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ABSTRACT

Forsythe [2] has given a methed for generating basis polynomials in a single
variable which are orthogonal with respect to a given inner product. Weisfeld [4]
later demonstrated that Forsythe's approach could be extended to polynomials in an
arbitrary number of variables. In this paper we sharpen Weisfeld's results and
present a program for computing weighted, multinomial, least-squares approxima-
tions to discrete data.

1. Iniroduction, Review and Preliminary Notation

Let <,> denote an inner product on an appropriate class of real-valued functions of n real variables.
E.g. let D be a set in R" which supports a nonnegative measure p. Consider the class C of all real-valued
functions defined on D which are square-integrable with respect to p, and define

<g.h> = [ghdp
D

Let ¢,.....¢, be [lincarly independent functions in C. Also  in  C, let
Fixy....ox)y=f(xy,..., x,)+e(x,.....x,), where e represents some random, unknown error. The
problem of fitting f, in the least-squares sense, in the subspace of C spanned by the ¢; requires that coeffi-
ciems ¢ =¢;.. ..,y be determined so that

m
P(xy,..., XpiChe. o Cm) = 3, Oy(Xy, ... LX)
i=1
minimizes
<F-P,F—-P>
The coefficients ¢, . . ., ¢ will be given by the solution to
<tord> 0 <¢udm> | [ € <¢.F>
- . (1.1}
<¢mv¢l> ot <¢m- m> Cm <¢""F>
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provided that the (symmetric) matrix [ -+ <¢;,¢,> * - ] is nonsingular.

For multinomial least-squares fitting ¢,.. .. , ¢, are often taken to be the first m monomials in the n
variables of the problem, ¢'s being arranged according to some increasing power order. For example,

n=1
N
<gh> = ¥ wilg(xa(x)
-1
Ox). .. Oml(x)} = Lx,x?, .. X"
or

n =2
i1

<gh> = [[wix,x)g(x1.x)h(x),x2)dxdx,
Q0

m m
PlxnxDs o (X ax) = Lxpxpxfxxpnxd. . oxxgt

A choice of this sort of basis for multinomials will generally result in an ill-conditioned system of equa-
tions {1.1). If, instead of the monomials ¢, . .. . ¢,,, we choose a basis of multinomials y,,. .. .y, which
are orthogonal with respect to <,>>, then the matrix of (1.1) will be diagonal.

One may, of course, use the Gram-Schmidt process to orthogonalize the basis ¢, . .. . ¢n, but For-
sythe [2] and Weisfeld [4] have shown that a revised Gram-Schmidt process is more efficient. Forsythe
worked with

n =1
N
<gh> = ¥ wilig(xh{x)
i=l
and generated .. .., W, by
=L
Y= Xy T N
i<}
(A normalizing constant is often added to the above, which we shall ignore for the sake of simplicity.) This
construction ensures that y; will be monic with highest-order term equal to x!.
It is easily verified that y, will be orthogonal to y;—y, ... .y if @;; is chosen as
<x‘|’j-l.'¥! >
<y >

for all /=1,...,j—1. Forsythe showed that <xy;_,y,> =0 for ail j =/ <2 (ie. { <j—2). Thatis,
the construction of the orthogonal basis of multinomials is accomplished by a 3-term recurrence.

@ =

Weisfeld considered general inner products and a general n. He introduced the notation of vector
indices

where
J=Gu....J) .

By letting o(J) = j, +... +j,, for any vector index J, he defined
I<J
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to mean
I. o) <ao(J)

or else
2a. oll) = o(J) (1.2)
and

b Gteti, < i+t

for some [/ =n. (Note that this does not define a unique ordering. Two distinct sequences, among many
possible ones, are produced by consistently choosing !/ in the above to be the least, respectively greatest,
integer such that / <n).

Given a vector index

J=Gro o ia0...,0) {1.3)
where j, >0, Weisfeld defined an associated vector index
J=Grve o de=1.0.....0) , (1.4)
and constructed
Yo, .= 1
Y=y Yoy (1.5)
L<t

As before, it is easily verified that y, will be orthogonal to all y, (L <J) if @, is chosen as
o Snvny>
<YL.y.>

Weisfeld proved that a;, is zero for all L <J such that o(J) —o(L) < 2. This constitutes a generalization
to # variables of the 3-term recurrence.

rr

In this paper we improve upon Weisfeld's results by taking greater care in fixing the ordering. We
will also concern ourselves with the details of mapping vector indices onto the natural numbers to facilitate
transcribing our results into a computer program. We wiil find that more coefficients « turn out to be zerc
than are indicated in Weisfeld’s results, and we are able to take advantage of some identities among the o's.

2. Ordering

In order to present our results, we need to establish a specific mapping from the monomials to the
integers, one which will provide a convenient framework for dealing with the orthogonal multinomials which
we generate. To do this, we will display the monomials involving n variables in a triangular pattern in which
the r** row contains all monomials of » — 1% power, and each row of which past the first is organized into n
ranges. The first row simply contains 1, and the following row contains

X{ s:000 Xp N

the monomial x; constituting the sole member of range k in row 2. Recursively. the k** range of row » con-

sists of the monomials found by multiplying x,, in order, onto ¢ach member of ranges k.....n in row
r—1. For example, when n =3,

Row 11 1

Row2: x; x; X3

Row 3:  x{ x1x; xx3 x3} X3X3 x}

Row 4 x{  xfxy xix; xx?  xyxaxy xxd oxd 0 xdxy, xpxd x3

The three ranges in row 3, then, are

x;X{xl X3 x;}g {x,z X1X3 x1x3}
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x,x{xz x,}s {xf w,}
e} o

Reading the table from top to bottom and from left to right, the j* member (f = 1,2, - - - ) would have the
form

e i

and would be denoted by the vector index
7= U i)
Our notational conventions for this table will be as follows:

1. The posmon in the table of current interest will be indexed by ;.

2. The j'* monomial in the table will be denoted by j

3. The vector of exponents associated with j will be denoted by .
4.a0(j)= c(; )} = o(j") is the sum of the exponents associated with ;.

The monomials 7. their position J in the table, and their exponent vectors 7 are all ordered sets of objects,
all isomorphic to each other. For example, the n = 3 example gives

fi} = {1,2,3,4,5.6,7.8,9, - }

(71 = (Lxpxax5xd xxxixs.xd xgxg, o0 )

71 = {(0,0,0),(1,0,0).(0,1,0),(0,0.1),(2,0,0).(1,1,0),{1,0,1}.(0.2,0),(0.1,1), - - - }
That is, for example,

8 = xix;. 6 = (1,10,
and further,

ol6) = o(6) = o) = 1+1+0 = 2

Note that U(J) {or O'(J )or o(7)) points out the row in whick j (ij orj ) is to be found; namely:
j(Ol‘j or j ) is in row a(j) + 1.

Definition: We will use the symbol < for each of these three sets with the meanings:

' <" = j° comes before j** in {;}

T <" = (.. ... jn) comes before (ji .. .., Py {7
<yt = x{' s+ I comes before x]' - X in {7}

The symbol =< will denote
j. < j.. or j‘ = j“ R
and similarly for 7~ and 7
With respect to our notation, a monomial T associated with
7o=(0..... Oufkyr- - dn)s J&, >0,

is in the kj'” range of the row numbered (fi, +...+ j, +1) = o(j) + 1, and this monomial was constructed
by multiplying the monomial associated with the exponent vector

(0,0 0,Lig, =11+ .. )
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by xp,.
By convention, if
T o= (00 0k n)y >0,
we will define j/ to be the index in the table for which
77 = 0,0l =)
so that
7’ = 7 /xx, , or equivalently x,“’f’ = _T .
As such, this represents the inverse of the process of building the ranges which make up row o(j} + 1.
We will have occasion to continue this one stage further. [f j’ satisfies
VR () PO 0ujiy v+ eda’)s i >0,
then we will define j” by
T o= (00 =)
so that

~
"

7 = T’/x,,l, , or equivalently xkj,'f” = J

.

The indices j, ;. j', k;-, and j” play a defining role in our Gram-Schmidt process.

To help in understanding the ordering of the table, in particular its differences with the ordering used
by Weisfeld, (1.2), we establish the following:

Lemma 1: Consider

Fr=Gre oy and T =G
The ordering in the table is such that
U< 7T (and <" and T <7
if and only if either
. of ) < o™
or else
2a. o) = o) (2.1)

and
b jr > ji°

where k is the smallest index such that jg # jz .

Proof: The fact that 7 < J*° when 6(j~") < o(7~"") is obvicus, so we concentrate on a single row of
the table; i.e. in the case in which o(F"") = o(7~™")

For the first row there is nothing to show. For the second row the exponent vectors are
range : (1,0,0....,0,0,0)
range 2: (0.1,9....,0,0,0)

range n—1: (0,0,0,...,0,1,0)
range n: (0,0,0....,0,0,1)
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and the result is obviously true.

Assume for the r® row (r =2) that the result is true, and recall that the ranges in this row have exponent
vectors of the form: :

range 1: (r—1, 0, 0.0 0 0 ) ...., (1,0,0,....0,0,r—2)
range 2: ( 0 r—1,0.0 0 0 ) .,..., (0,1,0,...,0,0,,r—=2)
range n—1: ( 0, 0, 0.0 r—1, 0 ) ,..., (0,0,0,...,0,1,r—2)

range n: ( 0 0, 0..0, 0, r—1)

Hence, the first range in row r+ 1 will be associated with the exponent vectors
(r, 0 0.0 0 0 )..... (200.....0,0,r—2)
(1, r—1, 0.0, 0, 0 ).,.... (1,1,0,...,0,0,r—-2)

(1L, 0 0.0 r—=I, 0 ) ,..., (1,0,0,....0,1,r—2)

(1, 0 0.0 0 r—Ll)
Within this range the result holds true, since the exponent vectors for this range are uniformily those of the
entire previous row, in order, with a 1 added into the first position, which does not destroy the ordering rela-
tionship.

The second range in row » + 1 will be associated with the exponent vectors
(O, 0..0, 0, ¢ ).,..., (0,2,0.....0,0,r-2)

!, 0,..0 -1, 0 ) ,..., (0,1,0,....0,1,r—2}

01, 0,..0, 0, r—1)
Each of these exponent vectors will appear in row »+1 after all of those given in the first range above, and
each vector in the first range has a nonzero first entry, while each of these vectors has a zero first entry. So
the result which is to be shown holds for each of these vectors with respect to each of the vectors in the first
range. As for comparisons of these second-range vectors among themselves, each is constructed, one-for-one,
from vectors taken in order from the previous row by adding a | to the second component position, which
does not disturb the ordering relationship.

It is clear that each succeeding range repeats this argument.
L]

3. Indexing

We have remarked that our Gram-Schmidt process will make use of the indices j, k;, j’, and j” as
given above. Both in the construction of the orthogonal multinomials y,, and in the evaluation of any gen-
eral multinomial ¥ expressed as

m

Zv o,

=1
it will not be necessary to access the indices j, k;, j’, and j” in a random fashion. We may always preceed
along the table of monomials from top to bottom and left to right, maintaining and updating j, k;, j', and
Jj” in a mechanical fashion. We will close this section with a program to carry this out, but we need to
begin by establishing a few numbers.

The kj'” range of row r = o(j)+ 1, r>1, is constructed to consist of all monomials in which

Xy, ... Xg~| appear to the power 0; that is, it is associated with the exponent vectors j  of the form
{0,... O,ka .., jn) with J, >0. In the rth row we must have the equality:
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By o g =

Hence, the number of items in the kj"' range is equivalent to the number of ways in which » —1 counters
(indistinguishable balls) can be distributed among n—k;+1 exponent positions (distinguishable urns),
requiring that at least one counter be assigned to the first position. This number is given by the binomial
coefficient

n—k+r—2
r—2

The number of entries in range k; through n is the number we obtain by removing the restriction that a
counter be placed in the first position:

i (n~!+r—2] ["‘kj“""l]
fr r=2 r—1

And, from this, the number of entries in the entire rth row is given by

ntr—2
r—1 ’

and the number of entries in all of the first » rows together is

n+r—1
n
Thatis, if T=n—1+r—2and B =r—2, the run lengths are of the form:
T T—-1 T-2
Row r: B B B
T+1 T T—1
Rowrtl lgs1)] (8+1) |8+
and the row lengths are of the form:
T+1
Row r: B+1
T+2
Row r+1: B+2
Thus, the relationships
T—1 T|t-8
B = |8 T
and
T+1 T r+
B+1 B ) B+
are clearly useful.
As j runs through range k; in row r, j* runs in step through ranges k;,. ... ninrow r—1. Asj

crosses from range k; to range k;+1, j* must be set back to the beginning of range k;+1 in row r—1.
Simiiarly, as j* runs along row r—1, j” runs in step along row 7 —2, and whenever j’ crosses from range k;-
to range k4 in row r —1, then j” must be reset to the beginning of range k;-, in row r—1. Suppose we
have an index vector runlen which stores the lengths of the n ranges in the rth row. Then the pseudo-code
below displays how one can march through the monomial table in order from left to right and from top to



8 Bartels, Jezioranski

bottom.

A program to step through the indices in the

ordering table for the orthogonal multinomials.

The orthogonal multinomials are generated according to
the pattern

psifj] = x[kj]*psi[jp] - sumf(t from jpp t0 j-1: a[j4]*psi{t])

n ...... number of variables

maxr ... maximum number of rows to be used in table
maxj ... size of table

- current position in table

Kj ..... current range in row

Jp distinguished multinomial in previous row

jpp ... lower limit on summation

ralen .. current range length in current row

rowlen . length of current row

jsw ... position of start of next range

inds ... array for storage and retrieval of kj, jp. jpp
top .... T, the top term of the binomial coefficient giving rowlen
bot ... B. the bottom term of this binomial coefficient

note: the value of ralen is computed directly from the
binomial coefficient binomial(top.bot), while the value of
rowlen is obtained by updating this binomial coefficient.

note: maxj = binomial(n+maxr-I.n)

note: indsfj,1] will store kj values
indsfj.2] will store jp values
indsfinds[j.2].2] will give the jpp values (for j>n+1)

note: constants are currently set for the
3-variable. 4-row problem.

f}
program index (input.output);

const
n =3
maxr = 4;
maxj = 20;

var
J.jend.jp.jpp.jsw.
kj.r.ralen.rowlen,top.bot : integer;
inds : array [I..maxj,i..2] of integer;

begin
rowlen := [;

i s= I
P =0
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top = n-I;
bor =0
indsfl,2] := I,

Jor r := 2 to maxr do

begin
j =+l
kj =1
top = top+1;
bot = bot+1;
ralen  := rowlen;
rowlen .= (rowlen*top) div bot;
Jjsw ;= j+ralen;

jend = j+rowlen-I;

Sfor j:=j to jend do

begin

ip :=jpti;

if (j> =jsw) then

begin
ralen = (ralen*(top-kj-bot+1)} div {top-kj);
kj = kit
Jsw ;= j+ralen;
jp ;= jp-ralen

end;

indsfj 1] := kj;

indsfj.2] := jp;

Jjpp o= inds[jp.2];
end

end

end.

