BEPARTMENT

DEPARTMENT
DEPARTMENT

E
E
CE

lEN
IEN

0008

0.0 0le)

|
F WA EEE§§ g

IVERSITY
UNIVERSITY OF WATERLOO C

HNVERSHY GF WA

Performance Analysis
of a Single-File Version
of Linear Hashing

Per-Ake Larson

CS-83-28

November, 1983

Performance analysis
of a single-file version
of linear hashing *

Per-Ake Larson

Data Structuring Group
Department of Computer Science
Univessity of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Technical Report C3-83-28

ABSTRACT

A performance analysis of a new variant of linear hashing
with partial expansions is presented. In the new variant the
overflow area is combined with the prime storage area in the
same file. The performance measures considered are: expected
length of successful and unsuccessful searches and cost of inser-
tions. The new method uses several overflow chains per page.
Increasing the number of chains significantly improves the
retrieval performance.

1. Imtroduction)

Linear hashing with partial expansions is a file organization primarily
designed for files which grow and shrink dynamically [1]. It can accommo-
date any number of insertions and deletions, retaining good storage utiliza-
tion and retrieval performance without periodic reorganization. It is a gen-
eralization of linear virtual hashing developed by Litwin [5]. We will use the
term ‘“linear hashing” as a generic term covering both methods.

Linear hashing was originally designed as a two-area technique, that is,
in addition to the prime storage area there is a separate storage area for over-
flow records. This results in having two files that grow and shrink according
to the number of records stored. A new version of linecar hashing was
presented in {3]. In the new version the overflow area is combined with the

* This work was supported by Natural Sciences and Engineering Research Council of Canada,
Grant No. A2460.

2 P.-A. Larson

prime storage area in the same file, Hence, there is only one file that grows
and shrinks dynamically. By using several overflow chains per bucket,
instead of just one as originally suggested [1,5], less overflow storage is
required and the retrieval performance is improved.

This paper presents an analysis of the expected performance of the new
version of lincar hashing. The details of the new scheme have been
presented elsewhere [3], but a brief outline is given in section two. In sec-
tion three the overflow space requirements are analysed and the necessary
formulas for modelling the expansion rate are derived. The next two sections
are devoted to analysing the expected retrieval performance and the costs of
insertions and deletions. The expected performance depends on the way
overflow records are allocated to overflow pages. The analysis in sections
four and five makes some very pessimistic assumptions, and therefore a more
optimistic analysis is carried out in section six. Numerical results for dif-
ferent page sizes and storage utilization have been assembled into an appen-
dix.

Linear hashing was originally developed by Litwin [5] and generalized
to linear hashing with partial expansions by Larson [1]. Spiral storage,
developed by Martin [6], is based on a different idea but achieves the same
goal as linear hashing. The performance of linear hashing with partial expan-
sions was analysed by Larson [2]. Two modifications to the original scheme
have been presented by Ramamohanarao and Lloyd [8]. The first one simpli-
fies the expansion process, and the second one is a very efficient, loopless
address computation algorithm. The simplifications do not come without
extra cost: additional buffer space is required when the file is expanded.
Regnier [9] also designed a loopless address computation algorithm. It is
more complicated than the one by Ramamohanarac and Lioyd, but does not
require additional buffer space. Mullin [7] has presented a version without a
separate overflow area. Chaining is used, but overflow records are stored in
the prime storage area.

2. An outline of the new version

Linear hashing is a technique for incrementally expanding (and contract-
ing) the primary storage area of a hash file. The basic step consists of
expanding the file by one page and relocating some of the records from one
or a few existing papes to the new page. This is done in a systematic manner
in order to ensure that all relocated records can be retrieved without having
to access any of the old pages.

The expansion process of linear hashing with two partial expansions is
illustrated in fig. 1. We start from a file consisting of 2N pages, logically
subdivided into N pairs of pages (groups of size two), where the pairs are
G, N+, j=0,1,..., N — 1. When the file is to be expanded, this is
done by first expanding group 0, then group 1, etc. by one page, see fig.
1(a). When expanding group j, approximately 1/3 of the records from page j
and N + j are moved to a new page 2N + j. When the last pair,
(N — 1, 2N =~ 1), has been expanded the file has increased from 2N to 3N
pages, and the first partial expansion is completed. Then the second

Performance analysis 3

t) K
LT T

N 2N

! f L’
I ¢ N I O | N
2! 3

N N

b v
|| I | I ||

2N 4N

Fig. 1: Ilustrating linear hashing with two partial expansions,

partial expansion starts, but now groups of three pages (j, N + j, 2N +),
J=0,1,..., N — 1, are expanded to four pages, see fig. 1(b). When the
second partial expansion has been completed the file size has doubled from
2N to 4N. A doubling of the file size is called a full expansion. Now the
situation is the same as the original one, the only difference being that the
file size has doubled. The next partial expansion reverts to expanding groups
of size two, (j, 2N + j), j = 0,1,..., 2N — 1, see fig. 1(c). The one after
that will expand groups of size three, etc. S

The above idea can easily be extended to an arbitrary number, n,, of
partial expansions per full expansion. Linear virtual hashing has n; = 1. To
implement linear hashing with partial expansions an address computation
algorithm is required. It must be able to compute the current home page of a
record at any time. An address computation algorithm for arbitrary n, is
given in [1]. A simpler algorithm for the case ny = 1 can be found in [5].

The scheme outlined above gives a method for expanding or contracting
the file by one page at a time. In addition we also need rules for determining
when to trigger an expansion or a contraction. Because a set of such rules
controls the expansion and contraction rate, it is called a control function.
There are many possible contro! functions, see [1,5,8], but we will here con-
sider only the rule of constant storage utilization. According to this rule, the
file is expanded whenever insertion of a record causes the storage utilization
to rise above some threshold a, 0 < a < 1, selected by the user. This rule
is optimal in a certain sense [1].

4 P.-A. Larson

As linear hashing was originally designed, it was assumed that overflow
records are handled by separate chaining using fairly large overflow pages.
In other words, overflow records are stored by linking one or more overflow
pages from a separate storage area to an overflowing primary page. Each
overflowing primary page has its own, completely separate, chain of over-
flow pages. The size of overflow pages is one of the design parameters.

