A Partial Pivoting Implementation
of Gaussian Elimination for Sparse Systems

Alan George
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA

CS-83-15
May 1983

A partial piveting implementation ¢f Gaussian elimination
for sparse systems*

Alan George
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Cntario, CANADA

Research report CS-83-15
May 1983

ABSTRACT

In this paper, we consider the problem of solving a sparse nonsingular
system of linear equations. We show that the structures of the triangular
matrices obtained in the LU-decomposition of a sparse nonsingular matrix A
using Gaussian elimination with partial pivoting are contained in those of the
Cholesky factors of ATA, provided that the diagonal elements of A are
nonzero. Based on this result, a method for solving sparse linear systems is
then described. The main advantage of this method is that the numerical
computation can be done using a static data structure. Numerical
experiments comparing this method with other implementations of Gaussian
elimination for solving sparse linear systems are presented and the results
indicate that the method proposed in this paper is quite competitive with other
approaches.

+ Research was supported in part by the Canadian Natural Sciences and Engineering Research Council
under Grant AB111,

1. Intreduction

In this paper, we consider the direct solution of the system of linear equations
Ax=1Db ,

where A is a given nXn matrix, b is a given n-vector, and x is the n-vector to be computed.
We assume that A is sparse, nonsymmetric and nonsingular. One of the most popular
techniques for solving such a linear system involves computing an LU-decomposition of A
using Gaussian elimination with partial pivoting. That is, A is decomposed into

A=PLPL,---P L U,

where P, is an nXn permutation matrix corresponding to the row interchanges in step %, L,
is an nXn unit lower triangular matrix whose k—h cclumn contains the multipliers, and U is

an nXn upper triangular matrix. Then the solution to the original linear system is obtained
by solving the systems

PLPLy--P, L,_y=b,
and
Ur=y .

Given a sparse matrix A, it is clear that fill-in will occur during the decomposition
process; that is, nonzeros may be created in positions where there are zeros in A. Thus,
space has to be allocated not only for the nonzeros in A, but also for the fill-in. Note that
the row interchanges depend on both the structure and the numerical values of A (and of the
subsequent reduced matrices). Furthermore, the structures of the triangular matrices L,’s
and U also depend on the structure of A and the row interchanges. Thus, one cannot predict
where fill-in will occur before the numerical decomposition begins, since the row
interchanges are mot known beforehand. Consequently, it is common practice in the
implementation of sparse LU-decomposition with row interchanges to allocate space for any
fill-in during the numerical computation phase. (That is, one uses a dynamic data structure.)
Most computer packages that compute an LU-decomposition of a sparse matrix with row
interchanges use a dynamic data structure. This usually results in substantial overhead in
both storage requirements and execution time.

In this paper, we show that the structures of the triangular matrices L, and U are
contained in the structures of the Cholesky factors of the symmetric positive definite matrix
ATA, as long as the diagonal elements of A are nonzero. Suppose ATA is sparse. Since it is
possible to determine the structure of the Cholesky factor of ATA efficiently from the
structure of ATA, this gives us a scheme for implementing the LU-decomposition of A using
Gaussian elimination with partial pivoting. The attractive feature of this scheme is that a
dynamic data structure is not needed. By analyzing the structure of ATA, we determine the
structure of the Cholesky factor of A”A and set up a storage scheme. Then we simply use
that static storage scheme in the numerical decomposition of A using Gaussian elimination
with partial pivoting.

The proposed scheme assumes that ATA is sparse if A is sparse, but there are
examples in which ATA is dense even though A is sparse. This usually occurs when a
relatively small number of the rows of A are dense. We propose a technique to handle these
dense rows so that we only have to compute the LU-decomposition of a sparse submatrix of

A.

An outline of the paper is as follows. In Section 2 we derive the main results which
show that the structures of the triangular matrices L, and U are contained in those of the
Cholesky factors of A"A. The effect of permuting the columns of A is examined in Section
3. In Section 4 the proposed method is described and in Section 5 it is compared with other
implementations of Gaussian elimination for solving sparse linear systems. Numerical
experiments are also provided to compare the performance of the various implementations in
Section 5. We consider the effect of dense rows and propose a‘technique to handle them in
Section 6. Finally, some concluding remarks are provided in Section 7.

The structure of the Cholesky factor of ATA is also used in the solution of sparse ieast
squares problems min| Ax—5| , [14] and underdetermined systems of linear equations A7x=5

[15], where A is mXn, with m=n.

2. Preliminary results

Lemma 2.1 (Duff [1])

Let A be a sparse nonsingular matrix. Then there exists a permutation matrix @ such
that the diagonal elements of QA are all nonzero.

The matrix QA is then said to have a zero-free diagonal. The problem of finding such
a permutation matrix is a well-known one and it is sometimes called the assignment problem.
See [4] for a description of this problem and [5] for an efficient algorithm for finding Q.

Since Lemma 2.1 is true for every nonsingular matrix A, we may therefore assume
that the rows of the given matrix A have already been permuted. That is, in the remaining
of this section, we assume that A has a zero-free diagonal.

The following notation will be used throughout the discussion in this section. Let A
be a sparse nXn matrix. The (i,f)-element of A is denoted by A,. The set of subscripts of
the nonzeros of A is denoted by NONZ(A). That s,

NONZ(A) = {(i,))| A,#0} .
Furthermore, we will assume that exact cancellation does not occur.

The following result, which we state without proof, is an irnmediate consequence of
the fact that A has a zero-free diagonal. It says that NONZ(A) is contained in NONZ{A7A).

Lemma 2.2

Assume A has a zero-free diagonal and let B=ATA. If A,#0, then B, #0. That is,
NONZ(A)CNONZ(ATA).