4. The Muitinomial Gram-Schmidt Process
We propose that the Gram-Schmidt process be:
y =1
and for j=1,2, - --

j=1
Vi = Xy X (4:1)
=1
where
<X Wi W >
<. >

and where k; and j* are related to j according to the indexing program of the preceding section.
To analyze this version of the Gram-Schmidt process, we estabiish the following lemmas.

@y =

Lemma 2: Let

~

T <m ,
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and let x, be any of the variables of the problem. Then
xPT < xp;
Proof: If
o) < a(m) ,
then
olx,T) = o(T)+1 < olxym) = o(m+1
So assume that G(T) = o{;); i.e. T and m are found in the same row of the table. 7 < ;r then T and
m are such that
Iy > my (4.2)

for_the first entry, k, from the left_at which these two exponent vectors differ. But the exponent vectors of
xp1 and x, m are those of / and m, respectively, with a 1 added into position p. This does not change the
role of the index k or the relationship in (4.2) above.

®

Corollary 1: If

T <7,
then

Xk,T < Xk,?"'? ,
and if

T <j",
then

Lemma 3: If x, and x, are variables of the problem with indices p =g (i.e. x, <x; in the ordering of the
table), then

xPT = .th
for any monomial 7 .
Proof: This follows from the fact that the exponent vector for xpT would be

[ CFTIY S 55 | [ A A A
whereas that for x,/ would be

(VIR AP SN [ S0 [T ATETOIRY ) I

Hence, the first exponent vector comes before the second in the ordering of the table {unless p =g, in which
case the two exponent vectors are equal).
L

Lemma 4: The Gram-Schmidt process (4.1), yields
~ Il
wo=j + X8 . 4.3)
=1

for some coefficients §,.
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Proof (by induction):
j=1
y; = 1 and T =1,
and the formula of the lemma holds trivially.
>k
Suppose that the result has been established for all indices | </ < j—1. Consider
=1
Y = Xy — P
i=1
But Ik,.T ! T Furthermore, j* < j—1, so by hypothesis
~ F el B
1"}'-]’+ 25;’! .
I=1

Hence,
-1

~ - 1=
v, = j o+ Tomd - T
=1 =1
But it follows from Corollary 1 that
th < ]~
for all 1=</=<j’—1, and, by the induction hypothesis, each y; in the right-hand summation can be

expressed as a linear combination of the 1* through (j — 1) monomials. The result follows by collecting
terms in the individual monomials.

L
Lemma 5:
~ i
v, o= j + X nw (4.4)
[=t
Proof (again by induction): It will be clearer to establish the equivalent result that
—~ Pt
o= = Ty (4.5}
=1
=11
1 =y,

so, the result is trivially true.

i>n
Suppose that the result has been established for all indices 1 </ < —1. From the previous lemma we have
that

~ 2l o~
J =¥ - E &1 .
=1
But each monomial T, from the induction hypothesis, can be gxpressed as a linear combination of the y’s up

through the /th. Substituting these combinations in for each / and collecting terms gives the result.
[ ]

Lemma 6: The multinomials y; are linearly independent.
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(This is evident from the previous lemmas.) As an observation, any multinomial which can be expressed as a
linear combination of the first j monomials, in the ordering of the table, can also be expressed as a linear
combination of the multinomials y,, . . ., y,, and conversely.

From the foregoing we can establish

Theorem 1: For all / < j”
@iy = 0.

Proof: Note that, as a feature of our indexing scheme, the integer k; cannot be larger than k;, since k,

gives the first nonzero power in the monomial j , and k; gives the first nonzero power in j / xg,. Hence, by
lemma 3,
Xl = x,‘l,[

i

for any monomial T. Now consider
<xpyp > for 1=si=j—1,
and observe that
<X Wy W= = <ypxp >

But
~ =1
Y = I+ zsﬂ .

=1

and, consequently,

~ =l —~
Xk’IW == xkll + ZS,xht .
=1

But, by our introductory remarks in the proof,
Xl = ka,T and x,‘j?' = "‘*;'T . (4.6)

And, if / < j”, then the monomials in (4.6) must all come before j* in the table. But each of the monomials
in (4.6) is expressible as a linear combination of the multinomials y from 1 up to j—1. That means that
ot
<X Yp.yr> = p2 T <YW >,
1=
which is zero, since the multinomials W are being constructed as mutually orthogonal.
L ]

As a simple verification of the above, one may generate random numbers as values for xfV,. . ., /¥
(I=1,...,n)and use the inner product

N
<g.h> = T gxDhrx1"
i=1
to compute all of the a's in sequence. Seme results for n =2 are given in tabular outline below, where “*”
denotes the position of the orthogonal multinomial being constructed, *+™ denotes the position of a previous
orthogonal multinomial whose associated @ is computed to be nonzero, and “0” denotes the position of a pre-
vious orthogonal multinomial whose associated a is computed as zero. The position of j* is indicated by “!”.

=2+ =3 +
+

L
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j=4 +! - j=5 o
+ + + +
+ »
j=6 +! j=1 0
+ + + +
+ + s + o+ o+
-
j=8 0 j=9 0
0 +! ¢ o
+ + + + + +
+ » + o+
j=10 © j=11 0
0 +! 0 0
+ + + + +  +
+ + + ¢ + + + +
-
Jj=12 0 j=13 0
0 0 0 0
0 +! o+ 0 0 +!
+ + + + + + + +
+ * + +
=14 ¢ j=15 0
0 0 0 0
0 o o 0 0 +!
+ + + o+ + o+ o+ o+
+ + + * + + + + ¢

It is visible from this that certain extra «'s will turn out to be zero. What is not visible in the above
schema is that many of the nonzero a's have related values. The next section will establish some results.

5. Additional Relationships

We made use of the fact that k; <k, in establishing Theorem | of the preceeding section. We can
sharpen the result of that theorem by splitting this inequality up into its two possible cases.

Corollary 2: Assume that
ky = ky
Then
a - # 0

Proof: Consider

=)
Yy = X W T I PN
=1

It follows from this and the orthogonality of the y’s that
<Wj"‘1’j'> = <xk,»\vj"’wj'>

= < xkj""“j"w}" >
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= <X V>

= Oy <Y >
Since both inner products are positive,
- <y, yp>

o
2y <1|J}",\|;ju>

Corollary 3: Assume that
ky < ky

Then
&y = 0

for [ running from j” out to the end of the row containing j“; i.e., for
Tr=T = xp¥-2

Proof: In this case we will have
associated with  (0.....0,(1],0, ..., Ok, L....Ja)
associated with  (0,...,0,[0],0,... .O,U,‘}‘ | . Jn)
j ” associated with (0,....0,[0],0,... .O,U,,I.—l]. R |

where [1] and {0] mark the kf”' component.

]

If we take any / in the row of j, / = j”, the vector index associated with / must have the form
,....0[0]0.,... ,0,[1;‘,.], v udy)

with
7 e R O M P e

The numerator of the expression for @;; would be
<X Wi > = <Ypx y >

But

S .
W = x (U +381) , (5.1)
1=0

and xk‘T will have an associated vector index of the form
©. ..., 0,[i],0.. .., Off ..., 1)

Furthermore, xij will be in the row of j*. Obviously, x,,’T < T’. It follows that
<xgYpy> =0

This observation can be repeated for each of the monomials T in (5.1).
L

Notice that, if indices j, {, p, and m are such that
<Xk‘ "l’f"wl > = <xk’\|.fp:,l|1,,, > (52)

then
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<‘f’m » W >

a
o <yr.¥ >
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To explore such associations, we have generated numbers of examples with random data. To give an
instance, using three variables up through the first four rows of the table yiclded the following associations:

Os,2
®7,2
O3
Qg3
Q3
LR
Q24
2,5
35
Q36
Qs
Cia6
Q47

Us 3
Ts.4
Us,4
Qg4
Os,s
Urs
Q7
G116
1,7
27
G118
@28
Qi3

Q5,5
Qts.6
5,7
Q58
Qys,s
Q6.6
®y6,7

53 -

G159
G174

Tigs

Q9
Q99

LI
Q29
Q39
Qta9
Q110
Ty2.10
Q33,10
G410
Qis10
O3
79
Q710
Qg10

In each of the above, the association is such that

Q4 —— D

if and only if

m = j'

and further,

<xkle'.\|n > = <\|Jj'.xqul, > = <l|fj-,.¥k’ \VP'>
with the stringent requirement that

I'=p" and k; = k,

»

<X Vo>

.

(5.9

for some index p. Tt is trivial to show that the a's associate when j, /, and p satisfy these requirements.
The proof eludes us that no other s associate.

This association will be of use primarily in telling us that the inner product
<X, Wy >

has been computed before.

As a first consideration, the case

T <7~

can be ignored, since

<XgWiyr> = 0

for all such /. Secondly, the case

!

is not of interest, since it is handled fully in Corollary 2 and Coroilary 3. Thirdly, the case

TrsT = g

—~
;

J

is not of interest when k; < kj-, since
<Xp, Wiy >
by Corollary 3 in that case. As a fourth consideration, {5.3) will require that

0
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T = x,;'l‘-”"‘
when I falls in the row of J’. And finally, we must have
P = Xk,T <7,
since we are only interested in inner products which have been computed in the past and can be re-used.
This implies that
T <7
Hence, we are left only with the cases
(A) xq" <T = x70"? and &k =k,

and 7
@ g0 =T <J”
The examples of @g, are illustrative. Since
6 = x,10
and
0 = x;?
we have

J=16,j =10k, =1,j" =4,k =3
Hence, we must have
Qgs = Gp10
for each ;T which can be expressed as x,T. These are precisely those for which (B) above holds:
xlz =T <10 N
which yields
p = 11,12,13,14,15
for
I = 5,6,7,8,9

respectively.

6. FORTRAN Program

A program has been prepared to implement the results described in this paper and is iacluded as an
appendix. All of the features of indexing, attention to zero inner products, and attention to associations
between a's have been included as described. In addition, the computation of the fitting coefficients

<F W >
<wWi.y>
is done by the alternative formula

g =

o = <zZi-;,\Yr>
<Y,y >
where
I-t
zy = F — .Elci\l’l
=

as is advocated in [1]. The program has been passed by the PFORT (3] verifier.
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The program is divided into a number of subroutines, of which the user need be concerned with only
two: CONSTR and EVAL. The former is used to construct the orthogonal basis of multinomials, for given
data, and determine the least squares fitting multinomial. The latter is used to evaluate that fitting multino-
mial for given values of the variables. The header comments and calling sequences of both subroutines are
duplicated below for easy reference. Included in the appendix, too, are a simple driver program to read data
and call CONSTR and EVAL, and a sample data—generating program to provide some test cases.

SUBROUTINE CONSTR(DIMEN,FITDEG,NFPOLS,NFPTS,

+ FITCDS,NCROWS FITVLS,WTS,
+ RESIDS,NEWFIT,ERROR FITIWK,
+ FITDWK,FIWKLN,FDWKLN,IREQD,DREQD)

INTEGER NFPOLS,FITDEG,NFPTS,DIMEN FIWKLN,FDWKLN
INTEGER ERROR,NCROWS,IREQD,DREQD

INTEGER FITIWK(FIWKLN)

DOUBLE PRECISION FITDWK(FDWKLN),FITCDS(NCROWS,DIMEN)
DOUBLE PRECISION FITVLS(NFPTS),RESIDS(NFPTS)

DOUBLE PRECISION WTS(NFPTS)

LOGICAL NEWFIT

EREANRREARERRAE

PURPOSE

THIS SUBROUTINE CONSTRUCTS A LEAST-SQUARES MULTINOMIAL FIT TO
GIVEN DATA USING A BASIS OF ORTHOGONAL MULTINOMIALS.

THE DATA FOR THE FIT IS GIVEN IN THE ARRAYS SFITCDSS, SFITVLSS,

AND SWTSS. SFITCDSS IS A DOUBLE-PRECISION MATRIX, EACH ROW OF
WHICH CONTAINS AN OBSERVATION POINT (ORDERED COLLECTION OF
VARIABLE VALUES). S$FITVLS$ IS A DOUBLE-PRECISION, SINGLY-
INDEXED ARRAY, EACH ELEMENT OF WHICH CONTAINS AN OBSERVED
FUNCTION VALUE CORRESPONDING TO AN OBSERVATION POINT. SWTSS [S
A DOUBLE-PRECISION, SINGLY-INDEXED ARRAY, EACH ELEMENT OF WHICH
IS A NONNEGATIVE WEIGHT FOR THE CORRESPONDING OBSERVATION.

THE FIT WHICH IS PRODUCED IS A MULTINOMIAL EXPRESSED IN THE FORM

Cc PSI (X,.X )+.+C PS1 X,.X )
1 11 DIMEN NFPOLS NFPOLS i DIMEN

WHERE THE VALUE OF SNFPOLSS WILL BE AS GIVEN (IF SFITDEGS < O)
OR AS COMPUTED BY 3CONSTRS$ TO GIVE A FULL-DEGREE FIT (IN CASE
$FITDEGS IS SPECIFIED >= 0). THE ELEMENTS

PSI (X,.X )
K1 DIMEN

FORM A BASIS FOR THE MULTINOMIALS WHICH IS ORTHOGONAL WITH
RESPECT TO THE WEIGHTS AND OBSERVATION POINTS.

THE EXTENT OF THE FIT CAN BE SPECIFIED IN ONE OF TWO WAYS,
IF THE PARAMETER $FITDEGS IS SET >= 0, THEN A COMPLETE BASIS
FOR THE MULTINOMIALS OF DEGREE = $FITDEGS WILL BE USED. (AN

OO0 00O000O000000000O0O0000O00
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ERROR WILL BE FLAGGED IF THIS WILL REQUIRE MORE BASIS
MULTINOMIALS THAN THE NUMBER OF DATA POINTS WHICH WERE
GIVEN.)

