TMENT

E DEPARTMENT

»
a

E BEEA

COMPUTER SCIENCE DEPARTMENT

|
COlPER SCENC

;

=:{K
ERL

F WA
F WATERL

IVERSITY OF WATERLO

>->-

NERSIHY

N
UN

On the Location of
Directions of Infinite
Descent for Non-Linear
Programming Algorithms

Andrew R. Conn
Nicholas I. M. Gould

Technical Report
CS5-83-21

July 1983




ON THE LOCATION OF DIRECTIONS OF INFINITE
DESCENT FOR NON-LINEAR PROGRAMMING
ALGORITHMS

Andrew B. Conn

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Nicholas LM, Gould

Department of Combinatories & Optimization
University of Waterloo
Waterloo, Ontarto, Canada N2, 3G1

Technical Report CS-83-21

ABSTRACT

There is much current interest in general equality constrained programming
problems, both for their own sake and for their applicability to active set
methods for nonlinear programming. In the former case, typically, the issues are
existence of solutions and their determination. In the latter instance, non-
existence of solutions gives rise to directions of infinite descent. Such direction
may subsequently be used to determine a more desirable active set.

The generalised Cholesky decomposition of relevant matrices enables us to
answer the question of existence and to determine directions of infinite descent
(when applicable) in an efficient and stable manner.

The methods examined are related to implementations that are suitable for
null, range and Lagrangian methods.

1.1 Introduction
- In this paper we consider the problem
- 1
EQP: “;"gmgf 22 Hr + 9TP = Q(p)
subject to Ap =0,

where Il is n X n symmetric, A is ¢ X n, rank ¢ ({ < nr), and g is an n-vector. Many suggestions
have been made as how to solve EQP in the case where a finite solution exists (see, for example,
Fletcher (1981), chapter 10). In this paper, we shall be concerned with finding whether the res-
trictions Ap = 0 are sufficient to give a finite solution to EQP and, if not, to determine a vector
p along which it is possible to decrease Q(p) whilst maintaining Ap = 0,
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We say that the vector p, satisfying Ap = 0, is a direction of infinite feasible descent if
Q(ap) — —oo monotonically as the scalar & —+ + oco: Our goal is to investigate the existence of
directions of infinite descent for @(p) and to describe practical algorithms for locating such direc-
tions. The calculation of directions of infinite descent is of fundamental importance in the con-
struction of non-linear programming methods which solve a sequence of problems of the type
EQP (for instance quadratic programming-based projected Lagrangian methods (see, e.g., Gill,
Murray and Wright (1981), Coleman and Conn {1982))). The existence of a direction of infinite
descent for a given EQP often indicates that the current estimate of the solution to the non-linear
program is far from its cotrect value or that the prediction of the constraints active at the solu-
tion {signified by their linearized form Ap = 0) is incorrect. Fortunately, a direction of infinite
descent may then be used to improve the cstimate of the solution (by decreasing an appropriate
merit function) and to improve the prediction of the active set (by moving so that an inactive
constraini becomes active). In this paper, we consider how methods normally used to find a finite
solution to EQP can be adapted to find suitable directions of infinite descent whenever this is
appropriate.

1.2 A prellminary discussion on the existence of a finlte solution to FQP:

In this section, we use the well-known characterization of the existence of a finite minimizer
of a quadratic function (see, e.g. Gill, Murray and Wright (198t), pp. 65-67) to obtain similar
results for EQP.

Let Z be any nX(n—t) matrix such that AZ = 0, rank (A 7:7) = n (see, e.g., Gill and
Murray (1974), pp. 57-62). Then any vector p which satisfies Ap = 0 may be expressed as
p = Zpy for some n — ¢ vector p;. Consequently EQP is equivalent to the problem

NS:  minimize = pHZTHZ)p; + (2T g).
p, e R 2
Z
1t is well know that NS has
(i)  a unique global minimizer if ZTHYZ is positive definite;
(i) weak global minimizers if ZTHZ is positive semi-definite and ZTg¢ lies in the range of
2'1z;
(iii) no finite minimizer if ZTHZ is positive semi-definite and %7 g does not lic in the range of
ZTHZ; and
{iv) no finite minimizer if ZTHZ is indefinite,
In order to distinguish between cases (iii) and (iv) we make the following definitions.
Any vector p such that Ap =0, ZTHp = 0 and ng = -1 is known as a feasible direction
of linear infinite desceni, henceforth referred to as a dolid, for KQP. Any vector p such that

Ap = 0 and pTHp < 0 is known as a quadratic feasible direction of infinite descent or a direc-
tion of negative curvature, henceforth referred to as a donc. {Note it is often convenient to intro-

duce scaling in the definition and thus we will sometimes require pTIp == -1 rather than
pTHp < 0.) The importance of such definitions is that for any dolid, p is feasible and
Q(ap) = ~a (and hence approaches minus infinity lincarly as o« — oo) and for any donc p is

feasible and Qap) = %a"’pTHp + agTp (which approaches minus infinity quadratically as
a — + oo).