Now consider applying the first step of Gaussian elimination to A with partial

pivoting.
auT] 10{(114’]
PA=1 EJ= | ,[loF

o

-4-

Here P, is an n X n permutation matrix chosen so that
le| = v]. .

Assume P, interchanges rows 1 and s of A (1=s=n). Then we have

a#0.
For simplicity, we assume that
W= (uz,ua, cee ,uﬂ)
and
v = (vz,vs, e :V..) .
We also assume that
Ey Eyy - By, Foy Fyy ==+ Fy,
Eyp Ey -+ - E,, Fy Fys » -+ Fyy,
E=]" and F =
Eann3 o Enn Fn2FaEl e an

Note that if s#1, then, because A has a zero-free diagonal and since partial pivoting is used,
u,=A,#0 and v, =A,#0.
It is easy to see that
F =E—-—vu
Thus,
NONZ(F) = NONZ(E)|J NONZ(vu') .

We now consider the structure of F more carefully. First suppose s=1. Then P,=I and
E,=A,#0 for 2=i=n, since A has a zero-free diagonal. Hence F,#0 for 2=si=n. If s#1,
then E,=A,#0 for 2=<i=p and i#s, but E,,=A,, may be zero. For 2=</=<n and i#s, clearly

F,= Eu—%v‘u, #0 .

For i=s,

Flr = E"—lv_,u, # 0 ’
o
since », and v, are both nonzero. Thus we have proved that all the diagonal elements of F

are nonzero.

Theorem 2.3
The (n—1)X (n—1) matrix F has a zero-free diagonal.

Corollary 2.4
NONZ(F) C NONZ(F'F) .

Consider the #X#» symmetric positive definite matrix B=A7A.
B = ATA = ATPTPA = (P,AY (P,A)
[u v"] [a u"] _ [az+v7v o’ + er] _ [ﬁ wT]
" \au+Ev wd +EE) W G
where B=a?+v'v, w=au+ETv, and G=un’+ETE. Applying the first step of Cholesky
decomposition to B, we cbtain

L
i 2] [\/‘0]][Vﬁva'
- 0H)\O 1

where
1
H=G-—ww .
B
The following results show the relationship between the structures of ¥, H, u, v and w,

Theorem 2.5
NONZ(F) C NONZ(H) .

Praof:
First note that

H= G-‘%ww" = E'E+u — é—(azuur+uE’vu"+auv"E+E’vv’E) .

Thus, assuming exact cancellation does not oceur,
NONZ(H) =
NONZ(E"E}\) NONZ(uu") | NONZ(ETvi") |y NONZ{(wv"E) | NONZ(E"TW'E) .
Also note that
FTF = (E— %vu")r(E - -i—-vu") E'E- uv’E-— —-E"' vl + l-r-v—uu"' .
U.

Hence,
NONZ(FTF) = NONZ(ETE)|) NONZ(uv"E)|J NONZ(ETvi"){) NONZ(uu") ,
C NONZ(H) .

Using this observation, together with Corollary 2.4, we can now conclude that

-6-

NONZ(F) C NONZ(H) .

Theorem 2.6
(1) NONZ(u) C NONZ(w) .
(2) NONZ(v) C NONZ{w) .

Proof:
It is obvious that NONZ(u)CNONZ(w), since w=au+ETv.

Now consider the structure of v. First assume that s=1. Then E,=A4,#0 for
2=<i=<n. Note that

w; = au+ E“: Eyv, = aw,+Ev,+ Eﬂ E.v, , for 2=<i=n .
7
Thus, w,#0 if v,#0.
On the other hand, suppose s#1. For i#s, E;=A4,+0 and

a

w, = au+Ev+ 3 Egv, .
k=2
k#i

Thus, if v,#0, then w,#0. For i=s, E, may be zero, but v,#0 and u,#0. Hence
n
w, = ou,+ 3 E v, #0 .
. k=2
This shows that NONZ(v)CNONZ(w).

Theorems 2.5 and 2.6 show that, at least for the first step of the LU-decomposition
of A, the structures of x, v and F are contained in those of w and H. These two results can
be extended to cover the complete LU-decomposition of A using Gaussian elimination with
partial pivoting. Recall that F is (n—1)X(n—1) and has a zero-free diagonal, and H is
(n—1)x(n—1), symmetric and positive definite. Thus we can consider the LU-
decomposition of F and the Cholesky decomposition of H. Indeed, by applying Theorems
2.5 and 2.6 recursively to the matrices F and H, we obtain Theorem 2.7 which is an
extension of Theorems 2.5 and 2.6,

Before stating Theorem 2.7, we first introduce more notation. Consider the two
sequences of matrices:

{FoFpw oy . .. pa-n}
and
{go. g0 go ... ge-v}
where F(%=A and H®™=ATA. For k=1,2, - - - ,n—1, F® is obtained by applying one step
of Gaussian elimination to F*~1) with partial pivoting:

x (um)f]

P pE-1) =
PF [,,u) E®

-7-

1 o0 [a,, @) e, (uw)f]
T, (Lo o)Tl pw)
(1‘, n—~k

where P, is a permutation matrix of order (n—k+1), I,_, is the identity matrix of order

(n—k) and F(")=E(*)—alv(*)(u(*))7. Similarly, for k=1,2, - - - ,n—1, H® is obtained by
&
applying one step of Cholesky decomposition to H*-1):

o _ [Be GO
H Tl g

— (W)
B —
\/ * \/Bt .7[1 0].
e -

0 I_, |TR|g gwR

C[VEe 010
Wik} 0 H®
— In—k
VE)
where H®=GW®)~ E’l——w(‘) (w®)7. It can be shown that
k

ASPLPLy- - P L, U,

where
L., 0O
L A
.
L., 0 L, 0 ¢
= | = <k<pn—
L, o L o 1 o0}, 1sk=n-1,
R
o - In-—k
o
and
.
o @Oy
R
° ooy
o
Also, we have
B=R[R]---RI_,RIRR,_, - RR, ,

where
L., O o
L., 0 T
R= " =0 vE L], for1=k=n-1,
& ‘\/Bk

o [I

n—-k

and

w3 e

The proof of Theorem 2.7 is the same as those of Theorems 2.5 and 2.6, and hence is
omitted.

