed in. It would be only on an explicit call to the evaluator, such as typing "eval(q)" after
the above definitions had been entered, that the value of q as 677 would appear.

Someone then pointed out that the macro definition of "x is 5" in the above sequence
should be illegal, since when the prior "p is x2 + 1" was entered, x was considered to be a
mathematical variable and hence should be an illegal choice as a programming variable or a
macro name,

There was not total agreement that having a language with mathematical symbols, pro-
gramming variables, and macro names completely disjoint was a good thing from an “ease of
usage” point of view. For example, consider the problem of "undetermined coefficients".
One has, say, a polynomial equation in a variable x. The polynomial’s coefficients involve
expressions in symbolic constants and actual numbers. Determining the coefficients means
solving the system of equations that results from setting each coefficient equal to zero. Of
course, when the solution is known, one wants to convert the symbolic constants into pro-
gramming variables, and assign those variables the values derived. It was also noted that
"lazy evaluation” would not be a desirable mode very often. An inspection of the functions
coded in the Maple library shows that a majority of the steps require full evaluation.

-8-

Another proposal put on the floor was to represent expressions in terms of a pattern,
and a list of variables that would name the slots of the pattern. For example, x* + 1 would
be represented as:

x2+ 1

SN

#+1 x

Figure 10 -- Expression tree with slots

This would seem to make things easier when pattern-directed simplification is implemented,
since the pattern would be free of actual variable names. However, such pattern-matching
might have a difficult time with constants, which might be in a pattern as in "look for an
explicit but arbitrary constant”; i.e., it only captures one property of a symbol, namely its
occurrence.

As a more complicated example, consider the following sequence of expression crea-
tion:

pext+1
g«p*P+y+x+1

has g pointing to
(#1 4+ 1)#2) + #1 + #2+ 1

as the pattern part, with "#1" being "x", and "#2" being y. However, the choice of which
was "#2" and "#1" was arbitrary (i.e., implementation dependent).

A final point made was that in the latest profiling tests, equal time was spent in the
"eval”,"simpl", and "search" portions of the Maple internal code during execution of the
Maple tests which exercise all the features (although not necessarily in the same proportion
as "real” users do). Thus, while the preceding discussion assumed that the current imple-
mentation of Maple was spending an excessive amount of time in evaluation (needlessly
traversing expression trees because full evaluation is applied to each expression), the profil-
ing results contradict this impression. Maple spends some time in its evaluator, but this
amount is only about 10% of the total time, on average.

2.3. Freeze and thaw -- deferred evaluation

Discussion then turned to one of the thornier problems of evaluation in Maple, namely
that because Maple always "fully evaluates” expressions before, say, giving something to a
procedure as a parameter, one often finds the need to delay or totally prevent
evaluation/simplification. Listed were 15 problems associated with "evaluation" that must be
handled:

1 Call-by-name. For example, divide(a, b, 'q’). This case is the most common use of
quotes in Maple. It involves passing a name into a procedure, and this name may be
assigned a value before return from the procedure. Morven had previously pointed out
that an alternative to this is to return a list of values (as would the Lisp community).
One drawback of returning lists of values is the overhead of unbundling the values into
individual variables after the return. Another drawback is that all values will always be
computed, whereas with an extra optional parameter, the procedure can usually avoid
some computation if the optional parameter is missing.

,

2. Unassignment. X := 'x

resets the value of x to just a symbol from programming

10.

11.

12.

-9.

variable usage. Once again, the current notion in Maple is that a quoted variable is the
name of the variable, and that the notion of a mathematical symbol can be simulated by
a programming variable which has its own name as its value.

Unassignment of concatenated names. forito 10 do a.i : = evaln(a.i) od; This is similar
to the preceding case, but the above trick does not work because 'a.i’ would remain
completely unevaluated. What is needed here is that i must be evaluated, then the con-
catenation a.i must take place, with no further evaluation of the resulting name.
Maple’s evaln function achieves this “evaluate to a name" construct. It should be
noted that the use of quoting in both of the preceding cases could be replaced by the use
of the evaln construct.

FAIL or RETURN('f{iparamseq)’). Returning the procedure call itself when a routine
can’t find the answer. This is a pure example of preventing the evaluation of an expres-
sion.

