GRAPHICS IN SPRITESLAND
by

F. Mavaddat
N. Cutcliffe
R. E1lis

Department of Computer Science
University of Waterloo
Waterloo, Ontario

Research Report €S-83-30

October, 1983



GRAPHICS IN SPRITESLAND

F. Mavaddat
N. Cutcliffe

R. Eilis

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1

Canada

ABSTRACT

A friendly programming environment for Texas Instrument’s 9918A
Graphic Processor is discussed which, while hiding some of its more difficult
features of low level programming, enhances the concept of sprites. Enhanced
sprites, which we call Graphic Objects, are more powerful than their constituent
sprites in size or number of colours and can change shape to represent time vary-
ing objects. This environment also facilitates the writing of Graphic Processes.
Graphic Processes are self contained, relatively independent programs which lock
after the movement of closely related Graphic Objects without much attention to
simuitaneous control of other objects in the scene. Graphic Processes simplify
the handling of complex and structured scenes. This paper ends with a discussion
of implementation issues.

1. INTRODUCTION

Computer graphics is enjoying a deservedly high profile and widespread recognition. There
is almost no doubt that graphic and voice will be the predominant forms of communication with

computers in the future.

CRT based graphic equipment is still quite expensive. Any kigh resolution colour enriched



9.

graphic output station is worth many tens of thousands of dollars. There are some graphic appli-
cations that even at such high prices are still very cost effective. The use of such graphic systems
in the cinematographic industry is now a proven success [3]. Other known cost effective applica-
tions are flight simulators and oil tanker simulators. Many other applications are not cost
effective as yet but are pursued in the hope of future reductions in the cost of graphics hardware.
Certain graphic applications require much lower hardware costs for them to be cost effective. No
revolutionary reduction in the cost of high resolution graphics hardware can reasonably be
expected in the foreseeable future. Therefore new approaches are necessary to address such appli-
cations in a cost effective way. Examples of applications are electronic video games, computer
aided instruction, and colourv computer terminals. All these applications require hardware costs

below a few hundred dollars if not sometimes much less.

There are certain characteristics of these applications which makes their cost effective imple-
mentation possible with even the present state of hardware technology. The first characteristic of
significance is the acceptability of low resolution graphics. Instead of 1280 x 1024 pixels which
seems to be the de facto standard of high resolution graphics {2], these applications are sufficiently
satisfied with considerably lower resolutions. The other characteristic which often adds to the
reduction of cost is the lack of any need for pixel intensity definition. Most of the applications
discussed require only one bit of information per pixel. This bit is used to turn the pixel on or off
in black and white applications, or distinguish between two colours in colour applications. The
combined effect of lower picture resolution and binary pixel information is to reduce the need for

high bandwidth access to frame buffer memory.

Another characteristic which contributes to low cost is the relatively few number of colours
needed to satisfy many applications. While hundreds of colours are typically provided by more
advanced graphic systems, low cost applications require not more than 8 or 16 colours. This obvi-

ously contributes to further cost reductions.

Low resolution, less pixel information and a reduced number of colours still satisfies many

applications because they are not trying to duplicate reality and the loss of realism does not seri-



-3-

ously damage the applications’ central themes [4,7]. As an example, in an alien’s invasion game,
representing the aliens by simple box shape figures and with coarse resolution is definitely not
realistic, but its eflect on the main theme of the game is not serious. In other words, the main
theme is the human reaction to some threatening objects, aliens or otherwise, It is probably
better to call them aliens because of the increased flexibility that this allows in representing them.
The number of colours is another limitation which is not going to seriously affect the applications
discussed. If representing reality is the main theme then we are in need of considerable colour
control. The more familiar the object to be presented is, the more control that is needed in its
generation. For example, the variety of colours needed in generating a human face makes it suit-
able only to the most advanced of graphic systems, while an alien’s colour is open to imagination

and probably the stranger the more real!

