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ABSTRACT

Two or more geometrical objects (solids) are said to be
connected whenever their union is a connected point set in the
usual sense. Sets of geometrical objects are naturally divided
into connected components, which are maximal connected sub-
sets. We show that the connected components of a given collec-
tion of n horizontal and vertical line segments in the plane can
be computed in O(nlogn) time and O(n) space and prove that
this is essentially optimal, The result is generalized to compute
the connected components of a set of n rectilinearly-oriented rec-
tangles in the plane with the same time and space bounds.
Several extensions of the results to higher dimensions and to
dynamic sets of objects are discussed.
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1. INTRODUCTION

We say that two planar geometrical objects intersect or overlap if they
have at least one point in common. Given a set of such objects its connected
components are defined as the equivalence classes of the relation defined as
the reflexive transitive closure of the intersection relation. Moreover given
such a set the following five connectedness problems arise naturally:

(a) Do the objects form a single connected component?
(b) Are the objects completely disconnected?

(¢) How many connected components are there?

(d) Which is the largest component?

(e) Which is the largest pairwise connected component?
(f) What are the connected components?

It should be clear that a solution for problem (f) also solves problems
(a)-(d), although not necessarily in an optimal fashion. Problem (e) can also
be solved beginning with the solution for problem (f) and checking which
components include all pairwise connected objects. Hence we restrict out
attention to problem (f), which we call the Connected Components Problem.

In the present paper, we primarily consider rectilinearly-oriented line
segments and rectangles in the real plane (2-space, for short), that is only
consisting of line segments parallel to one or other of the coordinate axes.
Therefore, from here on in, we assume all line segments and rectangles
under discussion to be rectilinearly-oriented.

Extending our techniques to arbitrary planar geometrical objects can be
done as in Edelsbrunner [E2), that is using bounding boxes. In particular the
approach presented in Section 3 for rectangles can be adapted, using the
bounding box approach, to deal with arbitrary objects. We conjecture that
this method will perform well in most cases.

If one can easily decide whether or not two objects of a given type are
connected (as in the case of line segments and rectangles), then one can con-
sider computing the transitive closure of the connectedness relation by stan-
dard methods, for example see [AHU]. However since there are O(n?)
pairwise intersections, such an algorithm would require Q(n?) time in the
worst case. Thus we are led to iteratively computing connected components
using the sweeping line technique, a powerful paradigm, first used by [SH] in
computational geometry, and subsequently considered in its own right in
[NP]. This we detail in Section 2, while in Section 3 we show how the algo-
rithm can be generalized to solve the same problem for rectangles. In both
cases O{n log n) time and O(n) space are achieved. The algorithm will be
shown to be essentially optimal. In Section 4 we discuss how the connected
component problem can be solved for d-ranges ( d-dimensional rectangles) in
d-space for 4 = 3. In this case a completely different approach seems to be
appropriate.



Computing the Connected Components 3

It should be pointed out that we only consider static sets of objects in
this paper. To deal with dynamic sets, some of the techniques of [OL] may
be applied. None of the results seem to be anywhere near optimal and we
leave the dynamic case open for further investigation.

Finally, in [IA] a solution to problem (e} for rectangles has been
derived. Moreover they point out that problem (e) is the maximal clique
problem for the corresponding intersection graph.
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2. HORIZONTAL AND VERTICAL LINE SEGMENTS

Let an arbitrary set of n horizontal and vertical line-segments be given.
We shall derive an O(n log n) time and O{n) space algorithm to compute
its connected components. Clearly the space requirement is optimal. But so
is the time bound, as the following observation shows:

Observation 2.1: Computation of the connected components of a set of n
horizontal and vertical line segments requires Q(n log n) time in the worst
case.

Proof: Consider the very special case in which the line segments have
length 0. Any algorithm to compute the connected components in this case
would solve the ELEMENT UNIQUENESS problem for the set of points,
which is known to require (nlogn) steps in the worst case in a very rea-
sonable mode! of computation (see {DL]). O

The algorithm we shall present computes the connected components
using the plane sweep paradigm that has been successfully used for a number
of similar problems (consult Nievergelt and Preparata [NP] for an excellent
discussion of this paradigm.)

While the sweeping line scans the plane from left to right, a data struc-
ture is maintained in which the active components of the line segments met up
until now are represented. A component is active if it intersects the sweeping
line, that is if it contains at least one horizontal segment which intersects the
sweeping line. Three operations need to be supported and these are

(i)  the insertion of a component,
(ii) the deletion of a component, and

(ili) the detection of all active components that intersect a vertical line seg-
ment and the merging of these components.