Delaying expensive arithmetic. For example, 2!9%%, Sometimes it is expedient to delay
the evaluation (or simplification) of an expression because it may not be needed in sub-
sequent computation, but if it is needed then evaluation/simplification will take place
when the expression is referred to.

Unwanted simplification. For example, 108 = 22 * 33, This result would be produced
by the ifactor routine, but if the factored result is returned normally, Maple’s simplifier
will immediately "simplify" the product of powers into a single number. Maple’s inter-
nal simplifier will simplify 2*3 and '2*3’ to 6. Using two levels of quotes 2*3" will
prevent simplification because the evaluator strips off one level of quotes, so in the
latter case the simplifier sees *2*3’ which it leaves untouched.

. . (1-xP+(1-x)*)
Preventing expansion. For example, expand(1= ,1-x). Here, Maple’s
expand function has its own "freezing” mechanism by which any cxpression can be
regarded as though it were temporarily substituted by a name, simmply by listing the
expression as an extra parameter.

Freezing for factor, normal, ged, etc. For example, factor (exp(x)?*—1). Here it is
desired to replace subexpressions such as exp(x) by frozen names, for the purposes of
computing factor, normal, gcd, etc. This is similar to the preceding example, but
unlike the expand function there is currently no solution for these other cases.

String concatenation. For example, “This is * . 'a’ . “string". There is no separation in
Maple between the concepts "name" and "string”. Occasionally one gets tripped up by
the fact that the string "a" is actually the same thing as the name a, which has been used
as a programming variable and has a value.

Automatic loading. For example, ged := 'readlib(’ged’)’. Delayed evaluation is used
here to get the construct which some other languages call "autoloading”. The inner
quotes are necessary to prevent a recursive evaluation loop and the outer quotes prevent
the evaluation of the readlib function until such time as the name "ged” gets evaluated.

Premature concatenation. For example, sum(’a.i’*x**i, i = 0 .. n). Here we want to
prevent the concatenation of a.i into ai, until within the sum function i takes on specific
values,

Preventing op. In the application of Maple to the implementation of a relational data
base, it is desired to construct a tuple selector. A tuple selector may look like:
[op(3,X),0p(8,X),0p(1,X),...]. The construction of such selectors is typically done in
loops, and if any of the op’s evaluates prematurely it fails. This selector is then used in
constructs of the form:

map(proc(X) [selector] end, Relation) .

The solution that was adopted for this case was to construct the selector using OP which
does not evaluate to anything, and then before doing the map the assignment OP : = op

-10 -

is done.

13. Tracing. In tracing by setting the value of printlevel high, the trace of map('absLc’,...)
prints out the name "absLc" as it is applied during mapping. However, the name "unk-
nown" is printed out when tracing map(absLc,...) because the name "abslc" is unk-
nown within the map function - only its value (a procedure body) has been passed into
the map function.

14. Recurrences. For example, eqi := 'T.i + diff T.(i—1), x)*x’ This is an expression
from orthogonal polynomial definition. If the expression is not quoted, the diff func-
tion is evaluated at the wrong time.

15. Substituting into an unevaluated diff. For example, f'(0) means dif{f(x),x)|,.,- An
attempt to handle this situation by using the construct

subs(x = 0, diff(f(x),x))

is incorrect. (We are concerned with the case when f is undefined). This is really an
operator problem (operators are discussed in section 3.4 of this report).

Discussion then turned to how the various ideas suggested so far could deal with these
problems.

The "p is" macro definition style might solve problems like (5), e.g.
y is 2*1000

would just create the structure. Evaluation would not occur unless macro expansion was
explicitly asked for. This just defers the problem one more stage, since if all expressions are
initially created with macros, one will sometimes want to macro-expand everything except
structures such as 2°1000. How will one be able to specify something like that without
another level of quoting or evaluation fences?

The same macro definition style would perform "unassignment” as in (2) (reset from
programming variable usage to math symbol) by

Xisx.

This would create a circular pointer, but presumably the implementation would be able to
detect circularity at macro-expansion or printing time, and do the right thing.

For (7), it was noted that the use of expand is a little different than the proposed syntax
for factor: expand(..., 1—x) has the notation for what syntactic subexpressions should be
frozen with respect to the expansion, while example (8) -- factor(exp(x)**2—1) -- doesn’t.