Limited requirements of this class of graphic applications prompted the manufacturers into
the construction of single board graphic processors. Most of these were used in arcade games.
Success of the arcade games and their subsequent proliferation into home entertainment enlarged
the market to the point of making the development of custom ICs profitable. Initial ICs were
limited in their function and capabilities. Recently a few graphic ICs of reasonable power were
introduced into the market. This report discusses one such IC, TI's 9918A Video Display Proces-
sor. A high level graphic package to be used for developing application programs is presented for

that IC. These are all part of an ongoing project in our Microsystems laboratory.

2. FEATURES OF TI’s 8918A GRAPHIC PROCESSOR

The Texas Instruments 9918A is a single chip video display processor (VDP) which supports
up to 16K of raster display picture memory (frame buffer) in the form of dynamic RAM. This
memory is not part of the host processor’s address space. It is accessed by the host using the
VDP as a middle man. The VDP also performs the task of generating a composite video signal

output of the raster image described by the frame buffer.



- 4-

The VDP is able to operate in four different modes to generate its primary raster display.
Al of these modes produce cell graphics. Cell graphics operates by partitioning the frame buffer
into a collection of sub-buffers called cells [5]. Each cell describes the raster image of a fragment
of the overall image. The main display is composed of an array of pointers to cells. The usual
arrangement for cell graphics is such that there are insufficient cell definitions (usually 256) for a
unique cell to appear on every cell position of the screen. Because of this, it is not possible to
uniquely control every pixel on the screen. The result is that cell graphics is a very awkward sys-
tem for image production. However, the 9918A has a cell graphics mode available which over-
comes this problem and allows the frame buffer to behave like a simple bit map. This is done by
describing the screen with three separate cell definition tables of 256 cells each. ‘T'he resulting ras-
ter buffer is described by 32x24 cell buffers. Each cell is 8x8 pixels giving an overall image of 256

pixels on the horizontal and 192 pixels on the vertical.

For each raster description cell there is a corresponding colour description cell of 8 bytes.
Each byte in the colour cell corresponds to a row of pixels described by the raster cell, The VDP
has available a 16 colour set which is encoded in the colour cell as a 4 bit binary value. The first
four bits of a byte in a colour definition cell defines the colour of the ones and the last four bits is
the colour of the zeros. The result is that even though 16 colours are available, the colours can

only resolve down to a row of 8 pixels which severely limits the generality of colour use.

By far the most interesting feature of the VDP is that in addition to the primary raster
frame buffer whose features were described above, there is a facility for multiple plane frame
buffers [5]. The Texas Instruments literature refers to these small buffers as ‘‘sprites” [8]. A
sprite is similar to a raster cell except for its ability to overlay and also its ability to be positioned
at any pixel position. There are 32 sprites available. The sprites are available in four formats
described by a size and magnification. Sprites may be 8x8 or 16x16 pixels which may be
magnified to 16x16 and 32x32 pixels, respectively. When magnified, each pixel of the original
raster becomes 2x2 pixels on the screen. All sprites must share the same size and magnification at

any one time. There is only one of the 16 possible colours assigned to a sprite. Each of the pixels



-5-

associated with a one take on this colour. All of the zeros in the sprite buffer take on the special

value of transparent.

The most attractive properties of sprites are their abilities to overlay and to be placed at
any pixel position on the screen. These features eliminate from the host processor the most com-
putationally expensive portion of moving images on a raster display. The cost of moving a 16x16
pixel image becomes equivalent to the cost of placing a pixel. These powerful features make

real-time animation a viable consideration for even the lowest powered computer systems.

