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ABSTRACT

Let A be an m by n matrix, m>n, and let P, and P, be permutation
matrices of order m and n respectively. Suppose P, AP, is reduced (o upper

R
trapezoidal form [O] using Givens rotations, where R is n by n and upper

triangular. The sparsity structure of R depends only on P.. For a fixed P, the
number of arithmetic operations required to compute R depends on P,. In this
paper, we consider row ordering strategies which are appropriate when P, is
obtained from nested dissection orderings of ATA. Recently, it was shown that
so-called “‘width-2" nested dissection orderings of ATA could be used to
simultaneously obtain good row and column orderings for A. In this paper, we
show that the conventional (width-1) nested dissection orderings can also be used
to induce good row orderings. In part I of this paper, we analyze the application
of Givens rotations to a sparse matrix A using a bipartite graph model.
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1. Introduction

In computational linear algebra, ome of the standard methods for computing the
orthogonal decomposition of a given matrix is by successive applications of Givens rofations. The
decomposition is useful in the solution of linear least squares problems [11].

It has been generally recognized that the use of Givens transformations adapts quite well
when applied to large sparse systems. The process can be organized in the form of ‘“row
eliminations’ [4,6], so that the data and storage management is simple and efficient in both in-
core and out-of-core implementations. Moreover, the use of Givens rotations can often reduce the
amount of computation required to eflect the decomposition.

In this paper, we study row ordering schemes for sparse Givens transformations. Let A
be a large sparse m by n matrix (m>n), which is of full column rank. The orthogonal
decomposition of A obtained via Givens rotations can be expressed as

el

where @ is an m by m orthogonal matrix defined by the sequence of rotations, and R is an n by
n upper triangular matrix. Since

R R
AtA = {r7 o}QTQ[O]={RT 0}[0]=RTR,

and ATA is symmetric and positive definite, the upper triangular matrix R is mathematically
and structurally the same as the Cholesky factor of ATA, apart from possible sign differences in
some rows.

It is well known that ordering can drastically reduce storage and computation in the
Cholesky factorization of symmetric and positive definite matrices [7]. In the context of
orthogonal decomposition, it is therefore important to find a good fill-reducing ordering for the
matrix ATA, so that the permuted system has a sparse Cholesky factor R. Since symmetric
permutations of ATA correspond to column orderings of A, we may then view the process as

follows:
a) find a “good” column permutation P, for A and form AP,,
b) apply a sequence of Givens rotations to decompose

R
AP, = Q[O] .

In this way, the resulting upper triangular matrix R will correspond to the factor of
(AP,)T{AP,). It should be pointed out that once the structure of ATA is determined, there are
well-developed sparse matrix software packages [2,7] available to produce a good fill-reducing
permutation P,.

Column orderings of A can indeed have a drastic effect on the number and locations of
nonzeros in the resulting upper triangular factor . However, the number and locations of
nonzeros in R does not depend on the order in which the rows are processed [5,13]. Consider any
row ordering P, of A. Since
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(P.AY (P, A) = ATA

the factor from the orthogonal decomposition of P,A must be mathematically and structurally
the same as the corresponding factor from A.

However, row orderings can have significant impact on the amount of computation
required to compute the decomposition [4,5]. In this paper, we analyze how row orderings can
aflect the arithmetic cost. The approach taken is combinatorial in nature, and we use the
bipartite graph of A to model the orthogonal decomposition process by Givens transformations.
This provides insight into the process and suggests ways in which good row orderings can be
determined.

An outline of the paper is as follows. In Section 2, we introduce the necessary
terminology for bipartite graphs and some preliminary results. A graph-theoretic analysis of
Givens transformations using bipartite graphs is presented in Section 3. In Section 4, we consider
the different row ordering strategies that are motivated by the results of Section 3. In particular,
we introduce the concept of clique separators, The good performance of “width-2” nested
dissection orderings of ATA, introduced by George and Ng [9], in producing good row and
column orderings for A can be explained in terms of clique separators. Moreover, we show that
the conventional (width-1) nested dissection column ordering can also be used to induce good row
orderings using clique separators. Indeed, the latter approach can often produce a better column
and row ordering than that produced by width-2 nested dissection orderings of ATA.