Theorem 2.7

Fork=1,2, - - - ,n—1,
(1) F® has a zero-free diagonal.
(2) NONZ(u®)CNONZ(w®).
(3) NONZ(v@©)CNONZ(w®).
(4) NONZ(F®)CNONZ(H®,

Because of the way in which H*)'s are generated, it is not hard to see that
n-1 n
U NONZ(H®) = | NONZ(R,+R]) .
k=0 k=1

Thus, Theorem 2.7 essentially says that the structures of the triangular matrices obtained in
the LU-decomposition of A are contained in those of the Cholesky factors of ATA.
Consequently, if we allocate space for the nonzero structure of the Cholesky factor of ATA,
then that data structure will always have space to accommodate any fill-in that occurs during
the LU-decomposition of A. These results are important since it allows the LU-
decomposition of A using Gaussian elimination with partial pivoting to be computed in a
predictable amount of space. One may regard this result as saying that the structures of the
Cholesky factors of ATA predicts the worst possible structures of the triangular matrices L,’s
and U, for any pivotal sequence {Pl,Pz, SR ,Pﬂ_l}.

Suppose B is a sparse symmetric positive definite matrix and denote its Cholesky
factor by Rp. It is well known that the structure of Ry can be predicted from that of the
matrix B, Thus one can allocate space for the nonzeros of R, before the numerical
computation begins. Furthermore, there are algorithms that accomplish these tasks
efficiently. See [17] for details.

Hence, by sctting B=ATA and finding a data structure for the Cholesky factors, R,
and RY, of B, we know from Theorems 2.5, 2.6 and 2.7 that there will always be space in
that (static} data structure to accommedate any fill-in created during the LU-decomposition of
A using Gaussian elimination with partial pivoting. Note that the symmetric positive definite
matrix is assumed to be sparse. This may not be true in some cases and we will address this
problem in a later section.

3. Eifect of permuting the columns of A

Let P, be an nX#n permutation matrix and consider the matrix AP,. Assume for the
morent that AP, has a zero-free diagonal. Denote the LU/-decomposition of AP, by

AP, = PL\P)L,y -+« P, L, U .

-9.

The results in the previous section show that the nonzero structures of the triangular matrices
are contained in those of the Cholesky factors of (AP,)T(AP.)y=PIATAP,=PIBP,, where
B=ATA. We assume that B is sparse. It is well known that, for a sparse symmetric and
positive definite matrix B, the choice of the permutation matrix P, can drastically affect the
sparsity of the Cholesky factor of PIBP, [17]. Hence it is desirable to find a P, so that
PTBP, has a sparse Cholesky decomposition.

The problem of finding a P_ that yiclds minimal fill-in is an NP-complete problem
[19]. However, there are efficient heuristic algorithms that produce a P, so that PTBP, has a
reasonably sparse Cholesky decomposition. Examples include the nested dissection
algorithm and the minimum degree algorithm [17].

It should be noted that even though A has a zero-free diagonal, the matrix AP, may

not necessarily have one. We illustrate this by a small example. Consider the following
4X4 matrix.

X x
_ X
A= X
X
Thus
X
X
ATA = %
X
and NONZ{A)CNONZ{ATA). Let
1
_ 1
P = 1
1
Now
X X
_ X
AP, = «
x
and
X
X
PTATAP, = y
X

Note that AP, does not have a zero-free diagonal and the nonzero structure of PTATAP, does
not even contain that of AP,.

-10-

One way to preserve the property that A has a zero-free diagonal is as follows.
Instead of permuting the columns of A by P,, we permute both the columns and rows of A
symmetrically by P,. That is, we would consider the matrix PTAP,. Note that

(PTAPYF(PTAP,) = PIATAP, .

Thus premultiplying AP, by PT does not affect the structure of PTATAP_ at all. However,
PTAP, now has a zero-free diagonal (as long as A has one). To illustrate this, consider the
previous 4X4 example again.

PiAP, =

X

and the structure of PTATAP, indeed contains that of PTAP,.

4. Proposed method

The results and discussions in Sections 2 and 3 provide us with a scheme for solving a
sparse system of linear equations

Ax=b .

In general, the coefficient matrix A that is provided may not have a zero-free diagonal. Thus
it is necessary to find a row permutation @ so that the diagonal elements of QA are nonzero.
This can be achieved by using the algorithm described in [5].

We now summarize the solution scheme below.
1) Find a permutation matrix Q so that QA has a zero-free diagonal.
(2) Determine the structure of B=ATA.

(3) Find a symmetric permutation P, so that PTBP_ has a sparse Cholesky factor. Denote
the Cholesky factorization by P7BP_ = R7R.

(4) Determine the structure of the Cholesky factor B of PTBP,, and set up a storage
scheme that exploits the sparsity of R and £7,

(5) Input the numerical values of A, storing it as PTQAP,.

(6} Compute the LU-decomposition of PTQAP, using Gaussian elimination with partial
pivoting. Store the triangular factors in the storage structure for B and K7,
(7) Solve PTQAP PTx=PTQb using the LU-decomposition.