3. A HIGH LEVEL USER INTERFACE

Like any other piece of hardware, low level programming of the VDP is tedious and error
prone. It is subject to difficulties, similar to machine code programming and therefore all the
known {and of course some unknown) errors. In a similar way, most of these problems are elim-
inated through the use of automatic programming techniques and high level user interfaces, such
as symbolic naming, and automatic number conversion. Achievements at this level are similar to
those of assembly language capabilities. Another motivation for a high level interface is that of
expanding the machine capabilities beyond what is apparently available through the hardware.
Similar capability expansions are often known as virtual capabilities, virtual resources, or virtual

machines. A well known example of this is virtual storage.

Yet another cutcome of a higher level interface is the abstraction. An abstraction hides the
irrelevant (or less relevant) details while emphasising some or all of the desirable features at the
same time. It may even represent an unfamiliar picture of the original hardware, one more suited
towards the intended applications. In our attempts at creating a higher level interface to the
VDP, a great amount of emphasis is placed on abstraction, extension, and manipulation of sprites.
This, in turn, makes our interface more suitable for the development of games or other animated

applications.



-6-

The following pages describe the semantics of the tools developed for easy interface to the
VDP. Our plan has been to develop functional tools which are called within a host programming
environment. We believe that this is the best method for the initial developments and gaining of
experience. Except for a very primitive set of single key graphic commands té be used for a
quick test of ideas for demonstration [1], no attempt has been made to define any syntax for the

interface.

3.1. GRAPHIC OBJECT

Graphic objects are a logical extension of the sprite concept. Though the sprites are limited
to definitions of 8x8, or 16x16 there is no similar restriction on the size of a Graphic Object (GO).
Similarly, colour restrictions imposed on the definition of Sprites are relaxed in case of the GOs.
This gives the user an opportunity for handling larger sprites with more colour selections. Obvi-

ously, the range of available colours are still limited to those available from the VDP hardware.

Furthermore, the shape or colour of portions of GOs can change in time. This is useful for

creating the sensation of moving or changing GOs,

3.1.1. DEFINITION OF GRAPHIC OBJECTS

One obvious way of defining a very general GO is to define it through its bit map. Some
short hand notations like the use of octal or hexadecimal symbols can also be employed to reduce
the burden of the job. Another method of more efficiency for most objects is to define them in
terms of polygons. This can be done by first defining the boundaries and then assigning a colour
to the enclosed area. As we said before, the syntax of such definitions has not been our prime
interest so far. A few techniques for sophisticated paint systems are already widely known [6].
As GOs are often simple objects, we have adopted a simple notation for the definition of boun-
daries and specification of their colour, The same scheme is also used for the painting of the main

frame buffer images. GOs defined at this level are called the primitive GOs. Two or more GOs



-7

can be combined to form other GOs for two possible reasons. The first reason is to create a larger
and more sophisticated GO. Tl;nis is done through the relative positioning of the two origins of
the constituent objects and naming the resultant object. The second reason is so that two or
more GOs can be combined to form a cycling object. Only one of several GOs forming a cycling

GO is visible at any one time.

3.1.2. CREATING AND REMOVING OF GRAPHIC OBJECTS

A GO does not exist until it has been created. The ‘‘create” command creates an instance
of a GO and assigns it to one of many virtual planes. A created Graphic Object can move only

within the confinement of its associated plane.

The “create” command, as part of the act of creation, has to specify the ‘‘definition” of
which an instantiation is to be made. The position of the virtual plane and where in that plane it
should initially be placed is also under the control of the “create” command. Any movement of
the GO is subject to the control of other commands to be discussed later. Obviously it is always

possible to have several instantiations of a GO definition active at any time in the system.

There is no limit to the number of virtual planes in the system and every such plane can be
agsociated with only one GO instantiation at any time. There are no unallocated planes among
those already associated and every plane is recognized by a pointer returned at the time of crea-
tion. When creating a new GO the user must specify the position of its associated plane with
respect to those already in the system. This can be done by placing it in ‘‘front” or in “back” of

all virtual planes or “‘before” or “after” a specific virtual plane.

The user may also ‘‘remove” a created GO or “purge” its definition altogether to make
rcom for new definitions. When a GO is “‘removed” its corresponding virtual plane is also elim-
inated and its position claimed by those behind it.