IF THE PARAMETER SFITDEGS IS < 0, THEN $SNFPOLSS WILL BE
TAKEN AS THE COUNT OF THE NUMBER OF BASIS MULTINOMIALS TO BE
USED FOR A PARTIAL-DEGREE FIT. (AN ERROR WILL BE FLAGGED IF
$NFPOLSS < 0.)

NOTE, THE CALL TO SCONSTRS WITH SNEWFITS = .TRUE. CAN BE MADE
WITH THE PARAMETERS SET FOR THE MAXIMUM FIT DESIRED.
SEVERAL SUBSEQUENT CALLS TO SCONSTRS WITH SNEWFITS = .FALSE.
CAN BE MADE WITH SMALLER VALUES OF SFITDEGS OR SNFPOLSS AS
MAY BE DESIRED TO OBTAIN A PARTIAL FIT.

VARIABLES

SDIMENS - (INTEGER) - (PASSED)
THE NUMBER OF VARIABLES.

SFITDEGS - (INTEGER) - (PASSED/RETURNED)
IGNORED IF < 0.
IF SDEGREES >= 0 THEN SDEGREES IS CHECKED AGAINST SNFPTSS.
THE VALUE OF SDEGREES WILL BE REDUCED [F THERE IS A BASIS OF
MULTINOMIALS, ALL OF DEGREE <= 3DEGREES, OF CARD!\AL[TY
SNFPTSS. SEE SERRORS BELOW.

SNFPOLSS - (INTEGER) - (PASSED/RETURNED)
IGNORED IF $DEGREES >= 0.
1F SDEGREES < 0 THEN THE VALUE OF SNFPOLSS WILL BE TAKEN AS
THE SIZE OF THE BASIS OF MULTINOMIALS TO BE USED IN THE FIT.
SNFPOLS$ MUST SATISFY SNFPOLSS < SNFPTSS AND SNFPOLSS > = 1
SEE SERRORS BELOW.

SNFPTSS$ — (INTEGER) - (PASSED)
THE NUMBER OF DATA POINTS TO BE USED IN THE FIT.
SNFPTS$ MUST BE >= 1. SEE $ERRORS BELOW.

SFITCDSS$ — (DOUBLE-PRECISION, 2-SUBSCRIPT ARRAY) ~ (PASSED)
SFITCDSS(P.K) IS THE VALUE OF THE K-TH VARIABLE AT THE P-TH
DATA POINT.

SNCROWSS - (INTEGER) - (PASSED)

THE ROW DIMENSION DECLARED FOR SFITCDSS IN THE CALLING
PROGRAM.

SFITVLSS - (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) - (PASSED)
SFITVLSS(P) IS THE OBSERVED FUNCTION VALUE OF THE P-TH DATA
POINT.

SWTS$ —— (DOUBLE-PRECISION, |-SUBSCRIPT ARRAY) - (PASSED)
SWTSS(P) IS THE WEIGHT ATTACHED TO THE P-TH DATA POINT.

SRESIDSS - (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) - (RETURNED)
SRESIDSS(P) IS THE DIFFERENCE BETWEEN THE FITTED FUNCTION AT
POINT P AND SFITVLSS(P).

SNEWFITS ~ (LOGICAL) - (PASSED)

A LOGICAL FLAG. IF SNEWFITS=.TRUE,, THEN THIS {S THE FIRST

FIT TO BE CARRIED OUT WITH THE DATA TO BE FOUND IN THE OTHER
PARAMETERS TO $CONSTRS, AND SPACE FOR A FIT IS TO BE
ALLOCATED. IF SNEWFITS=_FALSE., THEN A FIT OF ANOTHER DEGREE
CAN BE CONSTRUCTED IN THE SPACE ALLOCATED ON A PREVIOUS CALL
WITH THE SAME DATA, AND CERTAIN INITIALIZATION STEPS ARE BY-
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PASSED.
$ERRORS - (INTEGER) ~ (RETURNED)

0 IF SNPOLYSS, SDIMENS, SDEGREES, SNPTS$ AND SIWKLENS ARE
VALID AND CONSISTENT WITH EACH OTHER.

1 IF SDEGREES >= 0 BUT THERE [S AN INTERPOLATING MULTINOMIAL
OF SMALLER DEGREE OR IF SDEGREES < 0 AND SNPOLYSS > SNPTSS.

2 IF SDEGREES < 0 AND SNPOLYSS <= 0.

3 IF SNPTS$ < 1 AND/OR SDIMENS < L.

4 IF SIWKLENS AND/OR SDWKLENS IS TOO SMALL. (SET SIWKLENS TO
THE VALUE RETURNED IN SIREQDS, AND SET $SDWKLENS TO THE VALUE
RETURNED IN SIREQDS TO RESOLVE THIS PROBLEM.)

5 SNEWFITS = .FALSE. BUT SONPLYSS > = SNFPOLSS. SEVALS CAN BE
CALLED REQUESTING A SMALLER BASIS THAN WAS GENERATED.

6 ERROR RETURN FROM SINCDGS. THERE IS NO MORE ROOM IN THE
SFITDWKS AND/OR SFITIWKS ARRAYS TO INCLUDE MORE TERMS IN THE
FIT. (CAUSED BY A SUCCESSION OF CALLS TO SCONSTRS WITH THE
FLAG SNEWFITS SET .FALSE., REQUESTING EVER HIGHER ORDER
FITS, IN WHICH THE DIMENSIONING AND ORDER INFORMATION GIVEN
ON THE FIRST CALL (SNEWFIT$=TRUE.} IS EXCEEDED.)

SFITIWKS - (INTEGER, 1-SUBSCRIPT ARRAY) - (RETURNED)
AN INTEGER WORK ARRAY OF LENGTH SFIWKLNS. UPON RETURN FROM
A CALL TO SCONSTRS WITH SNEWFITS SET .TRUE., SOME DIMENSION
AND ARRAY-LENGTH INFORMATION WILL BE INSERTED. UPON RETURN
FROM A CALL TO SCONSTRS WITH SNEWFITS SET .FALSE., DETAILED
INDEXING INFORMATION (LOCATION OF COEFFICIENTS IN SFITDWKS,
ETC.) IS INSERTED.
SFITDWKS$ ~ (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) ~ (RETURNED)
A DOUBLE PRECISION ARRAY OF LENGTH SFDWKLNS. UPON RETURN
FROM SCONSTRS WITH $SNEWFITS SET .FALSE., THE FULL DETAILS
OF THE REQUESTED FIT (COEFFICIENTS, ETC.) WILL BE INSERTED.
SFIWKLNS - (INTEGER) ~ (PASSED)
THE LENGTH OF THE ARRAY SFITIWKS.
SFDWKLNS - (INTEGER) - (PASSED)
THE LENGTH OF THE ARRAY SFITDWKS.
SIREQDS - (INTEGER) - (PASSED)
THE LENGTH WHICH THE ARRAY SFITIWKS REALLY NEEDS TO BE.
$DREQDS - (INTEGER) - (PASSED)
THE LENGTH WHICH THE ARRAY SFITDWKS REALLY NEEDS TO BE.

NOTE, THE 10 AND 70 LOOPS (LE. THE LOOPS FOR SCALING THE
RESIDUALS) DEPEND ON THE SCALING SCHEME USED. THE RESIDUAL
SCALING MUST BE CONSISTENT WITH THAT DEFINED BY SSCALPMS,
$SCALDNS, AND $SCALUPS.

$CONSTRS CALLS SALLOTS, SRESTRTS, $INCDGS, AND SGNRTPS

DATE LAST MODIFIED

MARCH 9, 1984

EAINAERERSRARER
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SUBROUTINE EVAL(DIMEN,EVLDEG,NEPOLS,NEPTS,EVLCDS, EVLVLS,
+ ERRORFITIWK,FITDWK,FIWKLN,FDWKLN ,EVLDWK,EDWKLN)

INTEGER FIWKLN,FDWKLN ,NEPOLS NEPTS,DIMEN,ERROR

INTEGER EVLDEG.EDWKLN

INTEGER FITIWK(FIWKLN)

DOUBLE PRECISION FITDWK(FDWKLN),EVLDWK(EDWKLN),EVLCDS(NEPTS.DIMEN)
DOUBLE PRECISION EVLVLS(NEPTS)

RBUNSIRETREDIRN

PURPOSE

THIS SUBROUTINE EVALUATES THE LEAST-SQUARES MULTINOMIAL FIT

WHICH HAS BEEN PREVIOUSLY PRODUCED BY SCONSTRS. EITHER THE FULL

MULTINOMIAL AS PRODUCED MAY BE EVALUATED, OR ONLY AN INITIAL

SEGMENT THEREOF. AS IN THE CASE WITH SCONSTRS, IT IS POSSIBLE

(1) TO SPECIFY MULTINOMIALS OF A FULL GIVEN DEGREE, OR

(2) TO SPECIFY THE NUMBER OF ORTHOGONAL BASIS ELEMENTS TO
ACHIEVE A PARTIAL-DEGREE FIT.

IN CASE (1), THE DESIRED DEGREE IS GIVEN AS THE VALUE OF
$EVLDEGS (WHICH MUST BE NONNEGATIVE AND NOT GREATER THAN THE
VALUE USED FOR SFITDEGS [N SCONSTRS), AND THE PARAMETER SNEPOLSS
WILL BE SET BY SEVALS TO SPECIFY THE NUMBER OF BASIS ELEMENTS
REQUIRED. IF SEVLDEGS < S$FITDEGS IS GIVEN, THEN ONLY THE
INITIAL PORTION OF THE FITTING MULTINOMIAL (OF DEGREE SEVLDEGS)
WILL BE EVALUATED.

IN CASE (2), SEVLDEGS IS TO BE SET NEGATIVE, IN WHICH CASE THE
VALUE OF SNEPOLSS (WHICH MUST BE POSITIVE AND NOT GREATER THAN
THE VALUE USED FOR $NFPOLS$ IN SCONSTRS) WILL BE TAKEN AS
DEFINING THE INITIAL PORTION OF THE FITTING MULTINOMIAL TO BE
EVALUATED.

IF SNEPOLSS = SNFPOLSS (WITH SEVLDEGS < 0), OR SEVLDEGS =
SFITDEGS (WITH SEVLDEGS > 0), THEN THE FULL MULTINOMIAL
GENERATED BY SCONSTRS$ WILL BE EVALUATED.

THE EVALUATION WILL TAKE PLACE FOR EACH OF THE POINTS
(COLLECTION OF VARIABLE VALUES) GIVEN AS A ROW OF THE MATRIX
SEVLCDSS. THE VALUES PRODUCED FROM THE FULL, OR PARTIAL,
MULTINOMIAL WILL BE PLACED IN THE ARRAY SEVLVLSS.

VARIABLES

SDIMENS - (INTEGER) - (PASSED}
THE NUMBER OF VARIABLES.

SEVLDEGS - (INTEGER) - (PASSED)
IF SEVLDEGS < 0, THEN THIS PARAMETER WILL BE IGNORED.
IF SEVLDEGS$ >= 0, THEN THE VALUE OF SEVLDEGS MUST SATISFY
SEVLDEGS <= (THE DEGREE OF THE APPROXIMATING MULTINOMIAL
GENERATED IN SCONSTRS). IN THIS CASE $EVLDEGS WILL SPECIFY
THE DEGREE OF THE INITIAL PORTION OF THE FITTING MULTINOMIAL
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TO BE EVALUATED.
SNEPOLSS - (INTEGER) - (PASSED/RETURNED}
IF SEVLDEGS >= 0, THEN THIS PARAMETER WILL BE IGNORED.
IF SEVLDEGS < 0, THEN THE PARTIAL MULTINOMIAL INVOLVING THE
FIRST SNEPOLSS ORTHOGONAL BASIS FUNCTIONS WILL BE EVALUATED
AT THE POINTS GIVEN BY $EVLCDSS. THE RESULTING VALUES WILL
BE STORED IN SEVLVLSS.
THE VALUE OF SNEPOLSS MUST BE >= | AND <= (THE SIZE OF THE
BASIS GENERATED IN $SCONSTRS), WHICH WAS RETURNED AS THE
VALUE OF $NFPOLSS.
$NEPOLSS WILL BE CHANGED IF SEVLDEGS > 0 TO GIVE THE SIZE OF
BASIS REQUIRED FOR THE MULTINOMIAL OF DEGREE SEVLDEGS.
SNEPTSS ~ (INTEGER) - (PASSED)
THE NUMBER OF EVALUATION POINTS.
$EVLCDSS - (INTEGER ) - (PASSED)
SEVLCDSS$(P.K) IS THE VALUE OF THE K-TH VARIABLE AT THE P-TH
EVALUATION POINT.
SEVLVLSS ~ (INTEGER) ~ (RETURNED)
$EVLVLSS$(P) [S THE VALUE OF THE EVALUATED MULTINOMIAL AT THE
P-TH EVALUATION POINT.
SERRORS - (INTEGER) - (RETURNED)

0...... IF NO ERRORS
-1 ......... IF SNEPOLSS > $NPOLYSS OR SNEPOLSS < |
-2 .oeeeo.. IF SNEPTSS < 1 OR SDIMENS < |

SNEPOLSS ... IF SNEPOLSS > SEDWKLNS
. SFITIWKS ~ (INTEGER, 1-SUBSCRIPT ARRAY) -~ (PASSED)

THE INTEGER WORK ARRAY OF LENGTH SFIWKL\$ THAT WAS USED [N
SCONSTRS. :

SFITDWKS —- (DOUBLE-PRECISION, 2-SUBSCRIPT ARRAY) - (PASSED)
THE DOUBLE PRECISION WORK ARRAY OF LENGTH SFDWKLNS THAT WAS
USED IN $CONSTRS.

$SFIWKLNS ~ (INTEGER) -~ (PASSED)
THE LENGTH OF $FITIWKS.

SFDWKLNS - (INTEGER) - (PASSED)
THE LENGTH OF SFITDWKS.

SEVLDWKS -~ (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY ) - (RETURNED)
A WORK ARRAY OF LENGTH SNEPOLSS (OR LONGER).

$EDWKLNS - (INTEGER) - (PASSED)
THE LENGTH OF SEVLDWKS.

THE SUBROUTINE SEVALPS IS CALLED TO DO THE ACTUAL EVALUATION.