We are interested in the calculation of doncs and dolids. We have a preference (whenever
possible) for determining dones rather than dolids because of the faster asymptotic behaviour of
the former.

Lemma 1.1t (a) There exists a direction of negative curvature if and only if ZTHZ is indefinite;
(b) There exists a direction of linear infinite descent if Z7HZ is positive semi-definite and Z7g
does not lie in the range of ZTHZ.
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Proof: () follows from the definition. {b) Suppose ZT HZ is positive semi-definite, ZTg does not
lie in the range of ZTHZ and that any vector p which satisfies Ap = 0, ZTHp == 0 also satisfies
¢Tp = 0. In particular, all vectors p = Zps which satisty ZTHZp; = 0 also satisfy
pF(2%g) = 0. As ZTHZ is singular there is at least one p; which satisfies Z7HZp; = 0. Then
2Ty is orthogonal to the null-space of ZTHZ and therefore lies in its range. This contradicts the
assumptions made and hence there is at least one dolid.

Lemma 1.1 motivates the following: conceptually we should like to obtain the unique global
minimizer of EQP. However, if ZTHZ is indefinite, such a minimizer does not exist, and we
then wish to locate directions of negative curvature. If ZTHZ is positive semi definite, neither a
unique global minimizer nor a direction of negative curvature exists. In this case we wish to
determine a weak global minimizer, if possible, or otherwise determine a suitable dolid.

In the section which follows we will describe three approaches to finding stationary points
for EQP, when such points exist. Each gives rise to particular matrix decompositions. Whenever
minimizers do not exist, a significant feature of the approach in this paper is the method used to
determine a suitable donc or dolid.

In the calculation of dones and dolids, we shall explicitly exploit the matrices that arise in
the particular underlying method for finding stationary points for EQP.

1.3 Methods for finding a statlonary point for EQP.

We briefly survey the existing procedures for finding a stationary point for EQP. Such
methods normally assume that second order sufficiency conditions will be satisfied at the station-
ary point and hence that the stationary point found will be a strong global minimizer of EQP.

{(a)  Null-space methods. Find an appropriate n X(n—f), matrix Z such that AZ = 0 and rank
{AT:Z) = n. Then solve the null-space equations

ZTHZp, = 2Ty

p = Zpg

(b) Lagrengian or Kuhn-Tucker methods. Find the vector p and the f-vector A (a vector of
first order estimates of the Lagrange multipliers at the solution) by solving the Kuhn-Tucker

equations
H ATH (p)_ (-9
A o] b7 o)
(c) Decomposition or range-space methods. These methods make use of the structure in the
T
Lagrangian matrix, K = g AO to decompose the Kuhn-Tucker equations to obtain p
and A separately. For example, if H is non-singular, p and X may be found from the
range-space equalions

AHATY = AlYy
Hp=ATn - g

The matrix equations defining each of the methods a) b) and ¢) are either solved directly,
(by appropriate matrix factorizations) or iteratively. The decision as to which method to use and
how to solve the resulting linear equations depends on the number of variables, n, and the
number of constraints, £, In what follows, we shall assume that n is sufficiently smali that we are
able to solve the relevant equations directly. Normally it is most efficient to use null-space
methods when ! is large relative to n, and Lagrangian or range-space methods otherwisc.

For a more detailed discussion of the linear equation solving techniques appropriate for

these methods, and the reasons for choosing a particular method, see, for example Fletcher (1981),
Gill, Murray and Wright (1981), Gill et.al (1982) and Gould {1983).
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1.4 The existence of finite solutions to EQP.

In Section 1.2, the existence of finite solutions to EQP was discussed in terms of the
definiteness of the matrix ZTHZ normally associated with null-space methods for EQP. In this
section the question of existence of finite solutions to EFQF i3 extended to the other methods
introduced in section 1.3,

For the remainder of this paper we shall use the following notation. We define the
~{n + ) X(n + t)Kuhn-Tucker matrix £ by

_ g AT
We shall denote the inertia of any m X m matrix M by

In(M) = (m,, m_, my),

where m,, m_ and mg are respectively the number of positive, negative and zero eigenvalues of
M (counted with appropriate multiplicities} such that

m=m; + m_+ my,

Define

In(H) = {hy, b, k),

In(K) = (k.. k., ko)
and

Im(ZTHZ) = (2., 2_, 2,)
for any apptopriate Z. Furthermore if H is non-singular (ie. hy = 0) define
In(AHAT) = (ay, 0, ay)

Lemma 1.2: In(K) = In(ZTHZ) + {1, t, 0). Furthermore if he=0
In(K) = In(H) + In(-AHAT).