In part 11 of this paper [8], we shall analyze the two strategies on a k£ by k mode! grid
problem. Although the orthogonal decompositions in both approaches require O(Ica) arithmetic
operations, and the resulting factors have O(k?log,k) nonzeros, the constant of proportionality is
much less when the conventional width-1 dissection column ordering (and its induced row
ordering) is used.

2. Graph Terminology

We assume that the reader is familiar with the basic graph theory terminology associated
with sparse matrix computations. In particular, the concepts of symmetric graphs, nodes, edges,
adjacent sets, degrees, paths, connectivity, cliques, and reachable sets are assumed. Readers are
referred to [7] for formal definitions.

In this section, we introduce a bipartite graph model, which is a convenient tool in the
study of row orderings for Givens transformations. Gilbert [10] has used bipartite graphs to

model Gaussian elimination of unsymmetric sparse matrices.

Let A be an m by n sparse matrix of full column rank, where m>>n. The bipartite
graph H(A) of A is defined to be the graph (Q(A),X(A),B(A)), where

Q(A} = {QI!Q2) T m }
and
X(A) = {11,12, e azn}

Moreover, {g,,2.} is in B(A} if and only if a,, is nonzero, Here, B{A) is the edge set of the
bipartite graph, while Q(A) and X{A) are the node sets corresponding respectively to the rows



and columns of 4.

Consider the 7 by 4 matrix example in Figure 2.1. The corresponding bipartite graph
H(A) is as shown in the same figure, where @{A) has 7 nodes, X(A4) has 4 nodes, and there are
14 edges in the graph.

Figure 2.1: A 7 by 4 matrix example and its associated bipartite graph.

Let M be the n by n symmetric and positive definite matrix defined by ATA. Consider
the symmetric graph G(M) associated with M; i.e., G(M)=(X(M),E(M)) where

X(My=X(A) = {2125 - 2, }

and {z;,z;} is in E(M) if and only il m, is nonzero.
When the matrices are clear from context, we shall use H, @, X and B to stand for

H(A), @(A), X(A), and B(A) respectively. Furthermore, for the symmetric matrix M, we use
G and E to represent G(M) and E(M) respectively.

The following lemmas relate the structure of the bipartite graph H(A) with that of the
symmetric graph G(ATA). We need to define a slight modification of the notion of reachable set
as introduced in [7]. This extension is useful in dealing with bipartite graphs.

Let G be a given graph. The reachable set of z in T through $, denoted by
Reachg(z,5,T), is defined to be the set of nodes in T—(SU{:}) that are reachable from z
through §.

Lemma 2.1:

For each ¢, in Q, Adjy(g, ) forms a clique in G(M).

Proof:

For any z;, z; in Adjy(g,), this implies a,; and a,; are both nonzeros. Therefore,
My = GpjGpt * -

must be nonzero (assuming the usual no-cancellation rule). Hence, {z;,,} is in E(M).

o



Lemma 2.2:
Adjg(z)=Reachy(z,Q,X).
o

Consider the matrix example A in Figure 2.1. The structure of the matrix ATA and its
symmetric graph are illustrated in Figure 2.2. In this example,

Adin(gs) = {z0,7,} ,
AdJH(qT) = {32123134} i

and they are both cliques in the symmetric graph G(ATA4).

@

X x
X X X

X X X X (=3
X X X

& @

Figure 2.2: Matrix structure of ATA and its symmetric graph.

3. Graph-Theoretic Analysis of Givens Transformations

3.1. Givens Transformation

Consider row p and row r in the sparse matrix A, where the column subscripts of the
first nonzero elements of these two rows have the same value ¢.

rowp 0O -+ 0 x 0 0 0 x x 0 0 0 x 0 x pivotrow
rowr O s 0 x 0 x 0 0 x 0 0 «x
c

A Givens rotation can be constructed and applied to these two rows to annihilate the first nonzero
in one of the two rows, say row r. Row p is called the pivot row. In this way, these two rows are
transformed, and the structure of the remaining parts of the transformed rows is the union of
those of the original [4,5,13].

