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Abstract:

Using a compact metric space, we study the continuity properties
of the transformation associated to a logic program. We show among
other things that this transformation is weakly intersection-continuous
on that métric space. We deduce from this result a greatest fixpoint

semantics for logic programs computing on infinite trees.



METRIC INTERPRETATION AND GREATEST FIXPOINT
SEMANTICS OF LOGIC PROGRAM

Introduction:

The intent of this paper is to give a greatest fixpoint semantics for
infinite computations in Logic Programming.

In [6] it is shown that the least Herbrand model of a logic program P

[5] is also the least fixpoint U T: {#) of the set-theoretic transformation
neN

Tp: P(Hb) - P(Hb) associated to this program. This gives a semantics a la
Scott-Stratchey for logic programs. 1In [1] the authors show that the

compiementary set of the intersection N T; (ﬁb) in the Herbrand universe
n

Hp is exactly the finite failure set of P, i.e., the set of all element
ae Hb such that there exists a finite SLD tree for P together with query a

which contains no success branches.

Using ideas from sort theory, we suggested in [7] how results of logic
program computations could be obtained by starting from a Targé set of
possible results, and shrinking this set step by step until the final
result is obtained. In this paper, we explicit this approach and show
how it gives a greatest fixpoint semantics for logic programs computing on
infinite trees. Some tools we have (metric on trees, compact spaces, ...)
are similar to those already used in [2] for giving a semantics to non

deterministic recursive program schemes.



I. Definitions:

Let V be a set of variables, and F = FOUFIUFZ"' a set of functional
letters, where feFi = arity (f) = i. We assume that F0 is finite, i.e.,
we have a finite set of constant symbols.

Let R = RgURjU... be a set of relation symbals with reR; = arity (r) =

Let Hu be the Herbrand universe generated by F (i.e., the set of all

terms constructed from F), and Hb be the Herbrand base generated by F and R
(i.e., the set of all formulas constructed from F and R). In fact Hy is the

free R-magma generated by Hu PoHy = M(R,Hu).

The set of trees Hu can be supplied with a distance d defined as

follows:

d(t,t') = 0 ift=1t'

pminfin: a (t) # o (t')} otherwise

where an(t) denotes the cut at height n of tree t. In the metric space Hu

a sequence (xn)neN converges iffit is stationary, i.e., BaeHu ANeN p=zN = xp

The completed metric space constructed from Hu will be denoted ﬁh. Since

Fo is finite, ﬁh is a compact space [2].

i.

The very same process may be applied to H_ = M(R,H ) and yields a complete
b u

metric space Hb which will be the completed Herbrand base. One easily verifies

that ﬁb is the free R-magma generated by HL s i.e., HB = M(R,ﬁh) = MlR,Hui.

a.



Hp _
The set 2  of closed subsets of Hb can be equipped with the Hausdorff

distance:
d(A,B) = inf{e: A C VS(B), B c Vs(A)}
where

Vs(A) = {yeﬁb: IxeA d(x,y)<e}.

H
The space 2 b is a compact metric space (therefore a complete space)
for this distance, if Ro is finite.

A (infinitary) substitution ® is a functiono: V - ﬁ; whose domain

D(8) = {xeV :8 (x) # x} 1is finite. We equip the set © of all substitutions

with the topology of simple convergence, i.e.,

¥ sequence (en)neN of o, 1;m 8, =8 VxeV lgm en(x) =8 (x).

Let P be a logic program, i.e., a finite set of Horn clauses. We shall

be concerned by the continuity of the following transformation T:
T: P(Hb) - P(Hb)

associated to program P, when this transformation is extended to subsets

of the completed Herbrand base constructed from the symbols of P:
S+ {ad: (a~« b]A.,.Abm)e P, 6 substitution, b1e,...,Q§ €S}t

Lemma 1: Llet k: a « b]“"‘“bm be é Horn clause, and define

T P(ﬁb) -+ P(‘H‘b)

S - {aﬁeﬁg: 8 substitution; bfs....b 6eS}



Then TK is closed .in the following sense: if S is a closed subset of ﬁb,

then TK(S) is also a closed subset of ﬁb.

Proof: Assume S g.ﬁb is closed. Then either TK(S) = ¢ or TK(S) # ¢.

In the second case Tlet (aen)nem be a Cauchy sequence of TK(S) {al1 Cauchy
sequences of TK(S) are of this form). Is the limit lim ag an element of
n

T (S)?