A few remarks on the implementation are in order. First, we only work with the
structures of A and ATA in Steps (1), (3) and (4). Second, efficient algorithms are available
for performing Steps (1), (3) and (4). In the experiments which we will describe in the next
section, we use the code given in {5] to find the permutation Q in Step 1. We use the
minimum degree algorithm from SPARSPAK to find the symmetric permutation P, in Step
(3) and also the symbolic factorization routine from SPARSPAXK to carry out Step (4) [16].
Third, the approach we have employed assumes that ATA is sparse if A is sparse. However
there are some instances in which A”A may be dense even though A is sparse. We will deal
with this situation in Section 6. '

.11 -

5. Comparison with other methods for selving sparse linear systems

There are many codes available for solving sparse systems of linear equations Ax=»
using an LU-decomposition of A. The ones we have considered include SPARSPAK [16],
MAZ28 from Harwell [2], NSPIV [18], and an implementation of the method proposed in
Section 4. In this section, we first consider the basic methodology used by each package and
examine its advantages and disadvantages.
SPARSPAK --
This package uses the structure of A+AT and computes an LU-decomposition of A
without using partial pivoting. A symmetric row and column ordering is chosen and a
data structure is set up before computing the decomposition. It then uses that static
data structure in the numerical computation phase. Since there are no row
interchanges, numerical stability may be a problem. Furthermore, it requires the
diagonal elements of A to be nonzero. Of course, this can be circumvented by
finding an assignment before choosing the symmetric ordering. However, there is
still a chance that some of the diagonal elements may become zeros during the
decomposition process. This is illustrated in our experiments. The symmetric
ordering we have used in the numerical experiments was a minimum degree ordering.
MAZ28 from Harwell --
In this code, column and row permutations are chosen to maintain numerical stability
and preserve sparsity simultaneously. That is, the permutations will depend on the
numerical values of the nonzeros of the elements of A and the pivotal sequence.
Thus one cannot predict how much space is needed before numerical computation
begins, and storage has to be allocated during the numerical computation phase.
Experience shows that the overhead, both in terms of execution time and storage, can
be quite significant. A threshold pivoting technique is used in the search of pivot;
that is, at the k—¢h step of the decomposition process, an element in the reduced
matrix, say A,,, will be chosen as the pivot if it satisfies

|40 = umax| 4]

where u is a user specified parameter satisfying 0su=1 (see [2,10] for details).
Increasing the threshold parameter may improve the accuracy, but this may also
increase both the storage requirements and execution times. In our experiments, we
have set #=0.1.

NSPIV --

This code computes an LU-decomposition of A using partial pivoting. The
elimination is carried out row by row. Storage for fill-in is allocated during the
numerical decomposition phase. The user is responsible for the choice of initial row
and column orderings. In our experiments, the initial orderings were those suggested
by Sherman [18]. The column ordering was the original ordering of the variables,
and the rows were arranged in increasing number of nonzeros. Experience indicates
that it can be very efficient. However, the lower triangular matrix L is not saved.
Thus, a potential drawback is that if it is used to solve several systems which have the
same coefficient matrix, the factorization must be repeated for each new right hand
side.

The method proposed in Section 4 --
The method we propose computes an LU-decomposition of A using Gaussian

-12-

elimination with partial pivoting. Data structures for storing L,, 1=<k=n—1, and U
can be set up before the numerical computation begins by finding the structures of the
Cholesky factors of A”A. The numerical computation is then performed using the
static data structure. The triangular matrices L,, 1<k=<n-1, and U are saved so that
solution of several systems with the same coefficient matrix is very convenient and
efficient. A potential weakness is that it makes use of the structure of the matrix ATA
which could be dense or severely overestimate the storage for L, and U. (More on
this can be found in Section 6). A good column ordering (that would yield low fill-in
in the Cholesky factor of ATA) is chosen prior to the numerical computation. In our
experiments, we have used a minimum degree ordering as the column ordering.

There are other packages which we have not considered. Examples include MA32
[3, 6] and MA37 [12] from Harwell and the Yale sparse matrix package [13]. The package
MAS37 should be of particular interest. It computes an LU-decomposition of A using the so-
called multi-frontal technique and is based on the ideas used in MAZ27 [7,11] for solving
sparse symmetric indefinite systems. Based on our experience with MA27, we expect MA37
to be effective in terms of storage and execution times. Unfortunately we do not have a copy
of MA37 available.

We now provide some numerical experiments to compare the performance of the
various implementations. The experiments were carried out on an IBM 4341. The programs
were written in ANSI standard FORTRAN and compiled using an IBM VS FORTRAN
Optimizing compiler. Single precision arithmetic was used. The test problems include
thirteen finite element and nine non-finite element problems. (The non-finite element
problems were obtained from Harwell.) Their characteristics are given in Table 5.1. For the
finite element problems, the numerical values for the coefficient matrices were generated
using a uniform random number generator. For each of the twenty-two test problems, the
right-hand side vector was chosen so that the solution vector contained all ones.

Tables 5.2 and 5.3 contain respectively the storage and execution times required by
the various methods. Storage requirements are given in terms of number of storage locations
required, including space for pointers, subscripts, etc, and execution times are in seconds.
Table 5.4 shows the accuracy achieved. We have used [[x—%|. as a measure of the
accuracy, where ¥ denotes the computed solution. Other terms used in the tables are
explained below.

SPARSPAK --
analysis storage and analysis time - amount of space and time required to find an
assignment for A, to find a symmetric ordering for A+AT and to allocate
space for the LU-decomposition of A.

solution storage and solution time - amount of space required to store the LU-

decomposition and the time required for the computation.

total time - sum of analysis and solution times.
MAZ28 and NSPIV --
total storage - amount of space required to compute the LU-decomposition.

total time - amount of time to compute the LU-decomposition (including the times
required to do any structure analysis for MA28).

