Splines in Interactive Computer Graphics
Richard H. Bartels

Department of Computer Science
University of Waterloo
Waterioo, Ontario, Canada
N2L 361

Research Report CS-83-27
September 1983

Splines in Interactive Computer Graphics
Richard H. Bartels

University of Waterloo
Department of Computer Science
Waterloo, Ontario
Canada N2L 3Gl

ABSTRACT

Computer graphics, particularly interactive computer graphics, is not, as the name might imply, concerned
with drawing graphs, but rather with the broadest issues of manipulating, transforming, and displaying information
in visual format. It is interactive in so far as operations can be carried out in real time — which requires algorithms
of high computational efficiency and low complexity.

Splines are a valuable tool in graphics, but they are often applied in a way not used by the mathematician.
This difference raises computational issues which the numerical analyst might otherwise never see. This talk will
provide a brief introduction to such issues and follow with a study of two current developments.

We begin with a review of the graphics environment, mentioning the modelling and display process and point-
ing out some of the costly issues. The novel use of splines in interactive graphics comes through the construction of
surfaces as weighted averages of selected points, called “‘control vertices” in which B-splines are taken as the
weighting functions. Some examples will illustrate the characteristics of this use of B-splines.

With this background we consider two recent developments. The first is the control-vertex recurrence of
Riesenfeld, Cohen, and Lyche; the second is Barsky's work on geometric vs. mathematical continuity, and his intro-
duction of Beta-splines. We will close with some results on current research concerned with a synthesis of these two
developments.

1. Introduction

The Computer Graphics Laboratory at the University of Waterloo has embarked on a programme to investi-
gate techniques of potential use for the next generation of computer-aided design systems. The terms of reference
are interactive and surface modeling. The context is not that of fitting curves or surfaces to data or objects which
exist — plotting or approximation is not of interest. The context is that of (1} providing a mathematicaily naive
industrial draftsman, sitting before a screen and control panel, with an easy way of creating the mathematical
description of an object which does not yet exist, (2) displaying and manipulating images of that object on the
screen, (3) modifying the object, and (4) ultimately generating machine-tool commands which will provide a means
for producing the object. In design systems of this type splines have been very important in the past, and they are
undergoing interesting developments for the future.

In this presentation we will look at a typical visual display environment in computer graphics to set the stage
and provide a motivation for some of the things to be mentioned subsequently. There will be a brief, informal, intui-
tive review of the classical construction of B-splines, concentrating on simple knots, to provide a paradigm for some
new developments. The use of B-splines in computer graphics to construct curves and surfaces is distinctly different
from the use of B-splines in approximation and interpolation. This use will be presented, along with some of the rea-
sons it is particularly appropriate from the point of view of computational efficiency and human interface. The work
of Lyche, Riesenfeld, and Cohen for subdividing curves and surfaces, as a means of modification and display, will be
outlined.

The author expresses his appreciation for the support he received in preparing this document from the sponsors of the 1983 Dundec Conference en
Numerical Analysis. Some of the newer material derives from joint research by the author and John C. Beatty, and was done at the Computer
Graphics Laboratory of the University of Waterloc. Funding has been received from the Natural Sciences and Engineering Research Council of
Canada, from ke National Science Foundation of the United States, from the Ontario Board of Endustrial Leadership and Development, from the
National Research Council of Canada, and from the Laidlaw Corporaticn. Appreciation is also expressed to the Mathematics Faculty Computing
Facility of the University of Waterloo for its help in photo-printing.

This will end one of the thrusts of the presentation. A second will cover the concept of geometric (as opposed
to mathematical) continuity which was explored by Barsky, and which provides a generalisation of B-splines to func-
tions which can serve as generators for “tensed” and “biased” splines. Some examples of curves produced by these
functions, called Beta-splines, will be given.

The third portion of this presentation will cover recent progress in expanding the notion of geometric continuity
to a more general context and in adapting the classical B-spline construction methods to the production of Beta-
splines. The goal of this work is to develop subdivision recurrences for Beta-splines.

The primary references for the spline material in this presentation are [2,5,8] and [9]. Good backgrounds on
the graphics environment are to be found in [1,6] and [7].

2. The Graphics Display Environment

The following is not the only example of a visual display environment for a design system, but it is typical and
will serve to motivate the later discussion. Figure 1 gives an overview of a display pipeline. In it, mathematical
objects are defined separately as templates, each in its own local coordinate system, each arranged according to
some canonical scaling and orientation. These objects a placed together in a world coordinate systent using rotations,
translations and scalings, all of which are rigid transformations. As such, they preserve the character of the objects;
in particular, polynomials remain polynomials. The result of these modelling transformations is a composite scene to
be displayed. Each time a new view of the scene is to be taken, viewing transformations must be carried out. In
industrial design systems these may be no more complicated than a single orthographic projection. In graphic art
systems however, a camera model is often used: an eye-point is specified, as are viewing direction, upward orienta-
tion, angle of view, aperture, depth of ficld, and image plane. The viewing frustum which results is often mapped to
a canonical viewing configuration by further rigid transformations. This canonical configuration is then subjected to
a distortion by a perspective transformation. Magically, straight lines are preserved, but polynomials become
rationai functions. Under this distortion, the viewing frustum is changed into a canonical clipping box. Up until
now, objects in the scene which are not within the viewing volume may have been involved in the computations.
Algorithms are now invoked to trim away all portions of the scene outside of this volume and project only what
remains onto the image plane. The projected objects must then be discretised, if the display is a raster device, or be
approximated in outline by simple, known curves, if the display is a calligraphic device.