K

By definition of TK’ (blen)nem et (Q§ n)ne]N are all in S and are

all Cauchy sequences. Therefore 1im(b16n),..., lim(bs ) are all in §

9
n p . mn
since S is closed i.e., using the simple convergence topology of O,

b}(1AHI6n Yaueus bm(];“'en) 65.__Therefore 1;m ag, = a'(];m en) € TK(S) i.e.,

H
TK(S) is closed and TK(S) € 2 b.

H H
Hence transformation TK is defined from 2 b into 2 bU{¢}.

Corollary: For any finite program P, the transformation Tp: P(ﬁb) - P(ﬁs)
is defined from 2 into 2HbUL¢}.

Proof: If P = {Ki}iel, I finite, it is sufficient to notice that

TP(S) = U TK.(S), and the finite union of closed sets is a closed set.
i€l 1

II. Some properties of Hausdorff distance

Ay
Lemma 2: (i) If (S_) . is & Cauchy sequence of 2 ~ and if (X )pen 15 @
Cauchy sequence of ﬁb such that vnel xnesn, then {1im xn)e Tim S .

n n



(i1) If (S)) is a Cauchy sequence of 2Hb, then vx ¢ 1im S, there
n‘nelN non

exists a Cauchy sequence (xp)peN such that vp xpe Skp and x = lgm xp. v

Proof: (i) Let S = lim Sn‘ Then
n

Sn +S=¥e>0 N ¥p =N inf {n: Sp < Vn(S), Sc¢ Vn(S )} <e

p

= Vo> 0NN S cyls),sc Vv, (Sp)
- ¥e>0 INvpz=N (anSp Iy € S d(x,y) < &) and
(vy € S 3X€Sp d{x,y) < &).

Let (Xn)nem be a Cauchy sequence with xnesn. Then

Ve >0 3N vp=N 3y d(xp.y)< e (*), and since (x,) s Cauchy, for the

same e
El'R ¥p,q = N d(xp, xq) < g,

Call x = lim xp, Condition (*) implies ¥e > 0 3N vp = N d(xp, S) <& if
p

we define d{(x_, S) = inf d(x_, y).
p ye$ p

Now if yeS we have d(x,y) = d(x,xp) + d(xp, y). Taking the inf over

S we have



inf d(x,y) = d(x;S) = d(x,x_) + inf d(x _,y)
ye$S P yeS P

i.e., d{x,S) = d(x,xp) + d(xp, S).

Now d(x, xp) - 0 and d(xp, S) > 0 when p » ». Therefore d(x, S) = 0;

since S is closed, this implies xeS, i.e., 1im x_ ¢ S.
p

H
(ii) Let (S.) be a Cauchy sequence of 2 b and x € 1imS_ = S. We have
n‘nelN D p

S=1imS_ =
p P

Ve >0 MNW¥pz N dnfln: S,V (S), SV (s))<e
Now S ¢ vn(sp)' = ¥yeS 3z ¢ S d(z,y) < oo Thus
Ye > 0 N, Vp > Na Y yeS HZGSP d{z,y) < ..

Take a sequence e = (éJ,Q >0, fix y = xeS and define v q > 0 xq = some ZESN

€

q

such that d(x,z) < ¢ . Then (x_) is Cauchy, 1im x_ = x and §, = S . 0
q n n n kp N€

p
Definition: An element a is a point of accumulation of a set U if and only
if ve > 0 (Be(a) - {a}) n U # ¢, where Ba(a) is the open ball of radius ¢

centered in a.

Lemma 3: If (An)nem is a decreasing sequence of non-empty closed subsets
in ZHb, then its Timit for the Hausdorff distance 1im An is the intersection
n

na

n n



Proof: (See [4]) First notice that we have the equivalences

Xe g An = (3 sequence {an}neN (aneAn) s.t. ];m a = X)
= (3 sequence {an}neN (aneAn) such that x is a point of

accumulation of {an})

Indeed if we assume that we have a sequence (an), aneAn, with a point of

accumulation x and x £ N An’ then 3p x ¢ Ap. Since An is decreasing,
n

Yg=p x £ Aq. But A_ is closed and subsequence (a_, a

p p* “p+1 Fpu2r -
the same points of accumulation as (an), therefore x ¢ Ap. Contradiction.