New method --

-13-

Problem Number of Number of
Remarks
number unknewns nonzeros
1 265 1753 Graded-L finite element mesh.
2 406 2716 Graded-L finite element mesh.
3 577 3889 Graded-L finite element mesh,
4 778 5272 Graded-L finite element mesh.
5 936 6266 Finite element mesh -- a hollow
square (small hole).
6 1009 6865 Finite element mesh -- a graded-L
problem.
7 1089 7361 Finite element mesh -- a square prob-
lem.
8 1440 9504 Finite element mesh -- a hollow
square (large hole).
9 1180 7750 Finite element mesh -- a +-shaped
problem.
10 1377 8993 Finite element mesh -- an H-shaped
problem.
11 1138 7450 Finite element mesh -- & 3-hole prob-
lem.
12 1141 7465 Finite element mesh -- a 6-hole prob-
lem.
13 1349 9101 Finite elemen: mesh -- a pinched hole
problem.
14 113 655 Matrix pattern supplied by Morven
Gentleman.
15 54 291 Matrix pattern supplied by Curtis,
16 57 281 Matrix pattern supplied by Willough-
by.
17 199 701 Matrix pattern supplied by Willough-
by.
18 130 1037 Matrix from laser problem (A.R.
Curtis).
19 363 3279 Matrix from linear programming
problem.
20 541 4282 Facsimile convergence matrix.
21 991 6027 Matrix from Philips Lwud (J.P.
Whelan).
22 192 2992 Matrix from parabolic pde,

analysis storage and analysis time - amount of space and time required to find an
assignment for A, to determine a symmetric ordering for ATA and to allocate

Table 5.1: Characteristics of test problems

space for the Cholesky factors of A7A.

solution storage and solution time - amount of space required to store the Cholesky
factors of ATA and the time required to compute the LU-decomposition of A.

total time - sum of analysis time and solution time.

)]

@

3)

-14-

SPARSPAK MA28 || NSPIV New method
Problem

analysis | solution total total analysis | solution

1 5362 9795 21985 17326 || 10902 18765
2 8275 17184 37716 38747 ([17007 35239
3 11818 26688 71700 55152 || 24461 55672
4 15991 38347 93449 96863 33267 84716
5 19081 42874 119831 81527 || 39257 96581
6 20794 517112 134336 Il 123914 || 43422 119039
7 22346 52803 147364 | 141046 46406 114967
8 29089 61818 155042 | 106907 || 59081 125702
9 23761 42966 98066 71675 48061 76957
10 27626 47739 107349 82694 || 55566 83870
11 22867 46194 108391 | 113869 46123 94512
12 22918 46294 120558 || 85876 || 46266 98366
13 27646 64876 192496 | 133844 57306 143317
14 3050 3900 3897 2932 5494 4229
15 983 1002 1851 1609 1835 1575
16 1022 935 1781 1422 1730 1310
17 36 6268 6493 7240 5044 7435
18 3903 3285 5057 4401 12247 7305
19 13948 18799 17219 19934 |[20280 23132
20 14722 23308 39846 || 99696 || 31798 45252
21 20471 73540 178779 || 164498 || 57220 279483
2 7329 9271 21136 || 21011 16033 15894

Table 5.2: Storage requirements (in number of storage locations)

Following are some remarks on the results.

Even though SPARSPAK requires the least amount of space and execution times in
most cases, its accuracy is usually poor. This is expected since there is no pivoting
for stability performed.

The results indicate that the method proposed in this paper is quite competitive with
both MA28 and NSPIV in most cases. In particular, for finite element problems, our
method is certainly better than MA28, in terms of storage requirements, execution
time and accuracy. The method may occasionally require a little more storage and
execution time than NSPIV. However, it should be pointed out that NSPIV only
stores the upper triangular matrix U, whereas in our case, we store both the lower
and uwpper triangular matrices in the LU-decomposition. Furthermore, we have
ignored the problem of finding “good” initial column and row orderings (if they
exist) for NSPIV. Thus, taking these comments into account, it is fair to say that our
method performs at least as well as NSPIV for these finite element problems.

Note that we have only proved that the structures of the triangular matrices obtained
in the LU-decomposition of A are contained in the structures of the Cholesky factors
of ATA. There is a possibility that the amount of space allocated for the Cholesky
factors of ATA may be much larger than that required to store the LU-decomposition.

- 15 -

SPARSPAK MA28 NSPIV New method
Problem -
analysis | solution total total total analysis | sclution total
1 0.327 0.450 0.777 3113 3.040 0.783 3.530 4,313
2 0.617 1070 1.687 6.663 9,083 1.410 9.123 10.533
3 0.810 1.967 2.776 27.038 15.822 1.800 17.779 19.579
4 1.137 3.290 4,426 36.261 33.225 2.703 31.168 33,871
5 1.237 3.170 4,406 60.196 21.845 2.996 34,401 37.398
6 1.377 4.566 5.943 81,238 53.970 3.840 51.167 55.006
7 1.467 4,156 5.623 111.190 56.263 3.496 42,627 46.124
8 1.950 3.836 5.786 77.828 28,263 4,596 36,628 41.224
9 1.557 1.890 3.446 30.765 9.716 3.560 13.672 17.232
10 1.803 1,973 3.776 24,312 11.426 4.120 13.176 17.296
1 1.590 2.606 4,196 50,317 32.701 3.480 24.309 27.788
12 1.680 2.613 4,293 78.435 20.159 3.780 27.978 31.758
13 1.733 5.046 6.780 154,237 47.307 3.923 50.820 54,743
14 0.38¢ 0.160 0.540 0.233 0.070 0.930 0.250 1.220
15 0.053 0.013 0.067 0.087 0.050 0.110 0.077 0.187
16 0.053 0.013 0.067 0.077 0.023 0.110 0.053 0.163
17 0.350 0.210 0.560 0.410 0.547 0.480 0.637 1117
18 1.837 0.070 1.907 0.250 0.080 2.710 0.863 3.573
19 3.37¢ fail 1.280 2.823 4.366 3.606 7.973
20 11.363 1.503 12.866 5.043 1721.269 14,062 10.196 24.258
21 5.633 17.819 23.452 147.264 184.002 19.692 302.144 321.836
22 0.527 0.620 1.147 3.116 3.883 1.620 3.313 4.933