Profound implications are hidden in the above. To do all of this exactly, transformations would have to be
applied to infinite numbers of points or to functional descriptions of surfaces; extensive root-finding techniques would
be required to determine the curves of intersection between pairs of surfaces, as well as between surfaces and the
sides of the viewing frustum; information would also have to be extracted to determine which surfaces are obscured
by which - requiring that additional root-finding operations be performed to trace the silhouettes of objects with
respect to the eye-point — and finally, discretisation processes akin to differential-equation sclvers would have to be
applied to paint an image on the display. For the purposes of industrial design, a wire-frame rendering of each
object in the scene may suffice, but for other purposes a more realistic rendering of the objects may be required.
This may involve something as elaborate as using a mathematical model of the optical characteristics of some collec-
tion of materials together with computations requiring normal vectors to the various surfaces and the illuminant
details of a number of light sources. If all of this is to be interactive, then it must take place as fast as the refresh
rate of the display — that is: typically within a sixtieth to a thirtieth of a second. (It is small wonder that the Cray
computer corporation has started to advertise in the graphics trade literature.) Finally, if machine-tool descriptions
are needed, while they don’t need to be performed with the speed of display computations, they will still involve
determining how to track contours on a surface while holding a prescribed orientation to the normal — which could
be a nontrivial problem in control theory.

The only salvation for owners of small computers lies in determining how little one can do, how efficiently and
how approximately, without the disturbing the final result within visual or machine-tool tolerances. In graphics this
is accomplished by “creative cheating”, which frequently involves applying all of the above processes only to a smail
numbers of representers of the objects in question. For example, it is still usual to deal mostly with polyhedral
bodies, plus a few additional primitive forms such as spheres and cylinders, and carry out the transformations of the
pipeline merely on vertices, centres, radii, etc., using the images of these few representers at the bottom of the pipe-
line to recreate approximate pictures. One feature of the unique way in which spline surfaces are used in graphics
derives from the fact it provides an efficient way for the surfaces to be approximated to arbitrary accuracy by
polyhedral surfaces. It is to these polyhedra rather than to the splines themselves that the above computations in the
pipeline can be applied.

\.___
]
[]
L]

Bl Bl K

Figure 1. The graphics display pipeline.

3. Splines
’ For any k >0, let P¥ be the space of polynomials of order k with real coefficients:
plu) = co+eou+ - +epouk?
For any m >0 let U™ be a sequence of m knots:
U? = fug,...,tm},
where
Mg = S 0 =ty

Each knot #; has multiplicity p,, the count of the knots in U™ having value equal to t;. This includes u; itself, By
convention, p; <k for all i; hence, w; <ty 4 for all i =0,...,m—k. As a further convention, let @ <wug and
b >u,,, and agree that nothing outside of [a,b) is of any interest.

The set of the M distinct, consecutive values in U™

ll,'o < e < u,-"
are the breakpoints of U™, ({ip.... .5, } C{0,...,.m} is any conveniently chosen subsequence which picks out
the breakpoints.) Each breakpoint is associated with the multiplicity of its corresponding knots, and the breakpoint
intervals defined by U™ |_) [@,b) are the half-open intervals

I = [a,u;o)

L = [wy_,u) forj=1,....M .
and

Lyt = [w,,b) .

Formally:

Definition: Assuming that k =1, that m =k —1, and that 1 <p, <k forall i =0,...,m, then S(P*,U" ,a,b),
the set of all splines of order k on [a,b) with the knot sequence U™ C[a,b), breakpoints §u;,u;, ..., %, }CU",
and breakpoint intervals Iy, . . . , I}z is the set of all functions of the form s(u) satisfying:

s(w)ePX foreachI; (j=0,..., M+1)
and for any breakpoint u; associated with multiplicity p;, (j=0,... .M),

if

s(u) = p; eP* on 1,
and

s(u)=p;+ €P* only
then

DPpyw) = DPpy(wy) fori=0,... k—1—p, .

In the definition, D' p(x;) stands for the [™ derivative with respect to u of p(u) evaluated at u;. We denote
Pj» Pj+1 as the segment polynomials which describe s{u) in the interval I; and 1,4, respectively. Notice that any
issue of end conditions is left open. It is only necessary that a spline be a polynomial in the intervals Iy and Iy 1.
Imposing various end conditions will serve merely to isolate subsets of splines, and this issue will be left aside.

It is easily verified that S(P*,U™ ,a,b) is a vector space with P* as a subspace.

4. The One-Sided Basis
The dimension of S(P* , U™ ,ab)is
k o+t oo Ty, .
This can be made plausible by considering any s(u)eS(P* , U™ ,a,b) as u moves from a rightwards to . On the

breakpoint interval I = [a,1;), s(u) = po(u) is a polynomial of order k; hence it can be represented as a linear com-
bination of

(e—a), (u—a),,...,(u—a)" !, (4.1)

In the next interval to the right u;, <wu <<u;,, s(u) changes to
s(u) = polu)+ (p1(u) ~ po(u)) .
= polu)+4,n) ,
k—1—
where A,(u) “touches zero with C Ho continuity” at & = u,. It proves true that A () can be represented as a
linear combination of the truncated power functions
- - k=H,

(=5 (e —w)57 Gu =) fa 4.2)
Consequently s(u) can be represented on the interval @ =<u <<u;, as a linear combination of the functions (4.1}
together with those of (4.2).

The same arguments apply as u crosses #; and p;(u) changes into

pi+i{u) = piu) + Ajpy(u)
for each j=0,.... M.

After further considerations:

Theorem: The functions
(u—a), (u—a),,..., (u—a)t,

together with

— —~ L™
(=) (=)87 () " forug,
- _ k-
(=)5 (=)72 (=) 1 for g,
4.3)
e 8 9 * & 9 . & s
k-1 -2 Eowy,
(=m0 (=,)72 (e —uy)+ ¥ foru,

form a basis for S(P¥,U™ ,a,b).

There are precisely k +y;,+ -+, functions in (4.3). This is the one-sided basis of S(P*, U™ .a,b).