..) has

This shows in particular that ﬂ An is non-empty, since every sequence

(a)

n’neN has at least one point of accumulation x ¢ g An’

Similarly assume B(an), a €A , Tim (2 ) = x. Then necessarily x € n A
nn’ n n'm

because every limit is a point of accumulation. Now we show that d(ﬂ An’ An) +~ 0.

Assume we do not have d(n An’ An) + 0, then since u, > 0, Vo > 0 in R=
n

max(u., v.) > 0. i.e., Not (max(ug, v} > 0) = {not (u, > 0) or not v, >0}

and since

A0 A Ag) = max (o0 A &) oAy, 0 A)

with

I

p(A,B) = sup 5(A,b) = inf {e: AEVB(B)}

beB

6(A,b) = inf {d(a,b) : a€A}



We have two cases to consider:

1. If we do not have p(ﬂAn, An) -+ 0 then for some subsequence p(ﬂ Ao Ap),
we have p(n An’ Ap) > & > 0. Thus there would be a sequence of points
n

a _€A_ for which s{n An’ ap) > &, But this contradicts the fact that the
PP n

a_ must have a point of accumulation xeg An’

2. If we do not have pfAn, n An) + 0 then for some subsequence p(Ap, n An),
n n

we have p(Ap, N An) > 3§ > 0. Thus there would be a sequence of points ape n An
n n

for which G(Ap, ap) > 8. Because of the compactness, the sequence (ap) has a

convergent subsequence aq + X, where xe¢ ﬂ An and G(Aq, x) = 0.

From [6(Aq, aq) - G(Aq, x)| = d(x, aq), it follows that G(Aq, xq) >0

contradicting 6(Ap, ap) >8> 0.

Whence the Temma.

III. Some properties of unification:

The reason why the theory of program schemes [ 2] cannot be applied here
at once is that unification is not continuous in general. Indeed let us
consider the following function, which is defined from fhe cartesian product
of the complete Herbrand base and the set of atoms into the set of truth

values {tt, ff} supplied with the discrete topology:



unif: Hb x M(R, M(F,VUWU)) + {tt, ff}
(usa) -~ tt if 3 substitution & u = a®
ff otherwise.

This function is not continuous in general. As an example consider the

Cauchy sequence of atoms

{agd .y = {7+ (¥l g

Its 1imit is the infinite tree s ¢ A,

Then we have
VneN unif (s®, an) = ff

whereas unif (§n, Tim an) = tt. Notice that this argument applies only when
n

HB contains infinite trees, i.e., ﬁh # Hy.

The first question is: under which conditions can we make unification

continuous?

Definition: An atom a e M(R, M(F,V)) is normal iff a ¢ ﬁb and no variable

x has more than one occurrence in a.

Lemma 4: (i) Assume ﬁb contains at least one infinite tree. Then the

function:

Au.unif (u,a): U ~tt if 38 u = ae

ff otherwise
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is continuous if and only if a is a normal atom.

(i1) For every Cauchy sequence of atoms (an) s if Tim unif (u, a ) = tt
n€],\i n n

then unif (u, 1im an) = tt.
n

Proof: (i) It is enough to show that the inverse image
(Au. unif (a, a))'] (tt) = {Uenbi 36 u = a6} = yla)

is both open and closed if and only if a is normal. We first remark that
U(a) is always closed.

Let a be non-normal; we show that y(a) is not open. Since a is not
normal, then a =p(..., X, ..., X, ...) for some peR and xeV. Let v be
an infinite tree in HL and an(v) be the cut at height n of tree v. Then if
® is some ground closure substitution for p(..., an(v), cees an+](v), vei)s

vn p(..., an(V), ves an+1(v),..)e ¢ U(a), but
Tim p(..., an(v), cees “n+1(v)’ e )8 = p(eaiy vy us v, L.u)8 e yla).
n

Therefore U(a) is not open. Conversely, let a be normal. Let (un) be a

1

Cauchy sequence such that 1gm u T ue u(a). Let a ' be the tree obtained

from a by cutting off all the variable leaves of a. Then since Ve>0
Nvp=N d(up, Tim ”n) < g, by taking ¢ = Z-height(a)’ we have that
n

-1

¥p = N,a  is a subtree of up° Therefore since all the variable leaves of

a are distinct variables, for every p = N we can directly and unambiguously
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read a substitution ep such that u, = aep, i.e., up e U(a). Thus

3N vp =N up e U(a). Therefore U(a) is open.

