EPARTMENT

INIVERSITY OF WATERS &
UNIVERSITY OF WATERLOO &

ENT

EPARTMENT

EPAR

QHEUIER SCENCE R

SC

OMPUTER SCIENCE D

Distributed Ranking

Ephraim Korach
Doron Rotem
Nicola Santoro

Technical Report
CS-83-22

July, 1983

DISTRIBUTED RANKING

Ephraim Korach
Doron Rotem

Nicola Santoro

Technical Report CS-83-22

ABSTRACT

Ranking refers to the process of determining the rank of n uniquely num-
bered processors loosely coupled in an asynchronous network where no central
controller exists and the number of processors is not known a priori. We
present efficient algorithms for the ranking process: these algorithms are fully
distributed and, in order to be executed, require only local topological
knowledge at each processor. The message complexity of the algorithms is dis-
cussed both in the worst and average case.

Index Terms
Distributed algorithms, communication complexity, ranking, graph theory.

This work was supported in part by the Natural Sciences and Engineering Research Couneil of Canada.
A preliminary version of this paper has been presented at the 13th SE Conference on Combinatories,
Graph Theory and Computing, 1982. E. Korach is with the IBM Research Center, Haifa, Israel. D.
Rotem is with the Department of Computer Science, University of Waterloo, Waterloo, Canada. N.
Santoro is with the School of Computer Science, Carleton University, Ottawa, Cenada.

1. INTRODUCTION

Consider a network of n loosely-coupled processors which work asynchro-
nously and communicate by exchanging messages with their neighbours in the
network. All processors have the same program and differ only by having a dis-
tinct value (known only to'the owner) stored in their local (non-shared) memory.
There is no central controller; no processor has a priori knowledge of the
mumber of processors in the network; and each processor is only aware of its
neighbours., Processing time ‘is assumed to be negligible when compared to

transmission and quelding detays.

‘Recently, great attention has been given to the problem of determining, in
such an environment, ithe smallest or the largest value in the network (known as
election' or 'extrema-finding’ ;problem). The goal is to obtain an efficient solu-
tion algorithm, wheretthe efficiency is measured in terms of number of message
exchanges between neighbouring processors and/or of time units needed to
complete the execution of the algorithm. Solution algorithms have been
presented for the case when the network is (known to the processors to be) a
tree [2,11], a unidirectional circle [6,18,19], a bidirectional circle
{1.8,5,7,12,15,17,23]. a complete graph [13], and for the case when nothing is
known to the processors about the network topology (the 'arbitrary graph' case)
[@]. The related problem of selecting the k-th smallest or largest value has also
been investigated, and soluticon algorithms have been developed for bidirectional
cireles [15], trees and:meshes [B], and fully connected networks [20,21,25,26]; in
the latter results more than one value is allowed to be stored at any one proces-
sor.

In this paper, we investigate the related problem of determining the rank of
ell values in the network, called the ranking problem. Ranking, which can be

thought of as the distfibuted version of sorting, is tmportant in situations where

-8-

the control token is assigned sequentially to the processors according o the
rank of some associated value (e.g., amount of available rescurces, amount of
locally originated requests, ete.) [16,17]; furthermore, any ranking algorithm

can be obviously used to solve the selection problem.

The paper is organized as follows. In the next section the framework for
which the results are established is formally described. A ranking algorithimns
for trees is presented in section 3, and its correctness is proved. In section 4,
the worst and average case complexity of the proposed algorithm is analyzed
and, in section 5, it is shown how this algorithm can be efficiently employed for
ranking in the case where the processors have no apriori knowledge of the net-
work topology. Finally, some extensions and open problems are briefly .dis~

cussed in section 6.

2. THE FRAMEWORK

The network under éonsideration is a couple (G,) where G= (N, A) is a
connected undirected graph with no self-loops or multiple edges, and
po$1R2 LN » N is a bijection called ranking function. Every node z € N
represents a processor in the network and has associated with it a distinct
value; for simplicity, we shall denote by i the node whose corresponding proces-
sor has value i. Fach edge (z,y) € A represents a direct bidirectional link
between nodes r and y. The ranking function u defines a total ordering >, on

the values in the network of which all processors are aware.