5. Linear Combinations and Cancellation

Computing the coefficients in the representation of a spline with respect to this basis is often an ill-conditioned
problem. This arises, roughly, as follows. Most splines with which we would want to deal in practice have moderate
values throughout the interval {a,b). The one-sided basis functions, on the other hand, blow up as u increases.
Hence, if this basis is used to express “reasonable” spline curves and surfaces, the coefficients required for this could
be expected to flip-flop between large positive and negative values in order to force numerical cancellation of the
basis-function values as u increases.

A second shortcoming, from the point of view of graphics, is that the one-sided basis functions do not have
compact support; they are all nonzero on half of the real line. If a curve or surface is represented in terms of the
one-sided basis and some change is made to the representation to provide an adjustment of shape, then the change
has an influence over the entire curve or surface. A complete recomputation of the curve or surface is necessary; no
local updates are possible. The continual need engage in costly recomputations will all but rule out interactive
graphical design. In graphics it is as significant that the B-splines have compact support as that they provide well-
conditioned representations.

The key to constructing a desirable basis from the less desirable (but conceptually simple) one-sided basis is to
recognise (1) that a basis with compact support will be an answer to the numerical objections above as well as (2)
being desirable from the point of view of computational efficiency. Compact support can be achieved by a process
of symbolic cancellation, before any numerical computations are begun. It is through this door that divided differ-
ences enter.

To illustrate, let k =4 (cubic splines), and consider
U <ty T Uiy < Wy < Uy .
We have

0 u <ty

(1 — 3.\
(e~) — (e —u)d (—ur) U =u<upiy
=

(41— up)

—3u2+ 3“(“34.]"‘“‘) Uiy =<t
_(ut’%-|+“f+1“l+“:2)

which is a “nicer” function than either (u—w;)} or (u—u;4)} in that it grows only quadratically for # —co.
Denote the result by

(u~u)d — (u—u)i
LR S]

[u tier:t] —1)L =
Since this function is a linear combination of (u —u;)3 and (u —u;+,)}, we may substitute it for one of these
truncated power functions, e.g. for (¥ —u;)}. We may carry out a similar operation for the pairs
furer,ttad, {ttatiead, and furgs,u4q}
to produce quadratic-growing substitutes for
(u—wDd, (w—we2)d, and (4 —w13)d
Going one stage further, let
[tpan it) (v — 1)1

g tie2:0 100~)3 =~ [0 1u —£)3
Uitz — Wy

This function grows only linearly for # —s0o0. It may be used to replace [u;,u;+,:t](x —)3, and the differencing and
replacement may be repeated pairwise, again. Ultimately we arrive at a function which “grows as zero” for w —co.

When multiple knots appear, the construct
(0 —we)} — (e —u)}
Wiy — Uy

(it (e — 1)t =
is regarded as being taken in the limit as #; —u; 4. This provides the convention that the derivatives of the one-
sided power function (4 — ¢)% with respect to ¢ for fixed u:

Nu—1), forlr=0,1,23,---

are to be understood in the left-handed sense. The derivatives of (u — t }} with respect to u for fixed ¢ are similarly
to be understood in the right-handed sense. So long as we hold to this, the truncated power functions behave under
differentiation just as the ordinary power functions do. This brings us to

Definition: For any values z; << - - <z; 4 the I-th divided difference with respect to the variable x of any function
[depending upon x (and possibly other variables) is given
for I =0 by

[z::x1f(x) = f(z)
and for / >0 by
[2:0. . czerix1f(x)

[zi41s ooz} f(x) = 20,0 zip—1ix] f(x)
Zi+l T 2

if Zigp > 2

1 .
-[I-D"":’)f(x) 'x=z. ifz,=12;

When this general definition is applied to (u —£)%, with ¢ in the role of x and u replacing z, compact-support sub-
stitutes for the truncated power functions result, even for the case of multiple knots, and we have

Definition: Assuming that i +k <<m, the B-spline of order k associated with the knots u;, . . . , u; 44 is given by
By = (=D (e —u) [y, et u —)57

This function has support on [u;,4;+4). The factor (~1)* ensures nonnegativity, and the factor (;4.x — ;) provides
normalisation. These three observations will be stressed more formally somewhat below.

This does not, as such, provide a full replacement for the one-sided basis. If it had been our intention, for
example, to construct a compact-support basis for S(P¥,U" ,a,b) =S(P*,{0,1,2,3,4},(—1),5), then we would not
have enough power functions to carry the differencing process to completion. The one-sided basis for the splines in
question would be

=(=1)% @—=0), @—(DP, @—(-np,
=0}, (@-DI, @-2%, @D} @i,

and this provides us with only the one B-spline (—1)*(4—0){0,1,2,3,4:¢](x —¢)}. There is nothing to the right of
us=4 to usc as a “partner” for u,u;,u; and #4 to produce a compact-support function which could substitute for
(¥ —u,)}, for example. Furthermore, there is nothing which can form a compact-support substitute for any of the
functions (# —(— 1)), j=0,...,3. To compensate for this, introduce additional knots:

U g=Su3Su <u_ | <a=(—1)
and

bESSusSug =S ur = ug
Then the differencing process will be able to produce B-splines with supports in the intervals

{u—s,uo), [u—s,u1), [u—z,us), [0-1,u3), [ug, 14},

[ur,us), [ua,ue) , (3,17}, [14,ug)
These basis functions can represent any spline in S(P*,{0,1,2,3,4},(—1),5), but the representation is only good on
the interval [a,b)=[(—1),5). Since we are agreed that nothing outside of this interval is of interest, this is good
enough. That this is true in general is the Curry-Schoenberg result:
m the sequence of knots in U™ add arbitrarily chosen knots

VS Bu_=<a

and

b=Sup 1S SUpsr .
Then let

Big(u) = (=D (e —u) (v, w1 —)5
fori=—1,...,m.

Theorem: Any B_;4(u),Bn,:(u) constructed in this fashion is a basis for S(P*, U™ ,a,b).

