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ABSTRACT

A subset X of a free monoid A® is said to be unavoidable if
all but finitely many words in A* contein some word of X as a
subword. A. Ehrenfeucht has conjectured that every unavoid-
able set X is extendible in the sense that there exist x € X and
a € A such that (X={x}) U {xa} is itself unavoidable. This
problem remains open, we give some partial solutions and show
how to efficiently test unavoidability, extendibility and other
properties of X related to the problem.

1. INTRODUCTION

A subset X of a free monoid A* is said to be unavoidable, if all but fin-
itely many words in A® contain some word of X as a subword. Ehrenfeucht
has conjectured that provided A is finite, every unavoideble set X is extendible
in the sense that there exist x € X and a € A such that (X\{x}) U {xa} is
itself unavoidable.,

The purpose of this paper is, after having introduced the main notions
of unavoidability and extendibility in Section 2 and having shown that we can
restrict ourselves to finite sets, to present the following results.

In Section 3 we consider the computational aspect of the problem.
Indeed, we associate with every finite subset X & finite deterministic

® This research was supported by the Natural Sciences and Engineering Research Coundil of
Canada, under the grant No. A-7403.



2 Choffrut and Culik

automaton and we show how to use it to deduce the properties of X related to
the problem.

In Section 4 we give a partial sclution to the conjecture in two special
cases. As a consequence of the second case, we show that Ehrenfeucht’s con-
jecture is equivaleat to the statement where the word *‘extendible” need not
necessarily mean extendible to the right as is implied by the above definition,
but rather extendible either to the right or to the left.

Section 5 presents a reduction result which shows, via an encoding, that

the conjecture need only be proved for highly restricted finite subsets of
{a,b}" .

2. PRELIMINARIES

Throughout this paper, A is a fixed finite alphabet containing at least
two symbols., We denote by A* the free monoid it generates and by 1 the
unit or empty word. As usual we denote by |u#] the length of the word
u€A' and by A* the set of words of nonzero length:
A* = A1} = {u € A®|lu! > O}.

The partial ordering on A* “prefix of” is denoted by =: u=v iff
there exists w € A® such that v = uw. We write u<v if u=<v and
uFEv.

Assume we have v = wyuw, for some words u,v,w,,w,. Then & is
a subword of v. If wy (resp. w;) is the empty word, then u is & prefix
(resp. a suffix) of v.

For any set S, we denote by {S| its cardinality.

In the sequel, X ¢ A" is a fixed set,

2.1. Unavoidability, Extendibliity

We are interested in the set of all words in A* which have no element of
X as a subword. When this set is finite, X is unavoidable,

More formally, a word w € A® avoids X if no subword of w belongs to
X: wd A'XYA" . Furthermore X is avoidcble if there exist infinitely many
words in A® avoiding it. When X is not avoidable, it is unavoidable which
amounts to saying that there cxists an integer # > 0 such that:

2.1) A"A® CA'XA" .

Assume X is unavoidable. An element x € X is extendible by the letter
a €A (or simply extendible) if Y = (X\{x}) U {xa} is itself unavoidable.
In this case, Y is an extension of X . Furthermore, X is extendible if it
possesses some extendible element.
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Example 2.1  With A = {a,b}, X = {aaa,ab,bbb} is extendible since:
A™MXA® = (A™\A'abA M@, DA = (BMa" e, DA = (oD [0 s 1) = 2}.
The word ab is not extendible. Indeed, ¥, = {aaa,aba,bbb} is avoid-
able because of (bba)' NY, =@ and so is ¥, = {aza,abb,bbb} because

of (ab)’' NY,=5. However X is extendible in different ways. For
example, {aaaa,ab,bbb} is unavoidable.

We recall that the problem we are dealing with is the following:

Conjecture X Every unavoidable set is extendible.

We shall now show that the conjecture need only be proved for finite
unavoidable sets,

Assume X C A* is unavoidable. Then it is minimal if no proper subset
¥ C X is unavoidable.

Example 2.2 With A = {a,b}, X = A? is unavoidable. However, itis
not minimal since ¥ = {a?,ab,b?} is unavoidable.