This method for handling overflow records has certain drawbacks, how-
ever. For a discussion, see [3]. Therefore, two modifications to this over-
flow handling scheme were proposed in [3]): to use not one, but several over-
flow chains per primary page, and to combine the overflow storage area and
the primary storage area in the same file.

When several overflow chains per primary page are used, and an over-
flow record occurs, it is placed somewhere in an overflow page and linked
into one of the chains emanating from its home page. The chain is selected
by a hashing function. The function depends only on the key of the record,
and distributes the overflow records uniformly between the cverflow chains.
To retrieve a record, the records in the home page are first checked, and
then the records on the appropriate overflow chain. The chains are assumed
to be separate (non-coalescing) with a resolution of one record, that is, the
pointer points to the next record on the chain. In this way overflow records
on completely different chains (from the same or different home pages) may
share the same overflow page without being mixed up. The strategy for
assigning overflow records to overflow pages will affect the performance.
This question is discussed further in section six.

The idea for combining the primary storage area and the overflow
storage area in the same file is very simple: every rth page in the file is
designated as an overflow page, r = 2. Assuming that the page addresses
start from 0, the overflow pages have addresses r — 1, 2r — 1, 3r — 1,....
Because the overflow area cannot grow independently of the primary area, a
situation where all the overflow pages are full may occur. In such a situation
we simply expand the file. This will normally decrease the number of over-
flow records, thereby frecing some overflow space. In any case, after
expanding the file by at most r — 1 pages, a new overflow page will eventu-
ally be created.

3. Expansion rate and overflow space requirements

During a partial expansion a file using linear hashing consists essentially
of two traditional hash files with different load factors. As records are
inserted, the file will be expanded and the size of the two subfiles will
change. The expansion rate depends not only on the number of records
inserted, but also on the control function used. We will in this section derive
formulas relating the total file size and the subfile size to the number of
records stored.

First we have to introduce some notation. To facilitate comparisons we
will, to the extent possible, use the same notation as in [2]. Let b, b= 1,
denote the page size in number of records, and «, 0 < « < 1, the required
storage utilization. The overflow storage factor f is defined as the fraction of

Performance analysis 5

the total storage space reserved for overflow records. When every rth page
is an overflow page the overflow storage factor is f = 1/r. The number of
partial expansions per full expansion is denoted by n,. The analysis in this
and subsequent sections is asymptotic. The behavior of a large file is well
approximated by an asymptotic model.

Consider first a traditional hash file where the records are uniformly
distributed over the pages of the file. Denote the expected number of
records hashing to a page by y. The load on the file is then characterized by
the load factor z, defined as z = y/b. The probability that k records will
hash to a page, given the load factor z, has a Poisson distribution:

Plk,z)=e" (zb)*/k! , k=0,1,2,...

The expected number of overflow records per bucket can be computed as

()= 5 (k-)Pk, 2)

k=b+1

b(z - 1) + é (b — k)P(k, z).
=0

i

Consider a file where a partial expansion, increasing the size of each
group from n to n + 1 buckets, n, = n < 2n,, has been partially completed.
The expansion factor ¢ is defined as ¢ = (n + 1)/n. A {fraction
x, 0 = x = 1, of the groups is assumed to have been expanded. Assume that
the load factor of a bucket belonging to a group that has not yet been
expanded 'y z, z = 0. Then the load factor of a bucket belonging to an
expanded group is zn/(n + 1) = z/q. Note that the expected number of
records per group is azb, regardless of whether the group has been expanded
or not. In this situation the expected number of overflow records per bucket
is

= x(n+)t(z/q) + (A—x)n t(z)
o 5y - Mot > (oshn

— xqt(z/q) + (1-x)t(z)
1+ x(g=~1)

The formula is derived as follows. An expanded group is expected to have
(n + 1)t(z/q), and an unexpanded group nt(z) overflow records. The frac-
tion of expanded groups is x and the fraction of unexpanded groups hence
1 —x. The average number of overflow records per group is then
x(n + De(z/g) + (1 — x)nt(z). The (average) number of buckets per group
is x(n + 1) + (1 -~ x)n. Dividing the number of overflow records per group
by the number of buckets per group gives the above formula.

In the above formula there are two free variables: the fraction of
expanded groups x, and the load factor z, However, the fraction of
expanded groups depends on the load factor where the relationship is defined
by the control function. We will assume that the following, modified rule of

6 P.-A. Larson

constant storage utilization is used:

a) when there is sufficient overflow space, the file is expanded whenever
the overall storage utilization rises above a,

b) if a record cannot be stored due to lack of free overflow space, the file
is (prematurely) expanded (even though this results in a storage utiliza-
tion less than o).

At any point of an expansion the expansion rate is determined by one of
these two rules. If rule a) applies we say that the file is load-controlled, and
if rule b) applies we say that is is overflow-controlled.

Let us first study case a), that is, we assume that the overflow storage
factor f is large enough so that the expansion rate is completely load-
controlled during the current partial expansion. In a situation when a fraction
x of the groups has been expanded, the number of records per group is znb
while the amount of space per group (including overflow pages) is
(x(n + 1) + (1 = x)n)b/(1 ~ f). The value of x must then be such that the
following equality holds

znb = a (x(n + 1) + (1 — x)n)b/(1 — f).
Solving for x gives us the following relation between x and the load factor:
x=g,(2)=(z(1 — it — 1)/(g — 1).

We will need this function frequently in the sequel. It will be denoted by
g.(z) and its inverse by g;'(x). In particular there are two values of g; ! that
are of interest: g '(0) and g71(1). The first value is the load factor required
at the beginning of the expansion and the second value is the load factor at
the end of an expansion. They are easily found to be g;!'(0) = a/(1 — f)
and g; (1) = ag/(1 = f).

Let us now analyse the situation when the expansion rate is governed by
lack of overflow space. When a fraction x of the groups has been expanded,
the expected number of overflow records per group is
x(n + Di(z/g) + (1 — x)nt(z), see above. On the other hand, the amount
of overflow space per group is (x(n + 1} + {1 — x)n)bf/(1 — f). It can be
shown (by a similar argument as in [2]), that in the asymptotic case the over-
flow requirements per group will exactly match the available overflow storage
gpace per group. (This is only approximately true for a finite file.) Conse-
quently the value of x must be such that the following equation is satisfied:

x(n + Vi(z/g) + 1 — Xnt(z) = (x(n + 1) + (T = x)n)bf/(1 — 1)
Again, solving for x gives us the following function

d — t(z)
qt(z/q) — 1(z) — (g — 1)d M

where d = bf/(1 — f). This function will be denoted by g,(z). The restric-
tion of g, to 0= g,(z) =1 is invertible and the inverse function will be

x = gy(2) =

Performance analysis 7

denoted by g; '(x), 0 = x = 1. The inverse function is not available in expli-
cit form, but it is easily computed numerically. We will in this case also need
the two values g; (0) and g, !(1), but this time they have to be computed
numerically. It is easily proved from eq. (1) that g, ! = gg, '(0), so in fact
we only have to compute g; (0).