It is usuval in graphics to ignore the possibilities
Uy <a and b < t,4
and to fix

Uy =a Uyt = b .

6. B-spline Properties
The differences of products of functions is governed by the Leibniz rule:

Theorem: For any z; =< - -+ =< z;4; and any appropriately differentiable functions,

fi(x) and fo(x):
lzio. o oz x 1 {F1(x) %)}

= réo“z“ oo e VN Mz oz x 120D
This has relevance, since
Bir(w) = (=0 (e —u)lwg ... wpag it Wu—)47
And
(=051 = (u—t)y(u—1)§?,
for k = 2. That is, that B; ;(u) is constructed by differencing a product. Therefore,
[t oot Wu ~)5
itk
= j;j{[u,, costpt = [y, ot e — 057
It is found that
fug, o uie](u~1)
is zero save for two of the terms in the summation, and these two terms can be rearranged to give
Biu) = (— 0 e —) [ia1a oLt st Ju —2)572 (6.1)
S Gl Vi T | PP [R

It is easy to recognise two lower-order B-splines in this expression. In other words, the B-splines satisfy a recurrence
relation.

Theorem: Foranyie{—k,—k+1,... ,m}

1 u = u<uj4

By i(u)
0 otherwise

and

Bi(u) = (g, —u)Qirp,—1(u) + Cu~1u;)Q01 () ,
forr =2,3,...,k,

where

Bip(u) / (e —)y Su<tiy,

Qi (1)

0 otherwise

From this recurrence can be established the three properties of nonnegativity, compact support, and partition
of unity.

Theorem:
Bii(u) > 0 for we(u;,u4z)

Biy(uy = 0 for ué{u,ui+s) ,
and

i Bix(u) = 1 for each fixed «
i=—k

(At u =u; we have: B; 4 (u;)=1 for k =1 and B, x(#;) =0 for k >1.) The proofs are inductive in each case, start-
ing at the step functions B; ;(u), for which the properties obviously hold, and marching upward in kX by means of the
recurrence.

7. Parametric Curves and Surfaces

The above properties are the crux of the utility which B-splines offer to graphics. In graphics, the space
S(P%,U™,a,b) is not at issue; it is the B-splines themselves which are important. The three propertics above allow
B-splines to be used as weight functions 1o produce curves and surfaces in parametric form.

The parametric representation of a curve is a mapping of some interval
a=u<b
onto a continuum of points
Qu) = [X(u),Y(¥)]
or
Q) = {X(u),Y(u),Z(u)}
A surface is provided by a similar sort of mapping
Qlu,y) = [X(u,w),Y{uyv),Z(uyv)]
for
a=u<bhb and c<v<d

Consider the special cases of the above provided by

Qlu) = :Z_kvm By (u) (7.1)
where

Vo. oo Vit
is a collection of points in the plane (or in space), and

Q) = F F Viensu B Bu0) a2
where

Voo, o Vidknsk

are points in space. Note that (7.1) provides a curve in the plane or in space, and (7.2) gives a surface.

The points V are known as control vertices, and the curves and surfaces Q(u),Q(u,v) are weighted averages of
these points. In the case of cubics, any point on the curve, Q(u) for each u, rests in the convex hull of only 4 adja-
cent V;, because of the compact support of the B-splines. In like manner, each point of a surface, Q(u,v) for each
u,v. lies in the convex hull of only 16 adjacent V;;. It is this fact which causes the graphics community to refer to
the nonnegativity, compact support and partition of unity properties of B-splines collectively as the convex hull pro-
perty.

This method of constructing curves and surfaces has the desirable features that (1) only a small number of
points are needed to determine quite extensive curves and surfaces, (2) it is easy for a mathematicalty unschooled

person to “sculpt” curves and surfaces by placing control vertices and moving them around using a graphics display,
(3) these representations of curves and surfaces can be computed efficiently, (4) when any change to a curve and sur-
face involving only a change in a single control vertex is made, these representations can be efficiently updated — the
changes induced in the curve or surface are local to the vertex in question.

We close with three pictorial examples.

Figure 2. A B-spline generated curve with the B-splines shown for pucposes of reference. The separate, pure-paiynomial segrments of the curve have been plotted in alternating solid and dotted

lines to add insight. The joints between the segments are the images of the knots. Additionally, the lincs between successive control vertices have been put in 10 shaw the control graph. It de-
fines the curve and may be considered a rough approximation o it,

tovn T

T
01 2 3 4 5 6 7 8 8 10111213

1.2 2,2
VO,S / \ V3.3
/ N

02/ v Vi Vas vy NVs.2

VOJ 3,1
7
VO,O 3 1,0 VZ.O VC’),O
Figure 3. A Bapline generated surface patch. The surface paich itself has been represented as wire frame mesh. The grid lines on the patch do not correspond to eny feature of the

splincs. Again, the control graph has been made visible by joining the V points according to their index rdjacencies in { ané J.

Figure 4. A B-spline generated "torus”. (Actually not a torus. Conteol vertices have been chosen in such a way as to force periodicity in two directions. The cross section of the object is a

closed cubie curve rather than a citcle) Again, a wirc-frame rendering of the surface has been used, the grid lines do not cerrespond to any feature of the splines, The the control graph has
been drawn in.