DATE LAST MODIFIED

FEBRUARY 2, 1984

HERSEBEERER R RN
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8. APPENDIX

8.1. Simple Driver Program

Qaaaoaa aocaao [sNeNeoNoNoReoNeNoNoNoNoNo NoNo]

[eXeNeRsNoRoNoNoXo]

Q

INTEGER DIMEN FITDEG NFPOLS,NFPTS,EVLDEG, NEPOLS,NEPTS
INTEGER ERROR,FIWKLN ,FDWKLN,EDWKLN,IREQD, DREQD

INTEGER FITIWK(89)

DOUBLE PRECISION FITDWK({2201),FITVLS(125),FITCDS(375), WTS(125)
DOUBLE PRECISION EVLDWK(125), EVLVLS(20), EVLCDS(60), RESIDS(125)

SRR ISR ERRE S

A SIMPLE DRIVER PROGRAM TO READ TEST DATA AND CALL THE
JEZIORANSKI-BARTELS SUITE OF MULTINOMIAL LEAST-SQUARES FITTING
ROUTINES.

THE DATA AND ARRAY DECLARATIONS ARE CONSISTENT WITH PROBLEMS
INVOLVING UP TO 3 VARIABLES, 125 FITTING POINTS, AND 20
EVALUATION POINTS USING 20 BASIS ORTHOGONAL MULTINOMIALS IN BOTH
THE FIT AND THE EVALUATION.

LATEST UPDATE... MARCH 9, 1984

EEESEREBERENER D

DATA FDWKLN/2201/
DATA EDWKLN/125/
DATA FIWKLN/89/

L EUEEERIES

READ FITTING DATA

EEEEERETEBESESS

READ (5,5000) DIMEN,FITDEG,NFPOLS,NFPTS
WRITE (6,6000) DIMEN,FITDEG,NFPOLS,NFPTS
CALL INFIT(DIMEN NFPTS FITCDS, FITVLS,WTS)

SRS ERERERARES S

COMPUTE THE LEAST-SQUARES FIT

EXEFERERESEEL BN

CALL CONSTR(DIMEN FITDEG NFPOLS,NFPTS,FITCDS,NFPTS,
+ FITVLS,WTS RESIDS,. TRUE. ERROR FITIWK,
+ FITDWK,FIWKLN FDWKLN,IREQD ,DREQD)

SIS SEREASRNETS

PRINT RESIDUALS AT THE FITTING POINTS

THE USER COULD CHECK IREQD,DREQD AT THIS POINT TO SEE
THE NUMBER OF LOCATIONS WHICH WERE ACTUALLY REQUIRED IN
THE ARRAYS FITIWK FITDWK.

SEREEEBAEEEERER

WRITE (6,6010)
CALL OUTRES(NFPTS,RESIDS)
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C EREEXREAES LI SRS

C READ POINTS OF EVALUATION

C TEEREBEEERER SRS

READ (5,5000) EVLDEG,NEPOLS,NEPTS
WRITE (6,6020) EVLDEG NEPOLS,NEPTS
CALL INEVL(DIMEN NEPTS,EVLCDS)

FEA SR ER IR RS

EVALUATE THE FITTING MULTINOMIAL

SEREBERBEREBRES

[eNoNoNeoNo!

CALL EVAL(DIMEN,EVLDEG NEPOLS NEPTS,EVLCDS EVLVLS,
+ ERROR FITIWK FITDWK FIWKLN FDWKLN,EVLDWK,EDWKLN)

essssEssAERARND

PRINT OUT THE ARRAY OF MULTINOMIAL VALUES

L2222 1T TT L] E]

CALL OUTEVL(DIMEN,NEPTS,NEPOLS EVLCDS EVLVLS)

STOP

SERERERERESES S

FORMATS

SARARFEIREIERE S

aaoaoaaa a aacaaaq

5000 FORMAT(515)
6000 FORMAT(//31H MULTINOMIAL FITTING PROBLEM...//
+  13H DIMENSION = 15/
+  32H DEGREE OF THE FIT TO BE MADE = ,I5/
+  43H NUMBER OF BASIS MULTINOMIALS TO BE USED = 15/
+  25H NUMBER OF DATA POINTS = I5)
6010 FORMAT(//18H FITTING COMPLETE./13H RESIDUALS...
+  //4X,IHI5X,8HRESIDUAL)
6020 FORMAT{//14H EVALUATION.../
+  37H DEGREE OF THE FIT TO BE EVALUATED = 15/
+  42H NUMBER OF BASIS POLYNOMIALS TO BE USED = 15/
+  31H NUMBER OF EVALUATION POINTS = 5)
C
END

SUBROUTINE INEVL(DIMEN,NEPTS,EVLCDS)

Q

INTEGER DIMEN,NEPTS,1,J
DOUBLE PRECISION EVLCDS(NEPTS,DIMEN)

(2222223 2222212 ]

SUBROUTINE TO READ THE ARRAY OF EVALUATION POINTS.

FERERENEES TR AR

[eNoNoNoNe!

DO 100 I=1 NEPTS
READ (5,5000) (EVLCDS(I,J},J=1,DIMEN)
100 CONTINUE



Multinomial Least Squares

RETURN
5000 FORMAT(4D14.6)
END

SUBROUTINE INFIT(DIMEN,NFPTS, FITCDS, FITVLS,WTS)

Q

INTEGER NFPTS,DIMEN,LJ
DOUBLE PRECISION FITCDS(NFPTS,DIMEN),FITVLS(NFPTS),WTS(NFPTS)

SRS ISEEERER LS

SUBROUTINE TO READ THE FITTING DATA.

SERTRNRT SR RN E R

aoaan

WRITE (6,6000)
DO 100 1=1,NFPTS
READ (5,5000) WTS{I),(FITCDS(1,J),J=1,DIMEN) FITVLS(1)
WRITE (6,6010) L, WTS(I),(FITCDS(I,J),J=1,DIMEN) FITVLS(l)
100 CONTINUE
RETURN
5000 FORMAT(5D14.6)
6000 FORMAT{8H DATA.../
+  4X,IHL5X,6HWEIGHT,19X,11HCOORDINATES,17X,11HDATA VALUES}
6010 FORMAT(15,5D14.6)
END

SUBROUTINE OUTEVL{DIMEN,NEPTS,NEPOLS,EVLCDS EVLVLS)

Q

INTEGER DIMEN NEPTS,NEPOLS,1J
DOUBLE PRECISION EVLCDS(NEPTS,DIMEN),EVLVLS(NEPTS)

EeEREN LIRSS ES

SUBROUTINE TO PRINT OUT THE RESULTS OF THE EVALUATION.

ERESEREREAENER S

[eXeNeoNoNe]

WRITE (6,6000)
DO 100 I=1,NEPTS
WRITE (6,6010) [(EVLCDS(1,J),J=1,DIMEN),EVLVLS(I)
100 CONTINUE

RETURN
6000 FORMAT(14H EVALUATION.../

+  4X,1HI,22X,11HCOORDINATES, 14X, 5SHVALUE)
6010 FORMAT(I5,4D14.6)

END

SUBROUTINE OUTRES(NFPTS,RESIDS})

Q

INTEGER NFPTS,|
DOUBLE PRECISION RESIDS(NFPTS)

FEAEREEESEER RS

SUBROUTINE TO PRINT OUT THE RESIDUALS FROM THE FIT.

BEREXERETEBRRNS

[eNoNeoXeXe]

DO 100 I=1NFPTS

25
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WRITE (6,6000) I,RESIDS(I)

100 CONTINUE

RETURN

6000 FORMATY{I5,D14.6)

END

8.2. Simple Data Generator

aoaoaoaaoaooaoaoaaaoaaaoaaoaaaan

(o]

[sNeNeXeoNe]

INTEGER FITDEG,DIMEN,NFPOLS,NFPTS NEPTS NEFPOLS,EVLDEG

SERISECETER SR RS

A PRIMITIVE DATA-GENERATING PROGRAM FOR USE WITH THE
JEZIORANSKI-BARTELS SUITE OF ROUTINES FOR MULTINOMIAL
LEAST-SQUARES FITTING.

THE OUTPUT FORMATS IN (GENDAT) AND IN (GENEVL) ARE CONSISTENT
WITH THE INPUT FORMATS TO BE FOUND IN THE SIMPLE DRIVER PROGRAM
WHICH IS INCLUDED WITH THE SUITE.

THE DATA AND ARRAY DECLARATIONS ARE CONSISTENT WITH THE FITTING
OF PROBLEMS HAVING 3 VARIABLES ON 125 POINTS, AND WITH THE
EVALUATION OF THOSE SAME FITS ON 20 POINTS. 20 ORTHOGONAL BASIS
MULTINOMIALS ARE USED, AND THE DEGREE PARAMETERS (FITDEG) AND
(EVLDEG) ARE IGNORED.

LATEST UPDATE... MARCH 9, 1984

FRREFSRBTREEER D

DATA FITDEG/-1/
DATA EVLDEG/-1/
DATA NFPOLS/20/
DATA DIMEN/3/
DATA NFPTS/125/
DATA NEPTS/20/
DATA NEPOLS/20/

CALL GENDAT(DIMEN,NFPTS,FITDEG,NFPOLS)
CALL GENEVL(DIMEN,NEPTS, EVLDEG,NEPOLS)

STOP
END

SUBROUTINE GENDAT(DIMEN,NFPTS FITDEG,NFPOLS)

INTEGER DIMEN,NFPTS,FITDEG, NFPOLS LIK
DOUBLE PRECISION X,Y,Z,W,F

SEIXXERTR RN

A SUBROUTINE TO GENERATE AND PRINT 125 DATA POINTS FOR THE
FUNCTION
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SIN(X)
F(X,Y,2) = — * COS(Y) + EXP(2)
X

SERERERRAER SR kD

aoaacaan

WRITE (6,6000) DIMEN,FITDEG,NFPOLS,NFPTS
DOSI=15
DO5J=1,5
DO5SK=15
X = DBLE(FLOAT(])/5.0D+00}
Y = DBLE(FLOAT(J)/5.0D+00)
Z = DBLE(FLOAT(K)/5.0D+00)
W = 1.0D+00
F = (DSIN(X)/X)*DCOS(Y} + DEXP(2)
WRITE {6,6010) W,X,Y,Z,F
5 CONTINUE
RETURN
C
6000 FORMAT(415)
6010 FORMAT(5D14.6)
END

SUBROUTINE GENEVL(DIMEN,NEPTS,EVLDEG NEPOLS)

Q

INTEGER DIMEN,NEPTS,]I,NEPOLS,EVLDEG
DOUBLE PRECISION X,Y,Z

(211232 2212 T ] )

A SUBROUTINE TO GENERATE 20 EVALUATION POINTS.

EREREEBRER BN
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WRITE (6,6000) EVLDEG,NEPOLS,NEPTS
DO 101 == 1,20
X = DBLE(FLOAT(I)/20.0D+00)
Y = DBLE(FLOAT{I){20.0D+00)
7 = DBLE(FLOAT(I}/20.0D+00)
. WRITE (6,6010) X,Y,Z
10 CONTINUE
RETURN
c
6000 FORMAT(315)
6010 FORMAT{3D14.6)
C
END

B8.3. Multinomial Fitting Subroutines

SUBROUTINE ALLOT(DEGREE,NPOLYS,NPTS DIMEN,IWORK IWKLEN,
+ IREQD,DREQD,ERRORY)

C
INTEGER IREQD,DREQD,ALFL,ERROR NPOLYS DEGREE,DIMEN,NPTS
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INTEGER NEWSTT PSIWID,KMXBAS,STARTJ KJP1D2 INDEX,IWKLEN
INTEGER IWORK(IWKLEN)

EXREESETES RN

PURPOSE

$ALLOT$ CHECKS FOR SUFFICIENCY THE DECLARED DIMENSIONS OF THE
WORK ARRAYS USED BY THE SUBROUTINE $CONSTR$. VARIOUS SIZES OF
SUB-ARRAYS ARE COMPUTED AND REPORTED.

THIS ROUTINE IS CALLED BY $CONSTRS. IT IS NOT CALLED DIRECTLY
BY THE USER.

THIS ROUTINE CALLS $BASIZ$ AND $TABLE$ FOR THE SUBSTANTIVE
COMPUTATIONS.

VARIABLES

$DEGREES - (PASSED/RETURNED)
IGNORED IF < 0.
IF $DEGREES$ >= 0 THEN $DEGREE$ IS CHECKED AGAINST $NPTS$.
THE VALUE OF $DEGREE$ WILL BE REDUCED IF THERE IS A BASIS OF
MULTINOMIALS, ALL OF DEGREE <= $DEGREE$, OF CARDINALITY
$NPTS$
$NPOLYSS$ - (PASSED/RETURNED)
IGNORED IF $DEGREE$ >= 0.
IF $DEGREE$ < 0 THEN THE VALUE OF $NPOLYS$ WILL BE TAKEN AS
THE SIZE OF THE BASIS OF MULTINOMIALS TO BE USED IN THE FIT.
$NPOLYS$ MUST SATISFY NPOLYS < $NPTS$ AND $NPOLYS$ >= 1
$NPTS$ — (PASSED)
THE NUMBER OF DATA POINTS TO BE USED IN THE FIT.
$NPTS$ MUST BE >= 1.
$DIMENS — (PASSED)
THE NUMBER OF VARIABLES.
$IWORKS$ - (RETURNED)
AN INTEGER WORK ARRAY OF LENGTH AT LEAST
IF $DEGREE$ >== 0 THEN
4*BINOMIAL($DIMEN$ + $DEGREES$, $DIMENS$)
+($DIMENS$)*($DEGREES$)
ELSE
4*BINOMIAL($DIMEN$+D,D}+($DIMENS)*D
WHERE D IS THE MINIMUM CARDINALITY OF A BASIS OF DEGREE
$DEGREES$ SUCH THAT
BINOMIAL($DIMEN$ + ABS{$DEGREE$),$DIMENS) >= $NPOLYS$
$IWKLENS - (PASSED)
THE LENGTH OF $IWORK$
$IREQDS$ —~ (RETURNED) A
THE SIZE OF THE INTEGER WORK ARRAY REQUIRED BY $CONSTR$ FOR
THE FIT SPECIFIED BY THE 4 INPUT PARAMETERS.
$DREQD$ — (RETURNED)
THE SIZE OF THE DOUBLE PRECISION WORK ARRAY REQUIRED BY
$CONSTR$ FOR THE FIT SPECIFIED BY THE 4 INPUT PARAMETERS.
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$ERROR$ ~ (RETURNED)

0 IF $NPOLYSS, $DIMENS, $DEGREES, $NPTS$ AND $IWKLEN$ ARE
VALID AND CONSISTENT WITH EACH OTHER.

1 IF $DEGREE$ >= 0 BUT THERE IS AN INTERPOLATING MULTINOMIAL
OF SMALLER DEGREE OR IF $DEGREE$ < 0 AND $NPOLYS$ > $NPTS$

2 IF $DEGREE$ < 0 AND $NPOLYS$ <=0

3 IF $NPTS$ < 1 AND/OR $DIMENS < 1

4 IF $IWKLEN$ IS TOO SMALL (SET $IWKLEN$ TO THE VALUE RETURNED
IN $IREQD$ TO RESOLVE THIS PROBLEM)

NOTE THAT $DEGREES$, $NPOLYSS, $PSIWID$ AND $ALFL$ ARE RETURNED
IN $IWORK$(1-4), RESPECTIVELY.