If {z,y) € A, z and y are said to be neighbours; each processor i maintains
a list [; of its neighbours and can send a message ‘M to a subset S C/; of its
neighbours by the " send M fo S directive. Each processor has a queue in
which incoming messages are stored and processed in first come first serve
order; moreover, the communication links (represented by the edges) preserve

the order of the messages sent. Local processing time is assumed to be

4

negligible when compared to transmission and queueing delays; that is, opera-
tions are performed at a processor instantaneously. In addition to the standard

graph-theoretical terminology, we use the following notation:

dg{z. y) distance (i.e., length of shortest path) between z and y in the
graph G, and for a tree T, 7T, (y) is the largest subtree containing ¥ in the
forest obtained by removing from 7T the node z and its incident edges (see

Fig. 1).

3. RANKING IN TREE NETWORKS

In this section, we consider the case where & is a tree and all processors
are aware of it, and present an algorithm which ranks the values exchanging
.5n% + 0(n) messages in the worst case and n1° + 0{n) messages in the average
case. One or several processors can independently start the execution of the
algorithm upon reception of a locally originated request. The algorithm is
expressed in terms of what operation a processor i € N must perform when it is
in a given state upon certain conditions; e.g., reception of a particular type of
message. Initially, all processors are in state ‘available’ Each processor i has
available to it a table u; where the entry v;{y), ¥ € ;, is used to store the values
received from y; in addition, there is a state variable ¥; used to store the
processor's own value. By convention, 4;(y) = 8 means that no (unranked) value
is known from 7;(y), and v;(y)} = = means that all values in T;(y) have already

been i‘anked.

Algorithm 3.1 is composed of two phases: Initialization and Ranking. In the
Initialization phase, all processers are activated and the leaf processors start a
process of determining the smallest known value; at the end of the phase, one
processor (say, 7) enters a special state called ranking’, and every processor y
knows the smallest value in each subtree Ty(2) were z € L, except for the tree

T,(r) (ie, the subtree which contains the 'ranking’ processor 7). In the

_5-

Ranking phase, the values are sequentially ranked; this process is started by r.
Upon completion, the execution of the algorithm terminates at all nodes. A for-

mal description of Algorithm 3.1 is contained in the Appendix.

In order to prove the correctness of the algorithm, let us analyze each

phase in detail.

Initialization

The Initialization phase is composed of three stages: activation, set-up and
resolution. One or several processors may independently start the activation
stage (and, thus, the execution of the algorithm) by becoming ‘active’ and send-
ing an A{activation) message to their neighbours. When an ‘available’ processor
receives an A message, it becomes ‘ctive’ and activates its neighbours. It is
not difficult to see that, within finite time from the start of this stage, all proces-

sors will have been activated.

The set-up stage is started by the leaf processors (i.e., processors with only
one neighbour) as soon as they become ‘active” since all processors eventually
become ‘getive’, all leaf processors will stert the set-up stage, nlthough oot
simultaneously. To start this stage, an ‘active’leaf processor 4 will 1) send &
S(set-up) message containing its value i to its (only) neighbour, say z; 2) set
vi(z):=6 ; and 3) enter state processing’ - An ‘active’ non-leaf processor i,
upon reception of an S message containing value j from neighbour z € L;, will
set v;{z) 1= j; when 1 has received an S message from all neighbours but one,
say z, it will 1} send a S message containing the smallest known value to 2,)
set 2;{z) ;= 4, and 3) enter state 'processing’. When a 'processing ' node receives

an S message, it becomes ‘safurafed’and starts the resolution stage.

The activation and set-up stages constitute a mechanism similar to the one

employed in other distributed algorithms (e.g. [4,14,22]); the S messages are

-6-

‘filtered’ through the network and collected at the ‘saturated’ processors. Fol-
lowing, is a well-known property of this mechanism [4,14] expressed here in

terms of the processor states used in this paper.