Proof: see the statement and proof of Th. 2.1 in Gould (1983).
Theorem 1.3: Let EQF be as given, Then the following statements are equivalent:

(i)  EQP has a unique global minimizer
(it)y z.=z=0{orz, =n—t)
and
(i) k& =1t,kg=0/(ork, = n).
Furthermore if hq = 0 (i), (ii), (iii) and
(iv) b+ oy =t (orh_=20a),0,=0,
are equivalent.
Proof: Follows directly from case (i) in Section 1.2 and Lemma 1.2.
Theorem 1.4t Let EQP be as given. Then the following statements are equivalent:
() EQP bas weak global minimizers
(i) 2.=0, 2y > 0and ZTg lies in the range of ZTHZ
and
(iii) k =¢, ko > 0and () lies in the range of K.
Furthermore, if &, = 0, (i), (i), {iii) and
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(iv) h.+ a, =1, a0 =0and AH g lies in the range of AII"A T
are equivalent,
Proof: Follows directly from Case (ii) Section 1.2 and Lemmas 1.1 and 12,
Theorem 1.5: Let EQP be as given. Then the following statements are equivalent:
(i) 2.=0,z,>0and ZTg does not lie in the range of ZTHZ
and

(i} k.=, ko> 0and (I]g) does not lie in the range of K.

Furthermore, il ko = 0, (i}, (i) and

(i) h + a, =1, ap=0and AH g does not lie in the range of AHAT,

are cquivalent.
The existence of a direction of linear infinite descent is implied by any of (i), (ii) and (iii).
Proof: Follows directly from cases (iii), Section 1.2 and Lemmas 1.1 and 1.2
Theorem 1.6: Let EQP be as given. Then the following statements are equivalent:

(i) =z2.>0
and
(i) k>t.

Furthermore, if A, = 0, (i}, (ii) and

(iii) A_+ a, > t are equivalent.
Finally each of these statements implies the existence of a direction of negative curvature.
Proof: The proof follows directly from case (iv) in Section 1.2 and L.emmas 1.1 and 1.2,

The remainder of this paper will be taken up with a discussion of appropriate techniques for
obtaining doncs and dolids.

2. The calculation of feasible directione of infinite descent.

2.1 Using the generalized Cholesky factorlzation

The numerical implementation of any method for the solution of EQP’s depends essentially
upon the technique used to solve the resulting system(s) of linear equations. All the systems in
section 1.3 have symmetric coefficient matrices whose inertias are required to determine the
existence of optimal solutions.

It is this latter requirement that predisposes us to consider an approach based upon the
Bunch-Parlett-Fletcher-KKaufman generalized Cholesky factorization (Bunch and Parlett [1971],
Fletcher [1976], Bunch and Kaufman [1977]).

The basis of the generalised Cholesky factorization is a matrix formulation of the classical
apptoach to diagonalizing a quadratic form by completing the square, with the additional obser-
vation that zy = u? - v* whenever z ==y + v and y = u - v. Essentially, a permutation
matrix P is found such that a given real symmetric matrix G is factored as PTGP = MDMT
where M is unit lower triangular and D is block diagonal, with 1X 1 and 2X 2 diagonal blocks.
The matrix D has the same inertia as G and this inertia is easily recoverable, For instance the
number of negative eigenvalues of G is the number of 2 X 2 blocks plus the number of gegative

elements which oceur in 1 X 1 blocks. Such a factorization may be achieved in about L multi-
plications and n” comparisons.

The generalized Cholesky factorization has been used to calculate directions of negative cur-
vature in the context of unconstrained optimization problems (see eg. Fletcher and Freeman
(1977), Sorenson (1977), More” and Sorensen (1979), Goldfarb (1980) and in a particular null space
method for EQP (Bunch and Kaufman (1980)).



2.2 Calculating Dolids

We have already remarked that, whenever possible, we prefer to calculate directions of
negative curvature rather than dolids. Consequently, as a donc exists whenever ZTHZ is
indefinite, for this section we shall assume that ZT HZ is positive semidefinite.

The methods we propose to use to determine dolids all depend fundamentally on the follow-
ing elementary result.

Lemma 2.1. Let N be any real symmetric, m X m matrix and 6 be any m-vector, then cither
a) Az : Noe =b
or b)dy: Ny =0, Ty =1.
Proof: Let P denote the orthogonal projector into N . Pb =0 => b = Nz. Otherwisc
define y = Pb /| | Pb| |.

Considering the separate methods of section 1.3 in turn, we then obtain as corollaries to
Lemma 2.1, constructive means of obtaining dolids whenever they exist.

(a) Null-space methods: Identifying ZTHZ with N in Lemma 2.1, it is apparent that, either a)
q p, such that ZTHZpy; = -ZTg (in which case there is a weak global minimizer) or b)
3 pg such that ZTHZp; = 0 and P§ ZTg = 1 (in what case p = Zp; is a dolid).

{b) Lagrangien methods: Identifying K with N, b with —(g} and writing z = (3‘;\) we obtain
that either a) 3z such that Kz =& or b) 3z such that Kr =0 z7h = 1. Case a)
implies that p is a weak minimizer of EQP. b) implies that Hp — ATA = 0 {and thus
ZTHp = 0) and Ap = 0 (from Kz = 0) and that pTy = -1 (from z7b == 1), Thus p isa

dolid.
(¢) Range-space methods: In this case we identify AH'AT with N and b with AH g, Case
a) implies p is a weak minimizer of EQP, case b) implies p is a dolid where p = -H'A Ty,

and u is any vector such that AHATu = G and uTAH g = 1.