The following observation is straightforward:

(2.2) Let Y C A'XA' be unavoidable. Then X is unavoidable.

As a consequence we have:

(2.3) The  set XCAt is unavoidable iff the et
X! = X\(A°XA* U A*XA") is unavoidable.

In particular we say that X QA* is mormal if
X N (A'XA* UATXA") = &, that is if no word of X is a proper subword
of an other word of X .

Thus we have:

(2.4) If X C A* is a minimal unavoidable set, it is normal.

Assume now that X is unavoidable and normal. Then by (2.1) all
words of length r contain a subword in X . This shows that the length of the
words of X is bounded by n.

In view of (2.4) we obtain:

(2.5) If X CA* is aminimal unavoidable set, it is finite.

With the help of this last observation we shall restrict ourselves, from
now on, to finite unavoidable sets.
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2.2. Preliminary Results on Unavoldable Sets

We first recall two known estimates on the number n appearing in (2.1)
and on the cardinality of unavcidable sets.

Assume n is the minimum value for which (2.1) helds. Then the max-
imum length of a word avoiding X is equalto n—1. As we shall see in the
next section, this number is bounded by |A|™ where m is the maximum
length of the words of X . In the case of unavoidable sets consisting only of
words of the same length, we have the following result (cf. [Cr et al.]):

Theorem 2.1  Let m > O be an integer and X C A™ . If there exists a word
of length |A|™~'+m--1 avoiding X, then X is avoidable.

Furthermore, for all m > O there exists an uravoidable subset X  A™
and a word of length |A|™~*+m=2 which avoids it.

With respect to the cardinality of unavoidable subsets we have (cf.
[Sch]):

Thecrem 2.2 If X C A® is unavoidable, then

x| = 1A%

We now relate unavoidable sets to some conditions involving sets of
infinite words. These conditions are equivalent to conditicn (2.1) and prove
useful in the sequel.

Let A*,“A and “A® be respectively the set of all right infinite, left
infinite, and two-way infinite words. Thus, typically agea, - - ,

cra_jya_jay and - - -a_jaa, - - - with a, € A are clements of A“,
=A and “A® respectively. As usual the elements of *A* are defined up to a
translation: - - - a@_jap@ - -+ = - - - b_ by - -+ if there exists an
integer ¢t € X such that a,=b,,, forall i € X, Given u € A*, we let
u" =uy--+ €A", = o-c-un€%A and
“WC= - cuuu- - € YA,

Lemma 2.3 X C A* is unavoidable iff it satisfies any one of the following
conditions:

(i) A*=A'XA*

(i) A" = “AXA"

(iii) Forallu € A", u* € A"XA".
(iv) Forallu € A* , *u® € “AXA® .

Proof:  The implications (2.1) => (i) and (i) =&> (jii) are straightforward.
We shall prove (i) => (2.1) .
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Assume by contradiction that X is avoidable. Since X is finite, the infin-
ite set A"\A*XA" is rational, and by the pumping lemma there exist two words
weéA* and w€A* tuch that wu* § A°XA® for all n=0. Thus,
u* ¢ A"XA* contradicting (iii).

The implications (2.1) => (i) , (i) => (iv) and (iv) => (2.1) can be
proven similarly. O

Using condition (i) of the previous lemma we obtain:

(2.6) Let x € X. Then X is unavoidable iff (X\{x})UxA is itself unavoid-
able.

2.3. A Reformulation of the Conjecture

In order to give some equivalent statements of the conjecture, we intro-
duce a partial ordering over all finite subsets of A®.

Let X,Y C A* have the same cardinality n = 0. We write X < ¥
whenever there exists an ordering X = {x},,,., and ¥ = {y},.,., such
that x; is a prefix of y, for all 1=i=sn. We writte X <Y whenever
XsYad X+#Y.

The following assertions are straightforward

(2.7 X =Yimplies ¥ C A*XA
(2.8) I Yisanextensionof X, thenX < Y.

Now we show that the minimality of unavoidable sets is preserved by
extension.