In the example, the transformed rows become



rowp O 0

Kk K
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rowr O 0

o
o
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In the transformation, only entries underlined in the two rows are modified. The remaining rows
of the matrix do not change.

We will use the notation [p,r,c| to represent the Givens rotation on row p and row r of
the matrix, with row p as the pivot row and ¢ as the column index of the common first nonzero
entry in the two rows. When the column subscript ¢ is the same as p, we shall use [p,r] to
represent the rotation.

Row Elimination Sequence

One way of applying a sequence of Givens rotations to transform the given matrix A into
upper trapezoidal form is to process the entries row by row from row 2 to row m. This means the
sequence can be depicted by the following.

[l,2,l]
[1,3,1]
{‘2,3,2] x
1 x
(1,4,1] 2 3 x
[2,4.2] 4 5 6 x
13,4.3] 7 8 9 10
11 12 13 14
15 16 17 18
19 20 21 22
[1,m,1] 23 24 25 26
[2,m,2] 27 28 29 30
[3,m,3}
fe Case when m=10,n=4
{n,m,n]

Column Elimination Sequence

Another sequence of Givens rotations can be used to process the matrix column by
column. This sequence can be depicted by our notation as follows.



[1,2,1}
11,31]
[1,4,1]
X
[1,m,1] 1 x
2 10 x
(2,3,2] 311 18 x
(2:4.2] 412 19 25
5 13 20 26
(2,m 2| 6 14 21 27
7 15 22 98
8 16 23 29
s Lol 9 17 24 30
[n,n+2,n] Case when m=10,n=4
fn,m,n}

The two elimination sequences are equivalent in terms of arithmetic operations and final
fill-in. The row scheme is preferred in practice because it has advantages with respect to
implementation. Specifically, when processing the r~th row, we only need a temporary vector of
length n to annihilate the necessary entries in the current row. This temporary vector can be re-
used for each successive row until the entire reduction is completed.

However, in the following analysis of the Givens rotations, we shall use the column
scheme since it can be modelled in terms of bipartite graph transformations.

It should be noted that in the above two sequences of annihilation, the diagonal entries
are assumed to be nonzeros, This makes the rotations [i,j,i] for =1, - ,n and
j=i+1, - - - ,m meaningful. However, in the case of sperse transformations, this condition may
not be satisfied. To simplify our analysis, we assume that the sparse matrix has nonzero
diagonals. The results can be extended to the general sparse case.

3.2. The Bipartite Graph Model

Let A be an m by n given sparse matrix of full rank, where m>>n. We assume that
the matrix A has nonzero diagonal entries. In other words, the pivot rows in the orthogonal
transformation are always selected from the first n rows in the matrix. We leave the extension to

the general case to the reader.

Consider the use of a sequence of Givens rotations
i, i+ 2, - [fm-1], fiym]

for i=1, - - - ;m, to annihilate nonzero elements in the lower trapezoidal portion of the matrix
column by column. Obviously, the rotation is only performed if the corresponding entry is
nonzero at the time of annihilation.
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A sequence of bipartite graphs
Hy = HA)=(9,X:,B;)) , i=12"",n,
can be associated with the sequence of submatrices A; remaining to be processed, Obviously, the
node set for the rows of H; is
Q= {QH-I: o 'er}

and the node set for the columns of H; is

Axx' = {zr'+ll o ',I,,}

This sequence of graphs can be used to model the decomposition process, and in the next
subsection we shall analyze Givens rotations using this model.

We now give an example. Consider the 7 by 4 matrix structure in Figure 2.1. The
annihilation process by Givens rotations is shown in Figure 3.1 and the corresponding bipartite
graph sequence in Figure 3.2.

X .. x X X X X x
X X X X X IXXX —|>(X><
X % xX X X X xX X
X X 0 X b3 X
X % 0 x x 0 x Q
0 x X 0 x 1]
X X X 0 x x 0 x o)

Ay A, Ag Ay

Figure 3.1: Sequence of matrix structures in the column-wise decomposition.
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Figure 3.2: Sequence of bipartite graphs in the column-wise decomposition.