8. The Oslo Algorithm
Suppose we have constructed a curve
m
Q) = ¥ VieeBi(w)
i=—k
or a surface
- m n
Qu,v)y = Zk Y Vitkyri Bra(u)Bip(¥)
im—k jm—k

using control vertices, and we now wish to express the same curve or surface in terms of these control vertices plus
some additional ones. There are two different reasons for wanting to do this. The obvious one is that we may wish
to “fine tune” the curve or surface by adding some control vertices near a section which is being adjusted. The less

obvious reason is that we may wish to increase the number of control vertices as an intermediate step in displaying
the curve or surface. It is a consequence of the convex hull property that this is a reasonable thing to do. To
explain: consider any curve constructed from control vertices using cubic B-splines, so that each segment of the
curve lies in the convex hull of no more than 4 control vertices. Let 4 stand for the minimum of the distances from
the curve to any of the control vertices. Suppose the same curve can also be represented by double the number of
control vertices (or a hundred times that number, or a thousand). It seems plausible that, if the number of control
points is increased enough, and if they are distributed uniformly enough about the curve, they cannot all lie outside
the minimum distance d. Each segment of the curve must still lie in the convex hull of only 4 vertices, so presum-
ably there can be a large number of vertices in any region about the curve only at the cost of having them close to
the curve. This is, indeed, the case. Similar results apply to surfaces constructed from products of B-splines. This
suggests that vertices can be added to such an extent that the contro! graph “converges visually” to the curve or sur-
face; i.e. the graph “clamps down on” the curve or surface as each of its facets is subdivided by additional vertices
until each of the resulting subfacets span no more than a pixel or so. The graph rather than the curve or surface can
then be subjected to all of the transformations needed to bring a presentable image onto a display device. Since
each facet is a polygon (in fact, a quadrilateral for surfaces and a line segment for curves), and since polygons
remain polygons throughout the display pipeline (as contrasted with parametric cubics, which are mapped into
rational functions by perspective transformations), this adds a significant amount of computational simplicity through
the length of the pipeline.

Using curves as the subject of our further discussion, we begin by noting the connection between control ver-
tices and knots. Each new control vertex which we might like to add needs to be weighted by some new B-spline;
each new B-spline which we might like to construct needs some knot at which to become nonzero. Thus, we can
approach the problem in two ways. We want

Q) = ikVH—an’,k(“) = jikwj+kN},k(“) , (8.1}
= -

where
n>m

We can attempt to find the vertices W explicitly, or we can attempt to find the new B-splines, N; ;. (), and use them
to determine the W implicitly. The latter is the route which is taken. More deviously, everything can be accom-
plished merely by adding new knots to the existing knot sequence. This process will implicitly define the new control
vertices. This approach is the one developed in [8] and is known as the “Oslo algorithm”.

Add knots
Sp= - S
to the existing sequence
U =< - _<_um;;‘
to obtain a new sequence
fu—p ..., Umak } U {S},...,Sf} = {w_k,...,w,,+k} .

We will denote the multiplicity of each w; by v;.

Definition: The knot sequence
{Wekoooos Wnir }
formed in the above fashion will be called a refinement of the knot sequence
T TS I
provided that
v <k forallj=—k,....n+k
and provided that
a<s and 50 < b

The restrictions guarantee that the process of refinement does not lead to a knot sequence which would be ille-
gal for constructing splines of order k and that the spline space we develop with the refined mesh is compatible with
the original spline space in the sense that By, (u YES(P* ,W" ,a.b) for all i k.

The N, 4 (u), of course, are given by
Nijx(u) = (—i)k(wj+k —wiwp oWt] (u —)k! (8.2}
forj=—k,....n
The next major goal to be reached is the following
Theorem: Foreachj=—k,....n
n
W; = ¥ Vio() 8.3)

=1

for some collection of numbers ; & (f).

The proof of this resides in the “add-a-knot™ result of the standard B-spline literature. The first step lies in finding a
representation for the polynomial (% —¢)*~', for any ue€[a,b) and any ¢, in terms of the basis Nji. In fact, the
representation is good for a slightly larger interval than {a,b):

Theorem: For any ¢t and any u €[w_;,wy4;)

(u—t)! = ji_ij.k(?)Nj.k(") ’

where

wat) = 1ifk=1 ,

and

k=1
yu) = 1 (Wi, —t) ifk>1

r=1

This is known as Marsden’s Lemma.

When ¢ is restricted to the discrete set {w~y, ..., W4], then the above representation of (x —¢#)}* ™! can be
“chopped off” to obtain the representation of (u —1)%1 as follows:

Definition: Let

Ou() = (w+e—)%y0) ,
where the numbers g; satisfy

W = Wj+ej < Witk -

Theorem: Forany te{w_;,...,w,+)} and any s €{w_;,wy41),

(u—t)h~! = j$k¢j.k(r)N,,k(u)

The proof of this result is given in [8]. The particular form of the ¢;x(r), including the €'s, has been chosen to allow
differentiation (left-handed) with respect to f, hence the divided-difference operator with respect to ¢ can be applied
to obtain

Bia(u) = (=D (upe—w) w0, et Ju —)8!

(=D (s =) [t - -ttt ik $ix(ON, 4 (u1)
P

[

i {(_!)k(“i-fk il 3| TR I A X T)] }Nj.t(")

j==k
We put these together in the obvious way:

Definition:
k() = (DR Qe —u) o, o w19 (0)

Theorem:

Big(u) = i:ka,,ko‘)zvj,k(u)
P>

This completes the add-a-knot result, since it specifies how anything represented in terms of the functions
B; ;(u) can be represented in terms of the NV, 4(u), the B-spline basis functions for the added-knot mesh.

The functions
o) = Oy =02 TT 0wy, =)
are similar to the truncated power functions
W= = =08 Tlw-1) .

r=|

The variable u has been restricted in a peculiar way to the discrete values in the sequence of knots W". As a result,
@; 4 () looks like a “discretised” version of B; 4(u). The alpha’s are called discrete B-splines.

The final step in establishing the result (8.3) comes in observing in (8.1) that

m m
Y Wik Njelw) = Ekvi+l: By ()
S5k ==

1

3 Vi)":kuf.w)fv,.k(u)

ik j=—
-3 [3 Vieroual) { Va0
fe—klim—k

We appeal to the linear independence of the functions NV, ,(u) in order to equate coefficients on the left and the
right.

As might be hoped, the discrete B-splines satisfy a recurrence, from which nonnegativity, compact support, and
partition of unity can be established.