Not all created GOs are visible at all times. Virtual planes are larger than the video win-

dow open unto them and only those within the bounds of the window are visible. A GO leaving



8-

the window will re-enter the window later after traversing a virtual cylinder around which the vir-
tual plane wraps. This is the main reason for expecting more virtual planes than there are physi-

cal planes.

3.1.3. MOVING OF GRAFPHIC OBJECTS

Any movement of a GO is along some direction in its plane. Because such directions are
unique to the GO, a simple “move” instruction, applied to any GO would move it along that
direction by the amount specified. Successive execution of suitable “move” and “direction set-
ting” commands moves a GO along a path of any desired complexity. To define a direction a
point different from the current position of the GO is selected. The direction from the current
position of the GO towards the latest target defined is the current direction of future moves.
While defining the target points a distinction should also be made between those which simply
define a direction and disappear and those which do act as the target and impede any further
movement of the GO beyond the target point. Some simple horizontal or vertical directions of

move can be simply defined as “up”, “down”, “left”, or *right”.

3.1.4. CONTROLLING OF CYCLING OBJECTS

A cycling object is a composite object which is defined by several versions only one of which
is visible at any time. The selection of the visible version is done through the activation of the
“switchto” command. The selected version will remain ‘“‘on” until another version is selected

through the execution of an appropriate “switchto” command or the GO is “removed” from the

system.

3.2, SYSTEM TIMING

The rate of change in a scenario can be controlled by the appropriate insertion of the “wait”

statements. A ‘‘wait” statement specifies the amount of delay to be inserted between the



Q.

completion of the execution of the statement immediately preceding the “wait” and the start of
the execution of the statement immediately following it. All delays are specified in real time

units.

3.3. GRAPHIC PROCESSES

Many applications require simultaneous handling of several Graphic Objects. Even in some
simple games many things are moving along distinct paths doing different things. Each object is
often independent and to a great extent autonomous. Putting the management of this complexity
under the control of a single sequential program is an unnecessary burden on the programmer.
This is a situation similar to that of writing operating systems prior to the development of more

advanced techniques for managing the complexity.

A scene showing a car moving in a system of streets and intersections is in fact under the
control of its driver who is following a reasonably independent algorithm taking him from point A
to point B. Similarly, in a game of competition between the forces of two sides, individual men
are following their own tactics of the game with the overall goal of achieving victory. All of these
are comparable to the situation in an operating system where individual system components are
performing their own functions individually (e.g. a tape unit is copying a buffer onto a tape while
the disk drive is filling another buffer from disk and buffer to buffer transfers are done asynchro-
nously and autonomously under the control of the CPU), while as a whole they are helping to
push more jobs through the system. Based on these observations it becomes clear that a similar
philosophy of breaking graphic activities into independent, though interacting processes, may be

the answer to the management of this complexity.

A Graphic Process {GP) owns one or more Graphic Objects and coutrc;ls their movement. A
GP is controlling the movement of a set of closely related objects and as such represents their
close interaction in an effective way and without any need for consideration of others. Graphic
Processes are written in independent segments and as such should be written either within a host

system capable of multi-tasking or in their own artificial environment.



-10 -

A Graphic Process can sense its environment through the use of the “find” command. The
GP may ask for the position of a specific GO and receive its coordinate back through the “find”

command. It may also ask for the position of the closest GO or the closest GO of a specific type.

4. IMPLEMENTATION

For implementing the environment three important decisions have to be made. These deci-
sions are, first, how to represent the graphic objects, second, how to handle virtual planes with

respect to the physical planes, and finally how to implement the graphic processes.

The most economical representation of a GO in terms of the number physical sprites is a
desirable goal. Even with the most economical allocation the savings are not that great. Follow-
ing our initial goal of finding the most suitable tools we have not considered the optimization

issue yet and have settled for a simple mapping of Graphic Objects onto the sprites.