There was a consensus that there were three kinds of evaluation in normal usage:
.- evaluate now, during execution of the statement (what Maple usually does)

-~ hold off evaluation "for a moment” (perhaps until the next time the expression comes
under scrutiny of the evaluator - the usual effect of quoting things in Maple)

-- don’t evaluate until told to: blocked evaluation during manipulation

The observation was then made that some of the examples were really not evaluation
problems but actually semantic problems. For example, "diff(f(x),x) evaluated at x = 0"
should not be treated as a case of controlling lexical substitution of 0 for x in the expression,
but rather the concept of “evaluation at x = 0" is fundamentally different from lexical substi-
tution.

Previcous Maple meetings had brought out the preliminary concepts of "freeze" and
"thaw” to handle “"don’t evaluate until told to". The basic proposal is that "freeze(expr)"
turns the object into a special name that hides all mathematical properties of expr. For
example,

-11-

freeze(1l) + freeze(2) + freeze(3)

would be an expression where the arithmetic of numbers would not be performed, just as if
this was the sum of three different symbols.

A "tfreeze" concept was proposed, to promulgate freezing of limited dynamic scope.
tfreeze (f, expr, vars)

would freeze the expressions in "vars" when invoking the procedure f with argument expr.
The syntax for this needs to be cleaned up, but it is obvious enough that what is desired is a
mechanism to freeze certain things and then automatically thaw them upon return from the
procedure. There might be problems with unconditional thawing, however,

The “thaw” command proposal would remove the "hiding" of the properties of the
frozen objects. For example,

thaw(expr)
would thaw everything in the expression "expr".

Erich was perturbed by the fact that the freeze concept was hiding all properties of the
frozen object, as opposed to just presenting a wall through which evaluation would not pass,
but rather go around. Some people viewed as a "feature” that diff(frozen-expr-in-x , x)
would return 0, while others viewed this as a bug.

At this point we had reached the following solutions to the 15 problems listed above.

Problems 1-3: Use evaln, but in problems 1-2 the use of single-quotes is also valid.

Problems 4, 9-11, 13, 14: Use single-quotes to prevent evaluation.

Problems 5, 6, 12: Use the new freeze/thaw mechanism,

Problems 7, 8: Use the tfreeze (temporary freeze) mechanism, which should be a
general "front-end” procedure.

Problem 15: This is an operator problem, discussed in section 3.4 of this report.

Can one assign to frozen variables? Since the implementation proposal suggests that
they are just another kind of name, the answer should be "yes". This would be a "possible,
but why would you want to do it?" sort of feature. The question then naturally arises, "why
not make it illegal?"

A frozen "x+1" therefore would look like

flag indicating

Name a frozen object

SUM sum rep. for x+1

Figure 11 -- frozen object "x+1"

One could assign a value to the frozen object, via "assign(frozen(x+1), x+2)", (assign
evaluates both arguments):

-12-

flag indicating

Name a frozen object

SUM sum rep. for x+2

Figure 12 -- result of assign(frozen(x+1), x+2) -- a frozen(x+2)

An assignment to a frozen object changes what is being frozen.
An alternative approach to freezing would be to hide the frozen expression in its name:

value ;
+
Name (unassigned) hidden (x+1)

Figure 13a -- alternative representation for frozen(z+1)

where assign(frozen(x+1), x+2} produces an object whose value is x+2, but will still *thaw’
to x+1.

Name hidden (x+1)

SUM sum rep. for x+2

Figure 13b -- alternative result of assign(frozen(x+1), x+2)
3. Session 3, 9am-noon, June 12, 1983

3.1. More on freezing and thawing

The discussion returned to a few loose ends from the previous day’s discussion. The
question was asked, if you freeze an "x+1" and then subsequently another "x+1", is the
same frozen object generated in both cases? The consensus was that in some applications
they must be the same, and in other applications they need to be treated differently, It was
eventually concluded that equivalent expressions must generate unique frozen objects, but
there would have to be a concept of "levels" of freezing so that one could thaw expressions
that were frozen at "level 2" without thawing expressions frozen at "level 1", for example.
Both concepts (freezing with level or without) have practical drawbacks.