DATE LAST MODIFIED

— i

JANUARY 30, 1984

ARBEBEREBEERESE

CALL BASIZ(DEGREE,NPTS DIMEN,NPOLYS,ERROR)
IF ( ERROR .GE. 2 ) RETURN
IREQD = 4 * NPOLYS + DEGREE * DIMEN
IF ( IWKLEN .GE. IREQD } GO TO 5
ERROR = 4
RETURN
NEWSTT = 4 * NPOLYS + 1
CALL TABLE(DEGREE DIMEN,NPOLYS,IWORK IWORK(NEWSTT) ALFL)
IWORK(1) = DEGREE
IWORK(2) = NPOLYS

EXEXEXEX LR XL

FORCE $ALFL$ TO BE AT LEAST 1 SO THAT DIMENSION STATEMENTS
USING $ALFL$ DO NOT BOMB.

ESEsEsEASHESERD

IF ( ALFL .GT. 1 ) ALFL = ALFL- 1
IWORK(4) = ALFL

SRS ESERERSE

ARRAY LENGTH
$MAXABSS $DIMENS + 1
$ALPHAS $ALFLS

$C$ $NPOLYSS
$SUMSQS$ $NPOLYS$

THE NUMBER OF COLUMNS IN $PSI$, $PSIWIDS, IS DETERMINED BY
$PSIWID$ = MIN(SET OF(R,$INDEX5$(3,J)) = R WHERE J > $NPOLYSS$)
THIS INSURES THAT IF THE USER EXTENDS THE BASIS, ALL THE $PSI$-
REQUIRED WILL CERTAINLY BE STORED

[F DEGREE($NPOLYS$) <= 2 THEN
$PSIWID$ = $NPOLYSS$
ELSE
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IF K = $DIMEN$ THEN
$PSIWID$ = $NPOLYSS$ - SNEWKJ(1,DEGREE($NPOLYSS - 1)$ + 1
ELSE
$PSIWID$ = $NPOLYS$
+1
THE SMALLER OF
$NEWKJ(K+1,DEGREE($NPOLYS$)-1)$
AND
$INDEXS(3,$NPOLYS$

SRk IsEIERERSS

IF ( DEGREE .GT. 2} GO TO 10
PSIWID = NPOLYS
GO TO 40
KMXBAS == IWORK(4 * NPOLYS - 2)
IF ( KMXBAS .NE. DIMEN ) GO TO 20
PSIWID = NPOLYS - IWORK(4 * NPOLYS - 1)
GO TO 40
INDEX = 4 * NPOLYS + (DEGREE - 3) * DIMEN + KMXBAS + 1
KJP1D2 = IWORK(INDEX)
STARTJ = IWORK(4 * NPOLYS - 1)
IF ( STARTJ .GT. KJP1D?2 ) GO TO 30
PSIWID = NPOLYS - STARTJ + 1
GO TO 40
PSIWID = NPOLYS - KJP1D2 + 1
IWORK(3) == PSIWID
DREQD == 2 * NPOLYS + DIMEN + 1 + NPTS * PSIWID + ALFL
RETURN
END

SUBROUTINE BASIZ{(DEGREE,NPTS,DIMEN,NPOLYS,ERROR)

INTEGER TOP,BOT,DEGREE,NPTS,DIMEN,NPOLYS,ERROR,LROWLEN

SEREFENERETET RSN

PURPOSE .

IF $DEGREE$ >= 0 THEN
FIND THE SIZE OF A BASIS REQUIRED EITHER TO
1) APPROXIMATE THE DATA WITH A POLYNOMIAL OF DEGREE $DEGREE$
ORTO
2) SPAN THE SPACE OF POLYNOMIALS OF DEGREE <= THE SMALLEST
DEGREE OF POLYNOMIAL WHICH INTERPOLATES THE DATA.
IN CASE 1 SERRORS$ == 0.
IN CASE 2 $ERRORS = 1.
ELSE
IF $NPOLYS$ >= 1 THEN
IF NPOLYS > NPTS THEN
SET $NPOLYS$ = $NPTS$, FIND THE SMALLEST DEGREE OF A
POLYNOMIAL WHICH INTERPOLATES THE DATA, AND SET
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$ERRORS$ = 1.
ELSE
FIND THE LARGEST DEGREE $DEGREE$ OF A POLYNOMIAL IN
A BASIS OF $NPOLYS$ POLYNOMIALS GENERATED ACCORDING
TO OUR ORDERING AND SET $ERRCRS$ = 0.
ELSE
$ERRORS = 2

THIS SUBROUTINE IS CALLED BY $ALLOTS. IT IS NOT CALLED BY
THE USER DIRECTLY.

DATE LAST MODIFIED

MARCH 10, 1984

SEREEINEENSEESN
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ERROR =0

IF ( NPTS .GE. 1 .AND. DIMEN .GE. 1) GO TO 10
ERROR = 3
RETURN

10 CONTINUE
IF ( DEGREE .LT. 0 ) GO TO 30
c
ROWLEN = 1
NPOLYS = 1
TOP = DIMEN - 1
BOT =0
IF ( DEGREE LT.1) GO TO 30
DO 20 I=1,DEGREE
TOP = TOP + 1
BOT = BOT + 1
ROWLEN = (ROWLEN*TOP)/BOT
NPOLYS = NPOLYS + ROWLEN
20 CONTINUE
c
30 CONTINUE
IF ( NPOLYS .GE. 1) GO TO 40
ERROR = 2
RETURN
40 CONTINUE
IF ( NPOLYS LT. NPTS ) GO TO 50
NPOLYS = NPTS
ERROR = 1
50 CONTINUE
ROWLEN = 1
I=1
DEGREE = 0
TOP = DIMEN - 1
BOT =0
60 CONTINUE
IF (1.GE. NPOLYS ) GO TO 70
TOP = TOP + 1
BOT = BOT + 1
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ROWLEN = (ROWLEN*TOP)/BOT
1=1+ ROWLEN

DEGREE = DEGREE + 1

IF (1 LT. NPOLYS ) GO TO 60

70 CONTINUE
RETURN
END
SUBROUTINE CONSTR(DIMEN FITDEG,NFPOLS,NFPTS,
+ FITCDS NCROWS FITVLS,WTS,
+ RESIDS NEWFIT ERROR FITIWK,
+ FITDWK FIWKLN,FDWKLN,IREQD,DREQD)

INTEGER NFPOLS,ONPLYS FITDEG,NFPTS,DIMEN, OLDEG FIWKLN ,FDWKLN
INTEGER ERROR,IREQD,DREQD,OPSWID,OLALFL,INDSTT,P,DIMP1, NCROWS
INTEGER NEWSTT MAXSTT,ALFSTT,PSISTT,CSTT,SSQSTT,PSIWID,ALFL
INTEGER FITIWK(FIWKLN)

DOUBLE PRECISION FITDWK(FDWKLN)FITCDS(NCROWS,DIMEN)

DOUBLE PRECISION FITVLS(NFPTS), RESIDS(NFPTS)

DOUBLE PRECISION WTS(NFPTS)

DOUBLE PRECISION SCALE

LOGICAL NEWFIT

RSN ERERRTRESS

PURPOSE

THIS SUBROUTINE CONSTRUCTS A LEAST-SQUARES MULTINOMIAL FIT TO
GIVEN DATA USING A BASIS OF ORTHOGONAL MULTINOMIALS.

THE DATA FOR THE FIT IS GIVEN IN THE ARRAYS $FITCDSS, $FITVLSS,

AND $WTS$. $FITCDSS$ IS A DOUBLE-PRECISION MATRIX, EACH ROW OF
WHICH CONTAINS AN OBSERVATION POINT (ORDERED COLLECTION OF
VARIABLE VALUES). $FITVLS$ IS A DOUBLE-PRECISION, SINGLY-
INDEXED ARRAY, EACH ELEMENT OF WHICH CONTAINS AN OBSERVED
FUNCTION VALUE CORRESPONDING TO AN OBSERVATION POINT. $WTS$ IS
A DOUBLE-PRECISION, SINGLY-INDEXED ARRAY, EACH ELEMENT OF WHICH
IS A NONNEGATIVE WEIGHT FOR THE CORRESPONDING OBSERVATION.

THE FIT WHICH IS PRODUCED IS A MULTINOMIAL EXPRESSED IN THE FORM

CPSI(X,.X )+.+C PSI (X,.X
1 1 1 DIMEN NFPOLS NFPOLS 1  DIMEN

WHERE THE VALUE OF $§NFPOLS$ WILL BE AS GIVEN {IF $FITDEG$ < 0)
OR AS COMPUTED BY $CONSTR$ TO GIVE A FULL-DEGREE FIT (IN CASE
$FITDEGS IS SPECIFIED >= 0). THE ELEMENTS

PSI (X,.X )
K 1 DIMEN

FORM A BASIS FOR THE MULTINOMIALS WIHICH 1S ORTHOGONAL WITH
RESPECT TO THE WEIGHTS AND OBSERVATION POINTS.
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THE EXTENT OF THE FIT CAN BE SPECIFIED IN ONE OF TWO WAYS.
IF THE PARAMETER $FITDEGS IS SET >= 0, THEN A COMPLETE BASIS
FOR THE MULTINOMIALS OF DEGREE = $FITDEG$ WILL BE USED. (AN
ERROR WILL BE FLAGGED [F THIS WILL REQUIRE MORE BASIS
MULTINOMIALS THAN THE NUMBER OF DATA POINTS WHICH WERE
GIVEN)
IF THE PARAMETER $FITDEGS IS < 0, THEN $NFPOLS$ WILL BE
TAKEN AS THE COUNT OF THE NUMBER OF BASIS MULTINOMIALS TO BE
USED FOR A PARTIAL-DEGREE FIT. (AN ERROR WILL BE FLAGGED IF
$NFPOLS$ < 0.) ‘

NOTE, THE CALL TO $CONSTR$ WITH $NEWFIT$ = .TRUE. CAN BE MADE
WITH THE PARAMETERS SET FOR THE MAXIMUM FIT DESIRED.
SEVERAL SUBSEQUENT CALLS TO $CONSTR$ WITH $NEWFIT$ = FALSE.
CAN BE MADE WITH SMALLER VALUES OF $FITDEG$ OR $NFPOLS$ AS
MAY BE DESIRED TO OBTAIN A PARTIAL FIT.

VARIABLES

$DIMENS — {INTEGER) — (PASSED)
THE NUMBER OF VARIABLES.

$FITDEGS - (INTEGER) — (PASSED/RETURNED)
IGNORED IF < 0.
IF $DEGREE$ >= 0 THEN ¢DEGREE$ IS CHECKED AGAINST $NFPTS$.
THE VALUE OF $DEGREES$ WILL BE REDUCED IF THERE IS A BASIS OF
MULTINOMIALS, ALL OF DEGREE <= $DEGREE$, OF CARDINALITY
$NFPTS$. SEE $ERROR$ BELOW.

$NFPOLS$ - (INTEGER) — {PASSED/RETURNED)
IGNORED IF $DEGREE$ >= 0.
IF $DEGREE$ < 0 THEN THE VALUE OF $NFPOLS$ WILL BE TAKEN AS
THE SIZE OF THE BASIS OF MULTINOMIALS TO BE USED IN THE FIT.
$NFPOLS$ MUST SATISFY $NFPOLS$ < $NFPTS$ AND $NFPOLSS >= 1
SEE $ERROR$ BELOW.

$NFPTS$ — (INTEGER) - (PASSED)
THE NUMBER OF DATA POINTS TO BE USED IN THE FIT.
$NFPTS$ MUST BE >= 1. SEE $ERROR$ BELOW.

$FITCDS$ ~ (DOUBLE-PRECISION, 2-SUBSCRIPT ARRAY) — (PASSED)
$FITCDS$(P.K) IS THE VALUE OF THE K-TH VARIABLE AT THE P-TH
DATA POINT.

$NCROWS$ — (INTEGER) - (PASSED)
THE ROW DIMENSION DECLARED FOR $FITCDS$ IN THE CALLING
PROGRAM.

$FITVLS$ — (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) — (PASSED)
$FITVLS$(P) IS THE OBSERVED FUNCTION VALUE OF THE P-TH DATA
POINT.

$WTS$ — (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) — (PASSED)
$WTS$(P) IS THE WEIGHT ATTACHED TO THE P-TH DATA POINT.

$RESIDS$ — (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) — (RETURNED)
$RESIDS$(P) IS THE DIFFERENCE BETWEEN THE FITTED FUNCTION AT
POINT P AND $FITVLSS$(P).

$NEWFITS - (LOGICAL) - (PASSED) A
A LOGICAL FLAG. IF $NEWFIT$=TRUE., THEN THIS IS THE FIRST
FIT TO BE CARRIED OUT WITH THE DATA TO BE FOUND IN THE OTHER
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PARAMETERS TO $CONSTR$, AND SPACE FOR A FIT IS TO BE
ALLOCATED. IF $NEWFIT$=FALSE., THEN A FIT OF ANOTHER DEGREE
CAN BE CONSTRUCTED IN THE SPACE ALLOCATED ON A PREVIOUS CALL
WITH THE SAME DATA, AND CERTAIN INITIALIZATION STEPS ARE BY-
PASSED.

$ERRORS — (INTEGER) - (RETURNED)

0 [F $NPOLYSS$, $DIMENS, $DEGREES, $NPTS$ AND $IWKLENS$ ARE
VALID AND CONSISTENT WITH EACH OTIHER.

1 IF $DEGREE$ >= 0 BUT THERE IS AN INTERPOLATING MULTINOMIAL
OF SMALLER DEGREE OR IF $DEGREES$ < 0 AND $NPOLYS$ > $NPTS$.