Lemma 2.4 Let X be a minimal unavoidable set. If Y is an unavoidable
set such that X < Y, then Y is minimal,

Proof: By hypothesis, for some integer n = 0 we have X = {x}, ... ,
Y={yhews a0d x, Sy for 1si<n,

Assume the contrary, that is there exists y, € ¥ such that N{y} is
unavoidable, Then because X\{x} = N\{y}, (2.2) and (2.7) imply that
X\{x} is unavcidable, a contradiction. O

We may now restate Ehrenfeucht's conjecture in terms of infinite exten-
sions.
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Lemma 2.5  The following statements are equivalent:

(i) For every unavoidable set X C A* there exist x €X and a € A such
that Y = (X\{x}) U {xa} is unavcidable.

(iiy For every unavoidable set X C A" there exist x € X and an infinite
sequence  @y,Gy,...,4;, " * where a €A such  that
X, = (X\{xD U {xa,a, - * - a,} is unavoidable forall n> 0.

(iii) For every unavoidable set X C A* , there exist x € X and an infinite
sequence Xy, Xy, ... Xy v C where  x, €AY, such that
X, = (X\{x}) U {xx, - - - x,} isunavoidable forall n> 0.

Preof:  Because of (2.2) and (2.8) statements (ii) and (iii) are equivalent.
Clearly (ii) implies (i).

Now (i) implies that there exists an infinite sequence
X<Y < -:» <Y < - of unavoidable sets. Since X is finite, there
exist an infinite subsequence i, < i, < --- <i < --- and an infinite
sequence x<x <x,< --- <y < --- such that x€X and
x, €Y, forall n>0. Define X, = =xhu sl g Y, . Because of
assertion (2.2), X, is unavoidable, thus completing the proof. ©

Whenever x satisfies condition (i) or (iif), we say that it is infinitely
extendible.

3. AN AUTOMATON RECOGNIZING A"\A'XA'

With every normal subset X, we associate a finite deterministic (in gen-
eral non-minimal) automaton recognizing the set of words avoiding X. Next
we provide an efficient algorithm to decide whether or not X is unavoidable,
and moreover, when it is, whether or not it is extendible and minimal,

We denote by P(X) the set of all prefixes of all words in X . Let =
be the partial function undefined over A°XA*, which to every word
w € A™A'XA* assigns the longest word u € P(X) which is a suffix of w .

Let = be the equivalence relation defined on A® by w, = w, iff
either w; , w, both belong to A°XA* or s(w,) = s(w,) . Since X is nor-
mal, = is a right congruence, and we may consider a transition function
A:P(X) X A -P(X) undefinedon X X A, and otherwise satisfying:

Aw,a) = s{wa) .
Taking P(X) as the set of states, {1} as the initial state, P(X)\X as
the set of final states and A as the transition function, we obtain a finite

determinstic automaton recognizing L = A™\A'XA® . Thus X is unavoidable
iff L is finite. This again amounts to saying in terms of the state diagram of
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the automaton, that X is unavoidable iff there is no cycle in the state
diagram.

Abusing terminology somewhat, we refer to the above automaton as the
“automaton of X ' and we shall denote it by A(X). If necessary, we shall
write s, and A, instead of A and s, to remind ourselves to which set X
these partial functions refer.

For the pictorial representation of A(X) we first draw the usual tree
hanging from its root whose leaves are the elements of X and whoae internal
nodes are all proper prefixes P(X)\X . In order to complete the automaton,
i.e. to define the transitions A(w,a) where w € P(X)\X and wa § P(X),
it helps to observe that if ¢,d € A and cw € P(X)\X satify cwd ¢ P(X),
then A(cw,d) = A(w,d) . The transitions on the prefixes may thus be easily
computed by increasing lengths.

Example 3.1 A = {a,b}, X = {a* aba,bab,b?}.

1
,/Q\.
a// ~N b
z}j‘_-_’_’__sg\
a// a ,/ b
e L L]
a // b ’ b i
~ 5 /
EC{-Q_K\ 7 \ L’
A N 4

Aa,b) = \N(1,5) = b
A(ba,a) = \(a,a) = aa
Aaaa,b) = \(aa,b) = aab
A(aab,b) = A(ab,b) = b?