=13 -

3.2. Short-circuit evaluation

A different observation was made about Maple’s evaluation process. It was noted that
not all clauses/terms in a boolean conjunction/disjunction/product need to be evaluated if, as
they are evaluated in sequence, one of them is false/true/0. For example, O*int(....,x)*....
could skip a (possibly expensive) call to "int" and recognize the result of zero immediately.
Doing "short-circuit" evaluation (actually putting in a little simplification knowledge into the
evaluator) has the consequence that side-effects that arise during the evaluation of the
skipped terms will not occur (such as if int sets some global variables during its invocation).
Thus, while attractive for efficiency purposes, it is not clear that whatever gains there are
outweigh the possible change in semantics.

3.3. On the transformation 0** - 0
Discussion turned briefly to Fateman’s "language-independent bug”, namely that

sum(afi]*t**i, i = 0..n);

subs(t=0,");
returns zero, because of the (erroneous) simplification of 0**i to zero BEFORE any
knowledge of the range of i is introduced. Greg mentioned that the usual convention is 0**0
- 1 rather than 0**0 - 0. (Note that for an explicit 0**0 Maple gives a "division by zero"
error). Keith noted that this example is a representation of a polynomial in t with constant
term a[0], and one expects the result of substituting zero for t to be the constant term a[0].
Erich was of the opinion that algebra systems make mistakes in analysis because they are
algebra systems and not expert systems in analysis, but that was okay®.

3.4. Notation for operator algebra

Consider the partial derivative of f(g(x,y)) with respect to x. Unfortunately, barring a
convention that assigns standard names to arguments to a function based upon their position,
we have something like

diff(f(g(x,y)), %) --> at(partial(f, 1), g(x,y)) * at(partial(g. 1), (x,y))

(assuming that y is independent of x). The problem with the notation is that there is no
name for the argument to f in the first partial, and that "evaluation at" for a function is
currently not defined in maple. Attempting to use the "subs" function for the "evaluation at"
operation Jeads to erroneous results.

The suggestions for notation for the partial derivative were:
diff(f,1) (x)
£:(x)
hH (x)

Given that differentiation is well-recognized as an operator upon functions, such that
mathematicians like talking about "Df" without any reference to arguments of f at all, discus-
sion turned to operators as a new kind of object in maple. It was recognized that while
operators might not be an ordinary kind of symbol in maple, one still wants the ability to
write mathematical expressions involving them: with E and F operators, one might write
"2*E", "E+F", or "diff(E)" (whatever an operator applied to another operator does). Given
that functions operate upon ordinary Maple expressions or constants, a first crack at nota-
tion, say,

(a+ e+ 1+ partial(f,1)) (7)
shows that a constant as a function (say, "1", or a symbolic constant "a"}, has a different

* Gaston thinks that above remark should be framed and placed in a prominent place at our meetings.

-15-

<x**2>(5) -+ 25

<sin(x)> (y) - sin(y)

<x + cos(y)> (a,b) - a+ cos(b) (or b+ cos(a))
<sin>(x) - x

(Note that the latter case is an example showing that <a>, for any name a, denotes the
identity operator). The underscore operator is used for the distinct concept of applying func-
tions to arguments where no "procedurization” is involved, as in:

(a+b)_(x) - a(x) + bx)
Gin)_(x) -~ sin(x)

A further refinement to the operator notation is the ability to specify which variables
become "parameters” to the "procedurized” expression, and in which order. The extended
syntax is:

<expr| x,y,...>

where the names x,y,... are to become the "parameters” of the procedurized expression.
For example:

<f(zx)+a|x>(b) -~ f(b)+a
<gx) +x**2+3|x>(3) - gB3)+12

Note that the previous example <x + cos(y)> (a,b) would use indets(x -+ cos(y)) to deter-
mine the "parameters” (and their order) for the procedurized expression, and hence the
result depends on maple’s ordering of the elements in a set.

It was noted that <expr>_(args) should be equivalent to <expr>(args). More gen-
erally, the underscore operator would be required unless the left operand is an operator
(i.e., in angle brackets), a name, or a procedure. It was further noted that <c¢>(x) - ¢ and
(c)_(x) - c for any constant expression c¢. The identity operator is <a> for any name a.
Products (and powers) of operators will denote composition, since that is the only logical
interpretation when the operands are operators. Thus there is a distinction between
<expr>**2 and <expr**2>, the former denoting a composition of operators and the latter
denoting ordinary squaring.

The following additional examples are presented to further clarify the concepts.