Property 3.1. One or two neighbouring processors become saturafed’. =

In the case of two 'saturated’ processors, since they are neighbours, each
must have entered such a state upon reception of an § message sent by the
other. The resolution stage is started and performed only by these two nodes.
At the end of this stage, which does not involve the transmission of any message,
one of the ‘saturated’ nodes, say j, ignores the received message and becomes
‘pracessing”, the other, say ¢ sels v;(j) to the received value, and enters the
state ‘ranking' This processor starts the execution of the next phase of the

algorithm that is

Property 3.2. Exactly one processor starts the Ranking phase. =

Summarizing, all leaf processors send their value toward the rest of the tree and
become ‘processing’; each non-leaf processor collects these values from all
neighbours but one, sends the smallest known value to such a neighbour, and
becomes ‘processing’ That is, within finite time from the start of the algorithm,
all processors must have become processing’. Since an 'S’ message only car-
ries the smallest value known to the sender, we have

Property 3.3. Leti be 'processing’in the Initialization phase. Then

(i) thereisonly onez € L; such that ;{z) # & ;

R # =1

(8) forall z € L, if v;(z) # 6 then v (z) is the smallest value in T;(z). =

Finally, one 'processing’ processor receives an S message from the only unack-

nowledged neighbour (ie., the neighbour z with %;(2) = 6) and becomes

ranking’ Hence

Property 3.4. Let © start the Ranking phase. Theni knows the smallest value in

the network. =

Ranking
In the Ranking phase, all values are ranked successively starting from the

smallest one. Initially, & counter ¢ is set to one by the first ranking’processor.

A ranking processor i determines the smallest unranked value m in the
network. If m # i (i.e., its value is not the one to be ranked next), it determines
the neighbour des € L; for which »; {des) =m and sends to des a R(ranking)
message with a triple (¢, m, 5) where s = Min({v(y) 1y € I; — {des}ju {T]) Is
the second smallest unranked value known to 4, and ¢ is the next rank to be
assigned. It then sets v;(des):=¢ and becomes either 'processing’ or ‘fer-
minating | depending on whether s # o or 5 = =, respectively.

If m =i (i.e, its value is the next one to be ranked), it ranks itself by c,
increases ¢ by one, sets 7; ;= =, and determines the new smallest m and second
grmallest s unranked values known to it. As proved later, this value va is actually
the smallest unranked value in the entire network; therefore, if m =« (ie., all
values have been ranked), the processor becomes ‘ferminating’, otherwise it

performs the process described above for the case m # i.

When a processing ' processor j receives an F message containing (¢, m, s)
from a neighbour z, it sets »;(z) := s, becomes 'ranking‘ and performs the pro-

cess described above.

Observe that a 'processing’ processor becomes ranking’ only upon recep-
tion of an K message. At the same time, an ¥ message is sent only by a rank-
ing’ processor and only to one neighbor; furthermore, the ‘ranking ' processor

changes state after doing so. Therefore, by Property 3.2, we have

-B-

Property 3.5. At any time during the execution of Algorithm 3.1 there is at most

one ranking’processor, =

We will now show that a ranking ' processor knows, while it is in state 'rank-

ing’, the smallest unranked value in the network.

Property 3.6. Let? become ranking’ Then, for all 7 € N and all y € L; we have
(1) ifi € Ty(y) thenv;(y) = 6.

(R) ifiq Tj(y) thenw;(y) is the smallest unranked value in T;{y).

Proof: By induction. By Properties 3.2 and 3.3, the claim holds when the first
processor becomes ranking’ Let the claim hold when j becomes ranking 'and
let i be the processor which becomes ranking’ next; we will show that the claim
holds also when i becomes *anking’ Observe that the only two processors
which will modify their tables and/or state variables are the processors i and j;
therefore, we must only show that the claim holds for i and j when 1 becomes
ranking’ By the induction hypothesis, for all z € L , v;(z) is the smallest
unranked value in 7;(z); hence, m = Min{{v;(y) : y € L;} U {#;}) is the smallest
unranked value in the network. We shall consider two cases, depending on

whether m # j or m = j, respectively.

Case 1 {m # j): Processor j sends an F message containing (¢, m, &) to the
neighbour 4, where c is the next rank to be assigned, and s is the second smal-
lest unranked value known to j. Processor j then sets v;(i) : = § and becomes
either ‘processing’ or ‘terminoting’ depending on whether s # = or s == ,
respectively. Hence, when 1 becomes ‘ranking’ upon reception of this & mes-
sage sent by 7, the claim holds for j. Let us show that the claim holds also for i;
that is, once i becomes vanking' for all z € L; , v;(z) is the smallest value in
7;(z). The only change in the Table 1; occurs in the entry v;{j) which is

medified from § to s. By the induction hypothesis, s is the smallest unranked

-9-
value in T;(7); hence, the claim holds,

Case 2 (m = j§): Processor j ranks its value by the current value of counter ¢
and sets 7; := =, Since no other value in table v; is changed and since, by the
induction hypothesis, v;(z) is the smallest unranked value in Tj{z). for all
z € I; then, m = minfu;(y): ¥ € Ly} is the new smallest unranked value in the

network. Furthermore, now m # j; Ltherefore, by Case 1, the claim hoids. »