3.1. Unavoidability

For the previous cxample, the state diagram immediately shows that
there is no cycle. However for more complex examples, a visual inspection
is insufficient. We need a more efficient procedure.

It is standard to associate with each letter a € A a square matrix
indexed by P(X), and having at position (p,p’) alif A(p,a) = p' and 0
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otherwise.

The following result amounts to show how to simultaneously triangu-
late, if possible, the matrices associated with ell @ € A , by a mere permuta-
tion of the columns.

Theorem 3.1 A subset X C A* is unavoidable iff there exists a function
f: P(X) = N satisfying the two conditions:

@ fs=0
Gii) f(p) = 1+max{f(p")|\(p',a) = p for some a € A}.

Proof:  Condition (ii) implies f(A(p,u)) = f(p) + |u| whenever A(p,u)
is defined, which shows that the automaton has no cycle, that is X is una-
voidable.

Conversely, if X is unavoidable, for all p € P(X) let f(p) be the
length of the longest word w € A® such that A(1,w) = p. Then f satis-
fies conditions (i) and (ii). O

Example 3.1  (continued).
The corresponding values of the function f are shown in the diagram as
node labels.

3.2. Extendibltity

By definition, in order to check whether or not a given unavoidable set
X is extendible, it suffices to verify that for some x € X andsome a €A,
(X\{x}) U {xa} = ¥ is unavoidable. We know from the previous subsec-
tion, how to verify whether or not Y is unavoidable. It thus suffices to
know how to construct its automaton, that is to show how the automaton
A(X) is modified by an extension,

Proposition 3.2 Let X C A* be a normal unavoidable set, x € X and
atA. Consider Y = (X\{x}) U {xa} and observe that
P(Y) = P(X) U {xa} .

Then the transition function A\, of the automaton of Y satisfies for all
pEP\Mx} and bEA:

kI’(pib) = Rx(plb) .
Proof: Assume the contrary, that is A, (p,b)% Ay{(p,b) for some

p €EP(X\x} and b €A, Then A\{p,b) =xa, i.e. p=ux for some
u € A* which violates the hypothesis that X is normal, O
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3.3. Minimality

The following lemma shows that if X is a minimal unavoidable set,
then every word of X which can be extended, can only be extended by one
letter of the alphabet.

Lemma 3.3 Let X be a minimal unavoidable set, x € X and a,b €A . If
(X\{x}) U {xa} and (X\{xD)\{xb} are both unavoidable, ther a = b .

Proof: It suffices to prove that for every x € X there exist aletter g € A
and an infinite word s € A* having occurrences of x, no occurrence in
X\{x} and such that all occurrences of x are followed by the same letter
a € A . In other words, all factorizations s = s,ys, with s, € A°, y € X
and 5, € A* imply y = x and s, € aA® .

Because of the minimality of X , there exists a word w having exactly
two occurrences of x and no occurrence in X\{x} : w = wyxuw, = w,vxw,
for some u,v € A*. Equality xu = vx implies x = (#)'z w =1z and
v =zt forsome z,t €A" and r=0.

Consider the infinite word ¢ = (zr)* and an occurrence of y € X in
$: s =gsys, with 5, €A* and s, € A* . Because X is normal, y must
be a subword of (zt)"*!'z = xu = vx which implies y = x. Now because
the two occurrences of x in w are consecutive, we obtain ¢, € (z1)° and
therefore s, € (rz)* which completes the proof. o

As 1 consequence, we obtain a characterization of minimal unavoidable
sets, which via Theorem 3.1 and Proposition 3.2 provides an efficient pro-
cedure to test minimality.

Coroliary 3.4 Let X be an unavoidable set. Then it is minimal {ff for each
x € X there exists at most one letter a € A such that X\{x} U {za} iz una-
voidable.

4. PARTIAL SOLUTIONS

In this section we consider two different conditions under which una-
voidable sets are extendible.

Among the words of an unavoidable set there is necessarily some power
a* of any letter a ¢ A. These words definitely play a special rdle and we
are able to establish under which conditions they are extendible.