(<x**3>(<n>))_(x) - «x
In contrast to (<x**3>(In})_(x) - In(x)**3
In contrast to (<x**3>(<In(t)>)_(x) - In(In(In(x)))

(1-cos**2)_(x) - 1 -— cos(x)**2
Incontrastto (1 — <cos(t)>**2)_(x) -~ 1~ cos(cos(x))

sin((1/sin)_(x)) -~ sin(l/sin(x))
In contrast to sin((1/ <sin(t)>)_(x)) - sin{arcsin(x))

((<D>-a)**2)(y) =~ (y—a(y)*2
evalb(<expr|x>(1) = subs(x=1,expr)) - true

< diff(f(x),x,x,x) >_(0) - < diff(f(x),x,x,x) >_(0)
(f is undefined, diff remains unevaluated, so the operator remains unevaluated)
f:=sin; ""; - -1

The final minutes were spent looking at the notation for ambiguities, particularly with
respect to the rest of the Maple expression syntax. <a>b + c¢<d> can only be a Boolean
operator, for example, since <a>b can't be an operator expression, it would have to be

.14 -

meaning than a constant in an ordinary Maple expression. However, it is obvious from the
context in the above example that the occurrences of those symbols are meant as functions,
while it is not so obvious that functional notation rules should be applied (if they are dif-
ferent from the ordinary simplification rules) in the situation:

b:=a+ e+ 1+ partial(f,1) — a;
b(7)

since when the assignment to b is made, there is only the weak implication that functions are
involved by the occurrence of the word "partial”.

The next observation is that actually we want (f)(7) to be £(7) when f is a function.
Therefore the parentheses notation (exprl) (expr2) means "exprl" is a function, evaluate it
at "expr2”. Thus if we want something for operators, we need something different such as

<exprl> (expr2) (expr3)

meaning "apply the operator expression exprl to the functional expression expr2 to get a
function as a result. Evaluate that result at expr3".

Should operators be manipulated according to the rules of standard eval/simpl algebra?
(At last, we have a name for the domain that Maple does manipulation in! "The algebra of
whatever eval/simpl does”.) How can one define an operator? A suggestion was that there
be an "option operator”:

f := proc (x)
option operator;
e + 1 + partial(x,1)
end;
However, there is no way in maple to do algebra on "proc”s, at least not yet. But putting

the "option operator” into procs would be an easy flag for the simplifier to catch if we
wanted to build in some automatic simplification to work only on operators.

An observation was made that this was somewhat similar to "procedurizing” the func-
tion used in a "map”, such as

map(<x**2>, [a,b,c]) -~ [a**2, b**2, c**2]
Currently there is no way to conveniently express "the squaring function” except as the some-
what clumsier
map(proc (x) x**2 end, [a,b,c])
A warning was issued that there was a conflict between different operator notations.
For example f2(x) may mean f(x)*f(x), while D*f means the n-th derivative of f -- n compo-

sitions of the operator D. This confusion can be reduced by the observation that f in the first
example isn't an operator, but rather the "squaring operator” working on the function f.

A concrete suggestion arose for operator notation (with later refinement to what is
presented here):

<operator expression> (arguments)

with a separate concept of applying expressions to expressions in a "functional” way (see
below):

(expression) _ (expression)

Thus an operator expression is denoted by angle brackets <>, The arguments to the opera-
tor expression appear immediately to the right of the angle brackets. The operator notation
can be interpreted as meaning "procedurizc" as in:

- 16 -

<a>(b).

4. Conclusions

The session adjourned with the feeling that things were just getting rolling; we could
have easily spent another day in the perfect weather at Sparrow Lake talking about these
issues. All were agreed, however, that the retreat provided a rare opportunity to discuss
more complicated issues in a conducive environment free of other commitments.

References

Chag83a. Bruce Char, Keith Geddes, Morven Gentleman, and Gaston Gonnet, The Design of
Maple: A compact, portable, and powerful computer algebra system, to appear in
Proceedings of Eurocal 83, London, April 1983.

GedB82a. Keith Geddes, Gaston Gonnet, and Bruce Char, Maple User’s Manual, 2nd edition,
University of Waterloo Research Report CS-82-40, December 1982.

Tur82a. David Turner, Programming with Infinite Data Structures, Invited Talk given at 1982
ACM Symposium on Lisp and Functiona! Programming. 1982.

Wat83a. Stephen M. Watt, Arrays and Tables in Maple: Supplement to the Maple User’s
Manual, University of Waterloo Research Report CS-83-10, May 1983.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