As a conseguence of Property 3.6, when a processor becomes ‘ranking’, it
knows the smallest unranked value in the network. Every ‘ranking ' processor i
sends the F message containing (c, m, s) towards its final destination m; since
the values of ¢ and m are not modified by any of the processors on the path
from i to m, m will rank its value by ¢. In the proof of Case 2 of Property 3.6, it
has been shown that, after a processor ranks its value, it still knows the smallest
unranked value in the network; furthermore, it increases the value of counter ¢

by one. Therefore

Lemma 3.1. Every processor correctly ranks its value. =

Let us now discuss the termination of the algorithm. First obsevve that a
processor can become ‘ferminating’ only from state ‘ranking’ Let j be ‘rank-
ing’'and i € I; be the next ranking ' processor; then j becomes ‘terminating 'if
and only if ¥; and all entries in v;, except v;(i), are = (ie. s = w). By using
Lemma 3.1 and observing that ¥; is set to = when j ranks its value, and that
2;(j) is set to s upon reception at 1 of the F message from j, it is not difficult to

gee that the following lemma holds.

Lemma 3.2. Every processor terminates its execution of the algorithm. »

Therefore, by Lemmas 3.1 and 3.2, we have shown the following

Theorem 3.1. Algorithm 3.1 correctly and within finite time solves the ranking

-10-

problem in a tree. =

4, COMPLEXITY ANALYSIS

A Worst Case Message Complexity

Let T, denote the set of all couples (7', u) where T(N, A) is a tree with
|[N] =n nodes, and p:{1,..,n] > N is a ranking function; that is, u(i) is the

node whose value has rank .

The worst case message complexity of Algorithm 3.1 is

W(n) = Hax(Lf (7. p) + g (T, 1) (T,) € Tp})
where g (7.) is the number of messages exchanged until (1) is ranked, and

F =S dpu(i), wli + 1))

=1

where dy{z, v) is the distance between z and y in T.
Lemma 4.1, Let (T,) € T,. Then
F(T.wy<4n -3

Proof: During the aétivation slage, exactly two A messages are exchanged on
each edge; during the set-up stage, each processor sends only ohe S message;
and no message is exchanged during the resolution stage. Therefore, at most
2(n — 1) + n = 3n — 2 messages are exchanged in the Initialization phase. When
the first processor, say r, becomes ranking’ an F message is sent through the
path from 7 to u(1); hence, an additional dy(r, u(1)} messages will be

exchanged. Since dp{r, u(1)) £n — 1, the Lemma holds.

lemma 4.2. Let P be a simple path of n - 1 edges. Then for all (T, pu) € T,

F(T.)< F(P)

Proof: Given a couple (7.u) € 7,,, assume T contains a node z of degree k = 3.

Let 7%, T2, T* denote the trees obtained by removing from T the node z and

~11-

its incident edges (see Figure 2). Let us denote by my; (1 =1 # j < &) the set of
pairs of processors with consecutive ranks (u(i) , u4(i+1)) such that one member
of each pair is in 7% and the other is in 7/, Each pair in my represents path
which is traversed by an R message. Without loss of generality, let m g be the
set of largest cardinality, i.e., |mp| = Moz {|my|:1=1i # j <k} We nowcon-
struct a tree 7' from T by disconnecting 72 and appending it to a leaf at the end
of a longest root to leaf path of T%, the length of this path is A(T9), the height of
78, Comparing T' with T, each pair of m,z which represented a path of length z
in T represents a path of length z + A(7%) + 1 in T', a pair of mg which
represents a path of length y in T represents a path of length at least
y —{(h{T%) + 1) in T". Al other pairs are unchanged or represent longer paths
in 7. The net change is at least (|mz| — [mas])(R(7%) +1)=0 since
|m 2] = |mag]. This implies that every tree T which is not a simple path, can be
reduced to a simple path P in which algorithm 3.1 requires at least as many
messages. *

As a consequence of Lemma 4.2, we can restrict our analysis of f{T, u) to

the case of T being a simple path. Let

J(n) = Maz({f (T,) (T, p) € Tp})