In the second case, we try to formalize the intuition that if & minimal
unavoidable set possesses some word x which is very long compared with all
other words in X , then this word must be extendible.
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Theorem 4.1 Let X be a minimal unavoidable set and a" € X for some
n>0. Then a* isextendible iff X N A*ba""'bA* = (J .

Proof:  Assume first X N A’ha"~'bA* = . We shall show that any
s € *A® contains an occurrence of a word in ¥ = (X\{a*}) U {a"*1}. Ifit
contains no occurrence of a* then because X is unavoidable, s contains an
occurrence of a word in X\{e"} = N{g"*'}. So we may assume from now
on that s contains some occurrences of a* and no occurrence of a**!.

Denote by s' € *A* the word obtained from s by substituting a*~*
for each occurrence of a* in s:

BT v Wo X WoXgWiXy WX, ¢t
ghE .. w-lx'-lwﬂxawlx; PR w’x" [N

where for all { € Z we have w, € BA* N A*b\A*a"A°
x, =a* and x; = a*"!

Since X is unavoidable, s’ has some occurrence x in X\{a"}.
Because of the hypothesis, x is necessarily a subword of x;_,wx, for some
i €& ,ie asubwordof x_,wx, , thus proving one direction.

Conversely, assume by contradiction that X contains a word
x € A’ba*~'bA* and that a* can be extended.

Since X is minimal there exists & two-way infinite word s € “A®
which has some occurrences of x and no occurrence of any word from
X\{x}.

Denote by x' the word obtained from x by substituting ba"b for the
first occurrence of ba*~'b in x and by s’ € “A* the two-way infinite word
obtained from ¢ by substituting x’ for all occurrences of x in ¢. For-
mally we have:

5= “‘w—lx—lwﬁxﬁ"'w’xp"-

8= e w—lx:lw“a .o W’x; -
where for all { € Z we have
w, €BA"NA'D, x =a", x,=a"!,

and there exist a suffix & of ---w..x.,w, and a prefix v of
AWy, + - suchthat viu =x and vou = x' .

Since ¥ = (X\{a"}) U {a**!} is unavoidable, s’ contains some
occurrence y € N{a"*'} = X\{a*} . Because ¥ N A‘a*A* = {a**!}, y is
necessarily a subword of x,_,w,x, for some i € &, i.e. y=x. But this

contradicts the fact that x,., and x; are two consecutive occurrences of
a". 0O

Theorem 4.2 Let X be a minimal unavoidable set and assume there exist an
integer n >0 and a word x € X such that |x| = 3.2°*! and |y} = n for
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all y € X\{x}.

Then there exist u = uu, € A* and r > 0 satisfying the following con-
ditions:

(i) “u* is the only two-way infinite word avoiding X\{x} .
(i) x= (uu)u .
(i) Forall p =0, X, = (X\{x}) U {(u,,)"*?u,} it unavoidable.

Proof:  Observe first that (i) trivially implies (iii). Further, if “u* is the
only two-way infinite word avoiding X\{x}, then x is a subword of this
word. This means that there exists a word »’u” such that ¥ = u’%’ and
x = (u'u")'u’ for some integer r = 0. But *(u'u")" = “u* which shows
that (i) implies (ii).

We now turn to prove assertion (i). Given any state ¢ of A(N\{x})
we define:

Fy = {w €A*|\gq,w) = q}

and we denote by E, the subset of words in F, which define an elementary
cycle in the state diagram of the automaton, i.e. the words which satisfy:

W= Wwiwaw, R(stl) =P, A(P:Wz) =P k(P-Ws) =q,
and w;w, # 1 implies w, =1,

Observe that all words in E, are of length less than 2**1,

Claim 1. There exists, up to a conjugacy class, a unique primitive word
u €A*, such that E, Cu’ , where u, is a conjugaie of u depending
only on q.