Let us first present the overall structure of the algorithm and then dis-
cuss the accompanying data structure and the three operations in more detail.

A line segment will always be represented as [x,,y,,x;,y;,], where
(x,3) and (x,,y,) are its endpoints and (x,,y,) = (x,,y,) in the usual
lexicographical ordering of the plane. We will assume for the sake of simpli-
city that for every two given vertical line segments [x,,y{",x,,y{?]
O S yP) and [5,)0,5.00] O = yP) we have x, #z, and
that, likewise, the y-coordinates corresponding to different horizontal line
segments are different. The restrictions will be removed at the end of this
section. Note that we do not make a distinction between points, that is line
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segments of length 0, and non-degenerate line segments.

The algorithm begins by sorting the x-coordinates of all line segments in
the set. The sweeping line proceeds down the sorted list of values, the
sweeping points, and carries out an operation, depending on whether the
coordinate value represents the left or right end of a horizontal line segment
or the position of a vertical line segment. See Figure 2.1.

sweeping
line

Plane-sweep from left to right

Figure 2.1

Whenever we only represent a single coordinate value, as above and
throughout the paper, we will always augment the representation so that we
can retrieve the entire line segment to which it belongs in O(1) time.

At each position of the sweeping line the line segments which it has met
so far determine connected sub-components of the components of the set.
These are of two kinds. First, there are those sub-components which are,
indeed, connected components of the set and are wholly to the left of the
sweeping line. These are said to be inactive components, since they cannot
be further changed. The other sub-components are said to be active, since at
least one line segment in each of them cuts the sweeping line and, moreover,
they are, potentially, incomplete.
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The following observation summarizes the essential idea of the plane
sweep algorithm,

Observation 2.2: Two disjoint components have only to be merged when
a vertical line segment which intersects both of them is met.

The plane sweep algorithm carries out one of the following three opera-
tions on processing a new x-coordinate.

(1) If it is the left end of a horizontal line segment, this line segment is
inserted into the supporting data structure as a new connected com-
ponent.

(2) If it is the right end of a horizontal line segment, this line segment is
deleted from the supporting data structure. However, since this line
segment is a member of exactly one component only this component
needs to be changed. This might lead to an active connected component
becoming inactive, but in general this is not the case.

(3) If it is the x-coordinate of a vertical line segment a query is invoked ask-
ing for all active connected components which intersect it. The deter-
mined components together with the vertical line segment are merged
into one new connected component.

The algorithm takes the obvious measures to maintain the validity of the
set of components it keeps, when a next “endpoint”, etc. is reached. Thus
its correctness is assured as long as the supporting data structure and its
operations are specified correctly.

The following paragraphs are devoted to a description of the data struc-
ture which supports the three operations of insertion, deletion and query
defined above.

The data structure consists of three basic parts corresponding to three
different representations of the components.

(I  The connected components, as they are known up to a given point, will
be represented as disjoint sets as in any solution to the common
UNION-FIND problem (cf. [AHU]). We call this the union-find struc-
fure. We never remove components from this structure, hence on ter-
mination it contains all the connected components. Since there can be
at most n connected components when given n line sepments, there can
be at most n—1 UNION operations. Also the algorithm will never
execute a FIND operation, since we shall determine the component an
object belongs to by using the other structures. Hence, using one of
the structures proposed in [AHU] allows this to be implemented in
O(n) time and space.
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Each active connected component is represented by the interval defined
by its current topmost and bottommuost intersection with the sweeping
line, which demarcate the active interval of the component. This active
interval is, in fact, determined by active horizontal line segments in the
connected component. These active intervals are represented in two
distinct dynamic data structures, which together are called the active
structure. The first is a balanced search tree which houses the y-
coordinates of the endpoints of the active intervals, for example an
AVL tree, see [AHU]. The structure not only cross-references the
endpoints of the active intervals, but also their components. We cail
this structure the intersection tree. It supports insertions and deletions
of active intervals in O(logn) time. Moreover given a y-interval, all
active intervals, currently in the structure, which it intersects or
encloses, but is not enclosed by, can be determined in O{logn+k)
time, where k is the number of reported active intervals. The second
structure is again a balanced search tree which houses the y-coordinates
of the endpoints of the active intervals. However, in this case the nest-
ing structure of the active intervals is represented. That the active
intervals do, in fact, have a nesting structure is the substance of the
following:

Lemma 2.3: Let § denote the set of active intervals on the
sweeping line at some sweeping point, and let i and j denote two
arbitrary active intervals in § .