At any point the size of the file (fraction of expanded groups) will be
determined by the more restrictive one of rules a) and b). Hence the com-
bined control function is modelled by

g(z) = max (g,(2), 8,(2)), 2z, =z =gz
zo = min (g71(0), g7 (1))

The behaviour of the two functions g,(z) and g,(z) is illustrated in Fig.
2. The fraction of expanded groups, x, is plotted as a function of the load
factor for non-expanded groups. The parameters are: bucket size b = 10,
storage utilization a = 0.80 and group size n = 1. In Fig. 2(a) the overflow
storage factor is f = 1/20 = 0.05 in Fig. 2(b) f = 1/10 = 0.10 and in Fig.
2(b) f = 1/8 = 0.125. The straight line is g,(z) and the dotted line is g,(z).
Fig. 2(a) shows a situation where the expansion rate is fully overflow-
controlled; the target storage utilization of « = 0.80 can never be achieved
due to insufficient space for overflow records. In Fig. 2(b) a mixed situation
is illustrated. At the beginning and the end of the expansion the expansion
rate is load-controlled. In the middle there is not enough overflow space and
the expansion rate is overflow-controlled. In Fig. 2(c) there is sufficient
space for overflow records throughout the expansion.

coQl e X

w3 = O o

-

T T T
.8 1.2 1.6 2.0
Load factor, z

L]

(a) £=0.05

P.-A. Larson

E
X 1
p
a
n
d 75
<]
d

.50 A
g
T
o]
u 25 4
P
s
)

0 T |
X 8 1.6 2.0
Load factor, z

(b) £=0.10
E
X 1
P
a
n
d -75
e
d

.50
B
r
0
u 25
p
s
’

0 T] [
x .8 1.2 1.6 2.0
Load factor, z
(c) £=0.125

Fig. 2: Fraction of expanded groups as a function of the load factor
(b =10, « = 0.8).

Performance analysis 9

We can now easily compute the utilization of the available overflow
storage space at any point of a partial expansion with expansion factor g.
Given that the load factor of a page belonging to an unexpanded group is
z, 25 < z =< qz,, a fraction x = g(z) of the groups will have been expanded.
The expected number of overflow records per group is
x(n + 1)t(z/q) + (1 — x)nt(z) and the available overflow space per group is
(x(n + 1) + (1 — X)m)bf/(1 — f), see above. Dividing and inserting
x = g(z) then gives the following formula for the utilization of the available
overflow space

_ 8(2)g t(z/q) + (1 — g(2))t(2)
Ve 8D = U e) g = DB -)

U

S g

1

| -
i

z g

a

1

1

o 8-

n

7 [¥ T

1 1.25 1.5 - 175 2

Fig. 3: Utilization of available overflow storage space
=10,c=085,m=35,f=0.1,n,=2).

In fig. 3 the utilization of the available overflow storage space is illus-
trated for an example file. During the first partial expansion lack of over-
flow space occurs and for a while the expansion rate is overflow-controlled.
How this affects the insertion costs is shown in section five. Luring the
second partial expansion there is sufficient overflow space available and the
expansion rate is load-controlled throughout.

In practice one would probably want to set the overflow storage factor
high enough so that the risk of running out of overflow storage during an
expansion is minimal. This is clearly not required, however. The only effect
of running out of overflow storage space is that the file will be prematurely
expanded and the storage utilization will drop below the desired level. On
the other hand, an unnecessarily high overflow storage factor reduces the

10 P.-A. Larson

fraction of the total storage space available for primary pages. This in turn
increases the load on the primary pages, creating more overflow records and
slowing down retrieval. In effect, part of the available storage space is not
efficiently utilized, thereby increasing the pressure on the remaining area.
Some guidelines for setting the overflow storage factor are needed. To this
end we will analyse the following problem: given the page size (), desired
storage utilization (o) and number of partial expansions (n,), what is the
lowest possible overflow storage factor (f) such that we are not expected to
run out of overflow space at any point of an expansion?

When the expansion rate is load-controlled the expected number of
overflow records per page at point z, z, = z < gz, of an expansion is
8.(2)at(z/q) + (1 — g.(2))1(z)
1+8@9g-1 '

The available overflow storage per page is fb/(1 — f). To not run out of
overflow space at any point of an expansion, the maximum requirements
must be less than or equal to the available storage. Hence the lowest over-
flow storage factor for a partial expansion with expansion factor g is given by
the solution to the equation

B max &@)etg) + (1~ g, (@) @
1-f n=z=z 1+g(@@-1) ’

where g,(z) = (z(1 — fi/o — 1)/(g — 1), zy = /(1 — f) and z; = gz,. This
equation can easily be solved numerically for given parameters b, o and q.
Among the n, partial expansions in a full expansion, the highest overflow
requirements occur during the first partial expansion (most uneven load), and
therefore it is sufficient to solve the above equation only for ¢ = (n, + 1)/n,.

The lowest overflow storage factor for different parameters combina-
tions are listed in Table 1 in the appendix. In practice we must distribute the
overflow pages evenly over the file, allocating every rth page as an overflow
page. The best (highest) value for r is then given by r = l1/f] where f is
found in Table 1 or by solving eq. (2). For our example file
(b =10, @ = 0.85, ny = 2) the minimum overflow storage factor is
f = 0.1128 which gives r = [1/0.1128) = 8.

4. Retrieval performance

In this section we study the retrieval performance of the new scheme.
Formulas for computing the expected length of successful and unsuccessful
searches at any point of an expansion, as well as the average over a full
expansion, are derived,

The search lengths, and the insertion costs in the next section, are
derived under a very pessimistic assumption: all overflow records from the
same home page are assumed to reside on different overflow pages. This
means that fetching the next record on an overflow chain always requires one
read access. This is overly pessimistic; in practice one would strive to place
records from the same chain on the same page. A more optimistic analysis is

Performance analysis 1

done in section six.