(ii) Let a = Tim an. This atom a has a finite number of variables
n

{xO, Xps oves xp} and each one of these variables occurs at a finite

height.

Ist case: {xo, Xqs wees xp} = ¢

We then have the following situation: 1lim a = ae ﬁb and
n

INVp=z=N 36 ab =u, since 1im unif (u, a_) = tt. Now we claima = u.
p PP n n

Indeed:

a=1lima «Ve>03Nvp=2N d(a, a) <e.
n p

Since a is constant, in the sequence a_ the variables are as high as we

p
want them to be (they are "pushed at infinity"). Therefore the distance

d(ap, u) + 0. Now d(a, u) =< d{a, ap) + d(ap, u) and both d{a, ap) and
d(ap, u) go to 0. Thus d(a, u) = 0 i.e., a = u.

2nd case: {xo, cees xp} F o

Let k be the maximum occurrence height of all variables Xgs wes xp,
- o~k : ;
and let € = 27", Then since (an)nem is Cauchy, N, ¥p,q 2 N, d(ap, aq) <eg,

thus all trees ap, for p = Ns’ coincide up to height k included. Now
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Tim (u, a_) = tt = (Nvq=2 N3O =39
i n q 9 qq)

By taking g = max (NE, N), we have that for each given x ¢ {xo, cies xp}
and Yq = max (NE, N) all the eq(x} are equal between themselves. These
common values of eq, g = max (NE, N) over the set {xo, v xp} give a
substitution 6. By using the first case of this proof for the other

branches of uq, we have that substitution 8 verifies u = a®. o

ITI. Continuous transformations

3.1. Clauses of the forma « b (a, b atoms): We have the following

Temma.

Lemma 5: Let k : a «+ b be a Horn clause, and assume ﬁg contains an infinite

tree. Then the associated function t ﬁb -+ 2HbU{¢}

‘tK: u-+ {ad ¢ HL: u = bé, 6 ground substitution}
is continuous iff the atom b is normal.

Proof: (i) Assume b is not normal, i.e., b =p(.., x, .., x, ..) for some
peR and xeV. Then for some infinite tree v and ground substitution @, the

sequence u = p(..., an(v), ves an+](v), ..)6 s Cauchy and

Tim u, = P(.ees Vs voes Vy ...)0. But ¥nelN t (u ) = ¢ and
n K n

tK(lim un) > a0

v where ex+v is the ground substitution obtained from 0
n .
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by modifying it at variable x by v. Hence tI< is discontinuous.

(i1) Assume b is normal, i.e., U(b) is both open and closed. Then we

have the equivalence:

3 imu ) =boe (NVp=N3e u =be and lime_ =
9 (1;m n ( P o U p an pm p =0 )
for every Cauchy sequence (un)neN of ﬁg, where the implication = is

obtained because U(b) is open and the implication « because U(b) is closed.

This equivalence implies:

ao ¢ tK(lam un) -

ae = a lim 8, = 1im a6_ ¢ lim t (un).
n n n

Whence the equality tK(1Zm un) = 11m tK(un),

Lemma 6: If b is a normal atom, then the transformation:

T 2 2bygy, s {aeH,:  boes)

associated with the clause k: a « b is uniformly continuous for the Hausdorff

distance.

"
Proof: (i) Assume that for §,5'e2 b Tk(s), TK(S') # ¢. Then we must Show:

Ve >0 3n > 0 d(S,S') <n = d(T (s), T(s") <e.

We have
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4T (3), T(5')) <& =

YueT (S) 3veT (S') d(u,v) <€ , and
VVeTK(S') HUeTK(S) d(u,v) < e .