3.3. Analysis Using Bipartite Graphs

The bipartite graph model is useful in representing the transformation process when
sparse Givens rotations are applied. In the sequence of matrix transformations

A=Ay~ A~ Ay~ -+ 2 A, =R |

zeros may become nonzeros. They can be classified into two types: those that correspond to final
fill-in in the upper triangular factor R, and those that will eventually be annihilated by
subsequent Givens transformations. The latter has been referred to as “intermediate fill-in" [9].

Fill-in (permanent or intermediate) can be determined by the zero-nonzero structures of
the submatrices A;. In this section, the main result is a partial characterization of the structures
of the A;’s in terms of the original matrix structure. In order not to obscure the main result with
a sequence of formal and lengthy lemmas and corollaries, we have left the proofs of the theorems
to the appendix. We simply state the theorems and some related observations.

Here, we assyme that the row and column orderings of the matrix A are fixed. Denote
the node corresponding to row i by ¢;, 1<i{<m. Similarly, denote the node corresponding to
column j by z;, 1<j<m.

Theorem 3.1:

For r>i, Adjy(0,) C Reachy (g, {21, - -+ 7,01, + 0,01, X).
n

In Theorem 3.1, the adjacent set on the left-hand side represents the structure of the r-th
row in the submatrix A;. The reachable set on the right-hand side is specified in the initial
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bipartite graph H,; that is, in the structure of the original matrix A. Although this result does
not characterize the complete structure of the r—th row of A;, it provides a necessary condition
for a zero element in the original matrix A to become nonzero during the course of Givens
transformation. That this condition is not sufficient can be illustrated by the following example.

Consider the path in H(A):

(44,12‘01,1’3)

which means

IaeﬁeaChH(A)(%{31,32,91&2,93},)(} .

However, it is straightforward to verify that ne zero element in A becomes nonzero in reducing A
to upper trapezoidal form by Givens transformations.

The next theorem gives a sufficient condition. Let

zCERCUChHD(Qr!{II! BT S PR y9r~l})X) :

Theorem 3.2:
If the path

(9 %0010, 91 1) Za)r Tr2) * * 1 Zo(t)r B (1 Te)
in H, through {z,, R 7Y S ,q,,l} satisfies

g(k) € f(k) ,for k=1, -t

H]

and

glk+1) < F{k) , for k=1, - -1

then
zceAdeI(Qr) .

o

In terms of the matrix, the sufficient condition in Theorem 3.2 is equivalent to a path
that only uses the lower trapezoidal portion of the matrix. This is illustrated in the following
figure.
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X =X

Ko X,

However, the condition in Theorem 3.2 is not necessary. This can be illustrated by the
following example.

Consider the path (g5,25,¢1,71,44,%3). It does not satisfy the condition in Theorem 3.2 and
it is the only path from g5 to z;. However, it is straightforward to verify that

23€Adj,(g5) -

3.4. Complexity of Sparse Givens Transformation

The complexity of the orthogonal transformation of a sparse matrix by Given rotations
can be expressed quite readily in terms of the sequence of bipartite graphs {H,-}. There are two
quantities that are of interest in the analysis: the number of Givens rotations and the number of
multiplicative operations required to effect the orthogonal transformation.
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Theorem 3.3:

The number of Givens rotations required to reduce A to upper trapezoidal form is

2:31 {tAdf;;,_,(zi)l —1] :

Proof:

In the transformation from H;_, to H;, the number of nonzeros that need to be annihilated
is given by

|Adjy (z:)]-1 .

The result then follows by summing over ¢.

Lemma 3.4:

In the bipartite graph H;_,, let
2 €AdJy () . r>i
Then the number of multiplicative operations required to annihilate this entry is given by

4{| Adiy(g)] +1} .

Proof:

Left as an exercise. (Note that we assume two multiplicative operations are used to
compute each new value.)

O

Theorem 3.5:

The number of multiplicative operations required to reduce A to upper trapezoidal form

1y, % [IAdfn.(q,nH}.

=1 g €adsy (z)

Proof!