Lemma 4.3.
n?
BT 1.5ifn is odd
F{n)={%
-——— 1 otherwise
2
Proof: Let T be a simple path, and let {;, 1z, ..., L;_; be the edges of T from

left to right. The edge ; divides 7 into a left and a right subtree of i and n—i
vertices respectively. Each message which passes along & rEPI:ESentS a pair of
consecutive ranks one in the left and one in the right subtree. Hence on the
edge I, at most 8 Min({i, n—~i]) messages will be transmitted under any bijec-

tion i Also, at least one edge, say i, has elther u{1) or u(n) in its smallest

-12-

subtree; and on I, at most 2 - Min({k, n—k}) — 1 messages will be transmitted.

Therefore, at most

-1
a(Y MEin{fi, n-—ii)) -~ 1
i=1
messages will be transmitted during the Ranking phase.
For n even, we have

=1 2 n/2-1 2
25 minfi, n—i} =2 f i = g— () + (B 2=
P & ; 2 2 2 B

=1 =1
Hence,
2
n
fin)= > 1
To prove the equality in the above relation, consider the following bijection u.
Let n =2k for some positive integer k, and let us call the nodes

Ep, Tpy ' Ty
2i l=i<k

pi() = {

Ri—(n+l) k+l<i<n
Then, in this case {see Figure 3{a))
F(r wy=2+k +f (2 +1)=2k?~1=n¥/2—1
=1

Similar arguments show that for n odd we have

[
n
f(ﬂ) = 75— 1.9
and that the bound is achieved by the bijection defined below, wheren = 2k + 1

n -2 l=i<k
pz) = n i=k +1
Bn+R -2 k+1<1

(see Figure 3(b)) and the Lemma is proved. .

Therefore, by Lemmas 4.1 and 4.3, we have shown the following

-183-

2
Theorem 4.1. W(n) =< ’;—+ an —4 =

B. Average Case Message Complexity
Let us now analyze the average-case {message) complexity of the algorithrn.

It is known that

[Tl = nnR
Assuming that each element of 7}, is chosen with equal probability the average-

case (message) complexity of Algorithm 3.1 is

Ay = i B (T £ g (T

Let F be the set of all edges, in the trees of T,, which connect a subtree of k&
processors te a subtree of n —k processors. Clearly, Ky = B, by this

definition, and since each {ree containsn — 1 edges

2

b
|Be | =(n ~1)nn2
1

&
lemma 4.3.

n
)
-éw(;wfw) (7] | Typ |k(n — k) otherwise

() 1Tkl [Tl klm — k) ik #
B | =

Prool: Let & # n/2. There are (2) ways to assign ranks from {1,...n} to the

nodes of a tree of size k; for each such rank assignment, there are | 7; | trees
which can be formed accordingly and |7,-,| trees where the remaining ranks
can be assigned. Every pair of trees 7" and 7", with k and n — k nodes respec-
tively, can be connected by an edge in k{n —k) ways to form a tree withn
nodes, and the connecting edge is a member of £;. It is not difficult to see that
all connecting edges counted in this way are distinct and that the entire set E

is enumerated in this way. Hence, the lemma holds.

~14 -

Let &k =n/2 The above argument still holds; however, each edge is now

counted twice and hence the factor 1/ 2 is introduced.]

lemma 4.4. The expected inumber of messages transmitted along an edge
¢ € I, in the Ranking phase is 2k[n —k)/n.
Proof: For any pair of consecutive ranks i, ¢ + 1, the probability that a message

will pass along e € & is

2k (n — k)
n(n —1)

This follows since u{t) and u{i + }) must be in the trees 7" and T of size k and
n —k, respectively, which are connected by e. The multiplicative constant 2

“comes from interchanging u{i) and u(i + 1). Since there are {n — 1) possible

consecutive pairs of ranks, the lemma holds. =
Theorem 4.2.
1 =t .
atn) = —2 "5 (2) 1%] s] B30 —E)° + O()
nn k=1

Proof: By definition of A{n) and by Lernma 4.1, we have

A= o B S e B (TS

=
n" (e, TATET,

1
T e Tu)+ 0
nh? (T.;%:ET,‘ F(Tus) + O(n)

To obtain the first term in the expression above, we sum the expected number of
messages in Fy, for k between 1 andn — 1. Since for k& # ;L k), = E,_, and by

n

5 it follows that this sum must be divided by two and

using Lemma 4.3 for k =

the claimed result is obtained. =

By using Stirling approximation formula and the asymptotic formula

1

N g+ 0)

