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Derick Wood (1)

ABSTRACT

The union of a set of p, not necessarily disjoint, rectilinear
polygons in the plane determines a set of disjoint rectilinear
polygons. We present an O(n log ) time and O(n) space
algorithm to compute the edges of the disjoint polygons, that is
the contour, where n is the total number of edges in the original
polygons and r the total number in the resulting set. This time-
and space-optimal algorithm uses the scan-line paradigm as in
two previous approaches to this problem for rectangles, but
requires a simpler data structure. Moreover if the given rectil-
incar polygons are rectilinear convex the space requirement is
reduced to O(p) .

1. INTRODUCTION

The contour problem was introduced by Lipski and Preparata [LP] for a
set of rectilinear-oriented rectangles. The union of such a set determines a
set of rectilinear polygons or r-polygons as we call them. The contour prob-
lem is to produce the usual description of these r-polygons, that is as contour
cycles. In [LP] this objective is achieved in two stages. In the first stage an
algorithm to compute the m§es of the resulting r-polygons is given which
requires O(n log n+n log (n/r)) time and O{s) space. In the second
stage the descriptions of each resulting r-polygon is produced in a total of
O(r) time and O(r) space.

Clearly the algorithm in the first stage is not worst-case optimal, Gilting
[G1, G3] was able to design a worst-case-time optimal algorithm for the first
stage, which is based upon the same ideas as [LP] but introduces a more effi-
cient data structure, the contracted segment tree. Later in [G2, G3] he was
also able to find a time-optimal divide and conquer algorithm for the same
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problem.

QOur aim in the present paper is two-fold.

First, we claim that the generalization of the problem to r-polygons,
although minor, gives a unifying framework for the problemt. Both the input
and output data are sets of r-polygons. Morcover r-polygons have recently

become the subject of intensive investigation, since they occur in image pro-
cessing and VLSI design for example, see [MF] and [NLLW].

Second, we also describe an algorithm for the first stage, which is
worst-case time- and space-optimal and uses the scan-line paradigm, but uses
a data structure, the visibility tree, which is a simpler variant of the segment
tree than the contracted segment tree.

In Section 2 we present a high-level approach to the contour problem,
while in Section 3 we present the modified segment tree, the visibility tree,
which we use as our central data structure. This provides us with an
O{nlog n+r) time and O(n) space algorithm for a set of r-polygons with n
edges resulting in a set of disjoint r-polygons with r edges. Moreover when
given p r-convex r-polygons the space requirement is reduced to O(p) .

An r-polygon (rectilinearly-oriented polygon) is a polygon with edges
composed of horizontal and vertical line segments (r-line segments). An r-
polygon P is r-convex if the intersection of P with any horizontal or vertical
line is either empty or a connected set,

2. BREAKING THE PROBLEM DOWN

In this section we introduce our approach to solving the contour prob-
lem, and then present in the following section the necessary data structure,

Let P be the initial set of p r-polygons. Then we have the decomposi-
tion of the problem into two stages.

Stage 1:  Compute the horizontal edges of the set of resulting r-polygons,
R

Stage 2:  Deduce the corresponding vertical edges and output the descrip-
tion of each r-polygon in edge-cycle form.

We assume that Stage 2 is dealt with as in [LP]. We solve Stage 1 by
using the scan-line paradigm, that is we sweep, conceptually, a vertical line
from x = —» to x = +o, and as it sweeps over P we produce the hor-
izontal edges of R, as we sweep along them, see Figure 2.1.

The key observations about the scan-line approach are that, in reality,
we only need to sweep from one vertex to the next one (in sorted x-order),
and that we only need to keep track of the horizontal edges in P which
currently intersect the scan line, the active edges, see Figure 2.1,

However the problem is not as simple as this would lead us to believe,
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Figure 2.1

since horizontal edges in £ may never or may often contribute edges to R. In
other words we have to ascertain whether or not an active edge is currently
visible or hidden with respect to R, ¢f. [OWW)]. Now an edge can only
change its visibility status when a vertical edge is met. There are two kinds
of vertical edges, left and right, see Figure 2.2.

it

(a) (b)

Figure 2.2

On meeting a left vertical edge, Figure 2.2(a), horizontal edges which inter-
sect it becoune hidden if they were not already hidden, and remain hidden
otherwise. On meeting a right vertical edge, Figure 2.2(b), horizontal edges
which intersect it may become visible. In this case their visibility status
depends upon whether or not they are hidden or blocked by previous left
edges of other active r-polygons.