In transforming H;_, to H;, the row g, requires processing if and only if
QrGAde,_,(zi) .

Thus, the result follows from Lemma 3.4,
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Corollary 3.8:

When the matrix A is n by n and full, the number of Givens rotations required is
(1/2)n*+ O(n), and the number of operations required is (4/3)n%+ O(n?).
n

4. Row Ordering Strategles

4.1. Node and Clique Separators

The analysis in Section 3 assumes that the row and column orderings of the matrix A are
given or are pre-determined by other means. Since in the QR decomposition of the matrix A, R
is the Cholesky factor of the symmetric and positive definite matrix AT A, it is clear that we
want to order the columns of the matrix A (that is, a symmetric ordering of the matrix AT A) so
that fill-in in factoring ATA can be reduced.

However, the row ordering of the matrix A does not have any eflect on the zero-nonzero
structure of the factor . Nevertheless, the choice of a good row ordering does have a significant
impact on the arithmetic operations required to compute the @R decomposition by Givens
transformations {5]. In part IIl of this paper, we shall illustrate a bad row ordering for the k by &
grid model problem with a good column ordering.

There is existing well-developed sparse matrix software for the solution of symmetric
positive definite systems [2,7]. Among the ordering schemes, the most popular are the minimum
degree algorithm and the nested dissection algorithm [7]. In this section, we consider the case
when the matrix ATA (and hence the columns of A) is ordered by the nested dissection scheme.
We shall investigate the different possible ways in which the rows of A can be rearranged so as to
reduce the number of (non-trivial) Givens rotations and the mumber of arithmetic operations
necessary to perform the orthogonal decomposition. In I12], Golub and Plemmons addressed this
row ordering problem in the context of block orthogonal decomposition of large scale geodetic
least-squares systems.

The results of Section 3 provide some insight and motivation for the selection of row
ordering strategies. In view of the relationship between separators, fill-in and reachable sets in
the symmetric positive definite case |7], Theorem 3.1 can be used or interpreted as follows. To
reduce or control the size of the set

Adjy(g,)

(which implies a reduction in the number of rotations and arithmetic cost), one should try to
reduce the size of the reachable set

Reac"ﬁu(‘hx{-"h TS PR ;Qr—l}yX) .

This can be achieved by the use of separaters. Since there are two types of nodes involved in the
bipartite graph, notably the z's and g¢'s, we are looking for two types of separators. The
approaches discussed in the remainder of this section are based on the idea of using separalors
from the column nodes {zj} and scparafors from the row nodes {q,—}. By separators from the
column {row} nodes, we mean subsets of column {row} nodes whose removal, together with the
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incident edges, disconnect the bipartite graphs H(A) into disjoint pieces.

The treatment here assumes that the columns are ordered by some form of nested
dissection. Because of the recursive nature of nested dissection, all the different strategies for row
orderings discussed in this section will also be applied recursively.

We begin by quoting, in our terminology, some results from George and Ng [9].

Lemma 4.1:

Consider M = ATA, and G=G{M). Let S be a separator in the graph G(M) inducing
two node components C; and C in G(X-S). Then, for each ¢, in Q(A),

Adjgayer)

is a subset of CIUS or CzUS-
1]

To facilitate our discussion, we introduce clique separators (in the symmetric graph of
ATA). Their introduction is motivated by Lemma 2.1, which states that each row ¢, of the
matrix A corresponds to a clique in the symmetric graph G(A TA )-

Let G be 2 given connected graph, and K be a subset of cliques of G. The set K is said
to be a cligue separator of G if, when (or after) all the edges in each clique of K are removed
from &, the resulting graph has more than one connected component. Thus, a separator from
row nodes in the bipartite graph H({A) is equivalent to a clique separator in the symmetric graph
G(ATA). The concept of clique separators will be used in some of the row ordering strategies
described in this section.

4.2. Induced Row Ordering by Nested Dissection Column Ordering

A row ordering can be induced quite naturally from the corresponding nested dissection
column ordering. It is based on the observation from Lemma 4.1.

Let S be a (node) separator in G(ATA) whose removal creates connected components ¢,
and ;. The induced row ordering is as follows:

1l

Number all those rows g, with Adjg4(g,)C ays

followed by the remaining rows.