Theorem:
U w=wy<uypg
and 1; <u;4
() =
0 otherwise
and

) = W1 =W) ir—10) + (ier — Wiar=1)Yit1,-10)
forr=2,3,...,k, where

G G Gy —) i 4, >y
Yi.r(j) =

0 otherwise

(The v,,(j) correspond to the @-spline functions in the continuous case.)

Theorem:
o ()=0

3 () = 1

f=—k

and
For each j let & be such that uz=w; <ugs; .
Then o; 4(j}=0 fori¢[6—k+1,...,8} .

The Oslo algorithm itself is simply the application of these results directly to the control vertices. Bricfly,
recall that

m
W, = ¥ Vi)
=1
Equivalently,
3
W, = ¥ Vi)
i=8—k+1

from the compact-support property of the discrete B-splines. This means that the W “depend locally” on the V in
the sense that adding knots in a certain region of # will only change the control vertices being weighted by the B-
splines whose nonzero intervals are touched by these new knots. Obviously, this has implications of computational
efficiency. In the graphics environment it is possible to update spline curves and surfaces locally, rather than need-
ing to recompute them globally, whenever control vertices are moved or added to.

Note that the recurrence for the alpha’s can be applied to produce

5
W, = ¥ V()
(=8—k+1
8
= SZH Vi [(ij-:-ui)w,r-x(f) + (“I+I_Wj+'—t)'n+l,l—i(j}] .
1=Emk+1

This develops into a recurrence for the control vertices themselves. The third item in the theorem immediately
above guarantees that

Yo-k+th~10F) = Ys+14—() = 0,

which permits us to collect terms to obtain

5
W, = ¥ VoDe-l) ,
i=8—k+2

where
Vi) = [(Wj+k—l"“t)vf + (U rx—1— Wik - Vi1] /(g -1}

This may be repeated to yield
Contrel Vertex Recurrence:

Let
Vial) = Vi,
and
Vi () = [(Wj+k—r+l_ui)vi,r—l(i) + (Wtk—r+17Wjti—r+1) Vimrr—1()] /(U mp 1~ 1)
forr=2,...,k, where ratios with zero denominators may be taken as zero.
Then
W, = V(i)

This permits the direct computation of the W vertices from the V vertices using only the {w;] and the {u;} knots.
This recurrence is exceedingly efficient.

Strictly speaking, if the display process is carried out by means of this refinement recurrence, using facets of

the control graph rather than patches of the spline curve or surface, the entire graphics environment could work
purely in terms of the control vertices — a course graph “at the top of the pipeline” for the purposes of human inter-
face and design, refined to a fine graph “at the bottom™ for the purposes of display. The splines which are sup-
posedly underlying this process could be ignored entirely! '

We close with one example of this process. The B-splines which weight the seven control vertices in the figure
below are defined on the uniform knots # =i. The beginning and ending control vertices are repeated once. The
coordinates x;, y; of the V; are given below:

04568 13369
04568 1,3369
04122 02562 V,
13482 03788V,
14100 1.5153
32199 1.4930
26746 0.3565
1.9387 0.6685
19387 0.6685

We have flagged the second and third control vertices because, if we introduce a new knot at # = 4.5, the new con-
trol vertices W; prove to be:

0.4568 1.3369
0.4568 1.3369
0.4196 0.4363 V;
0.8802 03175 P
1.3585 0.5682 V.
1.4100 1.5153
32199 1.4930
2.8746 0.3565
1.9387 0.6685
1.9387 0.6685

and the corresponding figure is:

o + s, T

. .“'"“'-«..:..-...w .
V5

Figure 8. An example of the Oslo algorithm at work.

In particular, notice that the three new control vertices lie closer to the curve than did the two vertices which they
replace.

9. Geometric Continuity

We shift gears now to consider an issue which is particularly important in the graphics context, that of the
selection of the parameter mapping function. Up until now we have assumed that the interval [a,b) is mapped
directly onto a curve Q(x). In graphics it is often the case that each breakpoint interval 1 ;= [u;,,u,-;) is mapped to
the unit interval

U=
5 o= s(u) = e——— 2t 8.0

iy Ty

and the unit interval is then mapped to an individual curve segment
Qi) = Qs(u))

This is done particularly when breakpoint intervals are of equal length (or when there are only a small number of
possible lengths), for then the number of different segment polynomials is limited, and code can be written especially
tuned to each distinct segment polynomial.

Why should we assume that the mapping (9.1) is the best one to use? The mapping given by
2
U -y
Fo=) = [—_" !
L
might be preferred for some reason.
Unfortunately, if one is allowed to reparameterise curves and surfaces at will, some unpleasant and counter-

intuitive effects can arise. An example of what is possible is given in Figure 6 below. The curve shown has a
mathematically continuous first derivative by virtue of a cleverly-chosen reparameterisation. It obviously does not
have a continuous tangent vector.

(1.1
Q, () Q(w)

0.0

—
(2.0)

Fligure 6, An example of & parametric curve which has a mathematically continuous derivative but does not have & continuously-varying tangent vector.

The parameterisations which have been chosen to make this happen are

[2u —u?,2u~u?] for0=<u<1
Qu) = [X@),Y()] = [u?~2u+2,2u—u?] forl=<u<2

Consequently,

2—2u,2-—-2 for0<u<1
Q) - (o, vy = { B0 lr0su st

and so

o) = { f0,0] from the left

[0,0] from the right

It is also easy to give examples of (1) a geometrically smooth curve whose tangent vector is mathematically discon-
tinuous, (2) a curve which suffers an abrupt change in curvature but whose second derivative is mathematically con-
tinuous, and (3) a curve which is everywhere reasonably curved but whose second derivative changes abruptly. See
[2] for these.