We begin by deriving two basic formulas, Let u(z) denote the expected
length of an unsuccessful search for a traditional hash file, when m overflow
chains per page are used and the load factor is z. This can be computed as

u(z) =1+ -1 k_é =Bk)
—1+L(be-+ 3 G- BPE) 3)
m =0

The infinite sum is the expected number of overflow records per bucket.
Dividing this by m gives the expected length of a chain, because the overflow
records are uniformly distributed over the m chains emanating from a pri-
mary page.

Let s(z) denote the expected length of a successful search in the
corresponding situation. We will derive it using the same approach as in {4].
When the file is loaded the load factor gradually rises from 0 to z. Consider
a short load factor interval (t, ¢ + df), 0 < ¢ < z, When inserting a record
during (r, ¢ + dr) the probability of hitting a full page is

P,H)=1- b}u“,lP(k, 1).
k=0

The expected length of an overflow chain for a full page (as opposed to
any page) is (u(t) — 1)/P,(r), because all overflow records belong to full
pages, and the fraction of full pages is P,(¢). The new record is effectively
added to the end of the chain and will require one access more to retrieve.
The expected number of accesses to retrieve a record inserted during
(t, t + dr) is then 1 4+ P,()(1 + (u(t) — 1)/P,(1)). It is assumed that each
record is equally likely to be retrieved, regardless of when it was inserted.
The expected length of a successful search can then be computed as

s(z) = -1-}{1 +P,0(1+ v —1) }at
Z% P,(1)

=1+1 J Py (0)dr + 1 J (u(®) = Dae
Z % Z %
The integrals can actually be solved, and after some manipulation we obtain

PN U - _b-—k+1

s(z) =2+ = EDP(I:, 2)(~ k(1 T) @
_ 1 bz _ b b+1
z+2m m+ 2mz

We can now compute the expected search lengths at an arbitrary point
of an expansion with expansion factor ¢ = (» + 1)/n. When the load factor
of a page belonging to a nonexpanded group is z, z; = z = qz;, a fraction

12 P.-A. Larson

x = g(z) of the groups will have been expanded. Note that the expected
number of records per group is nzb regardiess of whether the group has been
expanded or not. The expected number of accesses for an unsuccessful
search in this situation can be computed as

UGz, 8(2)) = g(2)ulzlg) + (1 = g(2)u(z).

The formula can be understcod as follows. The probability that an
unsuccessful search will hit a certain group is the same for all groups. The
probability of hitting an expanded group is g(z) and that of hitting a nonex-
panded group is 1 — g{z). An unsuccessful search starting from a page
belonging to an expanded group requires u{z/q) accesses on average. If the
search starts from a page belonging to a nonexpanded group the average is
u(z). By a similar reasoning the expected number of accesses for a successful
search is found to be

8 (z, 8(2)) = 8(z)s(z/q) + (1 = g(2))s(2).

The final task in this section is to derive formulas for computing the
average search lengths over a full expansion. A full expansion, increasing
the size of each group from n, to 2n,, consists of n, partial expansions. The
ith expansion increases the group size from n, + i — 1, i = 1,2,..., n;, and
has a expansion factor of ¢, = (ny + i)/(ny + i — 1). The average search
lengths can be computed as

-~ 1 g 1 270

U B D) U O)
1 "0 1 170

§= -r ‘sl(z: 8(2))dz (6)

g 2y (g, = 1)z 1

The notation U (z, g(z)) means the function §(z, g(z)) with the value g,
for the parameter ¢, and correspondingly for §,. The ith term in each sum
represents the average for the ith partial expansion within a full expansion.
Each partial expansion is given the same weight in the sum, because they are
all of the same duration whether measured in number of records added or
number of pages added.

Performance analysis 13

N
o
1.3
0
f
a //\ //'_-\\
€
¢ 1.2 4 i \
e
5 TN
A ™,
s b T
s .
1.1 I T q
1 1.25 1.50 1.75 2

Fig. 4: Expected number of accesses for a successful (lower) and
unsuccesful (upper) searches
(b=10,a=0.85m=35,f=0.1,n,=2).

The development of the expected search lengths for our example file over a
full expansion is shown in Fig. 4. For a successful search the expected
number of accesses ranges from 1.154 to 1,167 with an average of 1.154.
For unsuccessful searches the range is 1.194 to 1.263 with an average of
1.233.

5. Insertion costs

The total cost of inserting a record consists of two components: the cost
of inserting the record and the additional cost of expanding the file when
necessary. The cost caused by file expansions depends on the expansion rate
and the cost of actually carrying out the expansion. ’

Let us first derive the cost of inserting a record into a traditional hash
file with load factor z. The first part of an insertion is an unsuccessful search
with a cost of u(z). If we hit a non-full page, the record is added to the
home page a:-nd1 the page is rewritten. The probability of this occurring is
1-P,(z)=3 P(k,z). If we hit a full (or over-full) page three accesses

k=0

are required: one for reading a non-full overflow page, one for rewriting it,
and one for updating the pointer from the preceding record and rewriting that
page. This requires buffer space for two pages. In accordance with our pes-
simistic assumption we have assumed that all overflow records reside on dif-
ferent pages. We have also assumed that locating a non-full overflow page
does not involve any external accesses, see [3]. Addition of these three terms
results in

a(z) = u(z) + 1 = P,(z) + 3P,(2)

14 P.-A. Larson

=1+ u(z) + 2P,(2)

The expected cost of inserting a record during a partial expansion and the
average over a full expansion can be derived in exactly the same way as for
an unsuccessful search. Note that the following formulas do not include any
expansion costs:

A(z, 8(2)) = g(2)a(z/q) + (1 - q(z))a(z)

1 A 1 950
A== ———— | Az, g(2))dz
Ry 12-:1 (g, ~ Dz {, (2 5(2)

An insertion will occasionally trigger an expansion of the file. The
expected expansion cost per inserted record is the product of two factors: the
expected number of access required to carry out an expansion and the expan-
sion activity, expressed in number of expansions per inserted record. They
both depend on the current state of the file, that is, load factor and expansion
factor.