@

Table 5.3: Execution times (in seconds)

In order to explore this question, we have shown in Table 5.5 the percentage of
storage that is actually utilized. The results indicate that, for the finite element
problems, the utilization is approximately 50% for the lower triangular portion and
66% for the upper triangular portion. For the non-finite element problems, the
corresponding percentages are roughly 40% and 50% respectively. Moreover, there
are examples in which the percentages of utilization are very low.

One nice feature about the new method is that the amount of space allocated to store
the LU-decomposition is not sensitive to the numerical values in A and the row
interchanges. In other words, the same amount of space (or the same data structure)
can be used for different coefficient matrices as long as they have the same structure.
In fact, after the first system has been solved, it is not necessary to determine the
data structure again when subsequent systems having the same structure are to be
solved. This is not true in MA28 and NSPIV, in which the amount of space depends
on the numerical values and the row interchanges (unless one wants to decompose a
new matrix having the same structure using the pivotal sequence obtained during the
decomposition of the old matrix). To illustrate this, we have generated, for each of
problems 1 and 2, three matrices that have different numerical values but the same
nonzero structure. The results are given in Table 5.6.

e

()

-16 -

Problem || SPARSPAK MA28 NSPIV || New method
1 1,23-1 1.53-2 3.16-3 9.44-4
2 2.78-2 4.60-2 6.26-4 8.47-4
3 4.42-1 1.76-1 4.33-3 2.56-3
4 1.15-1 1.31-1 2.75-3 4,31-3
5 1.58+0 7.68-1 1.32-:2 8.57-3
[3 5.34-1 1.18+0 3.36-3 6.29-3
7 8.66-2 1.09-1 5.81-3 1.62-3
8 1.88+0 5.771+0 4.55-2 4.49-2
9 5.06-2 2.88-1 3.71-3 5,95-3

10 5.76-2 1.67-1 2,16-3 2.76-3
11 2.22+0 1L17+G 7.43-2 1.41-2
12 3.76-1 5.26+0 4.59-3 1.20-2
13 2.25-1 5.95+G 1,19-2 2.66-3
14 1.18+0 5.43-3 1,02-2 1.23-1
15 3.90-3 1.39-3 3.19-4 2.26.3
16 2.93.3 6.03-3 9.70-4 3.72-4
17 5.75+0 5.98-3 1.99-3 1.52-3
18 6.69-1 7.50-1 5.91-1 3.05-1
19 fail 1.30-3 1.90-3 1.27-2
20 4,29-5 7.63-6 6.68-6 1.34.5
21 2.22-4 6.42+0 3.17-4 5.02-4
22 1.30-5 2.43-3 1.56-5 1.16-4

Table 5.4: Errors (in /,, norm)

Note that the threshold pivoting technique in MA28 does not necessarily give
satisfactory results for some of our test problems. In our experiments, we have
assigned the threshold parameter # the value 0.1. Obviously, one can use a larger
threshold parameter so as to obtain more accurate results. The tradeoffs are
increases in storage requirements and execution times. This is illustrated in Table 5.7
in which we varied the threshold parameter from 0.1 to 1.0. We have used problems
1 and 2 in this experiment. Note the increases in space requirements and execution
times when u is increased.

Finally, the amount of space reported for MA28 is the minimum amount required in
order to solve a given problem. With the minimum amount of space, MA28 has to
perform numerous data compressions and consequently requires substantial execution
time. Thus, in order to reduce the execution time, it is common practice to provide
more space than the minimum amount. The extra space is sometimes known as the
elbow room. In our experiments, we have provided a lot of elbow room so that data
compressions do not occur. To iltustrate the effect of data compressions on execution
time, we ran MA28 for the first two problems using the minimum amount of space.
The results are given in Table 5.8. Note the change in execution times. Also note
that the new method and NSPIV do not need any elbow room.

-17 -

Problem L v
1 51.8 | 62.7
2 49.7 62.1
3 49.7 66.1
4 48.7 | 66.8
5 502 66.2
6 49.9 67.6
7 49.9 | 66.4
8 49.9 66.6
9 49.7 | 62.4

10 48.5 63.5
11 50.5 64.8
12 49.9 66.5
13 48.6 65.5
14 205 | 63.4
15 45.1 68.9
16 40.4 | 65.4
17 406 | 54.5
18 13.1 28.3
19 302 | 424
20 40.4 44.2
21 471 48.9
22 57.7 | 66.6

Table 5.5: Data structure utilization by L and U in the new method (percentage)

Method " 265 265 265 406 406 406
total storage 21985 | 22702 | 20503 || 37716 | 40743 | 37870

MAZ8 total time 3.113 3.650 2,750 6.663 11,160 | 8.570
error 1,832 | 3.70-2 | 2.11-1 4.60-2 | 3.34-1 | 2.60-2
total storage 17326 19146 19906 38747 40743 37870

NSPIV total time 3.040 3.043 3.670 9.083 7.057 7.973
error 3.16-3 | 1.51-4 | 3.01-3 || 6.26-4 | 5.31-3 | 1.85-3

analysis storage | 10902 | 10902 | 10902 || 17007 17007 17007
solution storage || 18765 | 18765 | 18765 | 35239 | 35239 | 35239
analysis time 0.783 | 0.783 | 0.783 1.410 1.410 1,410

ethod
New my solutiontime | 3.530 | 3.537 | 3.557 | 9.123 | 9.270 | 9.287
total ime | 4313 | 4320 | 4.390 || 10.533 | 10.680 | 10.697
estr 9.44-4 | 3.35.4 | 6.40-3 || 8.47-4 | 6.06-4 | 5.52.4

Table 5.6: Solution of systems with same nonzero structure.