Now d(u,v) < e = u and v coincide up to height -ng(s); let u = ao,

v = ag. Then beeS, boeS' and be and bo coincide up to height:

- ]gz(g) - height {a) + m(b)

where m{b) is the minimal height of occurrence of a variable in atom b. Then

for € > 0 given, it is enough to take n = ¢. zheight(a) - m(b) in order

to have ve >0 3In >0 d(S,S') <n = d(TK(S), TK(S')) <eg.

o8 [
(ii) Now let Se2 b and assume TK(S) = G2 b, Then SNU(b) = ¢ where

U(b) = {Au. unif (u,b))'1 (tt). Let (Sn)neN be any Cauchy sequence such

that lim S, = S. Since U{b) is closed,
n

min d(x,y) =a #0
xeS
yeU(b)

If we take ¢ = %-, then since Slrl +S, Nvwvp=N d(Sp, S) < e. In particular,

vp = N SpﬂU(b) = ¢ i.e., TK(Sp) = ¢. Thus we have shown:

TK(S) % and S, ™S implies

3N vp

1%

N TK(SP) = 6.
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(iii) Let (Sn)nEIN be any Cauchy sequence that S, > S and assume

v, TK(Sn) = ¢, i.e.,¥n SnﬂU(b) = ¢. Then since b is normal, U(b) is
open and SNU(b) = ¢. Therefore TK(S) = ¢.

Which completes the proof of the lemma.

3.2. General case:

The results of the preceding paragraph can be immediately extended to
clauses of the general form «: a « b]....,\bm only at the cost of having
the right-hand side normal in a certain sense i.e., no variable occurs more
than once in b]“"“bm' However, a weaker form of continuity is true for

these clauses.

Lemma 7: Let x: a +« blf..ﬁbm, m =1 be a Horn clause, and let (Sn)nen1 be
a Cauchy sequence of 2Hb. Then 1im T (S_ ) < T 7lim (S_).
N L n
Proof: 1lim TK(SH) exists by construction (lemma 1). Let x < 1im TK(Sn)'
n n
By Temma 2 this implies 3 Cauchy sequence (x_), 1im x_ = x and vpx_eT (S, ).
LA pKkp
Now since VpxpeTK(Skb), we have xp = aep and blep,...,bmepeskp for some
substitution ep. Now (xp) is a Cauchy sequence implies (biep)peni""’
(bmep)pend are all Cauchy sequences and ¥p b1ep € Skp' Therefore
¥i 1im (b.6 ) =b. 1im 6 e 1im S, = 1im S
p TP T Tk

Since vi bi(];m ep) € 1§m Sn, we have a(];m ep) = 1;m xp = XETK(1;m Sn).

Hence ¥xe 1im TK(S )y xeT (19im S_). Whence the Temma.
n n KN
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Corollary: If « is a definite Horn clause, and if (Sn) is a decreasing

. Hh R
sequence in 2P, than QTK(SH) = TK(QSH).

Proof: Because T_ is monotonic, we have T (NS ) < nT (S ). Now by the
—_ K Kpn’ = kon

preceding lemma llm TK(SH) < TK(1;m Sn) and by Lemma 3’2TK(SH) = TK(ESH). o

Since HL is a compact metric space, the notion of a limit of closed
subsets in the Hausdorff distance sense coincides with the notion of a
1imit in the Kuratowski-Painleve sense, i.e., for any sequence (Sn)n€]N
of ZHb, Tim Sn exists in the Hausdorff distance sense if and only if

n .
Tim S = LS(S ) = LI(S ) = L(S ) where LS (resp. LI, resp. L) denotes the
n n n n n n n n
Timit sup. (resp. the Timit inf, resp. the Timit in the Kuratowski-
Painlevé sense) of sequence (Sn). This result is given in Hausdorff [ 4]

pp. 170-172.

We recall the definition of these limits.
limit inf:
Xell (Sn) = ¥ open neighbourhood V(x) of x
n

IN>0 vp=N V(x)n Sp #é

1im sup:

X e LS (Sn) = ¥ open neighbourhood V(x) of x
n

YN>0 Ip=N V(x)n Sp o
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Kuratowski-Painlevé Timit:

If LT (S ) = LS (S} then by definition L(S_ ) = LI (5.) = LS (S ).
n n N n " n n "

Lemma 8: Let P be a Togic program.

. Hy,
(i)  For any sequence (sn)neﬂd of 2'b, Li TP(Sn) cT, (Li (Sn))

. Hp
(i) For any Cauchy sequence (Sn)ﬁéml of 2D, Li TP(Sn) E-TP(Li (Sn))

Proof: (i) Let x ¢ Lﬁ TP(Sn). Then xe Lﬁ TP(Sn) -

Ve >0 WYN>0 3p=N e TP(Sp) d{x,y) < e. Take e < Z'h(P), where

h(P) is the maximum height of the left-hand sides of P. Then d(x,y) <e =
3 clause k: (a + bTA...Abm)eP such that x = ao, y = a6 where o and 8 are

substitutions and furthermore, since yeTP(Sp), ble,..,,bme € Sp.