=7+ 0
¥y VE(n=E)

-15-

given in [10], we can derive the following asymptotic expression for A(n)

C. Time Complexity and Message Size

Another important measure of efficiency is the total time delay; that is, the
delay between the time the first processor starts the execution of the algorithm
and the time the last processor terminates its execution. Since the network is
asynchronous and transmission and queuing delays are unpredictable, the total
time delay may vary for different executions of the same algorithm on the same
network. However, an estimate can be obtained by measuring the ‘'ideal’ or
‘minimal’ time delay; that is, the total time delay experienced when the network
behaves synchronously and transmission delays are unitary. Note that the
number of time units expressed by the ideal time delay corresponds to the

nurmber of 'beats’ in a parallel computation.

It is not difficult to see that the Ranking phase of Algorithm 3.1 is strictly
sequential, while the Initialization phase is fully parallel. Hence, the number of
time units required by the algorithm in the worst and in the average case will be
dominated by the ideal time delay encountered in the Ranking phase. That is,
Taw(n) = 0(A(n)) and Tye(n) = 0(W(n)).

Finally, the time and message complexity of a distributed algorithm depend
on the size of the messages. In all ‘election’ algorithms, the number of flelds in
a message is a {(small) constant independent of n, and each field contains either

* an identifier, or a processor value, or D(logn) bits. It is easy to observe that we
use the same metrie; in fact, Algorithm 3.1 requires messages composed of at
most four fields (e.g., the R messages). each containing either an identifier {e.g.,
A8, RT) or a processor value, or llogen] bits (to send the rank 7). Therefore, the

complexity of our algorithm is evaluated in the same metric space used to

-16-
measure the efficiency of the ‘election’ algorithms.

5. RANKING IN ARBITRARY GRAPHS

In this section, we consider the case where nothing is known to the proces-

sors about the network topology; i.e., the arbitrary graph case [2.4,11,14].

As in other distributed problems, solution algerithms for arbitrary graphs
can be obtained by first constructing a spanning-tree of the graph and then
applying on this tree a solution algorithm for trees (e.g. [4,9,14]). Note that the
construction of a spanning-tree in our framework does not require the determi-
nation of global information (e.g., the adjacency matrix of the tree) at the pro-
cessors; instead, it only requires the determination at each processor of which
neighbours are also neighbours in the tree. Turthermore, the spanning-tree
construction can be done in paraliel with the execution of a solution algorithm

for trees,

A problem with this approach lies in the fact that several {possibly all) pro-
cessors start the execution of the algorithm independently of each other; that
is, several spanning-trees may be concurrently constructed increasing drarnati-
cally the message complexity of the resulting algorithm. This problem can be
Bby-pussed’ by first executing an 'election’ algorithm for arbitrary graphs (e.g.,
{9,11]) and then letting only the 'elected’ processor start the construction of the
spanning-tree and the execution of the ranking algorithm for trees; in this way,
only one spanning-tree will be constructed and, sin;:e all processors are in that
tree, they will carrectly rank their values using Algorithm 3.1 in the spanning

tree.
Let us now describe the ranking algorithm for an arbitrary graph.

Algorithm 5.1.

-17-
1. Execute an ‘election’algorithm

2. If 'elected’ start the construction of a spanning-tree and the execution of
Algorithm 3.1; otherwise, participate in the construction of the spanning-

tree and in the execution of Algorithm 3.1 when notified.

Since an ‘'election’ can be performed in an arbitrary graph transmitting at
most D{e) + O(niogn) messages [8], where e is the number of edges in the
graph, and since the construction of a spanning-tree with only one initiater
requires an additional 0(e) messages {14,22], from Thecrem 4.1, we have

¥(n,e)=0(n?
where W(n, e) denotes the number of message exchanges needed in the worst

case to rank all values in networks with » nodes and e edges by Algorithm 5.1,

The time complexity of Algorithm 5.1 is dominated, as in Algorithm 3.1, by
the Ranking phase and we have
Tuwo(n, e) = 0{W{n,e))
where 7, denotes the worst-case number of time-units required by Algorithm
5.1. Also in this case, the time and message complexities are evaluated in the

same metric space used by the ‘election’algorithms.