The function (¢ — 1)x = g(z)/a, z, = z < gz, represents the growth of
the file (except for overflow pages) since the beginning of the current partial
expansion. The rate of growth of point z measures the expansion activity at
that point. The rate of growth as a function of the expected number of
records per bucket, not the load factor, is needed, so we set zb = y. This
gives us the function g(y/b)/n. The expected number of expansion opera-
tions, or non-overflow pages added, caused by inserting a record when the
load factor is z = y/b, can then be computed as

= d(gybyn) _ g'(y/b) _ £'(2)
F@) dy nb nb

where g'(z) is the derivative of g with respect to z. By differentiation of g,
and g, we obtain

1=f
alg = 1) for g,(z) > g,(2)
g'(z) =
(1 = g, (D' (z) + '(zlg) for g,(z) < g,(2)
c 4+ 1(z) — q t(z/q)
where ¢ = 197:_—1}& and 1'(x) = b(1 — P,(x)).
The expected number of accesses to expand a group from n to n + 1

pages is the sum of the following components:

a) reading n pages plus all associated overflow records: n(1 + 1(z))

b) rewriting the n pages and associated overflow pages: n{l + t(z)). We
assume that the overflow records present after the expansion are placed
in the “old" overflow pages.

Performance analysis 15

c) writing the new page: 1
d) writing a new overflow page. The cost of this per expansion is

fi(L~ f)

Note that we in c) and d) have assumed that a new page can be written
directly without reading it first. Adding up gives us

2n(1+ 1) + 1 + T—% =n(2 + () + %}%)

Multiplying this by F(z) then gives us the expected expansion cost per inser-
tion:

EG 5@ = £ (24 26) + 20

The average over a full expansion is computed in the usual way

0

USRS

E= S S
Ay 24 (4 — Dz I

The total cost of an insertion is the sum of A and E, that is,
Wz, 8(2)) = Az, £(2)) + E(z, 8(2)), W = A + E.

P

a

8

e

s .20 -

P

c

‘ .15 A)
r ------

e .10

c

0

r

a 05 T T T

1 1.25 1.50 1.75 2

Fig. 5: Expected number of (non-overflow) pages added per record inserted
(=10, a =085, m=35, f=0.1, n, = 2).

16 P.-A. Larson

N
o
g
o 5 - TThe—
f
a /
¢ 4
c
e
3 3 T]
3
3
s
2 7 T 1
1 1.25 1.50 1.75 2

Fig. 6: Expected number of accesses for insertion of a record
(=10, =0.85,m=5, = 0.1, ny = 2).

Fig. 5 shows the expansion rate (number of non-overflow pages added
per record inserted) for our example file. When the file has been expanded
to 1.09 times its original size, lack of overflow storage occurs. The expan-
sion rate is now overflow-controlled. It suddenly increases from 0.118 to
0.203 pages per record and then slowly decreases. When the file has reached
1.40 times its original size there is again sufficient overflow storage and from
that point on the expansion rate is storage-controlled.

Fig. 6 shows the cost of inserting a record. The lower line does not
include the cost of expanding the file. The switch from storage-controlled to
overflow-controlled expansion causes a higher expansion rate and hence
higher insertion costs. The average over a full expansion is 5.080 accesses,
of which 1.880 accesses are due to file expansions. The minimum is 4.088
and the maximum 5.812.

6. Optimistic analysis

So far we have assumed that overflow records on the same overflow
chain all reside on different pages. This is overly pessimistic. One can envi-
sion an insertion scheme that strives to keep overflow records from the same
home page stored on one or a few pages. This would improve the retrieval
speed. The net effect on the total cost of insertions is unclear. On one
hand, fewer accesses would be required for scanning down an overflow chain
during insertion and for collecting overflow records during file expansions.
On the other hand, it may be necessary to rearrange records during an inser-
tion in order to store a new overflow record on the same page as existing
overflow records (from the same home page). This requires additional
accesses. However, to achieve optimal retrieval performance it is sufficient

Performance analysis 17

to keep all records on the same overflow chain stored on one page. This may
be easier than keeping all overflow records from the same home page stored
on one page.

Designing an efficient clustering scheme is an open problem. Neverthe-
less, we can still find a Jower bound on the expected retrieval performance
achievable by any such scheme. Whatever the scheme is, fetching an over-
flow record, or checking all the records on an overflow chain will always
require at least one additional access. We will compute the expected search
lengths under this assumption.

A formula for the expected length of a successful search is easily found
by letting m -+ = in eq. (4). Increasing the number of chains does not affect
the number of overflow records. It merely decreases the length of each chain
to the point where any overflow record can be retrieved in one extra access.
Hence we have
1

s'(2)=2- =

1 81
-+ — -
& z_,n Pk, 2)(b — k)

The formula for unsuccessful search cannot be derived in the same way.
When m - o the expected length in eq (3) approaches one because the proba-
bility of hitting an empty chain converges to one. A more direct approach is
called for, Assuming that retrieval of all the records on an overflow chain
requires only one extra access we obtain the following formula

u'(z) = é Pk, z) +2 i P(k, z)
i=0

k=b+1

- 3 PR (- Ly

k=b+1

If we hit a page to which at most b records have hashed only one access is
required; this is the first term. If we hit a page to which more than »
records have hashed twe accesses are required; this is the second term.
However, if the overflow chain of interest is empty only one access is
required; this is the third term. The above formula can be simplified to

—1b

w(z) =2 = hy(zb) ~ (=Y e ™ (1- h(zb(m — 1)m))

m
m—1
b
where b,(x) = e™* 3, x*/kl.
=0

By inserting s'(z) and »'(z) in egs. (5) and {6) we get lower bounds on
the corresponding expected search lengths. The difference between the
expected search lengths under the pessimistic assumption and the correspond-
ing lower bounds gives an indication of how much there is to be gained by a
clustering scheme. For our example file we have the following differences
between the averages

18 P.-A. Larson

Successful Unsuccessful
search search
Pessimistic 1.154 1.233
Optimistic 1.113 1.168
Difference 0.041 0.065

For this particular parameter configuration the difference is less than 0.1
accesses. This is due to the fact that the overflow chains are expected to be
short, With a page size of 10 the number of overflow records per page is
quite low. If the page size is increased the number of overflow records per
page increases, but the total number of overflow records decreases. This
means that we can allocate less overflow space, thus decreasing the pressure
on the primary pages and decreasing the number of overflow records, If we,
for our example file, increase the page size from 10 to 40 records we can
decrease the overflow storage factor from 0.1 to 0.05. In this case we obtain

Successful Unsuccessful
search search
Pessimistic 1.080 1.362
Optimistic 1.043 1.185
Difference 0.037 0.177

Further numerical results are given in the appendix, Tables 2 - 9. It seems
that the potential for improving the retrieval speed by clustering is quite lim-
ited. Some simple, low-cost scheme may give an overall gain, but more ela-
borate schemes are likely to be too costly compared with the gain. Clustering
may also reduce the cost of expanding the file, but to what extent has not
been analysed.