2 IF $DEGREE$ < 0 AND $NPOLYS$ <= 0.

3 IF $NPTS$ < 1 AND/OR $DIMEN$ < 1.

4 IF $IWKLEN$ AND/OR $DWKLENS$ IS TOO SMALL. {SET $IWKLEN$ TO
THE VALUE RETURNED IN $IREQD$, AND SET $DWKLENS$ TO THE VALUE
RETURNED IN $IREQD$ TO RESOLVE THIS PROBLEM.)

5 $NEWFIT$ = FALSE. BUT $ONPLYS$ >== $NFPOLS$. $EVAL$ CAN BE
CALLED REQUESTING A SMALLER BASIS THAN WAS GENERATED.

6 ERROR RETURN FROM $INCDGS. THERE IS NO MORE ROOM IN THE
$FITDWK$ AND/OR $FITIWK$ ARRAYS TO INCLUDE MORE TERMS IN THE
FIT. (CAUSED BY A SUCCESSION OF CALLS TO $CONSTR$ WITH THE
FLAG $NEWFIT$ SET FALSE., REQUESTING EVER HIGHER ORDER
FITS, IN WHICH THE DIMENSIONING AND ORDER INFORMATION GIVEN
ON THE FIRST CALL ($NEWFIT$=.TRUE.) IS EXCEEDED.)

$FITIWKS — (INTEGER, 1-SUBSCRIPT ARRAY) - (RETURNED)
AN INTEGER WORK ARRAY OF LENGTH $FIWKLNS. UPON RETURN FROM
A CALL TO $CONSTR$ WITH $NEWFIT$ SET .TRUE., SOME DIMENSION
AND ARRAY-LENGTH INFORMATION WILL BE INSERTED. UPON RETURN
FROM A CALL TO $CONSTR$ WIiTH $NEWTIT$ SET FALSE., DETAILED
INDEXING INFORMATION (LOCATION OF COEFFICIENTS IN $FITDWKS,
ETC.) IS INSERTED.
$FITDWKS ~ (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY) - (RETURNED)
A DOUBLE PRECISION ARRAY OF LENGTH $FDWKLNS$. UPON RETURN
FROM $CONSTR$ WITH $NEWFIT$ SET FALSE., THE FULL DETALS
OF THE REQUESTED FIT (COEFFICIENTS, ETC.) WILL BE INSERTED.
$FIWKLN$ — (INTEGER) — (PASSED)
THE LENGTH OF THE ARRAY $FITIWKS.
$SFDWKLNS$ — (INTEGER) - (PASSED)
THE LENGTH OF THE ARRAY $FITDWKS.
$IREQDS — (INTEGER) — (PASSED)
THE LENGTH WHICH THE ARRAY $FITIWK$ REALLY NEEDS TO BE.
$DREQDS$ — (INTEGER) — (PASSED)
THE LENGTH WHICH THE ARRAY $FITDWK$ REALLY NEEDS TO BE.

NOTE, THE 10 AND 70 LOOPS {LE. THE LOOPS FOR SCALING THE
RESIDUALS) DEPEND ON THE SCALING SCHEME USED. THE RESIDUAL
SCALING MUST BE CONSISTENT WITH THAT DEFINED BY $SCALPMS$,
$SCALDNS$, AND $SCALUPS.

$CONSTR$ CALLS $ALLOTS, $RESTRTS$, $INCDG$, AND $§GNRTP$

DATE LAST MODIFIED

— e —
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MARCH 9, 1984
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DIMP1 = DIMEN + 1

IF ( NEWFIT ) GO TO 20
OLDEG = FITIWK(1)
ONPLYS = FITIWK(2)
OPSWID = FITIWK(3)
OLALFL = FITIWK(4)
SCALE = FITDWK(DIMP1)
SCALE = SCALE * SCALE

IF ( NFPOLS .GT. ONPLYS ) GO TO 10
ERROR = 5§
RETURN

10 CONTINUE
20 CONTINUE

CALL ALLOT(FITDEG NFPOLS,NFPTS,DIMEN,FITIWK FIWKLN,IREQD,DREGQD,
+ ERROR)
IF ( ERROR .GE. 2 ) RETURN

IF ( FDWKLN .GE. DREQD ) GO TO 30
ERROR = 14
RETURN

30 CONTINUE

PSIWID = FITIWK(3)

ALFL = FITIWK(4}

INDSTT = 1

NEWSTT = 4 * NFPOLS + INDSTT
MAXSTT = 1

ALFSTT = MAXSTT + DIMP1
CSTT = ALFSTT + ALFL

SSQSTT = CSTT + NFPOLS
PSISTT = SSQSTT + NFPOLS

IF ( NEWFIT ) GO TO 50

DO 40 P = 1,NFPTS
RESIDS(P) = RESIDS(P) / SCALE

40 CONTINUE

CALL RESTRT(PSIWID,FITDWK, DREQD,ONPLYS,0PSWID,0LALFL,CSTT,
+ SSQSTT,PSISTT NFPTS,DIMEN)
CALL INCDG(FITDEG,FITDWK(ALFSTT) FITDWK(PSISTT) FITIWK(INDSTT),
FITIWK(NEWSTT),FITDWK(SSQSTT),FITCDS,
NFPOLS, DIMEN,NFPTS,FITVLS RESIDS,
FITDWK(CSTT),PSIWID,WTS,ALFL,ONPLYS,OLDEG ERROR)
GO TO 60

++ 4+

80 CONTINUE

CALL GNRTP(FITDEG,FITDWK(ALFSTT),

35
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FITDWK(PSISTT) FITIWK(INDSTT),
FITIWK(NEWSTT),FITDWK(SSQSTT),
FITCDS,NFPOLS DIMEN,NFPTS FITVLS,RESIDS,
FITDWK(CSTT),PSIWID, WTS,ALFL DIMP1,FITDWK(MAXSTT))

SCALE = FITDWK(DIMEN + 1)

SCALE = SCALE * SCALE

+ 4+ +

60 CONTINUE

DO 70 P = 1,NFPTS
RESIDS(P) = RESIDS(P) * SCALE
70 CONTINUE
RETURN
END

SUBROUTINE EVAL(DIMEN, EVLDEG,NEPOLS,NEPTS,EVLCDS,EVLVLS,
+ ERROR FITIWK,FITDWK FIWKLN FDWKLN EVLDWK EDWKLN)

INTEGER FIWKLN,FDWKLN NEPOLS NEPTS,DIMEN, ERROR, MAXSTT ALFSTT,CSTT
INTEGER GBASIZ,ALFL,DIMP1,EVLDEG,TOP,BOT,CURDEG EDWKLN

INTEGER FITIWK(FIWKLN)

DOUBLE PRECISION FITDWK(FDWKLN),EVLDWK(EDWKLN},EVLCDS(NEPTS DIMEN)
DOUBLE PRECISION EVLVLS(NEPTS)

*EIEAEERETEIESD

PURPOSE

THIS SUBROUTINE EVALUATES THE LEAST-SQUARES MULTINOMIAL FIT

WHICH HAS BEEN PREVIOUSLY PRODUCED BY $CONSTR$. EITHER THE FULL

MULTINOMIAL AS PRODUCED MAY BE EVALUATED, OR ONLY AN INITIAL

SEGMENT THEREOF. AS IN THE CASE WITH $CONSTRS, IT IS POSSIBLE

(1} TO SPECIFY MULTINOMIALS OF A FULL GIVEN DEGREE, OR

(2) TO SPECIFY THE NUMBER OF ORTHOGONAL BASIS ELEMENTS TO
ACHIEVE A PARTIAL-DEGREE FIT.

IN CASE (1), THE DESIRED DEGREE IS GIVEN AS THE VALUE OF
$EVLDEGS (WHICH MUST BE NONNEGATIVE AND NOT GREATER THAN THE
VALUE USED FOR $FITDEGS IN $CONSTR$), AND THE PARAMETER $NEPOLS$
WILL BE SET BY $EVAL$ TO SPECIFY THE NUMBER OF BASIS ELEMENTS
REQUIRED. [F $EVLDEGS < $FITDEGS$ IS GIVEN, THEN ONLY THE
INITIAL PORTION OF THE FITTING MULTINOMIAL (OF DEGREE $EVLDEG$)
WILL BE EVALUATED.

IN CASE (2), $EVLDEG$ IS TO BE SET NEGATIVE, IN WHICH CASE THE
VALUE OF $NEPOLS$ (WHICH MUST BE POSITIVE AND NOT GREATER THAN
THE VALUE USED FOR $NFPOLS$ IN $CONSTR$) WILL BE TAKEN AS
DEFINING THE INITIAL PORTION OF THE FITTING MULTINOMIAL TO BE
EVALUATED.

IF $NEPOLS$ = $NFPOLS$ (WITH $EVLDEG$ < 0), OR $EVLDEGS =
$FITDEGS (WITH $EVLDEGS > 0), THEN THE FULL MULTINOMIAL
GENERATED BY $CONSTR$ WILL BE EVALUATED.
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THE EVALUATION WILL TAKE PLACE FOR EACH OF THE POINTS
(COLLECTION OF VARIABLE VALUES) GIVEN AS A ROW OF THE MATRIX
$EVLCDSS. THE VALUES PRODUCED FROM THE FULL, OR PARTIAL,
MULTINOMIAL WILL BE PLACED IN THE ARRAY $EVLVLSS$.

VARIABLES

$DIMEN$ — (INTEGER) — (PASSED)
THE NUMBER OF VARIABLES.

$EVLDEGS — (INTEGER) - (PASSED)
IF $EVLDEGS$ < 0, THEN TilIS PARAMETER WILL BE IGNORED.
IF $EVLDEG$ >= 0, THEN THE VALUE OF $EVLDEG$ MUST SATISFY
$EVLDEG$ <= (THE DEGREE OF THE APPROXIMATING MULTINOMIAL
GENERATED IN $§CONSTR$). IN THIS CASE $EVLDEG$ WILL SPECIFY
THE DEGREE OF THE INITIAL PORTION OF THE FITTING MULTINOMIAL
TO BE EVALUATED.

$NEPOLSS$ ~ (INTEGER) — (PASSED/RETURNED)
IF $EVLDEG$ >= 0, THEN THIS PARAMETER WILL BE IGNORED.
IF $EVLDEG$ < 0, THEN THE PARTIAL MULTINOMIAL INVOLVING THE
FIRST $NEPOLS$ ORTHOGONAL BASIS FUNCTIONS WILL BE EVALUATED
AT THE POINTS GIVEN BY $EVLCDSS. THE RESULTING VALUES WILL
BE STORED IN $EVLVLSS.
THE VALUE OF $NEPOLS$ MUST BE >=1 AND <= (THE SIZE OF THE
BASIS GENERATED IN $CONSTRS$), WHICH WAS RETURNED AS THE
VALUE OF $NFPOLSS.
$NEPOLS$ WILL BE CHANGED IF $EVLDEGS > 0 TO GIVE THE SIZE OF
BASIS REQUIRED FOR THE MULTINOMIAL OF DEGREE $EVLDEGS.

$NEPTS$ ~ (INTEGER) - (PASSED)
THE NUMBER OF EVALUATION POINTS.

$EVLCDS$ — (INTEGER ) - (PASSED)
$EVLCDS$(P K) IS THE VALUE OF THE K-TH VARIABLE AT THE P-TH
EVALUATION POINT.

$EVLVLS$ — (INTEGER) ~ (RETURNED)
$EVLVLS$(P} IS THE VALUE OF THE EVALUATED MULTINOMIAL AT THE
P-TH EVALUATION POINT.

$ERRORS$ — (INTEGER) — (RETURNED)

0. IF NO ERRORS
ol s IF $NEPOLS$ > $NPOLYS$ OR $NEPOLSS < 1
“2 s IF $NEPTS$ < 1 OR $DIMENS$ < 1t

$NEPOLSS ... IF $NEPOLS$ > $EDWKLN$
$FITIWKS ~ (INTEGER, 1-SUBSCRIPT ARRAY) - (PASSED)
THE INTEGER WORK ARRAY OF LENGTH $FIWKLN$ THAT WAS USED IN
$CONSTRS.
$FITDWKS — (DOUBLE-PRECISION, 2-SUBSCRIPT ARRAY) — (PASSED)
THE DOUBLE PRECISION WORK ARRAY OF LENGTH $FDWKLN$ THAT WAS
USED IN $§CONSTRS.
$FIWKLNS — (INTEGER) — (PASSED)
THE LENGTH OF $FITIWKS.
$FDWKLNS — (INTEGER) — (PASSED)
THE LENGTH OF $FITDWKS.
$EVLDWKS$ — (DOUBLE-PRECISION, 1-SUBSCRIPT ARRAY ) - (RETURNED)
A WORK ARRAY OF LENGTH $NEPOLS$ (OR LONGER).
$EDWKLN$ ~ (INTEGER) — (PASSED)

3r
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THE LENGTH OF $EVLDWKS.
THE SUBROUTINE $EVALP$ IS CALLED TO DO THE ACTUAL EVALUATION.

DATE LAST MODIFIED

FEBRUARY 2, 1984

SERERERRRETERNES

aoaoaoaaaoaaa

ERROR = 0
GBASIZ = FITIWK(2)
IF ( EVLDEG .LT.0) GO TO 20
TOP =1
BOT =1
DO 10 CURDEG = 1 EVLDEG
TOP = TOP * (DIMEN + CURDEG)
10 BOT = BOT * CURDEG
NEPOLS = TOP / BOT
IF ( EVLDEG .EQ. 0 ) NEPOLS = 1
20 IF ( NEPOLS .LE. GBASIZ .AND. NEPOLS.GE.1 ) GO TO 30
ERROR = -1
RETURN :
30 IF ( NEPTS .GE. 1 .AND. DIMEN .GE. 1 ) GO TO 40
ERROR = -2
RETURN
40 IF ( NEPOLS .LE. EDWKLN } GO TO 50
ERROR == NEPOLS
RETURN
50 DIMP1 = DIMEN + 1
ALFL = FITIWK(4)
MAXSTT = 1
ALFSTT = DIMPI + MAXSTT
CSTT = ALFSTT + ALFL
g SRR ELELEILERN S

C ALL OF THE REAL WORK IS DONE INSIDE $EVALP$.