An m-sprite Graphic Object would require m physical planes when it is within the visible
window, On the other hand the same object requires only one virtual plane when it is not within
the view. The m physical planes have to be consecutive. This requires the re-assignment of phy-
sical planes each time an object is about to appear within the window and release of those planes
after it leaves the view. This is a situation similar to the allocation of memory to incoming jobs
in a multi-programmed system and reclaiming tire area after the job leaves the system or is tem-
porarily returned to backup store. The only difference is in the need for preservation of the order
in the case of GOs in the physical planes as compared to their order in the virtual plane. Such

considerations are often not necessary in the case of memory allocation.

The handling of processes is probably the most difficult of the implementation decisions that
has to be made. Our current implementation techniques are similar to those of simulation
languages. The list of future events is maintained by the process scheduler. Each list item, in
addition to the time of the event, points to the program instruction (within the associated pro-

cess) from which the program execution should proceed. Our implementation allows a program



11 -

execution to proceed until a wait instruction is reached which in turn schedules a new future

event and relinquishes controf to another process.

Unlike standard simulation techniques, when there is no current activity to be performed,
time is not automatically updated to that of the next event. Real-time w:aits are enforced by a
hardware timer and the next event on the list is started only after its real-time wait has passed.
Under this scheduling protocol the smoothness of the changes is under the programmer’s control.
Should some changes be unacceptable it is the programmer’s duty to refine his move steps. This
in turn will further load the system and may slow the operations beyond that planned by the pro-
grammer. Like many other design tasks a good program is a compromise between quality of the

product and realities of hardware available to the designer.

5. CONCLUSION

We have reported on some of the findings of our “Graphics in Spritesland” ongoing activi-
ties. A first version of the system was completed last January. In this system programs are writ-
ten in the assembly language of the Intel 8085 microprocessor and debugged and tested on our
Tektronix 8550 development system. Debugged programs are transferred to EPROM and placed
in our dedicated system. The dedicated hardware is located on two circuit boards which, with a
power supply, are placed in an enclosure. One board contains the VDP and its associated

memory. The other board is a single board 8085 based microcomputer developed locally.

Our experience with the first version is highly favourable. A number of programs demon-
strating the graphic capabilities of the system are written. A simplified version of Space Invaders
was our first attack on a game project. A powerful version of Pac-Man was also written in less

then one week and has been used extensively since.

Currently we are developing a new and enhanced version of the system with two cascaded

VDP's. This should double the number of available physical planes.



-12-

REFERENCES

(1

(2]

3l

(4

(5]

(6]

7

(8]

Cuteliff, N., “A Functional Interface to Control Movement of Computer Generated Pictures,
SPRITES, for Video Display Graphic Applications”, Master’s Essay, University of Waterloo,

Waterloo, Ont., Can., 1983,

Foley, JD. and A. Van Dam, Fundementals of Interactive Computer Graphics, Addison-

Wesley, 1982.

Kochanek, D.H.U,, R. Bartels, K.S. Booth, “A Computer System for Smooth Keyframe Ani-

mation”, technical report CS5-82-42, University of Waterloo, Waterloo, Ont., Can.

Malone, T.W., “What makes things fun to learn? a case study of intrinsically motivating

computer games”, technical report CIS-7, Xerox PARC.
Newman, W.M. and R.F. Sproull, Principles of Computer Graphics, McGraw-Hill, 1973.

Plebon, D.A. and K.S. Booth, “Interactive Picture Creation Systems”, technical report CS-

82-46, Unversity of Waterloo, Waterloo, Ont., Can.
Shoup, R.G., “Colour Table Animation”, Compuier Graphics 13:2 1979,

TMS 9918A Video Display Processor, Microcomputer Series Manual, Texas Instuments

Incorporated, 1981.



	
	
	
	
	
	
	
	
	
	
	
	
	