The crucial idea behind our approach is the separation of concerns in
rintaining the visibility status of horizontal edges. First, active horizontal
edges are initiated and terminated on meeting vertical edges. Thus we sweep
through the x-sorted vertical edges rather than the vertices of the 7-polygons.
Second, active horizontal edges need only be represented by points on the
scan line. Third, we partition the active horizontal edges into an H, for hid-
den, set and a V, for visible, set, and these sets are maintained during the
scanning. Finally, vertical edges also act as “blockers” and “unblockers” as
far as the visibility status of active edges is concerned.
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Algorithm CONTOUR

On entry we have a set of p r-polygons P. On exit we have the r directed
horizontal edges of R, the union of P.

begin
1. Sort the vertical edges in P into ascending x-order, the corresponding

x-values we call scan points. Initialize two sets H and V to & , the hid-
den and visible sets of horizontal edges.

2. For each scan point x, corresponding to a vertical edge E and r-polygon
Q, in turn do:

The endpoints of £ may initiate or terminate horizontal edges. Those
which may initiate an edge are used to update H or V accordingly.

2.1 E is aleft vertical edge.
Determine all edges in V which are blocked and add these to H,
removing them from V, and terminating the horizontal edges they
represent, except for any edge in ¥V which belongs to Q.

2.2 E is aright vertical edge.
Determine all edges in H which are unblocked and also become
visible. Add them to V, initiating the horizontal edges they
represent, and removing them from H.

Finally the endpoints of E which may terminate an edge are used to
update H or V accordingly.

end CONTOUR.

A number of details have been ignored in this high-level description,
some of which we now discuss.

‘When sorting vertical edges in Step 1, if two vertical edges have the
same x-projection we always place left edges before right edges in the order-
ing, this prevents the production of horizontal edges of measure 0.

The left vertical edges come in four varieties, see Figure 2.3, as do
right vertical edges. For example the left edge of Figure 2.3(a) initiates two
horizontal edges, while that of Figure 2,3(d) initiates one and terminates
one. This distinction is made in Step 2 of our algorithm. Although direc-
tions are not mentioned explicitly in the body of the algorithm, we assume
that the representation of active horizontal edges includes this information.

Although blocking an active horizontal edge may be done simply by
marking it blocked, unblocking requires more than this binary information.
We could assume each active horizontal edge has a blocking count which is
then reduced by one on meeting a unblocking edge. However a little thought
shows that the initialization of such a value remains a non-trivial task. The
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Figure 2.3

data structure we introduce solves this problem by maintaining information
about left edges of r-polygons, which have not yet been released.

Step 2 requires a data structure for H and V which supports:

6] the insertion of a point, corresponding to a horizontal edge, the
determination of its visibility status, and if it is visible initiating a visi-
ble edge.

(ii) the deletion of a point, corresponding to a horizontal edge, the deter-
mination of its visibility status, and if it is visible terminating a visible
edge.

(iii)  the insertion of a left vertical edge, terminating all newly hidden
edges.

(iv)  the deletion of a right vertical edge, initiating all newly visible edges.

Moreover the data structure should take O(log n) time for actions 0]
and (ii), and O(log n+r) time for actions (jii) and (iv), where r is the
number of edges affected.

In the next section we describe such a data structure,

3. THE VISIBILITY TREE

The data structure, which we call the visibility tree, is basically a seg-
ment tree, for example see [BW] and [LP], with additional information
represented at its nodes. We first give a conceptual description of the visibil-
ity tree, before explaining an efficient representation for it.

The endpoints of the n edges of the r-polygons in P provide at most n
distinct y-coordinate values, y; <y, < .. < Yy - These divide the y-
axis into m+1 intervals or fragments. Letting T be a minimal-height binary
tree with m leaves, we label the leaves from left to right with Yo Y
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The leaf labelled with y; also represents the closed-open interval [y;,y;41) ,
1=i<m, and the m-th leaf represents [y,,v,]. In a natural manner
each internal node « either represents a closed-open interval [y;,y,) , where
y; is the leftmost leaf in its subtree, and y, rightmost, or represents
[v1s¥m) if y, is the rightmost leaf in u’s subtree, Thus the root of T
represents the interval [yy,y,] .

With each node « in T we associate the following values:

(i)  interval(u) , the interval represented by u.

(ii)  hizs(u) , for leaves u only, the number of times the leaf value has been
inserted and not deleted.

(iif) cover(u), the set of r-polygons which cover %, see below.

(iv) visible(u), the set of active points in 7(u) that are visible with respect
to T(u) .

(v)  hidden(u), the set of active points in T(x) that are hidden with respect
to T(u).