Let us take a decreasing sequence of e's such that e < Z'h(P). Each
e will give some y such that d{x,y) < €. Since P is finite, infinitely
many such y's will be such that y = a8 and b1e,...,bme € Sp. Now
limy =x=1imao=alim6 = ao
e+0 e~0 >0
Thus the sequence 6 converges in @ towards ¢, and ac « b1c.,.oabmc is an

instantiation of K.
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Now we have b10,...,bmo e LS (Sn‘) by construction of these limits
n

b;o =b, (1im8). Thus x =ace T (LS (5,)) < T, (LS (S.)). Therefore
i 15:-*0 K n p n n

LS (Tp(s)) < Tp (Ls (s.)).
n n

(i1} By definition of these limits, we have LI (Sn) < LS (Sn)
n n

Now if (Sn)ne]N is Cauchy, then by Hausdorff's theorem we have

LI (S.) = LS (s,) = Tim (s,)- Now we have by (i):
n n n

LI Tp(S, ) < LS T5(S.) ¢ T(LS (S.)) =T LI (S, )
npngnpn__P(n(n) P(n(n)

which completes the prdof. a

Remark 1: If the sequence (Sn) is not Cauchy, then LI TP(Sn) ety (L1 (Sn))
n n

does not hold, as shown by the following example.
Take P: {p(b) <y (F(x), f2(x))
3
p(b) « r (f(x), f7(x)) }
and the sequence of sets (Sn)ne]N defined by:

Spn = 1a(£"(b), £ (b))

Soner = (r(F7(b), £72(b)))
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Then LI (S;) ="¢ thus T, (LI (sﬁ)) = ¢, and LS (S.) = {q(f*,f), r(f*, )}
n n n n

thus TP(Li (Sn)) = {p(b)}.
On the other hand:

Tp (Sop) = (0D} = Tp (Sppyy)
Thus:

LI (Tp(S,)) = LS (Ty(s,)) = ip(b)}
Therefore

Tp(b)} = LI (T, (S))) £ Tp (LI (S)) = ¢
n

I
n

Remark 2: If (Sn)nem is a Cauchy sequence, then (TP (Sn))new is not

necessarily a Cauchy sequence. Consider the following example:
P: {p(a) « q(u,v)
p(b) < q(f(x), F2(x)) }

Spn = a(f"(@), F™1(a)))

Soney = {a(f"(a), £7%(a)))
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Then LT (S ) = LS (S ) = {q(f*, f*)} = 1im S
n n n n n n

Tp (Li (s,)) =T, (Li (Sn)) = {p(a), p(b)}

But we also have
Tp (S,,) = {p(a), p(b)}
Tp (Sy4q) = {p(a)}
Therefore

{p(a)}

LI (T, (S,))
n

i

LS (TP (Sn)) {p(a), p(b)}
n

and the Hausdorff limit of (TP (Sn)) does not exist.

Theorem 1: Let P={K1.: iel} be a Togic program. Then:

. Hp . s
(i) For every Cauchy sequence (Sn)ne]N of 20, if 1:1m Tp (Sn) exists, then

'l:;rn TP(Sn) < TP (IZm Sn).

(ii) TIJ is N-continuous i.e., for every decreasing sequence (Sn)ne]N of
Hy
2",

T(ﬂS)=ﬂT(S) : a]
Pn“ rlP n
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Proof: (i) Follows immediately from the above theorem and Hausdorff's

theorem. A more direct proof is as follows:

Let x ¢ 1:']m Tp (S,) = 1:’1m (%} Te; (Sp))

Then by Temma 2(i1), there exists a Cauchy sequence (xp)pEIN such that

(1im x,) = x , and Vp X5e ? TK1

(Sk ). Let us take ¢ > 0 such that:
p P p

—192(5) = (maximal height of left-hand sides of P) + 1.