The structure of the resulting matrix can be depicted as follows:
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¢ Cy S
W, 0 i}
0 W, Y,

Figure 4.1: Matrix Structure on Induced Row Ordering

It is clear from Theorem 3.1 that the two zero submatrices remain zero throughout the
entire orthogonalization process. However, zeros in ¥; can become nonzeros due to those in W,.
Moreover, zeros in Y, can become nonzeros due to either those in submatrix W,, or those in Y,
(the ‘‘rectangular box effect” as discussed in the appendix). This form of blocking has been
exploited by Golub and Plemmons [12] in the use of a nested bisection procedure for geodetic least
squares systems.

Since the other strategies discussed in this section provide better alternatives, we will not
consider this method further., However, one point worth noting is that, given the nested
dissection column ordering, the corresponding row ordering (assuming that this idea is to be
applied recursively} can be determined by simply sorting the rows in ascending order with respect
to the first nonzero subscripts.

4.3. Width-1 clique separator

A possible extension to the above strategy is to exercise more care in the numbering of
the rows that correspond to Cy| JS. The method can be viewed as identifying a clique separator
from the row nodes and ordering the equations associated with this elique separator last. Indeed,
the set of equations g,, whose adjacent set Adjy4y(g,} is contained in Co|JS and intersects the

separator S, forms a (width-1) clique separator. Numbering the node separator and this clique
separator last helps to reduce the size of the reachable set

Reachy(gr 421, - 20,01, -+ 0o ). X)

in the same way as node separators in the solution of symmetric positive definite systems [7].

Let S be a (node) separator in G(ATA) whose removal creates connected components €,
and C,. This method can be described as follows:

First number all those rows ¢, with Adjg)(g,)CCi{JS .
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Number next all those g, with Adjga)(¢.)CC; .

Finally, number the remaining rows,

The structure of the resulting matrix can be depicted as follows:

Cy C; S

A 0 Y,

Figure 4.2: Matrix Structure By Width-1 Clique Separator

With this structure, it follows again by Theorem 3.1 that possible fill-in is limited to the
submatrices Wy, Ws, Y, and Y,.

4.4. Width-2 Clique Separator

A further refinement to the above strategies gives the next method. In fact, this
corresponds to the heuristic method used by George and Heath [5]. This method can be regarded
as applying the same idea in Section 4.2 to both the subsets Ci| S and Gy JS.

Let § be a (node) separator in G(A TA) whose removal creates connected components C,
and C,. This method can be deseribed as follows:

First number all those rows ¢, with Adjy4)(q,)CC,
followed by those with Adjpa)(e,)C C1{YS -
Number next all those ¢, with Adjy{¢.)CC, .

Finally, number the remaining rows.

The structure of the resulting matrix can be depicted as follows. (This form of row
arrangement has also been described by Golub and Plemmons [12].)
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Cy Cy S

W, o (4]
Y,

0 W, 0
Y,

Figure 4.3: Matrix Structure for width-2 clique separator

The rows in the above structure can further be rearranged so that

c Cy s
ch o 0

0 Wae 0
Wy, 0 Y,

Figure 4.4: Different structure for width-2 clique separator

In other words, the row ordering strategy can be described as follows:
First number all those rows ¢, with Adj4)(¢,)CC, .
Next number all those rows ¢, with Adjga)g)EC: -
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Finally, number the remaining rows g,. (Note that Adju(a)¢;) has a
nonempty intersection with the separator §).

The strategy can also be interpreted in terms of clique separators. Indeed, the node
separator § in G(ATA) can be used to identify the set of clique separators that corresponds to
those rows g, such that Ade(A)(q,) intersects S. The rows in this clique separator are to be
numbered last to reduce the sizes of reachable sets.

In fact, the clique separator defined by the node separator § can be divided into two sets
of clique separators, namely those in €y J§ and in Cy| JS. Each by itsell is a clique separator.
Therefore, together they form a width-2 clique separator (and hence the name).