Let ¢,p be two states in the automaton A(XMx}), v €E, and
w €E,. Then “v* and “w* avoid X\{r}. Thus these two words have
x as a common subword. Since |x| = {v|+]w|—1, by ([LeSch] Cor. 1)
v and w are powers of two conjugate primitive words. Thus there exist
Uy, 4, €A° with w, # 1, and {,j > 0 such that »,u, is primitive and:

v = () w= (U . (4.1)

It now suffices to prove that p = ¢ implies w, = 1. Thus, assume
that p = g, and therefore v,w € E, . Then the words “ww* and *w*
have a common subword x of lengtﬂ x| =2 |v]+|vw] =1 which by the
same result quoted above implies that vw = (uu,) (w,4,) is a power of
some conjugate of w,u, . We obtain w6, = wu, , i.e., ¥, =1 which
proves the claim.

Clalm 2. F, C u; holds for all ¢ € P(X) .
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Using Claim 1, essume by contradiction that for some stats g and
some word of minimal length w € F, we have w¢ u; . Then there exists a
factorization w = w,w,w, , with w, # 1 and w,w, # 1 and a state p
such that the following holds:

R(Q’wl) =p ,R(P-Wz) =p and A(p!“":!) =q .

By the minimality of |w| , and the fact that w, and w,w, belong to
F, we have w, = u, and wyw, = u for some i,j> 0, Furthermore
wywy € Fl implies wyw; =} . Now ecquality wyw = lw, implies

wyuf = uyw; forany k = 0. Thus:

wiwwowy = wligwy = wa*/ Jie., w € 4 ,a contradiction .

In order to complete the proof, it suffices to observe that for any primi-
tive word v such that “v* avoids X\{x}, there exists a state ¢ and some
integer § > 0 such that v € F, , which by Claim 2 shows that v is a conju-
gateof w. O

As a consequence of this last result, we will shov; that Conjecture I is
equivalent to its “two-way’ version where instead of extending to the right,
we may extend in either direction.

Conjecture II : For every finite unavoidable set X C A* there exist x € X
and a € A such that either (X\{x}) U {xa} or (X\{x}) U {ax} is unavoid-
able.

Theorem 4.3  Conjectures I and Il are equivalent.

Proof:  Obviously Conjecture I implies Conjecture II. We are going to
prove that the reverse also holds.
Let us say that an unavoidable set ¥ C A* is a two-way extension of

the unavoidable set X C A* if there exist x € X and a € A such that
either

Y = (X\x}) U {xa} or ¥ = (\{x}) U {ax} .

If Conjecture II holds, then for any unavoidable set X there exists an
infinite sequence Y,,Y,, - - - ,Y,, - - - of subsets such that ¥, = X, and
¥,.1 is a two-way extension of ¥, for each k= 0. Since X is finite
there exist x€X, two sequences 5,5, - v ,8, " - and
PusPyy * * * 3Py, + ¢+ and a subsequence i#,iy, + - - ,i, - -+ such that
the following conditions hold:

@ p--poxn- - m €Y,



Unavoidable Sets 13

Gi) |pec - poSo: - - 8| is strictly increasing.

Assume first the the sequence s,,8;, - * * ,8, * * * contains infinitely
many clements different from the empty word. Then, if necessary by consid-
ering a subsequence, we may assume that all elements are different from the
empty word. By (2.2) all subsets X, = (X\xD U {xsp-- -} CY, are
unavoidable, showing thus that x is infinitely extendible in the usual way.

Assume next that the sequence py,py, - * * P, -+ containa infin-
itely many elements different from the empty word. Then, as in the previous
case, we may assume that they are all different from the empty word. By
(2.2) all subsets X, =XN\{xhU{p, - - px} CVY, are unavoidable.
Thus, the word x is infinitely left extendible, and since Theorem 4.2 dually
applies to left extendiblility there exist u = w,u, € A* and r > 0 such that
x = uy(u,u,) and such that all X, = (X\{x}) U {u,(u,u,)"*?} are extendi-
blee. Now it suffices to observe that  w,(wu,)"*? = w (uu, )
(e, = x(uu,) toshow that X <X, < --- <X, < --- holds. O

5. A REDUCTION RESULT

Let A = {a},,,<, 8nd B = {a,b}. Denote by ¢:A* ~B" the mor-
phism defined by ¢(q) = a’b for 1= i =<n and extend it in the usual way
to A® A, and "A* (e.g. Y(apa, - - ) = Y(a)P(a;) - - - ). Since the
image ¢(A) is a comma free code, ¢ maps “A" bijectively onto
4 ,.._.-B-\-B{au-bl,bz}so .