Initially, cover(u) = visible(u) = hidden(u) = & , and at any later time
visible(u) N hidden(u) = & , for all nodes in u. Note that for the sets V and
H of Section 2 V == visible(root) and H = hidden(root) . Let E = [y,, yj] ,

1=i<j=m, be a left vertical edge of some r-polygon @, then E is
inserted into T at all nodes u in T which satisfy:

interval(u} C [y;, yj] and interval(parent(u)) & [v;, vl

where parent(u) has the obvious meaning. Each such node u is said to be
covered by E or by Q. It can be shown that at most O(logn) nodes are
covered by any such E, for example see [BW]. Moreover at every covered
node u we add E, and hence Q, to cover(x) . Without more ado we give the
cover-search algorithm for such a tree;

Algorithm COVERSEARCH (T,u,E, Q)

On entry a visibility tree T with root u, and an edge E = [yi,yj] ,
1=i<j=m, of r-polygon Q. On exit the nodes covered by E are given.
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begin
if « is a Jeaf then
if interval(u) C F then report u;
return
else {u is not a leaf }
it interval(u) G E then
report u;
return
else {¢ £}
begin
if interval{lef(u)) N E + & then
COVERSEARCH(T, lefi(u), E, Q);
If interval(right(u)) NE # @ then
COVERSEARCH(T,right(u), E, Q) ;
return;
end
end COVERSEARCH.

It is important to note that visible(x) and hidden(u) can be reconstructed
from the corresponding sets at u's children. In other words:

if cover(u) = & then
visible (i) : = visible{left(1)) U visible(right(s)) ;
hidden(u) := hidden(lefi(u)) U hidden(right(u))
else
visible(u) := @&
hidden(u) := hidden(lefi(u)) U hidden(right(u))
U visible(left(u)) U visible(right(u)) ,

where left(u) and right(u) have the obvious meanings.

Whenever vertical edge £ is inserted into or deleted from T we update
the visible and hidden sets for all nodes which E covers and for all ancestors
of these nodes. Fortunately E not only covers at most O(log m) nodes, but
also these nodes have at most O(log m) ancestors. Of course this updating
need only be carried out when cover(x) becomes either empty or non-empty.
Now forming the union of two sets may take O(a) time, but we discuss
below how to avoid this.

It only remains to discover the newly hidden and newly visible points on
inserting a left edge E into T or deleting a right edge £ from T, respectively,
Assume E, a left edge, covers node u, cover(u)={, and
visible(u) # & . Then not only do we obtain cover(x) = {E}, but also
visible(u) becomes (&, since all points in visible(u) are now hidden.
However they may not be newly hidden, since some ancestor of  may be
covered already by some other edge. Fortunately during COVERSEARCH we
can keep track of the cover status of every covered node, and therefore also
report this. We introduce a boolean parameter upcover for this purpose.
The modification of COVERSEARCH(T,u,E,Q,upcover) is left to the
interested reader. Summarizing we have for a left edge E which covers a
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node u, with cover(u) = & and visible(u) + @ :

Set cover(u) to {E} ;

if not upcover then terminate all edges in visible(u) ;
Set hidden(u) to hidden(u) U visible(u) ;

Set visible(u) to & .

This deals with the termination of horizontal edges. We now consider
their initiation.

On meeting a right edge E of an r-polygon 9, we need to determine the
left edges of @ or portions thereof which are released by E. Now
although many edges of Q can be released, we cannot release ‘territory’
which we don’t own, that is the relationship of a right edge of Q to the
remaining portions of its left edges at the current scan point can only be of
the forms shown in Figure 3.1 (a)-(d). We cannot have Figure 3.1 (e) since
this would involve releasing an unblocked interval, corresponding to a cavity
or holein Q .

(a) (b) (c) (d) (e)

Figure 3.1

To find the edges to be released by a right edge of Q it suffices to determine
which left edges are stabbed by its endpoints, remove all left edges in
between and modify the stabbed edges appropriately. To find all edges in
between efficiently, it suffices to keep with each left edge E (or portion
thereof) of O the predecessor and successor adjacent left edge (the ones hav-
ing an endpoint in common with E) of Q in T. These are then deleted from
T. Dealing with the two, at most, stabbed edges is also straightforward, first
delete them and then re-insert their remnants. Thus we only have to
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consider how we determine the points which become the starting points of
newly visible edges.

Consider a node u which is covered by E a released left edge of Q.
Then we can recompute visible(x) from its children. Visible(u) contains,
however, only candidate visible edges, since they may still be blocked further
up the tree. But once more we can make use of parameter upcover to dis-
cover whether or not this may be the case, as in insertion.