7. Discussion

The simplest way of speeding up retrieval is to increase the number of
overflow chains. The cost is modest: additional pointer space on each page.
The effect is most dramatic on the length of unsuccessful searches, but it also
significantly speeds up both successful searches and insertions. This is illus-
trated by the results in Table 1 and 2 below.

Performance analysis 19

m Successful Unsuccessful Insertion
search search
1 1.314 2.165 6.012
2 1.214 1.583 5.429
3 1.180 1.388 5.235
4 1.164 1.291 5.138
5 1.154 1.233 5.080
10 1.133 1.117 4.963

Table 1: Effect of increasing the number
of overflow chains per page
(b =10, a = 0.85, f = 0.1, n, = 2).

m Successful Unsuccessful Insertion
search " search
1 1.229 2.811 5.318
2 1.136 1.906 4.413
3 1.105 1.604 4.411
4 1.090 1.453 3.960
5 1.080 1.362 3.869
10 1.062 1.181 3.688

Table 2: Effect of increasing the number
of overflow chains per page
(b = 40, a = 0.85, f = 0.05, n, = 2).

As discussed above the performance could be further improved by striv-
ing to cluster overflow records from the same home page on the same over-
flow page. The potential for improving the retrieval performance by cluster-
ing is quite limited, however, but it may reduce ‘the cost of expanding the
file. ’

A fraction of the total file space must be reserved for overflow records.
This fraction should be as low as possible to reduce the number of overflow
records. However, if it is set lower than a certain limit the target storage
utilization cannot be achieved. This limit depends on the page size and the
target storage utilization, see Table 1 in the appendix.

References

1. Larson, P.-A. Linear hashing with partial expansions. In Proc. 6th
Conf., Very Large Data Bases (Montreal, Canada), ACM, New York,
1980, pp. 224-232.

2. lLarson, P.-A. Performance analysis of linear hashing with partial

20

P.-A. Larson

expansions. ACM Trans. Database Syst., 7, 4 (1982), pp. 566-587.

Larson, P.-A. A single-file version of linear hashing with partial
expansions. In Proc. 8th Conf. Very Large Data Bases (Mexico City,
Mexico), VLDB Endowment, California, 1982, pp. 300-309.

Larson, P.-A. Analysis of hashing with chaining in the prime area. J.
of Algorithms (to appear).

Litwin, W. Linear hashing: A new tool for files and tables addressing.
In Proc. 6th Conf. Very Large Data Bases {(Montreal, Canada), ACM,
New York, 1980, pp. 212-223.

Martin, G.N.N. Spiral storage: Incrementally augmentable hash
addressed storage. Theory of Computation Rep. 27, Univ. of Warwick,
England, 1979.

Mullin, J.R. Tightly controlled linear hashing without separate over-
flow storage. BIT, 21, 4 (1981), pp. 389-400.

Ramamohanarac K. and Lloyd J.K. Dynamic hashing schemes. The
Computer J., 25, 4 (1982), pp. 478-485.

Regnier, M. Linear hashing with groups of reorganization: An algo-
rithm for files without history. In Sheuermann P. (ed.): Improving
Database Usability and Responsiveness, Academic Press, New York,
1982, pp. 257-272.

Performance analysis 21
Appendix: Numerical results for page size 5, 10, 20 and 40 records
N, | Page Storage utilization
size | 0.70 0.75 0.80 0.85 0.90 0.95
5 | 0.0980 | 0.1293 | 0.1688 | 0.2198 | 0.2885 | 0.3919
1 10 | 0.0661 | 0.0927 | 0.1275 | 0.1737 | 0.2375 | 0.3354
20 | 0.0506 | 0.0751 | 0.1077 | 0.1513 ; 0.2115 | 0.3031
40 | 0.0444 | 0.0687 | 0.1012 | 0.1441 | 0.2022 | 0.2883
5 | 0.0719 { 0.0972 | 0.1300 | 0.1734 | 0.2336 | 0.3276
2 10 | 0.0359 | 0.0535 | 0.0781 | 0.1128 | 0.1638 | 0.2480
20 | 0.0176 | 0.0298 | 0.0483 | 0.0762 | 0.1193 | 0.1938
40 | 0.0093 | 0.0184 | 0.0334 | 0.0573 | 0.0957 | 0.1632
5 | 0.0655 | 0.0891 | 0.1200 | 0.161i1 | 0.2186 | 0.3090
3 10 { 0.0289 | 0.0442 | 0.0658 | 0.0968 | 0.1433 | 0.2215
20 | 0.0112 | 0.0201 | 0.0342 | 0.0566 | 0.0928 | 0.1584
40 | 0.0040 | 0.0089 | 0.0181 | 0.0344 | 0.0631 | 0.1186
Table 1: Lowest overflow storage factor for which lack
of overflow storage is not expected to occur.
Ny o f Suce. search | Unsucc. search Insertion
avg. max. | avg. max. avg. max.,
0.70 | /10 | 1.153 1.176 | 1,125 1,154 | 4.498 5.096
0.75 1/7 | 1.202 1.228 | 1.179 1,214 | 4,805 5.484
1 |0.80 1/5 11.272 1.301 | 1.260 1.305 | 5.199 5.962
0.85 1/4 | 1.350 1.383 j 1.359 1.413 | 5,596 6.423
0.90 1/3 | 1.484 1.519 | 1.543 1.608 | 6.176 7.062
0.95 1/2 | 1.830 1.872 { 2.081 2.165 | 7.316 8.200
0.70 | 113 | 1,113 1.123 | 1,079 1.091 | 5.253 6.035
0.75 | 1/10 | 1.145 1,157 | 1,109 1.124 | 5.493 6.357
2 | 0.80 1/7 | 1.194 1,208 | 1.158 1.177 | 5.859 6.834
0.85 15 | 1.263 1.278 | 1.235 1.259 | 6.361 7.469
0.90 14 | 1.342 1.359 |'1.331 1.359 | 6.885 8.115
0.95 173 | 1.431 1.449 | 1.450 1.482 | 7.429 8.765
0.70 | 1/15 | 1.104 1.109 | 1.070 1.076 | 6.225 7.316
0.75 | 1/11 | 1.135 1.142 | 1,098 1.106 | 6.461 7.633
3 | 0.8 1/8 | 1.177 1.184 | 1.139 1.148 | 6.809 8.088
0.85 16 | 1.231 1.240 | 1,196 1.209 | 7.273 9.683
0.90 14 | 1.332 1.342 | 1.316 1.332 | 8.101 9.722
0.95 13 | 1.466 1.477 | 1.494 1.513 | 9.070 10.910