What is needed to avoid these anomalies is a definition of continuity which allows for a reasonable change of
parametrisation between segments without permitting visual smoothness to be destroyed. Suppose

u=<ut;s=s"

u = u(s) , monotone

and
ut corresponds to s~ ,

giving the same point on Q.

u(s)

Figure 7. A diagram showing a typical teparameterisation,

This presents the situation in which the parameter mapping on the right is viewed as a reference, and the mapping
on the left is viewed as newly introduced. We want the derivative of the curve on the reference side of the join,
taken with respect to its parametric variable, to be consistent with the derivative on the other side, taken with
respect to the new parametric variable. Moreover, the derivative of the curve should be consistent on both sides of
the join, if we were to keep the reference parameterisation throughout, which is just what is required in the usual
spline case. That is, we want

DQ(*)y = DIQ(sT)
or (by the chain rule)
[Du* DM = DIPQ(s™)

That is:

BUIQMWY) = Q™) . 9.2)
Similarly:

[DOWEDPQ™) + DPutIDPQW*) = DPQET)
That is:

BYPPQPw) + BY1QVwY) = Q¥ @3

and so on. The P's are merely the derivatives of the function which relates the u-parameterisation to the s-
parameterisation, the derivatives being evaluated at the joint.

Equations (9.2) and (9.3) are referred to as the conditions for first geometric continuity, or G' continuity, and
second geometric continuity, or G* continuity, respectively. They were explored by Barsky in [2] on geometric
grounds alone, using considerations involving the arc-length parameterisation of a curve, the unit tangent vector, and
the curvature vector. In his investigations he dropped emphasis on the underlying parameter mappings and con-
sidered the equations {9.2) and (9.3) in their own right, regarding the B’s as free (nonnegative) parameters which
could be chosen. Clearly the choice of

ﬂ(l) =1 and Bﬂ) =0
correspond to the familiar conditions of mathematical continuity. The chain-rule approach above indicates that the
notions of geometric continuity extend beyond those considered by Barsky, up to any order.
In the particular case of spline-generated curves, the conditions suggest that, since

DIQu) =)"ikvm{z)é"s.,k(un ,
P2

an easy way of ensuring that conditions (9.2} and (9.3) should hold for Q(u) is to insist that corresponding conditions
hold for B, (u), namely

BMBRw) = B
and

BOPBRw) + BP1BR(wy = BRuh)
at every knot u; in the interval of support for B; ;(u).

This suggests that we construct new versions of B-splines — geometrically continuous splines, of compact sup-
port, suitable for use as weighting functions. Such functions are known as Beta-splines. For example, consider qua-
dratic splines and G' continuity, using the knots ug, #y,u,, 43, so that

pi(w) on [ug,u;)
pou) onlup,uy)
py(u) on [uz,us)
0 elsewhere

Bii(u) =

The conditions of G! continuity for this case are
0 = pi(uo)
(1) = pxuy)
pau) = pyuz)
pilu3) =0 (9.4)
0 = p{"(ug)
BOp () = piH(u))
BVpE(uy) = pi(uy)
P u) =0
Also, to normalise the result so that it may be used as a weighting function
1= pa(u1) + ps(uz)

(Note, for future reference, that the value of B does not depend upon its associated knot. The same value is used
at uy and uy. The result will be what is known as a uniformiy-shaped quadratic Beta -spline.)

The result of “hand-crafting” such Beta-splines in the case of G? continuity and cubics is given below in the
next sequence of figures. Note that geometric continuity is not continuity in the ordinary sense. The Beta-splines
have obvious discontinuities in tangent, for example, for "' # 1. But these discontinuities cancel out when the
Beta-splines are used with control vertices to construct parametric curves. The same holds true when Cartesian pro-
ducts of Beta-splines are used to construct surfaces. In the sequence of pictures below giving examples of curves
constructed from the beta splines, note how variations in the values of the B’s serve to “tense” the curve. Barsky has
explored the relationship between Beta-splines and the usual splines under tension, and seme of this is to be found in
{31. Beta-splines are receiving enthusiastic interest in the graphics community, because they offer an obvious tool to
the graphics designer in helping him “tune” the shape of a curve or surface. Until recently, Beta-spline weighting
functions had to be constructed ab initio from the defining equations of geometric continuity,

1.0

1.0

_ L
[E
i el o
i 1 7
fo '
N o
< \ | &
_ - ! T, _
= tw Q o
/ oy ﬁ w
}
!
M o 13
F- |
! o~ ’
) S _ \ | <
- i f L
i ., R
—:... .
' - -
S [l Q Ll
: E

w -
V5+ + > T -
Q
o 8
il i
o
= Sy
o~ o o~ "
T >y >
] 1
o o
- o - o
=l N +> = + >
- o -
V5+ +7 P + >
i i
Sy : &
- o™
B et B B mmr g
-— -
it it
o o
-~ o - o
L 4> Lol N 4

10. Extensions
We close by giving an overview of some work in progress.

Geometrically continuous splines on an interval [a,b) with respect to a sequence of knots U™ form a vector
space. This is true even when different values of the s are associated with different knots; i.e.

BIVp{(uy) = piuy
B piP(u2) = pi(uy

If these were used instead of the corresponding conditions in (9.4), the result would be a discretely-shaped quadratic
Beta-spline. (The term comtinuously-shaped might also be appropriate, but it has been used in [4] by Barsky and
Beatty for a quite different function.) It should be clear that the ideal paradigm to be followed would be (1) find a
one-sided basis for discretely-shaped geometric splines, (2) establish a differencing operation to obtain the discretely-
shaped Beta-splines as a compact support basis, (3) extract a recurrence from the differencing operation, (4) estab-
lish the convex hull property from the recurrence, (5) use the recurrence to represent the one-sided basis in terms of
the Beta-splines, (6) obtain the add-a-knot algorithm, an analogue of the discrete splines, and thereby the analogue of
the Oslo algorithm. There are many interesting problems here. The remaining content of this presentation deals
with the progress we have made on items (1) and (2) above. A remark about item (6), is in order, however. If knots
are added to a sequence along with associated § values other than the ones corresponding to mathematical con-
tinuity, then the geometrically continuous splines on the refined mesh are not consistent with those on the coarse
mesh. There is inclusion of spline spaces under knot refinement only within limited circumstances. This will prob-
ably make the discovery of an analogue to the Oslo algorithm quite challenging.