-18 -

Problem » total storage total time error
1 0.1 21985 3.113 1.53-2
1 0.4 22581 3.730 3.31-3
1 0.7 26525 6.390 3.37-4
1 1.0 27365 7.093 2.19-4
2 0.1 37716 6.663 4.60-2
2 0.4 45302 10.920 5.44-4
2 0.7 46044 12.530 5.97-4
2 1.0 46784 18.643 3.89-4

Table 5.7: Effect of varying the threshold parameter in MA28

total time total time
Problem | total storage X X
(with elbow room) | (without elbow room)
1 21985 3,113 8.110
2 37716 6.663 26,126

Table 5.8: Effect of elbow room on the performance of MA28

6. Handling of dense rows

Throughout our discussion in the previous sections, we have assumed that the
symmetric matrix A7A is sparse whenever A is sparse. However, there are some instances in
which ATA is dense even though A is sparse. An example is given below.

X X X X

X

Clearly ATA is a dense matrix, but the LU-decomposition of A is as sparse as the original
matrix A.

This example illustrates the main disadvantage of the method we propose in this
paper. The structures of the Cholesky factors of ATA may overestimate the structures of the
triangular matrices obtained in the LU-decomposition of A. Fortunately this is usually caused
by a relatively small number of dense rows of A. (In the previous 4X4 example, the first
row is dense.) One way to handle this situation is as follows. For convenience, let A be

partitioned into
B
4= [C] ’

where B and C contain respectively the sparse and dense rows of A. Assume B is pX#n and
C is (n—p)Xn. We also assume that B has a “zero-free diagonal”; that is, B,#0 for
1=i=p. Suppose a sparse LU-decomposition of B is given by

B=PLPL, - -2_L_[R 5,

p-1p-1

where P, is a pXp permutation matrix, L, is pXp unit lower triangular, R is pXp upper

219 -

triangular, and § is pX(n—p). This can be achieved using the method we have proposed
earlier. For simplicity, let

L=PLPL,-- P,_iL,_, .
That is,

B=L(r 5)=(Er s) .
Partition C into
c={c.),

where C, and C, are respectively (n—p)Xp and (n—p)X(n—p). Then we have

- [)-E5)-6E)

Now we can eliminate C, using block elimination. That is, we find an (#—p)}Xp matrix V so

that

R s) (1 0][r s

¢, ¢} v i)l wl-
It is not hard to see that V=C,R~! and W=C,—C,R~'S. Then we can decompose the
(n—p)x (n—p) matrix W using Gaussian elimination with partial pivoting:

W= };lilﬁ2£2 T ﬁn—p-ll:n-p-lT 3
where P, is an (n—p)X(n—p) permutation matrix, L, is (n—p)x(n—p) unit lower
triangular, and T is (n—p)X (n—p) upper triangular. Let

L= PILIPZLZ T ﬁn—p—ll‘n—p—-l "

Then
W=1LT ,

R S| (ro]lrs
ow) lofJloeT) "
Combining all identities, we obtain the following decomposition.
o [® _[io]zo 10\ s) {Lollrs
) woijvijlofjlory T \WwilloT) -
Let the right-hand side vector b be partitioned into

o= 5).

where ¢ and d are respectively p- and (n—p)-vectors. Similarly, partition the solution vector
x into

and

where 1 and v are respectively p- and (n—p)-vectors. Then x is obtained by solving

Eo)E)-().
B3E-6)

This approach will be effective if (n—p) is small. In that case, the matrices C, V and
W can be stored and processed as small dense matrices.

and

Suppose A has a zero-free diagonal. In practice, it may not be possible to partition A

¢

such that B contains the sparse rows of A and at the same time has a zero-free diagenal. To
illustrate this, consider the following example.

into

LS

]
oo xoxX
OO XX &
coxoo
ox Xxeo
X ©X©®

oo o X
O X O
oo oo
o X ©0
X ooo

and it does not have a zero-free diagonal. To solve this problem, we use the following
approach in our implementation. Let B be the nXn matrix obtained from A by replacing the
dense rows by null rows. Thus, in the previous example,

x 0000
0 x000
B=|0000C0O0
000x0
0000 x

Then we perform the LU-decomposition on B using Gaussian elimination with partial
pivoting, skipping any step where we encounter a zero pivot. The resulting nXn upper
triangular matrix, denoted by U, will be a (row) permuted form of

53]

-21-

Finally, to eliminate C,, all we have to do is to identify those rows in U whose diagonal
elements are nonzero.