Table 2: Expected search lengths and total insertion costs
for b = 5, m = 5 (pessimistic analysis).

22

P.-A. Larson

Nyl « f Succ. search | Unsucc. search Insertion
avg. max. | avg. max | avg. max
0.70 | 1/15 | 1.102 1.134 | 1.156 1.214 | 3.805 4.286
0.75 | 1/10 | 1,148 1.186 | 1.235 1,310 | 4.185 4.743
1080 /77 |1.212 1.258 | 1.351 1.446 | 4.653 5.297
0.85 | 1/5 | 1.309 1.362 | 1.532 1.644 | 5.246 5.982
0.90 | 1/4 | 1.425 1.483 | 1.754 1.880 | 5.838 6.639
0.95 | 172 | 2,115 2,195 | 3,133 3.295 | 8.214 8,943
0.70 | 1/27 | 1.053 1.065 | 1.069 1.091 | 3.847 4.314
0.75 | 1/18 | 1.078 1.094 | 1,108 1.137 | 4.155 4.725
2 (0.80| 112 | 1.115 1.135 | 1.168 1.205 | 4.578 5.276
0.85 | 1/8 {1.172 1.196 | 1.266 1,313 | 5.161 6.019
0.90 | 1/6 | 1.247 1.274 | 1.400 1.456 | 5.820 6.833
0.95| 1/4 |1.396 1.427 | 1.683 1.749 | 6.893 8.105
0.70 | 1/34 | 1.045 1.051 [1.056 1.066 | 4.249 4.846
3 1075|123 [1.066 1.074 [1.087 1.101 | 4.571 5.228
0.80 | 1715 | 1.097 1.108 | 1.136 1.155 | 4952 5.772
0.85 | 1710 | 1.144 1.156 | 1.213 1.237 | 5.529 6.514
0.90 | 16 | 1.232 1.247 | 1.369 1.401 | 6,503 7.738
095 1/4 | 1.379 1.396 | 1.647 1.684 | 7.816 9.337

Table 3: Expected search lengths and total insertion
costs for b = 10, m = 5 (pessimistic analysis).

Ny a f Succ. search | Unsucc. search Insertion
avg. max. | avg. max. | avg. max.
0.70 | 1719 | 1.080 1.124 | 1.217 1.343 | 3.452 3.863
0.75 | 1/13 | 1.126 . 1,184 | 1,341 1.507 | 3.885 4.295
1|08 | 1/9 | 1.194 1.267 | 1.527 1.734 | 4.437 4.837
0.85 | 1/6, | 1.312 1.402 | 1.842 2.089 | 5.221 5.725
0.90 | 1/4 | 1,533 1.640 | 2.422 2.693 | 6.383 7.017
0.95| 1/3 | 1.867 1.990 | 3.268 3.539 | 7.737 8.386
0.70 | 1/56 | 1.023 1.036 | 1,056 1,092 | 3.002 3.281
0.75 | 1/33 | 1.040 1.059 | 1.101 1.156 | 3.307 3.692
2 | 0.80 | 1720 | 1.068 1.095 | 1.178 1.255 | 3.753 4.242
0.85 | 1713 | 1.113 1.148 | 1.304 1.403 | 4.361 4.993
0.90 | 1/8 | 1.198 1.242 | 1.539 1.663 | 5.281 6.135
0.95| 1/5 | 1.365 1.418 { 2.003 2,142 | 6.644 7.736
0.70 | 1/89 | 1.015 1.021 | 1.036 1.053 | 3.102 3.386
0.75 | 1/49 | 1.028 1.037 | 1.069 1.094 | 3.364 3.732
3 10801 1/29 | 1.049 1.062 | 1.125 1.162 | 3.765 4.259
0.85 | 1/17 | 1.085 1.102 | 1.223 1.274 | 4.375 5.047
0.90 | 1710 | 1.151 1.174 | 1.407 1.473 | 5.313 6.234
095 | 1/6 | 1.283 1311 | 1.778 1.855 | 6.763 8.001

Table 4: Expected search lengths and total insertion
costs for b = 20, m = 5 (pessimistic analysis).

Performance analysis 23
N, o f Succ. search | Unsucc. search Insertion
avg. max. | avg. max. | Aavg. max.
0.70 | 122 | 1.078 1.143 | 1.336 1,613 | 3.346 3.962
0.75 | 114 | 1.137 1,231 | 1,571 1.947 | 3.913 4,558
1 10.80 1/9 1 1.238 1.367 | 1.949 2.428 | 4.706 5.311
0.85 1/6 | 1.416 1.583 | 2,574 3.133 | 5.843 6.324
0.90 14 | 1.774 1.982 | 3.746 4.314 | 7.657 8.118
0.95 1/3 | 2.350 2.592 | 5.472 5.985 | 9.919 10.568
0.70 | /107 | 1.009 1.022 | 1.043 1.101 | 2.526 2.817
0.75 | 1/54 | 1.021 1.043 | 1.096 1.198 | 2.802 3.208
2 | 0.80| 1/29 | 1.044 1.080 | 1.200 1.360 | 3.260 3.744
0.85 | 1/17 | 1.088 1.141 | 1,394 1.620 | 3.968 4.475
0.90 | 1/10 | 1.178 1.252 | 1,776 2.061 | 5.087 5.735
0.95 1/6 | 1,377 1.472 | 2.564 2.867 | 6.849 7.792
0.70 | 1/250 | 1.004 1.008 | 1.018 1.039 | 2.494 2.599
0.75 | 1/112 | 1,010 1.019 | 1.046 1.086 | 2.676 2.894
3 1080 1/55|1.023 1.038| 1.105 1.175 | 3.020 3.366
0.85 | 1/29 | 1.049 1.073 | 1.225 1.333 | 3.608 4.081
0.90 | 1/15 | 1.106 1.141 | 1,483 1.632 | 4.627 5.303
0.95 1/8 | 1.244 1.292 | 2.070 2.245 | 6,388 7.441

Table 5: Expected search lengths and total insertion
cost for b = 40, m = 5 (pessimistic analysis).