C LI 222 22 2222 21 )
C
CALL EVALP(EVLCDS FITDWK(CSTT},NEPTS,DIMEN,NEPOLS FITDWK(ALFSTT),
+ FITIWK EVLDWK EVLVLS,ALFL FITDWK(MAXSTT),DIMP1)
RETURN
END

SUBROUTINE EVALP{COORD,C,NEPTS DIMEN,NPOLYS,ALPHA, INDEXS,
+ PSIF,ALFL,MAXABS,DIMP1)
c

INTEGER DIMEN,NEPTS,NPOLYS, ALFL DIMP1

INTEGER JM1,JPRIME,M,P K 1,J INDEX

INTEGER INDEXS(4,NPOLYS)

DOUBLE PRECISION ALPHA(ALFL),COORD(NEPTS,DIMEN),PSI(NPOLYS)
DOUBLE PRECISION C(NPOLYS),F(NEPTS),MAXABS(DIMP1)

DOUBLE PRECISION RUNTOT,RNTOT!
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SRS RETREEE

PURPOSE

THIS SUBROUTINE PERFORMS THE MAIN WORK OF EVALUATING THE
FITTING MULTINOMIAL (OR THE INITIAL PORTION OF IT WHICH

IS REQUESTED BY THE SETTING OF $NEPOLS$, $EVLDEG$ IN THE
CALL TO SUBROUTINE $EVALS.

THIS SUBROUTINE IS CALLED BY $EVALS. IT IS NOT CALLED
DIRECTLY BY THE USER.

SUBROUTINES $SCALDN$ AND $SCALUP$ ARE CALLED TO SCALE
AND TO UNSCALE VALUES.

DATE LAST MODIFIED

FEBRUARY 2, 1984

ISR SERIESERERS

seFe RSN TIESIES

SCALE DOWN THE INDEPENDENT CO-ORDINATES.

eSS TR ST ERRIE

[eXoRoNoNoNoNoResNoNoNoNoRoNoNoNoNoNoNoRe NoNe No Xo!

DO 10K = 1,DIMEN
0  CALL SCALDN(COORD(1,K),NEPTS MAXABS(K))

XSRS IRERESE

USE THE BASIS FUNCTION COEFFICIENTS $C$ AND RECURRENCE
COEFFICIENTS $ALPHA$ TO EVALUATE THE FITTED MULTINOMIAL
AT THE EVALUATION CO-ORDINATES $COORDS$.

*EREIERNB NIRRT

[eNoNeNeNeNeNe )

PSI(1) = 1.0D+00
DO 40 P = 1,NEPTS
RNTOTI = C(1)
IF { NPOLYS EQ. 1) GO TO 40
DO 30 J = 2,NPOLYS
== INDEXS(2,J)
JPRIME = INDEXS(1,J)
RUNTOT = COORD(P K) * PSI(JPRIME)
1= INDEXS(3,J)
Ml =1J-1
DO 20 M = [IM1
INDEX = INDEXS(4,J) + M- 1
RUNTOT = RUNTOT - PSI(M) * ALPHA(INDEX)
PSI(J) = RUNTOT
RNTOT!1 = RNTOT! + C(J) * PSI(J)
F(P) = RNTOTI1

CEREEEEEIERERES

SCALE UP THE DEPENDENT COORDINATES.

SESERESTLER RS SR

0000038 3



40

50

C

[eNeNeRoNoNoNoRoNoRoNoNoNoNoNoRoNoNoNoNoNoNe NoNoNo!

10

aaoaoaa

Bartels, Jezioranski

CALL SCALUP{F,NEPTS,MAXABS(DIMP1))
DO 50 K = 1,DIMEN

CALL SCALUP(COORD(1,K),NEPTS MAXABS(K))
RETURN
END
SUBROUTINE GNRTP(DEGREE,ALPHA PSLINDEXS,
+ NEWKJ,SUMSQS,COORD,NPOLYS,
+ DIMEN,NPTS,F,Z,C,PSIWID,WEIGHT,
+ ALFL,DIMP1, MAXABS)

INTEGER DEGREE DIMEN,NPOLYS,NPTS K,PSIWID,ALFL,P,STTDEG,ONPLYS
INTEGER ERROR,DIMP1

INTEGER INDEXS(4,NPOLYS),NEWK J(DIMEN, DEGREE)

DOUBLE PRECISION PSI(NPTS,PSIWID),ALPHA(ALFL),F(NPTS)

DOUBLE PRECISION COORD(NPTS,DIMEN),MAXABS(DIMP1), WEIGHT(NPTS)
DOUBLE PRECISION Z(NPTS},SUMSQS(NPOLYS),C(NPOLYS)

DOUBLE PRECISION RUNTOT,RNTOTI

LA EREL L] )

PURPOSE

THE MULTINOMIAL FIT 1S GENERATED INCREMENTALLY, A BASIS ELEMENT
AT A TIME. THIS SUBROUTINE STARTS THE PROCESS OFF BY SETTING UP
THE FIRST BASIS ELEMENT, SCALING THE DATA, FINDING THE FIRST
COEFFICIENT, AND INITIALIZING THE WORK ARRAY Z. $GNRTP$ THEN
CALLS $INCDG$ IF MORE THAN ONE BASIS ELEMENT IS REQUIRED.

THIS SUBROUTINE IS CALLED BY $CONSTRS. IT IS NOT CALLED BY THE
USER. .

THIS SUBROUTINE CALLS $SCALPM$, $SCALDNS$, AND $INCDGS$.

DATE LAST MODIFIED

FEBRUARY 2, 1984

SEXEIEIEIEISAES

SENENERERERRRER

SET UP THE SCALING.

BEFEEEEEIELSNES

DO 10 K = 1,DIMEN
CALL SCALPM(COORD(1 K),NPTS, MAXABS(K))
CALL SCALDN(COORD(1 K),NPTS,MAXABS(K))
CALL SCALPM(F,NPTS MAXABS(DIMP1))
CALL SCALDN(F ,NPTS, MAXABS(DIMP1))

E2 i LRERER 2L L2 8]
$SUMSQS$(1) = <1,1>
C =<F1>/<1,1>
1
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SRR EIERERES

RUNTOT = 0.0D+00
RNTOT1 = 0.0D+00
DO 20 P = 1,NPTS
PSI(P,1) = 1.0D+00
RNTOT! = RNTOT1 + WEIGHT(P)
RUNTOT = RUNTOT + F(P) * WEIGHT(P)
SUMSQS(1) = RNTOTI
C(1) = RUNTOT / RNTOTI1

SRsEEREREREE R

I=F-C

*eIBESES LRV EES

DO 30 P = 1,NPTS
Z(P) = F(P) - C(1)

IF ( NPOLYS .EQ. 1 ) RETURN
STTDEG = 1
ONPLYS = 1

CALL INCDG(DEGREE, ALPHA PSLINDEXS NEWKJ,SUMSQS,
+ CQOORD,NPOLYS,DIMEN,NPTS F,Z,C,PSIWID,
+ WEIGHT,ALFL,ONPLYS,STTDEG,ERROR)
RETURN
END

SUBROUTINE INCDG(DEGREE,ALPHA,PSLINDEXS, NEWKJ,
+ SUMSQS,COORD,NPOLYS,

+ DIMEN,NPTS F,Z,C PSIWID,WEIGHT,

+ ALFL,ONPLYS STTDEG,ERROR)

INTEGER JPRIME P,J,CURDEG KJ,KJP,L,JPM1,IM1

INTEGER M,START JINDEX, JPINDX,Q,J3,J1,]1MJ2, ERROR

INTEGER JOMJ1,J1M1,STARTA ONPLYS,0NPP1,STTDEG, INDEX1,INDEX2
INTEGER DEGREE,NPOLYS,NPTS,DIMEN,PSIWID ALFL

DOUBLE PRECISION ALPHA(ALFL),COORD(NPTS DIMEN) PSI{NPTS PSIWID)
DOUBLE PRECISION SUMSQS(NPOLYS),C(NPOLYS),F(NPTS), WEIGHT{NPTS}
DOUBLE PRECISION Z(NPTS)

INTEGER INDEXS(4,NPOLYS),NEWK J{DIMEN,DEGREE)

DOUBLE PRECISION RUNTOT,RNTOT1,RNTOT?2

CEIERFEFEXF LIS

PURPOSE

THE MULTINOMIAL FIT IS GENERATED INCREMENTALLY, A BASIS ELEMENT
AT A TIME. THIS SUBROUTINE CONTINUES THE PROCESS STARTED OFF BY
$GNRTPS$.

THIS SUBROUTINE IS CALLED BY $GNRTP$ AND NOT BY THE USER.
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DATE LAST MODIFIED

FEBRUARY 2, 1984

EEEEREXEXEXETRS

ERROR =0
I[F ( ONPLYS .GE. 1 .AND. STTDEG .GE. 1} GO TO 10
ERROR = 6
RETURN
IF ( INDEXS(2,ONPLYS) .EQ. DIMEN } GO TO 20
CURDEG = STTDEG
GO TO 30
CURDEG = STTDEG + 1

30 ONPP1 = ONPLYS +1

lo} aaoaoaa aaaaaa

a aoaaaan

DO 170 J = ONPP1,NPOLYS
JPRIME = INDEXS(1,J) .
JINDEX = J - (J - 1) / PSIWID * PSIWID
JPINDX = JPRIME - (JPRIME - 1) / PSIWID * PSIWID
KJ = INDEXS(2,J)
START = INDEXS(3,J)
M = START
STARTA = INDEXS(4.J) - START
IF ( CURDEG .EQ. 1) GO TO 100
KJP = INDEXS(2,JPRIME)
J1 = NEWKJ(KJ,CURDEG - 1)

TR EBLEEBEIRS

CALCULATE THOSE $ALPHAS$($1$,$M$) THAT CAN BE CALCULATED FROM
PREVIOUSLY CALCULATED ALPHAS.

BEXEIEREZENEF SR

IF (KJ LT.KIJP ) GO TO 50

CERRERAREERLERS

FIRST CALCULATE THOSE BETWEEN $JPP$ AND THE END OF 2 ROWS BACK.
CALCULATE $ALPHA${$J$ $JPP$)

ek ESORARS

INDEX1 = INDEXS(4,J)
ALPHA(INDEX1) = SUMSQS(JPRIME) / SUMSQS(START)

M = START + 1
3 = NEWKJ(1,CURDEG - 1) - 1
IF (M .GT. J3) GO TO 50

SEREEIFEIDR SR ED

$CURDEGS$ > 2 IF CONTROL HAS PASSED THE BRANCHES IN THE 3-RD
PREVIOUS AND 8-TH PREVIOUS STATEMENTS.

SR LB IBIERESD

JIMJ2 = J1 - NEWKJ(KJ,CURDEG - 2)

DO 40L =M, J3
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Q=JMI2+L

INDEX1 = STARTA + L

INDEX?2 == INDEXS(4,Q) - INDEXS(3,Q) + JPRIME

ALPHA(INDEX1) = ALPHA(INDEX2} * SUMSQS(JPRIME) /
+ SUMSQS(L)

b
[=]

SEREREIFSRSERER

CALCULATE $ALPHA$($J$,$M$) FOR $M$ BETWEEN THE 2
RANGES CALCULATED BEFORE USING

ALPHA (J,L)= <X * PSI PSI> / <PSI PSI>
K P L L L
J

ERESEREAEBBRREG

aaaoaaaacaaan

M=1J3+1
50 IF ( JPRIME EQ. J1 ) GO TO 100
IF (KJ EQ.1) GO TO 80
JIML = J1-1
DO 70 L = M,JiM1
RUNTOT = 0.0D+00
DO 60 P = 1,NPTS
INDEX1 =L - (L - 1) / PSIWID * PSIWID
RUNTOT = RUNTOT + COORD(P,KJ} * PSI(P,JPINDX) *
+ PSI(P,INDEX1) * WEIGHT(P)
INDEX1 = STARTA + L
ALPHA(INDEX1) = RUNTOT / SUMSQS(L}

[=.3
(=]

(=]

AL ER LSS SRR L] L

CALCULATE $ALPHA$($J$,$M$) FOR $M$ BETWEEN
SNEWKJ$($KJ$,$CURDEGS - 1) AND
$JP$ - 1.

SENEIERERERBRES

WwOQOQO0O 4

0 JOMI1 = NEWKJ(KJ,CURDEG) - J1
JPM1 = JPRIME - 1
DO 90 L = J1,JPM1
Q= JoMJ1 +L
INDEX1 = STARTA +L
INDEX2 = INDEXS{4,Q) - INDEXS(3,Q) + JPRIME

90 ALPHA{INDEX1) = ALPHA(INDEX2) * SUMSQS{JPRIME) /
+ SUMSQS(L)
M = JPRIME
c
C SRS RBFBEREUER
C  CALCULATE THE REMAINING $ALPHA$($$,$M$) FROM
c
C ALPHA(J,L)= <X *PSI ,PSI> / <PSI PSI>
c K P L L L ‘
C J
C (22 R L ER LRSS 2
c
100 JMi=1J-1

DO 120L = M,IM1

43
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RUNTOT = 0.0D+00
DO 110 P = 1,NPTS
INDEX1 = L - (L - 1) / PSIWID * PSIWID
RUNTOT = RUNTOT + COORD{P KJ) * PSI(P,JPINDX) *

+ PSI(P,INDEX1) * WEIGHT(P)

8

N eNeNoRoNoRoNoRoNeNoNeNoNo No Ne

30

140

INDEX1 = STARTA + L
ALPHA(INDEX1) = RUNTOT / SUMSQS(L)

BEIEHES AR RSE

NOW CALCULATE THE $PSI$(P,J), $SUMSQS$(J) AND $C${(J) USING

J-1
PSI =X *PSlI - SUM ALPHA(J, L} PsI
J K JP L=JPP

SUMSQS == <PSI PSI >
J J

C = <ZPSI>
3 J

CESERABEERRENES

RNTOT1 = 0.0D+00
RNTOT2 = 0.0D+00
DO 150 P = 1,NPTS
RUNTOT = COORD(P KJ} * PSI(P,JPINDX)
Ml =J-1
DO 140 L = START,JM1
INDEX1 = STARTA + L
INDEX2 =L - (L - 1} / PSIWID * PSIWID
RUNTOT = RUNTOT - ALPHA(INDEX1) * PSI{P,INDEX2)
PSI(P JINDEX) = RUNTOT
RNTOT1 = RNTOT1 + PSI(P,JINDEX) * PSI(P,JINDEX) *

+ WEIGHT(P)

150

acaaqaaaaq

160
170

RNTOT?2 = RNTOT? + Z(P) * PSI{P,JINDEX) * WEIGHT(P)
SUMSQS(J) = RNTOTI
C(J) = RNTOT2 / RNTOTI1

BEEBISEEERER SRR

CALCULATE THE NEW $Z$§($P$) AND THE NEW $SSRES$ USING

Z=12-C *PSI
J J

SESFRIRISEREIES

DO 160 P = 1,NPTS
Z{P) = Z(P) - C(J) * PSI(P,JINDEX)
IF ( KJ .EQ. DIMEN ) CURDEG = CURDEG + 1
RETURN
END

SUBROUTINE MOVE(OLDARR NEWARR,START,OLDWID,NEWIDT,COLENG,ERROR)

INTEGER START,OLDWID NEWIDT,COLENG,BIG,BIG1,LILN,BIGN,I,J
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INTEGER ERROR,JO,JN,OLDWPS,BIG1PS,BIGP1,K
DOUBLE PRECISION OLDARR(COLENG,OLDWID),NEWARR(COLENG,NEWIDT)

EEERERRREREEET Y

PURPOSE

MOVE COLUMNS 1 THROUGH $OLDWID$ OF $OLDARR$ INTO COLUMNS 1
THROUGH $NEWWID$ OF $NEWARR$ USING

($STARTS + 1) MOD $OLDWIDS
THROUGH

($START$ + 1) MOD $NEWID$
FOR

1=0
THROUGH

I=$OLDWID$ -1
THE MOVEMENT STARTS FROM THE LARGEST COLUM OF $NEWARR$ AND
PROCEEDS DOWNWARD TO THE SMALLEST (SO THAT $OLDARR$ AND $NEWARRS$
CAN BE THE SAME ARRAY).