6. CONCLUDING REMARKS

In the previous sections, we have présented ranking algorithms for trees
and arbitrary graphs. For other fixed topologies of some practical interest, ad-
hoc algorithms can be devised. In particular, it Gisa complete graph, ranking
can be done by first executing an election algorithm which finds a 'leader’ and
then letting the leader obtain all values, rank them, and finally notify all
processes of their result. The election can be done exchanging 0(n log n) mes-
sages [13], and the ranking can be completed with an additional O{n) messages.

In the case that & is a bidirectional circle, Algorithm 5.1 will rank all values in

- 18-

D(n?) messages and time units; this result cannot be extended to unidirectional
circles. A different algorithm which can be used in both unidirectional and
bidirectional circles is described in [24]; this algorithm requires 0(n?) messages
and only 0(n) time units.

The proposed algorithms can obviously be employed to select the k-th
smallest {(or largest) value by stopping their execution as soon as such value has
been ranked, By simple modifications to the algorithms, we can select the k-th
smallest element in a tree in O(n- Min({k, n+1-k1)) messages; therefore, selec-
ton can be performed in arbitrary graphs in o(e) + 0
(n{log n + Min({k n+1-k}))) messages.

Finally, the following problems are still open: to establish a lower-bound for
the time and message complexity of the ranking problem; to establish aupper
and lower bounds on the average case time and message complexity for arbi-

trary graphs; to improve the upper-bounds presented in this paper.

-19-

REFERENCES

[1] MF. Aburdene, "Distributed algorithms for extreme-finding in circular
configurations of processors", in Proc. IEEE Int. Symp. lLarge Scale Sys-
tems, Oct. 1882,

[2] D. Angluin, "Local and global properties in networks of processors”, in Proc.
12th ACM Symp. Theory of Comput., May 1980.

[3] J. Burns, "A formal model for message passing systems", Indiana Univ. Tech,
Rep. TR-91, 1980,

[4] E.J. Chang, "Echo algorithms: depth parallel operations on general graphs”,
IEEE Trans. Software Eng., vol. SE-B, July 1982.

[8] EJ. Chang and R. Roberts, "An improved algorithm for decentralized
extrema-finding in circular configurations of processes”, Commun. Ass.
Comput. Mach., vol. 22, May 1979.

[8] D. Dolev, M. Klawe and M. Rodeh, "An O(n log n) unidirectional algorithm for
extrema-finding in a circle", J. Algorithms, vol. 3, Sept. 1982

[7] W.R. Franklin, "On an improved agorithm for decentralized extrema finding
in circular configurations of processors", Commun. Ass. Comput. Mach., vol.
25, May 19B2.

[B] G.N. Frederickson, "Tradeoffs for selection in distributed networks”, in
Prac. 2nd ACHM Symp. Principles of Distributed Computing, Aug. 1983.

{91 R.G. Gallager, "Finding a leader in a network with 0(e) + O(n log n) mes-
sages”, Mass. Inst. Tech. Internal Memo., 1979,

[10] G.H. Gonnet, “A handbook of algorithms and data structures”, U. Waterloo
Tech. Rep. C5-B0-23, 1980.

{11] D.S. Hirschberg, "Election processes in distributed systerns”, in Proc. 18th
Allerton Conf, Comm., Control and Comput., Oct. 1980,

{12] D.S. Hirschberg and J.B. Sinclair, "Decentralized extrema finding in circular
configurations of processes”, Commun. Ass. Comput. Mach., vol. 23, Nov.
1880.

[13] E. Korach, 5, Moran and S. Zaks, "Elections in complete graphs", in prepara-
tion,

[14] E. Korach, D. Rotem and N. Santoro, “Bfficient distributed algorithms for
finding centers and medians in a network"”, in Proc. 18th Allerton Conf.
Comm. Control and Comput., Oct. 1980.

[18] E. Korach, D. Rotem and N. Santoro, "A probabilistic algorithm for
extrema-finding in a circle of processors”, U. Waterloo Tech. Report CS B1-
19, 1981,

{18] T. Minoura, "Ranking scheme and control token scheme”, in FProc. 2nd
Symp. on Reliability in Distr. Software and Database Syst., July 1982.