Ny [} f Successful Unsuccessful
avg. max. avg. max.

0.70 § 1710 | 1.125 1.141 | 1.100 1.120
11075 17 1 1,161 1.178 | 1,138 1.161
0.80 1/5 | 1.208 1.225 | 1.192 1.219
0.85 1/4 1 1.258 1.275 { 1.253 1.282
0.90 1/3 | 1.334 1.349 | 1.354 1.382
0.95 1/2 | 1.490 1.497 | 1.578 1.596
0.70 | 1/13 | 1.096 1.104 | 1.067 1.076
0.75 | 110 | 1.122 1,131 | 1.091 1.102
2 | 0.80 /7] 1.159 1.168 | 1.128 1.141
0.85 1/5 | 1.208 1.217 | 1.183 1.197
0.90 1/4 1 1.261 1.269 | 1.248 1.262
0.95 1/3 | 1.342 1.349 | 1.357 1.370
0.70 | 1715 | 1.090 1.094 | 1,060 1.065
0.75 | 1711 ¢ 1.115 1.119 | 1.083 1.088
3 |0.8 1/8 | 1.147 1.152 | 1.114 1.121
0.85 1/6 | 1.187 1.192 | 1.157 1.165
0.90 1/4 | 1.257 1.261 | 1.240 1.248
0.95 1/3] 1.339 1.343 | 1.350 1.357

Table 6: Expected search lengths forb = 5, m = 5

(pessimistic analysis).

24

P.-A, Larson

Ny o I Successful Unsuccessful
avg. max. | avg. max.

0.70 | 115 | 1.075 1.095 [1.110 1.146
0.75 | 1710 | 1.104 1.126 | 1.158 1.201

1 | 0.80 17 | 1.142 1,166 | 1.222 1.270
0.85 | 1/5 | 1.193 1.218 | 1.311 1.361
0.90 14 | 1.249 1.271 | 1.406 1.453
0.95| 1/2 | 1.480 1.486 | 1.768 1.798
0.70 { 1/27 | 1.043 1.051 | 1.055 1.070
0.75 | 1/18 | 1.062 1.072 | 1.084 1.102

2 0.8 | 1712 | 1,088 1.099 | 1.126 1.148
0.85 | 1/8 | 1.126 1.138 | 1.189 1.214
0.90 1/6 | 1,171 1.184 | 1.269 1.293

0.95 | 1/4 | 1.253 1.262 | 1.415 1.434
0.70 | 1/34 [1.037 1.041 | 1.046 1.053
0.75 | 1/23 | 1.053 1.058 | 1.070 1.078

3 10.80 | /15 | 1.076 1.083 | 1.105 1.117
0.85 | 1/10 | 1.108 1.115 | 1.158 1.i7T1
0.90 1/6 | 1.165 1.172 | 1.256 1.270
0.95 | 1/4 | 1.248 1.253 | 1.406 1.416

Table 7: Expected search lengths for b = 10, m = 5

(optimistic analysis).

N, a

f

Successful

avg.

max.

Unsuccessful

avg.

max.

0.70
0.75
1 10.80
0.85
0.90
0.95

1119
1/13
19
1/6
1/4
1/3

1.049
1.072
1.104
1.152
1.229
1.322

1.073
1.101
1.136
1.186
1.258
1.341

1.126
1.183
1.259
1.369
1.529
1.697

1.191
1.261
1.346
1.459
1.611
1.765

0.70
0.75
2 | 0.8
0.85
0.90
0.95

1/56
1/33
120
1/13
1/8
1/5

1.017
1.028
1.046
1.073
1.118
1.194

1.025
1.040
1.061
1.090
1,136
1.208

1.041
1.07m
1.118
1.189
1.306
1.492

1.064
1.103
1.158
1.234
1.350
1.522

0.70
0.75
3 | 0.8
0.85
0.90
0.95

1/89
1/49
129
1117
110

1/6

1.012
1.021
1.035
1.058
1.097
1.164

1.016
1.027
1.043
1.067
1.107
1.172

1.028
1.051
1.088
1.149
1.252
1.425

1.039
1.067
1.109
1.174
1.278
1.443

Table 8: Expected search lengths for b = 20, m = 5

(optimistic analysis).

Performance analysis

Ny o f Successful Unsuccessful
avg. max. | avg, max.

0.70 | 1/22 | 1.037 1.064 | 1.145 1.254
0.75 | 1/14 | 1.058 1.093 { 1.217 1.350

1] 0.8 1/9 | 1.090 1.131] 1.313 1.463
0.85 1/6 | 1.138 1.181 | 1.441 1.596
0.90 1/4 | 1.218 1.253 | 1.626 1.763
0.95 173 §1.315 1.335 | 1.803 1.924
0.70 | 1/107 |} 1.006 1.013 | 1.027 1.060
0.75 | 1/54 | 1.013 1.025 | 1.057 1.109
2 |0.80 | 1/29 | 1.025 1.042 | 1.110 1.181
0.85 | 1/17 | 1.047 1.068 | 1.198 1.280
0.90 | 1/10 | 1.085 1.108 | 1.343 1.422

0.95 6 | 1.155 1.174 | 1.567 1.622
0.70 | 1/250 | 1.003 1.006 | 1.013 1.025
0.75 | 17112 | 1.007 1.012 | 1,031 1.054
3 1080 | 1/55 | 1,015 1.023 | 1.066 1.101
0.85 | 1/29 | 1.029 1.041{1.131 1.177
0.90 | 1/15 | 1.058 1.072 | 1.252 1.301
0.95 1/8 | 1,117 1.129 | 1.470 1.502

Table 9: Expected search lengths for b = 40, m =5
(optimistic analysis).

25

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