DATE LAST MODIFIED

FEBRUARY 2, 1984

SRR EREEEERER

ERROR = 1
IF (OLDWID LT. 1 .OR. NEWIDT .LT. 1 .OR. NEWIDT .LT. OLDWID)
+ RETURN
ERROR = 0
BIG = START + OLDWID - 1
BIGN = BIG - {BIG - 1) / NEWIDT * NEWIDT
LILN = START - (START - 1) / NEWIDT * NEWIDT
IF ( LILN .GT. BIGN ) GO TO 20
OLDWPS = OLDWID + START
DO 10 [ = 1,0LDWID
J = OLDWPS - |
JO =J-(J-1)/ OLDWID * OLDWID
IN =1-{J-1)/ NEWIDT * NEWIDT
DO 10 K = 1,COLENG
NEWARR(K,JN) = OLDARR(K,JO)
RETURN

20 BIGl = NEWDDT-LILN +1

30

BIGIPS = BIG1 + START
DO 301 = 1,BIG1
J = BIGIPS - 1
JO =1J-(J- 1)/ OLDWID * OLDWID
JN = J-(J-1) / NEWIDT * NEWDT
DO 30 K = 1,COLENG
NEWARR(K,JN) = OLDARR(K,JO)
BIGP1 = BIG + 1
DO 401 = 1,BIGN
J =BIGP1-1
JO=1J-(J-1)/ OLDWID * OLDWID
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IN = J-(J-1) / NEWIDT * NEWIDT
DO 40 K = 1,COLENG
NEWARR(K,JN) = NEWARR(K,JO)
RETURN
END

SUBROUTINE RESTRT(PSIWID,DWORK,DREQD,ONPLYS,0PSWID,OLALFL,CSTT,
+ SSQSTT,PSISTT NPTS,DIMEN)

INTEGER DREQD,ONPLYS,OPSWID,OLALFL,CSTT
INTEGER OSSQST,OPSIST PSIWID,NPTS,ERROR, DIMEN
INTEGER 1,J,5SQSTT PSISTT,OCST,START,INDEX1,INDEX2
DOUBLE PRECISION DWORK(DREQD)

SESERERRRESEINS

PURPOSE

THIS SUBROUTINE REARRANGES THE WORK SPACE {WITH THE HELP
OF SUBROUTINE $MOVES$) IN THE EVENT THAT A FIT OF INCREASED
DEGREE IS TO BE MADE.

CALLED INTERNALLY BY $CONSTRS$, NOT BY THE USER.

DATE LAST MODIFIED

FEBRUARY 2, 1984

SESEEEBREEN SRS

OCST = 2 + DIMEN + OLALFL

0SSQST = OCST + ONPLYS

OPSIST = OSSQST + ONPLYS

START = ONPLYS - OPSWID

CALL MOVE(DWORK(OPSIST),DWORK(PSISTT),START,OPSWID,PSIWID,NPTS,
+ ERROR)

DO 5 J = 1,0NPLYS
1= ONPLYS-J
INDEX1 = SSQSTT + I
INDEX2 = OSSQST + 1
DWORK(INDEX1) = DWORK(INDEX2)
DO 10 J = 1,0NPLYS
I=ONPLYS- }
INDEX1 = CSTT + I
INDEX2 = OCST +1
DWORK(INDEX1) = DWORK(INDEX2)
RETURN
END

SUBROUTINE SCALPM(COORD,NPTS,MAXABS)
INTEGER NPTS,P

DOUBLE PRECISION MAXABS,A
DOUBLE PRECISION COORD(NPTS)
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ARSI AL F BRSNS

PURPOSE

——

FIND SCALING PARAMETER(S) FOR THE PROBLEM. IF THE SCALING SCHEME
1S CHANGED, ALL FOUR OF THE FOLLOWING WOULD HAVE TO BE CHANGED

1) $SCALPMS - FIND THE SCALING PARAMETERS

2) $SCALDNS$ - SCALE THE PROBLEM DATA

3) $SCALUPS$ - PERFORM THE INVERSE TRANSFORMATION TO $SCALDNS$
4) THE SCALING OF THE RESIDUALS IN $CONSTRS

THIS SUBROUTINE IS CALLED BY $GNRTPS. IT IS NOT CALLED BY THE
USER.

THE SCALING WHICH IT DEFINES MUST BE COORDINATED WITH THE
SCALING OF RESIDUALS WHICH IS CARRIED OUT TOWARD THE END OF THE
SUBROUTINE $CONSTRS. THE SCALING DEFINED BY THIS ROUTINE IS
APPLIEED IN THE SECTION OF $CONSTR$ JUST MENTIONED, AND BY THE
ROUTINES $SCALUP$ AND $SCALDNS.

DATE LAST MODIFIED

FEBRUARY 3, 1984

SEEENBESERERTRS

MAXABS = 0.0D+00
DO 5P = 1,NPTS
A = DABS(COORD(P))
IF { A .GT. MAXABS ) MAXABS == A
RETURN
END

SUBROUTINE SCALDN(COORD,NPTS MAXABS)

INTEGER NPTS,P
DOUBLE PRECISION MAXABS
DOUBLE PRECISION COORD(NPTS)

PR 222t d t 2]l

PURPOSE

CARRY OUT THE DATA-SCALING WHICH IS DEFINED BY THE SUBRCOUTINE
$SCALPMS.

THIS SUBROUTINE IS CALLED BY $GNRTP$ AND $EVALPS$. IT IS NOT
CALLED BY THE USER.

THE SCALING ‘WHICH THIS ROUTINE CARRIES OUT MUST BE CONSISTENT
WITH THE SCALING OF RESIDUALS WHICH IS CARRIED OUT TOWARD THE
END OF THE SUBROUTINE $CONSTRS.
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DATE LAST MODIFIED

— e

FEBRUARY 3, 1984

SESEXESEE LRI E

IF ( MAXABS EQ. 0.0D+00 } RETURN
DO 5 P = 1,NPTS
COORD(P) = COORD{P) / MAXABS
RETURN
END

SUBROUTINE SCALUP{COORD,NPTS,MAXABS)

INTEGER NPTS P
DOUBLE PRECISION MAXABS
DOUBLE PRECISION COORD(NPTS)

ESEREIBERTEERES

PURPOSE

REMOVE THE DATA-SCALING WHICH IS DEFINED BY THE SUBROUTINE
$SCALPMS$ AND APPLIED BY THE SUBROUTINE $§SCALDNS.

THIS SUBROUTINE IS CALLED BY $EVALP$. IT IS NOT CALLED BY THE
USER.

THE UNSCALING WHICH THIS ROUTINE CARRIES OUT MUST BE THE INVERSE
OF THE SCALING OF RESIDUALS WHICH IS CARRIED OUT TOWARD THE END
OF THE SUBROUTINE $CONSTRS.

DATE LAST MODIFIED

FEBRUARY 3, 1984

SERERENEBEIESED

IF ( MAXABS .EQ. 0.0D+00 ) RETURN
DO 5P = 1,NPTS
COORD(P) = COORD{P) * MAXABS
RETURN
END

SUBROUTINE TABLE(DEGREE,DIMEN,NPOLYS,INDEXS NEWKJ,ALFLP1)

INTEGER J,K,CURDEG,JPRIME,NWITHK,1,CURM1, FRUNLN, DIMM1,DIMM?2
INTEGER NPOLYS,DIMEN,DEGREE, ALFLP1,DIMP1
INTEGER INDEXS(4,NPOLYS),NEWK J(DIMEN,DEGREE)

BEXXSEIEEEREBES

PURPOSE
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TABULATE $JP$ AND $KJ$ FOR EACH $J$

VARIABLES

$ALFLP1$ — (INTEGER) — (PASSED)
THE LENGTH REQUIRED FOR ARRAY $ALPHAS$, PLUS ONE

$DEGREES$ ~ (INTEGER) — (PASSED)
THE DEGREE OF THE POLYNOMIAL TO BE FITTED

$DIMENS — (INTEGER) ~ {PASSED)
NUMBER OF INDEPENDENT VARIABLES

$INDEXS$ — (INTEGER, 2-SUBSCRIPT ARRAY) ~ (RETURNED)
$INDEXS$(1,8J8) IS $JP$, $INDEXS$(2$J8) IS $KIS,
$INDEXS$(3,$J8) IS THE FIRST NONZERO RECURRENCE COEFFICIENT
IN $ALPHA$ AND $INDEXS$(4,$J$) IS ITS LOCATION IN $ALPHAS.

$NEWKJ$ — (INTEGER, 2-SUBSCRIPT ARRAY) — (RETURNED)
$NEWK J${$K$ $D$} IS THE FIRST MONOMIAL OF DEGREE $D$ HAVING
$KJ$=$KS$.

$NPOLYS$ - (INTEGER) — (PASSED)
NUMBER OF MONOMIALS OF DEGREE <= $ORDER$ IN $DIMEN$
INDEPENDENT VARIABLES.

THIS SUBPROGRAM CAN BE CODED (EXCLUDING THE PART FOR CALCULATING
$INDEXS$(3,$J%) AND $INDEXS$(4,$J%)) MENTALLY MORE EFFICIENTLY
BUT COMPUTATIONALLY LESS EFFICIENTLY AS

IJ=2
DO 5 K = 1,DIMEN
NEWKJ(K,}) =K + 1

INDEXS(1,J) =1
INDEXS(2,J) =K
J=J+1

5 CONTINUE

DO 10 CURDEG = 2,DEGREE
DO 10 K = 1,DIMEN
JPRIME = NEWKJ(K,CURDEG - 1)
NEWK J(K,CURDEG) = J
NWITHK = COMB{DIMEN + CURDEG - K - 1,CURDEG - 1)
DO 10 | = 1,NWITHK
INDEXS{1,J) = JPRIME
INDEXS(2,J) = K
JPRIME = JPRIME + 1
J=J+1
10 CONTINUE

WHERE COMB(NK) IS N-FACTORIAL / ((N-K}FACTORIAL * K-FACTORIAL)
HERE WE MAKE USE OF THE RECURRENCE RELATIONS

COMB(DIMEN+CURDEG-2,CURDEG-1})
(DIMEN+CURDEG-2)

(CURDEG-1}* COMB(DIMEN+CURDEG-3,CURDEG-2)
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AND
COMB(DIMEN+CURDEG-K-1,CURDEG-1)

(DIMEN-K+1)

(DIMEN+CURDEG-K)*COMB(DIMEN+CURDEG-K,CURDEG-1)

DATE LAST MODIFIED

——— a———

FEBRUARY 3, 1984

A2 2 id bl 1L g

ALFLP1 =1

(AL 22 LR 22 22 L)

SET $INDEXS${4,1) TO 1 SO THAT $ALFL$-$INDEXS$(4,1)+1 IS THE
NUMBER OF COLUMNS REQUIRED FOR $PSI$ FOR $NPOLYS$=1 ($ALFL$
IS DEFINED IN THE MAINLINE TO BE $ALFLP1$-1 IF $ALFLP1$ > 1

AND $ALFLP1$ OTHERWISE.

SESESESRSEE DS SN

INDEXS(4,1) = 1

IF ( NPOLYS EQ. 1} RETURN
I=2
DO 10 K = 1,DIMEN
NEWKJ(K,1) =K + 1
INDEXS(1,J) = 1
INDEXS{2,J) = K
INDEXS(3,J) = 1
INDEXS(4,J) = ALFLP1
ALFLP1 = ALFLP1 + J- 1
IF ( JEQNPOLYS ) RETURN
I=J+1
IF ( DEGREE EQ. 1 ) RETURN
FRUNLN = 1
DIMM1 = DIMEN - 1
DIMM2 = DIMEN - 2
DIMP1 = DIMEN + 1
DO 70 CURDEG = 2,DEGREE
CURMI == CURDEG - 1
FRUNLN = FRUNLN * (DIMM2 + CURDEG) / CURM1
NWITHK = FRUNLN
K=1
JPRIME = NEWKJ(K,CURM1}
NEWKJ(K,CURDEG) = J
IF { KEQ.DIMEN ) GO TO 60
DO 50 [ = 1,NWITHK
INDEXS(1,J) = JPRIME
INDEXS(2,J) = K
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50

60

70

Multinomial Least Squares

SR eRRR RS RERS

CALCULATE $INDEXS$(3,$J$), $INDEXS$(4,4%)

PR R4 2 £ 1 £ 2L

IF ( K LT. INDEXS(2,JPRIME) ) GO TO 30
INDEXS(3,J) = INDEXS(1,JPRIME)
GO TO 40
INDEXS(3,J) = NEWKJ(1,CURDEG - 1)
INDEXS(4,]) = ALFLP1
ALFLP1 = ALFLPI + I - INDEXS(3,J)
IF ( J .EQ. NPOLYS ) RETURN

JPRIME = JPRIME + 1
Je== J 41
K=K+1
NWITHK = NWITHK * (DIMP1 - K) / (DIMEN + CURDEG - K)
GO TO 20
INDEXS(1,J) = JPRIME
INDEXS(2,J) = DIMEN
INDEXS(3,J) = INDEXS(1,JPRIME)
INDEXS(4,J) = ALFLP1
ALFLP1 = ALFLP1 + J - INDEXS(3,J)
IF ( J .[EQ. NPOLYS ) RETURN
Je=J+1
RETURN
END

51



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