Then we get

AN vp =N xp = aep for some fixed left-hand side a of P, Let

K:oa <« b]A...Abm be the clause containing this left-hand side. Then:

¥p = N %p = aep € TK(Skp) and x = a 1;m ep = af

Hence vp = N 3 bIG s bmep € Sk and the sequences (b]e )

oo N® oo
p p P’ pe

(bm p)peni are all Cauchy sequences. Their limits b16,...,bme are all in

Tim Sk = Tim S_ according to Lemma 2(i). Hence:
k n "
p p
an « b1eao..nbme

is an instantiation of x, therefore:

X = af e TK (1;m Sn) <Tp (Izm Sn)
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i.e., X ¢ TP (lgm Sn). Whence I;m (TP(Sn)) g»TP (1lm Sn) whenever the

first limit exists.

(i1) It is enough to show that for every decreasing sequence (Sn)nem
of 2'b . Tp (NS )en TP (S ), but this is given by the monotonicity of
, n " T n

TP‘ From (i) and Lemma 3 we get N TP () ¢ TP (n'S_). Whence the
n n’ = pon

theorem, o

IV. Greatest fixpoint theorem:

ﬁb) is the greatest

Theorem 2: Let.P be a logic program; then nTP (
n

fixpoint of TP.
. n,— . , — . .
Proof: The sequence (TP (Hb))nem is decreasing and TP is N~-continuous;

whence:

n,— _ n+] -— - n,—
TP (2 TP (Hb)) = ﬂ TP (Hb) = 2 Tp (Hb)

The fact that this fixpoint is the greatest one is obvious. o

V. An example

We consider "Hamming's problem" as discussed in Dijkstra [3]: construct
the sorted 1ist of all natural numbers # 0 containing no prime factors other ‘
than 2, 3 or 5. This can be formalized by using a Togic program. We first

give our notation:
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U.x is the 1ist resulting from inserting atom u at the beginning
of list x.
<, > are relation symbols with their usual meaning (infix notation

is used here)
Prod(a,b,c}) means ¢ =a xb

F(x,n,y) = list y is obtained by multiplying all the elements of list

x by n (scalar multiplication)

]

M(x,y,z) sorted Tist z is obtained by merging without repetition

sorted 1ists x and y.
From this follows the following logic program P with query Eq(x,y):

[0. F(nil, n, nil) « ]

1.  F(a.x, n, b.y) « Prod(a, n, b) . F(x, n, y)

2. M{u.x, u.y, u.z) « M(x, y, z)
3. Mlxp.xs yq.¥s X1-2) = (xy < yq) & Mlx, ¥q-¥s 2)
Ao MxpXs ¥qo¥s ¥7-2) = (v < xq) o M(xgx, y, 2)
5. Eq(x,y) « Fly, 3, u) « Fly, 5, v) « M{u, v, w) . F(y, 2, 2) . M(w, z, x)
6. <+ Eq(x, 1.x)
The desired infinite 1ist, which is computed by fair derivations
& =2.3.5.6.8.9.10.12.15.16.18.20.24. ...

verifies Eq(%, 1.2) e N TP" (A)) i.e., V¥ neN Eq(z, 1.8) « (R,
neN

where Hb is the completed Herbrand base associated with the above program.
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The proof is as follaws: For n = 0, it is obvious. Let n # 0. To
make things simpler let us assume that <, > and Prod produce their results

"instantaneously". We may remark that:
¥9>0,q N {F(a.U, m, B.V) o, us B,V lists, IJI = |§| =q,a=my4 B} < TPq(ﬁb)

From this we deduce, if {2/n+1) dénote the initial segment of Tength n+1 of

list £, that

tEa((e/m1). U, 1o (a/mi1). Vs T, ¥ ovistsy < T ()
by applying the fifth clause once.
Whence Eq(2, 1.2) ¢ TH*! ()
In fact we even have:

[Ea(x, 1.x)] n (g T (R)) = (Eq(e, 1.2)) (%)

where [ Eq(x, 1.x)] denctes the subset of ﬁb obtained by replacing every
occurrence of a free variable in Eq(x, 1.x) by every possible element of
the Herbrand universe.

The proﬁerty (x) above is just an occurrence of a more general result
shown in [ 8], which can be stated as follows. Let P be a finite logic
program, and t a query; assume A is a generic name for finite derivations
which are fair up to q > 0, and where_e],...,en is the sequence of most

general unifiers associated with A.
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Then:

- Sy
( ] [te]...ﬁn])—[t] nTp (Hb)
A finite derivation
fair up to q

When q goes to +=, this becomes

u [t8y...0,...]7 =[tIn (2 qu (R,)

A fair derivation

which is a generalization of ().
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