Thus in each of the three cases considered above we have that, either a weak minimizer is
determined, or a dolid is given by the orthogonal projection of the right hand side into the null
space of the corresponding coeflicient matrix.

Assuming we have a generalised Cholesky factorization of N it is a straightforward task to
determine the existence or otherwise of a solution to Nz = &, and thus establish optimality or
find a dolid. We now give the necessary construction.

Suppose we have a generalized Cholesky factorization of N given by

PTNP == MDMT

where P is a permutation matrix. Let / denote the index set for the zero diagonal entries of D.
Let b = PTb, #= PTz. Define r: Mr = b. The existence or otherwise of a solution to
Nz = b depends upon whether the equation Ds = r has a solution. This equation has a solution
if and only if r; =0 for all i € I. If r, = 0 for all ¢ € I, then the non-zeros of D) determine
5; + ¢ I and the s; i €1 may be chosen arbitrarily. The equation MTZ = s may be solved to
give T and z = PT then satisfles Nz = b. Conversely suppose r; 7 0 for some ¢ € I. Let ¢ be
any non-zero solution of Ds = 0. Then & = 0 for all ¢ ¢ J necessarily. Let Z: MTZ =5 and
z = PT. Then Nz = PMDMTPTz = PMDM"7 = PMDs = 0 and
8Tz = bTppTe =5 7 =r"TM Tz = rTs. If we pick 5, =0 i ¢ [, 3; = ar; i €I for some
a0, rTs =Y rsi+ s =a),rP5#0 (as at least ome r; 5%0). On letting
i¢l

it iel
a=1/Vr} b7z =1
iel
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2.3 Locating directions of negative curvature

In this section we show how directions of negative curvature may be calculated for null-
space, range-space and Lagrangian methods,

Definilion: we say that z is a negative vector for N if and only if 27Nz < 0. We say that z is
positive vector for N if and only if 27Nz > 0.

{a) Null-space methods Suppose z_ > 0. Then there is a vector vz such that v7ZTHZv; < 0.
On letting v = Zvz; = v " Hv < 0 and Ay = AZvz = 0. Hence v is a donc.

In general, suppose that z_ = s > 0. Then there are 5 vectors V7,07, such that
v,{2THZ)v; <0 1<i<s

uz‘,-(ZTHZ)vzj =0 1<i#j<s

For instance, the eigenvectors of ZTHZ corresponding to the negative eigenvalues are such a set.
(The second condition states that v; ¢ =1,...,s form a ZTHZ-conjugate set.) Then the vector

v=13, o,Z vy (2.1

i=1
is a donc. We note that different choices of «; result in different doncs. Little is known concern-
ing the best choices for the @;'s (see Bunch & Kaufman (1980) for a discussion of this issue).
T
(b) Lagrangian methods Let K = (g AO )- Let k= k_ > t. Then there are k K-conjugate
negative vectors vy,..,y; (for instance vy, ..., u might be the eigenvectors of K
corresponding to the negative eigenvalues). Then v = Y] a;v; is a negative vector for K

i—=1
for any scalars @y, .. ., @ not all zero. Choose the scalars a, . . ., @ so that

E
A0 =Y, (A :0v =0 (2.2)

i=1
(Since {A : 0)u; is a t-veetor and & > f, it is always possible to find such a combination). Then

if v = (’;), p is a direction of negative curvature.

{c) Range-space methods We shall only be concerned with the case that H is non-singular. For
other cases, range-space methods are difficult to implement and Lagrangian methods may be
preferred. It is easy to see that

K= [H A ] [AH‘ 1] [ﬁl _AHPAT ] [[ s ] (23)

Let h.=k,a, == 1 and k + [ > ¢, (thus ensuring the existence of a donc, from Th. 1.6). Let
By, by be a set of negalive vectors for H ay,...,a, be a set of positive vectors for AH'AT,
Then from (2.3), it follows that

[] 1<z<k)and[H_lA “'] a1<i<i

are K-conjugate negative vectors. Hence
13 k. lA Ta
uzZa,-(o']-!-Zﬂ,[ ) f
i=1 ] o

is a negative vector for any scalars o, f; (not all zero). Furthermore, since £ + [ > ¢, it is
always possible to choose the scalars «;, 8; so that
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(A 0)u =0.
Then, writing v = (g)T, p is a direction of negative curvature for EQP.

3. Calculating Directions of Negative Curvature

In this section we present methods for calculating dones for the three classes of algorithm
discussed in section 1.3. All three methods require the calculation of negative and/or positive
vectors of appropriate coefficient matrices as indicated in section 2.3. Such vectors may be
obtained directly from the generalised Cholesky factorization of the given matrices. However,
modifications of the direct procedure results in simplifications and significant savings.

3.1 Calculating negative and positive vectors
Let the real symmetric m X m matrix have a generalized Cholesky factorization

N = PMDMTPT
where P is a permutation matrix, M is a unit lower triangular matrix and D is block diagonal
with 1 X 1 and 2 X 2 diagonal blocks.