We have, in the foregoing, concentrated exclusively on actions (iii} and
(iv) on the visibility tree, so we now turn, belatedly, to actions (i) and (i),
‘the insertion and deletion of a point y, that is a horizontal edge. In both
cases we search for the leaf u representing y in the tree. If y is inserted then
hits(u) := hits(u)+1 and if  hits(u) becomes non-zero then
visible(u) 1= {y} if cover(u) = & and hidden(u) := {y} otherwise. If y is
deleted then hits(u) := hits(u)—1 and if hits(u) becomes zero, then
visible(u) := & and hidden(u) := @ . In both cases the visible and hidden
sets are updated for all nodes on the search path, and their corresponding
edges are initiated or terminated if necessary. The interplay of endpoints and
their vertical edges in the maintenance algorithms needs to be handled care-
fully.

An Efficient Representation

The visibility tree as described so far has two disadvantages. First, it
requires disjoint-set union to be performed during updating, which because
new copies are, apparently, required adversely affects the update time.
Indeed a pessimistic estimate leads to an O(n log m) worst-case time bound
for one update! Second, it apparently requires O(n log m) space. We over-
come these disadvantages one at a time, resulting in Theorems 3.1 and 3.2
below.

To avoid copying of sets during a disjoint-union operation we keep only
one global copy, essentially, of the hidden and visible sets associated with the
root of the visibility tree. These are represented as doubly-linked lists, we
denote them by GH and GV, respectively. Initially they are both empty. At
each node u in the tree hidden(u) is represented by two pointers, firsth(u)
and lasth(u), which are both nil if hidden(u) is empty and, otherwise, point to
the first and last elements of hidden(u) in GH. Thus the elements of hidden(u)
must appear consecutively in GH. We will show this to be the case below.
Similarly visible(u) is represented by two pointers firstv(u) and lastv(u).
However in this case they either both point into GV or both into GH. The
reason for this is that visible(u) is the set of points visible with respect to
T(u), however they may be blocked further up the tree and, therefore be hid-
den globally,

With this representation the operation:

visible (u) 1= visible(left(u)) U visible(right(u))
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can be carried out as the simple catenation of two doubly-linked lists, that is
lastv(lefe( u ) should point to firsev( right(u)) and vice versa

while

firstv(ie) 2= firstv(left(u))
and

lastv(u) := lastvright(u}).

Note that the order of the elements in visible(left(u)) and in
visible(right(u)) is not disturbed by their contenation. Thus the visible and
hidden sets at nodes in T(«) are unaffected by this operation.

Again we leave the details to the interested reader, only pointing out
that we have replaced a putatively O(n} time union with a constant time
union, Moreover we have reduced the space requirements for hidden(r) and
visible(u) to a constant rather than O(n) .

We overcome the second disadvantage by recognizing that we only need
keep the size of cover(u) rather than cover(u) itself at each node u, cf. [LP).
Thus each node only requires constant space and deletion of an edge is now
easily seen to be symmetric to insertion of an edge. In other words we no
longer require the appearance linking of [BW].

Finally, it is now straightforward to determine that actions (i) and (ii)
require O(log m) time. This follows because a search requires O(log m)
time, the updating at the corresponding leaf requires constant time, and
recomputing visible and hidden sets at an ancestor also requires constant time
(the catenation of at most four lists), thus O(log m) time over all.

For actions (iii) and (iv) COVERSEARCH requires O(log m) time and
the updating at all nodes visited during the search also requires O(log m)
time. Finally the initiation or termination of e edges requires Ofe) time,
giving O(log m+e) time overall. Thus we have proved:

Theorem 3.1 A visibility tree with m leaves supports actions (i) and (ii) in
O(log m) time, and actions (iii} and (iv) in O(log m+e) time, where e is the
number of edges initiated or terminated.

The space requirements for the visibility tree during CONTOUR consists
of at most O(n) for the cover sets, since we only need to keep the size of
cover(u). Morcover the visible and hidden sets also require O(n) space,
since each of the n points appears at most once in the global hidden and visi-
ble lists, and constant space is required at each node. Thus the tree requires
O(n) spacesince 2=m =< pn .,

Combining this calculation with Theorem 3.1 we obtain:
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Theorem 3.2  Given a set of r-polygons consisting of n edges, the horizon-
tal edges of the resulting disjoint r-polygons can be computed in O(n log n+r)
time and O(n) space, where r is the number of edges in the resulting r-
polygons.

Finally, if the given r-polygons are r-convex, then the space require-
ment can be reduced since we only need keep one spanning interval, rather
than a sequence of adjacent vertical edges, for each r-polygon. Rather than
inserting and deleting an edge directly, a new spanning interval is computed
and inserted. Thus we can obtain:

Theorem 3.3  Given a set of p r-convex r-polygons consisting of n edges,
the horizontal edges of the resulting disjoint r-polygons can be computed in
O(n log n+r) time and O(p) space, where r is the number of edges in the
resulting r-polygons.
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