7. Concluding remarks

In this paper, we have considered the solution of the sparse linear system Ax=» using
Gaussian elimination with partial pivoting. We have proved that the structures of the
triangular matrices obtained in the LU-decomposition of the nXn matrix 4 are contained in
the structures of the Cholesky factors of the symmetric positive definite matrix A7A,
regardless of the choice of the row interchanges. These results are important since they
allow us to implement Gaussian elimination with partial pivoting using a static data structure
which is obtained by analyzing the structure of A”A. The latter can be achieved efficiently
using techniques developed for solving sparse symmetric positive definite systems. As a
result, the overhead involved in the numerical computation is smaller than that in most
existing methods which usually employ dynamic data structures. Preliminary numerical
experiments indicate that, in general, the method we have proposed can be quite competitive
with existing methods for solving general sparse systems of linear equations.

Clearly, our approach will perform poorly if the matrix A7A is dense. Fortunately
this usually occurs when A has a relatively small number of dense rows. We have also
derived an algorithm to cope with this situation.

It is possible to further improve the performance of our method. First, suppose the
matrix A is reducible. That is, there exist permutation matrices P and Q so that PAQ is
block triangular. For definiteness, assume PAQ is block lower triangular.

f
All

Ay Ap
Ay Ay Ay
PAQ =

45 A A - - - A,
Here A, is the (i,j)-block in PAQ. If we partition the right-hand side vector b and the
solution vector x conformally,

(,)
b *1
b, x2
by X3
b =) x =)
pr Nx’

then the solution x is obtained simply by solving

k-1

Aklxk = bt_lz-lAij ’ k=1525 Y]

Thus, all we need are the LU-decompositions of the matrices A,, which can be obtained using

-22.

the approach proposed in this paper. Note that the order of each A,, is smaller than that of
A. Consequently, the space required to store the LU-factorization of A,,"s should be smaller
than that for A, as long as A is reducible. This idea has been used in MA28 and its
incorporation into our scheme is currently under investigation. Note that there are efficient
algorithms for permuting a reducible matrix A into block triangular form. See [8,9] for
details.

Finally, note that the actual number of nonzeros obtained in the LU-decomposition of
A is usually smaller than the number of nonzeros in the Cholesky factors of ATA. Thus, an
open problem is whether there exists a scheme that would compress the data structure for the
Cholesky factors of ATA so that the compressed structure provides a more efficient data
structure to store the LU-factorization, regardless of the row interchanges used.

8. References

f1] LS. DUFF, “Analysis of sparse systems”, D. Phil. Thesis, Oxford University
(1972).

2] LS. DUFF, *MAZ28 - A set of FORTRAN subroutines for sparse unsymmetric linear
equations”, Tech. Report AERE R-8730, Harwell (1977).

i3] I.S. DUFF, “MA32 - A set of FORTRAN subroutines for sparse unsymmetric linear
equations”, Report AERE R 10079, Harwell {1981).

[4] LS. DUFF, “On algorithms for obtaining a maximum transversal”, ACM Trans. on
Math. Software, 7 (1981), pp. 315-330.

{5] I.S. DUFF, *“Algorithm 575. Permutations for a zero-free diagonal”, ACM Trans. on
Math. Software, 7 (1981), pp. 387-390.

[6] I.S. DUFF, “The design and use of a frontal scheme for solving sparse unsymmetric
equations”, in Proceedings of the Third IIMAS Workshop on Numerical Analysis (1981),
ed. I.P. Hennart, Lecture Notes in Mathematics {909), Springer-Verlag (1982), pp.
240-247.

M LS. DUFF, “MA27 - A set of FORTRAN subroutines for solving sparse symmetric
sets of linear equations”, Report AERE R 10533, Harwell (1982).

(8] LS. DUFF AND I.LK. REID, “An implementation of Tarjan's algorithm for the block
triangularization of a matrix”, ACM Trans. on Math. Software, 4 (1978), pp. 137-
147.

[9] LS. DUFF AND I.K. REID, ‘“‘Algorithm 529. Permutations to block triangular form”,
ACM Trans. on Math. Software, 4 (1978), pp. 189-192.

[10] LS. DUFF aND J.K. REID, “Some design features of a sparse matrix code”, ACM
Trans. on Math. Software, 5 (1979), pp. 18-35.

[11] LS. DUFF AND J.K. REDD, “The multifrontal solution of indefinite sparse symmetric
linear systems’, Report CS8S 122, Harwell (1982).

[12] 1.S. DUFF AND J.K. REID, “The multifrontal solution of unsymmetric sets of linear
equations”, (Submitted to SISCC) (1983).

[13] S.C. EISENSTAT, M.C. GURSKY, M.H. SCHULTZ, AND A.H. SHERMAN, “Yale
sparse matrix package, II. the nonsymmetric codes””, Research report 114, Dept. of
Computer Science, Yale University (1977).

(14]
(15]
(16]
(7]

(18]

[19]

-923.

J.A. GEORGE AND M.T. HEATH, “Solution of sparse linear least squares problems
using Givens rotations”, Linear Algebra and its Appl., 34 (1980), pp. 69-83.

JA. GEORGE, M.T. HEATH, AND E.G.Y. NG, “Solution of sparse
underdetermined systems of linear equations”, (In preparation) (1983).

J.A. GECRGE AND J.W.H. LIU, “The design of a user interface for a sparse matrix
package”, ACM Trans. on Math. Software, 5 (1979}, pp. 134-162.

J.A. GEORGE AND I.W.H. LIU, Computer solution of large sparse positive definite
systems, Prentice-Hall Inc., Englewood Cliffs, N.J. (1981).

A.H. SHERMAN, “Algorithm 533. NSPIV, a FORTRAN subroutine for sparse
Gaussian elimination with partial pivoting”, ACM Trans. on Math. Software, 4
(1978), pp. 391-398.

M. YANNAXKIS, “‘Computing the minimum fill-in is NP-complete”, SIAM J. Alg.
Disc. Meth., 2 (1981), pp. 77-79.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