Define the ordered index sets
1yD)={i | di <O0and dyy, = d , = 0}
IP)={i| d; > 0and d;,, = d;_, = 0} and
15(D) = 1,4(D) = {dji, 5% 0},

where D has elements d;; and, by convention, d;p = dipy g = 0. These sets identify the indices
of 1 X 1 blocks with negative and positive eigenvalues and the first index of each 2 X 2 block
(which by construction has one positive and one negative eigenvalue) respectively. Let
1(D) = I(D) U Lo(D) and I,(D)=1,(D)UT.o(D). Then |I_| =n_and |I,|=n,
where In(N} = {n;, n., ng). In order to construct an N-conjugate set of n_ negative and n,
positive vectors, we proceed as follows. Let ¢; be the ith column of the identity matrix.

Define the vectors u;{i € /(D)) and u;{¢ € I, (D)) such that

- ik i €1,4(D)
! vilei + Bi eiv1) i € T14(D)
v = i€ i €l.,(D)
! nile; + 0; epq) € 1 o(D)

where f; = (M. — di)/dir 1 8 = (\+ — d;;)/dy 1, and Xy are the negative and positive eigen-
i HHESY

values of and the scalars «; and #; are arbitrary. Then it is easy to see that

div1 ivnivn
the vectors v;,(i € (D)), obtained from

MTPTy, =y, (3.1)
are N-conjugate negative veetors. Similarly the vectors v;, i € I, (D), where MTPTy; = u;, are
N-conjugate positive vectors. Hence any vector
v = E a; U

B iel (D)

(with the scalars e; not all zero) is a negative vector and any vector

ve= Y Gy

i€l (D)



(for scalars &; not all zero) is a positive vector.

3.2 Practlcal aspects. Null space methods

Let ZTHZ have a generalized Cholesky factorization P; My Dz Mf P]. From (2.1), the
vector

v =2 E @; vz)

icl (Dyg)

is a direction of negative curvature for any (non-zero) set of scalars a; and any set of ZTHZ-
conjugate negative vectors vz. Suitable negative vectors may be obtained as described above.
However as

v= Y e =Y a,—PM’TuZl=PM'T Y aug,
i€l (Dg) i€1 (Dyy i€l (Dg)

it is more efficient to obtain

2 @tz

i€l (Dg)

and then perform one backsolve to find v. A particularly appealing direction of negative curva-
ture is obtained by picking o; = 0 for all i () € I (D;) and a; = 1 where j is the smallest
index in /_(D,). With this choice the "backsolve” M T uz may be performed relatively efficiently

since the last n - ¢ — j components of M~ T uz are then zero.

3.3 Practical aspects. Lagrangian methods.

Let K have a generalized Cholesky factorization PxMyDxMIPL. Let v (i € I (D)) be
K-conjugate negative vectors obtained from the vectors u; by (3.1) as described in section 3.1.
According to (2.2), we require scalars «; such that

VI o QA o)y =0,

i€l (D)

where the permutation matrix @ is introduced for convenience. As K = PyMyxDxM{IP[, we
may write (A | 0) = (0 | 1,) PxMxDx MIPZ, whete I, is the ¢ X ¢ identity matrix. Therefore
we must find scalars a; such that

Ct,'ﬁ DK t, = 0, (3,2)
i€l (Dy)

where M = Q(0: ], )PKMK The matrix (0 : I;)Px My is made up of rows of the unit lower tri-
angular matrix My and @ is now chosen so that the rows of M occur in the same order as in My
(see figure 1).

1000000
2100000
vt ul 0000 uwl0DO0O0O
z z 21000 uuuwulOO
w uwuyulOO ¢ v uuuylo
v uuvyuunldo
zrzzzl
My M

Figure 1: An example of how M is obtained from My by deleting those rows indicated
with entries z. {Thus ¢ = 3 and P points to rows 3, 5 and 6.}
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Now Dgw; = i dije; if 1 € Iy(Dy) and Dy = ©_ie; + B ey} if © € 15(Dg). Sup.
pose v, = 1fd; il i € I{Dg) and v; = 1/\_\/T + A7 if i € 1 4(Pyx). Hence Dyu; = ¢; if
i€ 1(Dg) _and  Dgu; = B¢, + Pie;yy, if i € I,(Dg), where &, — /1 + B%, and
v = B/ + BF. These choices of Vi, ¢ and 7; are made so that Dgu; is a unit vector in all
cases. Using this construction, (3.2) gives

E a,'MDKU,' = Z CZ;HB,' -+ E a,—AT(@e. -+ 2,’)6,4]) =0 (3.3)
icl (Dg) iel (0g) i€l 4iDg)

As Me; is the 7th column of M and M(de; + ve, 1) 18 a linear combination of the i{th and
L’*’ 1st columns of A, (3‘3) is equivalent to finding a suitable linear combination of columns of
M which is zero.

Let N be the ¢ X k matrix whose columns are Me; if § € I (D) and M(®e; + the, ) it
i €1.5(Dy) and let these columns be arranged in increasing order according to the set I (Dy) (see

figure 2).
wulOO0OO0O v000
v uuulOO vulo
vuuuuulo vuub
M N

Figure 2: An example of how N is obtained from M. In this case [ (Dy) = {4,5,7}

and I 5(Dg) == {1}. The entries v in column 1 of N are obtained from an appropriate
lincar combination of columns 1 and 2 of M.