It is by no means clear what should correspond to the feature of a multiple knot in the case of geometric
splines. Thus, all of the following discussion assumes simple knots.
The P-associated conditions of geometric continuity can be introduced into the simple truncated power func-

tions by augmenting them with other truncated power functions of lower order. An example for the quadratic, G'
case should suffice to give the idea.

p(w) L () Falilwulid

ufj]
Figure B. Fhe G-1 jump achieved by a power-function.

With respect to Figure 8, note that, il we expect to have
(B"p D) = pOw) + g
then we can set
a; = [ﬂ}” - I]Pm(“j)
and, as a result, the function
plu) + a;(u—up)}
will satisfy the conditions for G! continuity at u;. For cubics and G? continuity, we need to consider
p(u) + a;(u —u;)i + by(u ‘”“j)-zl-
for a similar result.
In the light of this, the one-sided basis for quadratic, G! splines proves to consist of functions of the form

mn
gi(u) = ("“‘ul)2+ + 2 afJ(“—“f)-ll-
j=it+1

where the g, ; can be determined by

for i :=0 step 1 until m—1 do

begin
5:=0;
for j:=i-+1 step 1 until m do
begin
ay = B — D20~ u)+s);
§i=§+ay '
end

end

The process for higher orders of geometric continuity is simitar.
It is easy to collect terms in like powets of u; e.g. in the quadratic case:

W) = uwltlagyritageataa—2ulut+ -
g+ifw) = w?+ gt sat =2 Ju+ -
o) = WP+ (@3 — 2w 4pdu ¥ - - -

gi+3u) = w+ [—2uppalu+ o

Higher orders are just as easy to deal with. As yet, however, a symbolic cancellation process has not been discovered
which works for all orders. In the quadratic case, for instance, we find that

) = =)+ 3 a,(u—up)}
J=i+1

gi+1{u) — gi(w)

Agi(u) = ——
I B}l)](“i+l—“u')
jeiti
m—1
[) n Bf] (Agi+1(u) — Ag;(u))
Alp(u) = —oro—

(B ewy g + [1~B s 41— 1)
but this becomes vastly more complicated for higher orders. However, a computational differencing process can be
arranged quite easily for all orders. H is, trivially, the process illustrated here for quadratics:
Collect terms in the functions g; as above to obtain
g(u) = u?+ Aju + B; forj=ii+1, -

Define
(gi+1(u) — giu))

(Aiv1—4¢)

(Bi+1— B;)
(i1 —4;)

Agi(u) =

u +

u+Cf

Then

(Agi+1(u) — Agi(u))

Agu) =
&) (G —C)

And
AMg(u) = Bisu) = —(Agii(u)— Agi(u))

The functions found in this way are nonnegative, have compact support, and can be verified symbolically to have the
partition of unity property. A general proof of these results has not been found.

The corresponding process has been carried out for the cubic case, in particular, and the final drawings of this
presentation were all computed using Beta-splines defined by computational differencing.

Currently, work is progressing on the construction of a recurrence for discretely-shaped Beta-splines, starting
from first principles and working up from the step functions.

11. References

[11J. A. Adams and D. F. Rogers (1976), Mathematical Elements for Computer Graphics, McGraw-Hill

[2} B. A. Barsky (1982), The Beta-spline: A Curve and Surface Representation for Computer Graphics and Com-
puter Aided Geometric Design [submitted for publication].

{3] B. A. Barsky (1982), Exponential and Polynomial Methods for Applying Tension to an Interpolating Spline Curve
[submitted for publication].)

{4] B. A. Barsky and J. C. Beatty (1983), Local Control of Bias and Tension in Beta-splines, Computer Graphics -
SIGGRAPH '83 Conference Proceedings 17, 193-218.

{5] C. de Boor (1978), A Practical Guide to Splines, Applied Mathematical Sciences Volume 27, Springer-Verlag.

{61 I. D. Faux and M. J. Pratt (1979), Computational Geometry for Design and Manufacture, John Wiley & Sons.

[7] J. D. Foley and A. van Dam (1982), Fundamentals of Interactive Computer Graphics, Addison Wesley.

{8] R. Riesenfeld, E. Cohen, and T. Lyche (1980), Discrete B-splines and Subdivision Techniques in Computer-Aided
Geometric Design and Computer Graphics, Computer Graphics and Image Processing 14(2), October,

87-11t.
[9] L. L. Schumaker (1981), Spline Functions: Basic Theory, John Wiley & Sons.

- 2 - B

B;=0 #z=°\..a: B, =1 . 870 v B =1
3 . 4 :

Y) A'q... .

<%, =0 £,=0 . - U:o .

o 0 0 0 0 O
v, A v, v, v, v,
v \/ v \'s V. \/
o’. /__92 o’ 01 o? o®
_ 8,=1000{ ’ : . .
. #=0 : g, =1 A0 B, =1 .
) .

| H‘Dﬂ’ : 8,=0 b

) - "'-.,' 2= .

fo) o . - .. fa) o o) \—-—/ o)
v, v, v, v, v, v,
v, B2 v, v v, v,
o — O 0O i, - O o)
/—N\..' j "=5 '-.....'w K ”

8,= By=1% 52 =0 By= 52 =0
: A3
&
.""-.,91”1 8y=1 “g=1 By=1

v v A4

1 2 5
=i, O o]

ﬂ1=T ﬁ."-' 62 = 0

'*._..
R =1 8,=1

O O O

VO v3 V4

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