[17] G. LeLann, "Distributed systems - toward a formal approach’, in Proc. IFiP,
1977,

[18]} J. Pachl, E, Korach and D.Rotem, "A Technique for proving lower-bounds for
distributed election algorithms", Proc. 14th ACM Symp. Theory of Comput., -
May 1882.

[19] G.L. Peterson, "An O{n logm) unidirectional algorithm for the circular
extrema problem", Trans. Progr. Lang. Syst., vol. 4, 198 .

-20-

[20] M. Rodeh, "Finding the median distributively”, J. Comput. Syst. Symp., vol.
24, 1982,

[21] D. Rotem, N. Santero and J B. Sidney, "A shout-echo algorithm for finding
the median of a distributed set", in Proc, 14th Seutheastern Conf. Combin.,
Graph Theory and Comput., Feb. 1883,

[22] N. Santoro, "On the message complexity of distributed problems", Carleton
U. Tech. Rep. SC3-TR-13, 1982.

[23] N. Santoro, E. Korach and D. Rotem, "Decentralized extrema finding in cir-
cular configurations of processors: an improved algorithm", in Proc. 11th
Conf. Num. Math. and Comput., Nov., 1981,

[24] N. Santoro, E. Korach and D. Rotemn, "Decentralized rank finding in clrcular
configurations of processors”, U. Ottawa Tech. Rep. TR-81-4, 1981.

[25] N. Santoro and J.B. Sidney, "Order statistics on distributed sets”, in Proc.
B0th Allerton. Conf. Commaun, Control and Compuf., Oct. 1982,

[26] N. Santoro and J.B. Sidney, "Communication bounds for selection in distri-
buted sets", Carleton U, Tech. Rep. SCS-TR- ,1982.

-21-

Appendix

Rlgorithm 3.1 below is described in terms of what operations a processor i
must perform when in a given state upon certain conditions. Initially, all proces-
sors are in state ‘available’.

Algorithm 3.1.
(1) Instate ‘available’.
Upon reception of a locally originated request or of an ‘A’ message
begin
I5= 0,5 =1,
wend ('A') to I,
enter state ‘nctive’,
end
(2) Instate 'nctive’,
Ifi is-aleaf: (let z be the only neighbour)
begin
wi(x) =6,
send ('S, i) to z;
enter state processing’,
end
If 1 is not a leaf, upon reception of ('S, value) from = € L;:
-begin
i = Ly — fx) v (x) = value;
if |L;| = 1 then {(an S5 message has been received from all neighbours
but one, say, z)

m = Min({ui(y)y € L -tz] v lif)
send ('S, m)toz ;

vi{z) = 6
enter state processing’
endif

rend
(8) In state processing’
Upon reception of ('S', value) from = ¢ I; :
lbegin
" enter state sclurated’,
iend
Upon reception of ('R, rank, min, sec) fromz €I :
tbegin
v (x) := sec;
enter state ranking’,
1end
(4) Instate saiurated,
{begin
if value > m then
v;(z) := value;

82

rank :=1;
enter state ‘ranking *
else
enter state ‘processing
endif
end
(5) Instate ranking’.
begin
m = Min{lu(y) =y € Liv],
if m =i then
my rank := rank;
rank := rank + 1
Ty 1= o0
m = Min(fv(y) :y € L
end if
if m # o then
des =y €L;: y(y)=m;
s = Min({u(y) y < L — {des}j v lid);
send ('R, rank, m.,s) to des ;
v;(des) = 6;
endif
if m = e ors = then
enter state ‘terminaling’
else
enter state processing’
endif
end
(8) Instate ‘terminating’
begin
terminate the execution of the algorithm;
end

- 23 -«

Tely)

Telz)
X Tx(u,

Tx(")

Fig. 1

Removing x and its incident edges we get a
forest of four subtrees. Note that
T.(y) =T (9} .

- 24 -

TREE T Fig. 2 TREE T'

The triangles denote the subtrees T], T2 e Tk obtained

by removing x and its incident edges from T.

_ 95 -

7 5 3 I 8 6 4 2
Xg X7 g L1 LYY 13 ﬂz LT}

Fig. 3(a)

A worst case construction for n=8 requiring 31 messages.

2 4] 8 9 1 3 5 T

L 2 & & * 5 L & s ot]

‘9 la Xy Ks ‘5 x4 X3 LF] X
Fig. 3(b)

A worst case construction for n=9 requiring 39 messages.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