Let o be the vector make up of the unknown scalars o, ordered according to I.(Dg). Then (3.3)
is the same as finding a non-trivial solution to

Na =10 (3.4)

There may be many independent solutions to (3.4). Our intention is to obtain such a solution in
an cfficient manner. By the construction of N from My, any column of N which has a structural
zero as its jth entry will also have structural zeros in its 7th entry for all i < j. (A structural
zero of N is an element of N which is obtained as a linear combination of elements of the upper-
triangular (zero) part of Mg). Furthermore the introduction of the permutation matrix ¢ in the
definition of N ensures that any row which has a structural zero in its jth entry will also have a
structural zero in its ith entry for all # > j. Hence the matrix N may be thought of as being
"lower triangular-like”. In practice the matrix N may be anything from completely dense to the
zero matrix. Qur hope is that, for a given problem, IV is closer to the latter than the former (see
section 4).

We propose to find a non-trivial solution to (3.4) by {lower) triangulating the last £ X ¢
block of N using elementary row operations to eliminate super-diagonal elements and row inter-
changes to limit growth of the off-diagonal elements. No structural fill-in occurs as a result of the
partial pivoting because of the structure of N. Recall that N isa ¢ X k_(k > ¢} matrix. The
process starts in the k_th column of N and proceeds one column backwards through N until
either there are no non-zero pivots in the current column or ¢ columns have been triangulated. If
the former case is reached at column k_ - &, the last & + 1 columns of N are linearly dependent.
Furthermore the last £ + 1 columns of N have then been reduced to the form

0 0
m N

where N is a k X k lower triangular matrix and 7 a k-vector. A suitable solution to (3.4) is then
found as a = ((S)T where ¢ is a k + 1 vector whose first entry is 1 and whose remaining
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entties I are found by forward substitution in the system N&@ == - 7. In the latter case (3.4) has
been reduced to the equivalent system

{N1 | N)a =0
where N is { X ¢ triangular. If we form any non-zero linear combination V,a,, a suitable solu-
. a . I
tion @ to (3.4) is given by o = (a;)r where , is found by forward substitution in the system
N ap == —Nla,.

Obviously the efficiency of this method depends upon how triangular-like N is and how
many columns of N must be processed before a suitable dependency may be found. In the worst
case, when N i3 completely dense and no dependencies are found until the final stage,
t3/3 + 0(t%) operations will be carried out to find «. This cost may he acceptable if ¢ is rela-
tively small - this is an assumption which is normally made whenever Lagrangian methods are to

be used. In practice we should hope that the cost will be substantially smaller than this. (See
Section 4 for numerical results.}

Once the scalars o; have been obtained, the calculation of a direction of negative curvature
proceeds exactly as described in Section 2.3. Namely the vector E a; u; is formed and a sin-
:Eli(DK)
gle back-solve is used to obtain the direction of megative curvature as the first n components of
the vector v where
M_;{PKTU = E [a ¥R/ 7N
il (Dy)

3.4 Practleal aspects. Range space methods.
Recall, that we assume hy = 0.

Suppose we have a generalised Cholesky factorization P,M,D,MIP{ for H and
P,M,D,MIPT for AH'AT. Thus we may determine vectors k(i € I_(D,)) and
a; (i €1, (Dy)==1I(D;)) such that the h;’s are a set of h_ negalive vectors for H and the a;'s

.. . . hy
are a set of a, positive vectors for AH'AT. Following section 2.2¢, the vector (0) and
SH'AT g TN .
( . @ ) are (g AO ) conjugate vectors, However, we need to satisfy (A 0) u = 0 where
{

ki ~H'ATq;
v=% w(g)+ ¥ a(" ")
icl (D)) i€l (-Dy) !

and the o;'s and §;’s are suitably chosen.

As before, it is computationally more attractive to work with the negative vectors of the
block diagonal matrices D and D, rather than the a;'s and k;’s. Thus we consider the following
development:

It is not difficult to see that one may write, using H — P,M,D\MIPT and
A = P,ND\MTP,

T P M D MI N7y (PT
G o) =0 p) (3 ) (o 5) o 4 (o )
where N = P] APTM[T D' [Recall that hy = 0 =>>D;' exists].
In addition, we note that
MT T PT h,‘ MTPTh'_
( ()l ?}2)(01 1921')(0):( !()l )

and
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(IWIT NT) (P]T 0 ) (—H’IATG,-) _ (—M{P{H’lAra,-{' NTPQTG,-) _ ( 0 )

o M,)\o pf I MyPla; M.Pia;
Thus, writing MTPTh, = u{), MIPZa; = uf® and
e v (P o0y (Moo
ME(O-II)(Q Pz)(N Mz) (PN PyM,)
equation (3.4) becomes
YV P NDuf - S AP M D P =0 (3.5)

i€l (D)) I3 {E 2]