Then cither i and j are disjoint or one encloses to other.

Proof: Any two points x and y on the sweeping line that belong
to the same component are connected by a simple plane curve tracing
segments of the current component only. Consider two active intervals
i and j on §, and suppose that they are neither disjoint nor nested,
then there are points «, and B, on i and a, and B; on j such
that, when using the linear ordering of points on §

a, ¢ [ap ﬂ]]: B; ¢ [«,B], and [a, B]N [ap Bj] 4 .

It follows that the connecting curves of «, and B, and o, and B,

must intersect, contradicting the fact that their components are disjoint.
a]

This leama leads to the following:

Observation 2.4 All active intervals which enclose the query
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interval are totally ordered with respect {0 enclosure. Consequently,
only the smallest enclosing interval may potentially be associated with a
component which intersects the vertical line segment corresponding to
the query interval.

The purpose of the second structure, which we assume to be

implemented by the parenthesis tree [GW], is to find the smallest active
interval enclosing a given query y-interval. This query requires
O(logn) time as does insertion and deletion. This could also be
implemented by way of priority search tree [M].
For each active component we maintain the left endpoints (called ghost
points) of those horizontal line segments in it which still intersect the
sweeping line and (thus) extend to its right. Effectively, the y-
coordinates of the ghost points immediately tell us at what points the
given component currently intersects the sweeping line. We call this
structure the ghost structure. In Figure 2.2 A and D define an active
interval while B and C are the ghost points of the active connected
component.

The ghost structure consists of a balanced search tree, the ghost
tree, for each active connected component. Each such tree contains the
ghost points of the component, represented by their y-coordinates.
Clearly such a structure allows an insertion and a deletion to be carried
out in O(logn) time. Given a query y-interval and an active con-
nected component, the query determines whether or not one of the
ghost points of the component lies within the y-interval. This requires
O(logn) time.

Having defined the various supporting data structures, we now are in a

position to consider the three possible actions of the plane sweep algorithm in
more detail.

2.1. On Meeting a Horizontal Line Segment

Horizontal line segments serve to introduce new active components and

to possibly transform an active component into an inactive one.

On meeting the left endpoint of a horizontal line segment add a new

connected component to the union-find structure and add a new active inter-
val to the active structure. No ghost points are created at this time.

On meeting the right endpoint of a horizontal line segment, the point

must be deleted from either the active structure of from the ghost structure.

In the former case one of three possibilities occurs:
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Connected component with its active interval and ghost points

Figure 2.2

@) the active interval is determined solely by this line segment, in which
case its component becomes inactive,

(ii)  the active interval collapses into a single point since the ghost struc-
ture for this component is empty, or

(ifi)  the ghost structure for this component is not empty, in which case the
closest ghost point becomes the new endpoint of the active interval.

Observe that the closest ghost point is the ghost point with either minimum or
maximum y-coordinate in the ghost tree for this component. Hence it can be
determined and deleted from the ghost tree in O(logn) time.

2.2. On Meeting a Vertical Line Segment

Disjoint active components are merged whenever a vertical line segment
(that is a query interval) is met which is connected to both of them. To see
how these disjoint components are to be determined on meeting such a query
interval we make use of Lemma 2.3, Observation 2.4, and the following:
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Observation 2.5 If an active interval intersects the query interval but
does not enclose it then the associated component intersects the vertical line
segment corresponding to the query interval.

This suggests the following strategy to determine all components which
intersect & query interval.

First, determine all active intervals which intersect the query interval,
but do not enclose it. For this purpose use the intersection tree.

Second, determine the smallest active interval enclosing the query inter-
val using the parenthesis tree. If such an interval exists, query its
corresponding ghost tree to determine whether or not any of its ghost points
lie within the query interval.

By our previous comments these queries require O(logn+k) time in
the worst case, where k is the number of reported active components.

If no active component is found, then the vertical segment correspond-
ing to the query interval is a connected component in its own right (no future
line segment can intersect it because of our insistence on unique x- and y-
coordinate values). Hence it should be added to the union-find structure as
an inactive singleton component.

If only one intersecting active component is found, then no action need
be taken, apart from adding the line segment to the active component in the
union-find structure.

In the remaining case at least two active components, which intersect the
query interval, have been found. Thus the corresponding disjoint sets of line
segments in the union-find structure need to be merged, and the vertical line
segment is added to the resulting set. However this is not all. The active
and ghost structures need to be updated also. We consider the merger of two
components, since the merger of more than two can be always be realized as
a sequence of these simpler mergers.