Now with the set XGA*, we associate the set
Y = 8(X) = bY(X) U {a**1,5% . This “encoding’”, preserves the main pro-
perties of X as is now shown.

Lemma 5.1 X is unavoidable (resp. unavoidable and minimal) iff Y is una-
voidable (resp. unavoidable and minimal).

Proof:  We first verify that the following holds for all X :
U("AXA®) = I N “BBY(X)B* . (5.1)

The inclusion g is obvious. Thus it suffices to prove
IN*BbY(X)B" C Y(“AXA*). Indeed, if w = zby(x)t €I for some
z€“B, x€X and r€B*, then z¢€“Ba\"B{s**,b’}B" and
t € aB*\B*{a"*1,b’}B*, i.e. z and t may be factorized in clements of
Y(A) . Therefore there exist w, € *A and w, € A* such that $(w;) = zb
and ¢(w,) = ¢t which implics w = y(w dw,) .

Now observe that *B* is partitioned into:

“B* = 1 U “B{a"*1,b%)B" .
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Thus, the set ¥ =by(X)U {a"*%,b*} is unavoidable iff
I G "Bby(X)B* , i.e. because of (4.1), and the fact that § maps “A*
bijectively onto I, iff “A* = “AXA* . This proves the first part of the pro-
position.

The second part relies upon the fact that if ¥’ C Y is unavoidable then
Y N(@* Ub*)= YN (a* Ub*)={a""',b?. Thus therc exists an una-
voidable proper subset X' C X iff there exists an unavoidable proper subset
Yygcy. o

Using the same notations we have

Lemma 5.2  Assume X is unavoidable. Then an element x € X is infinitely
extendible iff the element by(x) € Y is infinitely extendible.

Proof: If x is infinitely extendible, then there exists an infinite sequence
a,a, * .4, - where g, €A for all k>0, suh that
X, = (X\{x}) U {xa, - - - q;} is unavoidable. By the previous lemma, this
shows that ¥, = (\{By(x)}) U {bY (xa, - - - a,)} is unavoidable, which
proves one direction.

Now if by(x) is infinitely extendible, there exists an infinite sequence
Up My, * " G My, v -+ where u, = a"b for some 1= i, = n, such that
Y, = (NBYED U {bY(x)u, - - - w} is unavoidable. Because of the
preceding lemma, X, = (X\{x}) U {xy~1(u;) - - - ¥~ ()} is unavoidable,
which completes the proof. O

Example 5.1 Consider A = {a,b} and X = {a?,abab,$?}. Then X is
unavoidable (basically for the same reasons as in Example 2.1) and abab is
the only infinitely extendible element of X . Then by Theorem 4.1 and the
two previous Jemmas, the subsets 84(X) = 0(0*~!(X)) are unavoidable for
all k> 0 and have a unique infinitely extendible word ¢*(x) . Furthermore
the cardinality of 6:(X) is equal to 2k-+3. In other words this shows that
there are unavoidable sets of arbitrary cardinality having a unique infinitely
extendible word.

The following surprising result shows that Conjecture I need only be
proven in the case B = {a,b} and X 1 (a* U b*) = {a®, 5} .

Theorem 5.3  Ehrenfeucht’s conjecture holds iff it holds for all unavoidable
sets X over a binary alphabet B = {a,b} such that a®,b* € X .

Proof:  Consider an unavoidable set X C A* where |A]l =n=2. If
X =A, then every element of X is infinitely extendible. Therefore
assume X # A .

Let A = {a;},. <, be &n enumeration of the alphabet and consider
Y = bY(X) U {a®,b%} .
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Because of Lemma 5.1, ¥ is unavoidable. By Theorem 4.1 a**! and
b? are not extendible. Thus, by hypothesis there exists some x € X such
that by(x) is infinitely extendible. By Lemma 5.2, x € X is itsclf infin-
itely extendible.

If n =2, then we are done. Otherwise we repeat the same argument
with YCB*. O
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