Let the matrix N be made up of columns ND, v (i € I(D,)). By construction these
columns are either single columns or linear combinations of two columns of N. Similarly let T be
made up of the columns MoD,u{® (i € I, (Dy). As M,D,ui" is cither a single column of A, or a
linear combination of two adjacent columns, 7' preserves the "triangular-like” structure of M,.
Moteover, given M, T is trivial to obtain. Defining the vectors @ and § to have elements
a;(i € 1.(Dy)) and #;(i € I, (D)), equation (3.5) becomes

N{| T) (g) =0. (3.6)

Each column of N, and hence N, must be calculated from the definition N = PJAPT M7 D'
As this could prove expensive il many columns of N are required, we try to obtain a solution to
{3.6) which has as few non-zero components of « as possible. As a dependence amongst the
columns of (N | T) may require { + 1 columns, we look for such a dependence in the a.
columns of T and any ¢ — 6, + ! columns at N. Clearly it is not possible to make statements
about a, being close to ¢, but since we are using a range-space method we do at least expect ¢ to
be reasonably small. Certain columns of N are easier to obtain than others. Observing that u Y
is ecither Ve or 7'(11( e + ﬂ,[1]8;+ 1) for appropriate 40 and A%, and that
ND it = PEAP{M{%}”, it is easy to show that DNlu,-[l') may be calculated in about
2
—;—Jr ¢ x ¢ multiplications. (This may be a significant overestimate if A or M, arc sparse).
Therefore it is advisable to select those columns of N corresponding to small indices i in prefer-
ence to larger indices.

Let N be made up of any { — 4, -+ 1 columns of N and let & be the corresponding cle-
ments of a.

Then (3.6) gives

[N:T] [g] =0 (3.7)

Suppose N = [b : B]. A sclation of (3.7) may be found from the solution (;) to the equations
(B: T)(;) = b by letting @ = -1, & ;,, = z; and §; = y;. This later equation is triangular
like and may be reduced to lower triangular form in a similar fashion to that described for

Lagrangian methods. In this case, however 7' is of rank a, and so unlike the Lagrangian case
there is little chance of obtaining "easy” solutions.

4, Numerical Experience.

There are two unresolved issues connected with the methods for calculating directions of
negative curvature suggested in Section 3. Firstly, it has been noted that although the matrix N,
associated with the Lagrangian method, is “triangular-like”, it is not clear just how triangular it
will be. It is obviously desirable that this matrix be small and as triangular as possible. However,
examples may be constructed where it is ¢ X ¢ (in the worst case) and totally dense. Our hope is
that in practice N is much more likely to be almost triangular. Secondly, the efficiency of the
procedure suggested for range-space methods depends crucially upon the number of columns
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t —a, + 1of N needed to determine a dependency among the columns of (N | T). We should
like t — a4 + 1 to be as small as possible.

In this section, numerical results are presented which indicate experience with both of these
isswes. The numerical experiments are by no means exhaustive; it is merely intended that they
illustrate that the approaches discussed in section 3 are viable.

Directions of negative curvature were obtained for EQP’s for which the matrices H and A
were generated {pseudo-) randomly. The number of variables, n, for each problem solved was
fixed at 30, while the number of constraints, ¢, was allowed to vary from 1 to 29. As Lagrangian
and range-space methods are normally only appropriate when ¢ is relatively small (compared to
n}, it would be unlikely that they would be used when H has many negative eigenvalues. The
matrix H was chosen to have 6 negative eigenvalues and for convenience was diagonal. The
matrix A in every case was full.

The results obtained are indicated in Table 1. In each case a direction of negative curvature
was generated whenever possible; the residuals of the constraints Ap for normalized directions of
negative curvature tended to have magnitudes of about 107'® {using double precision on the
Honeywell 6066 at the University of Waterloo).

Lagrangian Range-space
t Number columns Proportion non-zero tea, 41 Approx. Praportion
of N processed super diagomals in Number mults. non-2ero
N to calculate Super-
R diagonals
in 18111
1 1 0/6 1 2 o0
z 1 070 1 3 on
3 1 0/0 1 4 0/3
4 1 a/0 2 a7 2/6
5 1 0/0 2 54 210
6 1 /0 2 &1 2715
7 1 /0 2 68 2/
B 1 070 2 75 2/28
9 1 0/0 3 211 8/36
10 4 0/3 4 547 17745
n 3 071 4 581 16/55
12 4 0/3 4 15 18/66
13 6 /6 4 649 18/78
14 b 0/10 4 683 19/91
15 7 015 4 ni 19/10%
16 8 o 4 751 18/120
17 0 0/36 4 785 18/136
18 16 9/105 5 1417 35/153
19 18 10/136 5 1472 BAN
20 15 107153 5 1527 33/1%0
2 K 28/190 [ 2466 53/210
22 2z 29/210 [ 2547 54/231
23 23 22/23 ] 2628 537253
24 24 27/253 & 2709 54/276
25 25 211216 6 2790 547300
26 26 20/300 3 28n 547325
27 27 24/325 [} 2052 55/351
28 KO DOKC NO DONC KO DONC
2 NO DOKC KRG DONC KO DONC
TABLE 1:

Numerical Experiments with Lagrangian and Range-space Methods.
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For the Lagrangian method, it is seen that for problems for which 1 < ¢ < 17, the matrix
N is already triangular and therefore no effort need be expended to triangularize it. For ¢t > 18,
a small amount of elimination must be performed to triangularize N. Typically between 3 and
15% of the super diagonal elements needed to be ecliminated. In no case did a column have more
than 2 super diagonal elements. Thus, for our text problems, the procedure described for the
Lagrangian methods proved extremely efficient.