In the active structure, the two inner endpoints of the two active inter-
vals must be deleted and re-inserted as ghost points in the ghost structure
after it has been modified. Also the representation of the two outer end-
points must be modified to reflect their new role. Each update requires
O(logn) time.

In the ghost structure the two sets of ghost points also should be merged
to give one new ghost tree. Fortunately because of the observed properties
of active intervals we find that the only kinds of mergers that can occur are:

(1) The merger of two disjoint sets in which all the points in one precede all
the points in the other.

(2) The merger of two disjoint sets in which the points in one fall in
between two points in the other.

Alternative (2) corresponds to a SPLIT followed by two MERGE operations.
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A structure which supports these five operations is known as a concatenable
queue and in [AHU] it is proved that height-balanced trees support each of
these operations in O(logn) time using O(n) space.

2.3. Removing the Restrictions

We are only left with the problem of how to relax the restrictions on
endpoint x- and y-coordinate values. Two horizontal (vertical) line segments
which have the same y- (z- ) coordinate may cause troubles only if they over-
lap. But these line segments can be merged into a new line segment in a
preprocessing step of the algorithm. It is readily seen that O(n log n) time
suffices to merge all the troublesome line segments.

To summarize the results of this section we have demonstrated:

Theorem 2.6 The connected components problem for n vertical and hor-
izontal line segments in the plane can be solved in O(nlogn) time and O(n)
space.
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3. RECTANGLES

We assume the rectangles are presented as a quadruple defining their
four corner points. In following through the plane-sweep approach we see
that only two cases (as against three for line segments) have to be treated,
namely:

(i) meeting the left end of a rectangle, and
(i) meeting the right end of a rectangle.

We once more assume that we have three structures, a union-find, an active
and a ghost structure to represent the components met so far. Although the
union-find and active structure are identical the ghost structure does have
differences since it must deal with ghost intervals rather than points. For
example in Figure 3.1, A-H defines one active interval, while A-D, B-C and
G-H define its ghost intervals. Fortunately Observations 2.4 and 2.5 still
hold and hence the strategy outlined for vertical line segments in Section 2.2
still holds, Thus the modified ghost tree has to be able to support the query:

Is there a ghost interval which intersects the given query interval?

Observe that this query can be solved in O(1) time, when given the result of
the following query:

How many ghost intervals intersect the given query interval?

This is called a stabbing query, and in [GMW] a balanced tree structure
is provided which enables such queries to be answered in O(logn) time and
also allows an insertion or a deletion to be carried out in O(loga) time.
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Active and ghost intervals of rectangles

Figure 3.1

If no ghost interval intersects the query interval then it forms (together
with the connected components detected by the active structure) the basis of a
new component and the appropriate structures need to be updated. Other-
wise it forms an additional ghost interval of an active component which con-
sists of the detected components.

On meeting the right end of a rectangle, the corresponding ghost or
active interval is deleted. In the latter case a new active interval is obtained,
possibly empty.

Hence we have shown:

Theorem 3.1 The connected components problem for n rectilinear rectan-
gles can be solved in O(nlogn) time and O(n) space.
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4. GENERALIZATION TO HIGHER DIMENSIONS

The obvious generalization of the algorithms presented in the previous
sections is to sweep the d-dimensional space, for d no less than three, by a
(d—1)-dimensional hyperplane. However, we do not know how to imple-
ment these algorithms efficiently. Because of this we use a simpler approach
which we now sketch.

Initially insert all n d-dimensional rectilinear objects in some data struc-
ture D, that efficiently supports intersection queries and deletions of
objects. Such structures have been described by Six and Wood [SW],
Edelsbrunner [E1], and Edelsbrunner and Maurer [EM] and a method to
speed-up deletions was developed by Overmars and van Leeuwen [OL].
Additionally, choose an arbitrary object, let it be the only member of a queve
and delete it from D . (This object is initially called the next object in the
queue.)

A single step takes the next object in the queue, performs an intersec-
tion query with it on D, inserts all intersecting objects into the queue, and
deletes them from D .

This single step is performed until the queue is empty. At this stage all
objects that have been added to the queue form one connected component. If
D is now empty the algorithm terminates, otherwise the whole process is
repeated to find the next connected component.

From the results presented in Edelsbrunner [E1] and Edelsbrunner and
Maurer [EM] we know that the above algorithm can be carried out in
O(nlog®n) time and requiring O(nlog?~'n) space for n d-dimensional rec-
tilinear rectangles. However, whether or not this is optimal remains as an
open problem.
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