In the case of the Range-space method, it is seen that the number of columns of N which
must be computed increases gradually as { increases. We note the effect that an increase in the
number of columns of N has on both the effort to compute N and the number of non-zero super
diagonals of [B | T|. Although the extra amount of work required to find a donec for range-space
rather than Lagrangian methods is relatively small for our test problems, it is significantly more
work than required for the Lagrangian methods themselves. This suggests that it may be prefer-
able to use Lagrangian methods rather than range-space methods for non-convex problems for
which k_ is at all large.

5. Comments and Conclusions

In this paper, different strategies for calculating directions of infinite descent and directions
of negative curvature for the problem EQP have been presented. These methods differ according
to whether a null-space, Lagrangian or range-space method is being used to solve the EQP. Prob-
lems of the form EQP arise in a variety of ways; two common occurrences are as subproblems in
active set methods for quadratic programing and as subproblems in successive quadratic program-
ming methods for non-linear programming. These two applications are slightly different, since for
the first /1 will remain constant whereas for the second H may change (significantly the inertia of
H may change). As a rule, null-space methods should be used if the number of constraints, ¢,
represented in A is large relative to n and Lagrangian or range-space methods when ¢ is small,
In general, this is not known before the sequence of subproblems is solved. However if ¢ is less
than the number of negative eigenvalues of H, it is straightforward to show (see, e.g. Gould
(1983), Theorem 2.1) that there exists a direction of negative curvature for EQP and hence EQP
does not have a finite solution. Therefore, if H has many negative eigenvalues there must be
many constraints active for a finite solution to exist. For quadratic programing applications, a
null-space method should always be used when / has many negative eigenvalues. When H has
few negative eigenvalues the converse does not apply (namely it is not clear which is the best
method to use). For successive Q.P. applications, the changing inertia of /7 will make it more
difficult to select the appropriate method a priori; some upper bound on ¢ may be known and this
may enable a sensible choice to be made.

It is our opinion that, at least from the point of calculating directions of negative curvature,
Lagrangian methods are likely be superior to range-space methods, since, for the former, the only
extra overhead incurred while calculating a donc rather than moving to a minimizer of the EQP
is just that in solving (3.4). Although the solution may require as many as 1/3t* multiplications
(using Gaussian elimination with interchanges), our limited experience is that N is already essen-
tially triangular and a solution may be obtained almost trivially. On the other hand, a direction
of negative curvature for range-space methods may require the calculation of a significant number
of columns in N, each of which is relatively expensive. Furthermore, we require the solution of
(B} T) (;} == b using Gaussian elimination. Here (B | T) can be significantly non-triangular
and the elimination cost could be substantial. A possible remedy for the first drawback is to cal-
culate N during the factorizations of H and AH ' AT . However this can be shown to be
equivalent to finding the generalized Cholesky factorization of K while insisting that row and
column interchanges are only permitted in the leading n X n and remaining ¢ X ¢ block of K.
This is then just a variation on the theme of Lagrangian methods (exemplifying the close connec-
tion between the two approaches).

More generally, one might wish to consider the problem
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BQP': "y Q(P)

subject to  Ap = d

This problem is easily solved by expressing p == p, + pj, where p, is chosen such that Ap, = d
(for instance by solving AA Tp, = d and letting p; = A Tp,, and then solving
minimize 1
v € Er gPiHpat pillp o+ )

subject to  Ap, = 0

For problems which are either structured or sparse, it may be worthwhile compromising sta-
bility of the appropriate factorizations, in order to maintain, to some extent, any available struc-
ture. We have in mind a variant of the generalized Cholesky algorithm for which the choice of
pivotal elements is made with respect to the fill-in which may result. Of course, there should be
some overriding stability restrictions (e.g. threshold pivotling). For range-space methods for qua~
dratic programming, it i3 probably worth spending extra effort in obtaining a factorization of H
which maintains some of the structure in /. For Lagrangian methods, it is possible to insist that
row and column interchanges are made so that the first n X n blocks of the generalized Cholesky
factors of K are the factors of H. This is important since, for the range-space methods just dis-
cussed, it is possible that I/ can be factored, so as to maintain any structure present. Further-
more, if H does not change from one subproblem to the next, the factorization of K will only
change in its last { rows and its last ¢ columns, It is to be expected that simple changes to the
matrix A (as may result from quadratic programming applications) will result in simple changes
to the appropriate factorizations. For a discussion of the changes which become necessary, see
Sorenson (1977) and Bunch and Kaufman (1980).
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