But, how can the row ordering corresponding to a given nested dissection column ordering
be determined easily? We shall consider this question in the remainder of this section.

We observe that the rows in the clique separator can be ordered “‘intermixably’’ from
those in €| JS and those in (| J§ without affecting the arithmetic cost for orthogonal
decomposition. (Indeed, this can be explained by the “rectangular box’’ effect as described in
appendix.)

In view of this observation, for a given nested dissection column ordering, the row
ordering using the strategy of width-2 clique separator can be generated by sorting the rows in
ascending order of last nonzero subscripf. This may not generate the same matrix structure as
depicted in Figure 4.4. However, this will be appropriate for the decomposition.

4.5. Width-2 Node Separator

In George and Ng [9], a mechanism is provided to order the columns of the matrix A,
which automatically induces a good row ordering. It is based on the idea of width-2 (node)
separators [10].

A width-2 node separator is identified in the symmetric graph G(A TA), which defines a
set of cliques that is “bounded” or “included” by the node separator. More specifically, the set

{41 Adiufe)CS}

defines a clique separator. This set of cliques is numbered last in the row ordering. The
procedure is applied recursively to the remaining components.

Let S be a width-2 node separator in G(ATA) with C; and C, as the induced connected
components. The matrix structure of the resulting column/row ordering can be depicted as
follows.
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o C, 8

Figure 4.5: Matrix Structure for Width-2 Node Separator

The success of this scheme can again be explained by Theorem 3.1. It delays the
numbering of node and clique separators in order to reduce the sizes of reachable sets.

The determination of the corresponding row ordering can be obtained by sorting the rows
in ascending order of first nonzero subscript [9]. It is interesting to note that the scheme to
determine the row ordering is the same as that in Section 4.3, although the two column dissection
schemes are different.

5. Concluding Remarks

In this paper, we have used the bipartite graph model to study the combinatorial nature
of the orthogonal reduction process by Givens rotations. The entire process can be modelled by a
sequence of bipartite graphs. The number of non-trivial rotations and number of arithmetic
operations can both be expressed in terms of adjacency relations in this sequence of bipartite
graphs.

The result provides insight into the decomposition process. To reduce arithmetic cost
(and also the number of rotations}, it is important to order the row and columns

i " 1 m
Z,%g, Ty

s0 that the reachable sets in the sequence:

ReGChH(A)(qh{zls T 7P15 PR yqr—l}yX)
are small in size. This motivates the introduction of clique separators (vs node separators).

The concepts of node and clique separators are used to study the various row and column
ordering strategies. We have viewed the row and column orderings from ‘“width-2’ (node) nested
dissection [9] in terms of these separators. We have also introduced the '‘width-2" clique nested
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dissection ordering, which can be interpreted as one with the columns ordered by the conventional
(width-1) nested dissection and the rows by an induced ordering.

In part III of this paper [8], we shall provide a detailed analysis of the latter approach

applied to a k by & regular grid model problem that arises in the nafural factor formulation of the
finite element method [1]. We show that this approach is better than the “width-2" (node) nested
dissection strategy, both in terms of storage requirements and operation counts. The readers are

referred to part IIf of this paper. Here, we conclude by presenting some results from experimental
runs comparing these two approaches.

Matrix A width-1 width-2
n m # nonz # nonz R # opns # Givens # nonz R # opns # Givens
484 1764 7038 7846 2480770 27181 8181 2563000 29321
678 2500 10000 11387 4242850 41083 12878 4580182 48288
coo 3384 13456 16321 6822042 50462 18307 7373360 86111

Table 5.1: Comparisons of row and column orderings using width-1 and width-2 (node) separators.
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7. Appendix

In this appendix, the formal proofs of the main theorems in Section 3.3 are presented,

We follow the same notation as introduced in that section. In particular,

H; = H(A)=(@.,X:,B) , i=12"--,n,

is the sequence of bipartite graphs associated with the corresponding sequence of submatrices A,

remaining to be pracessed.

Lemma A.l:

Proof:

Adjy(g,) =

For r>1i,

Adjy,_(9,) if z; not in Adjy_(g,) .

UfAdin_(a)iSs<r n€Adiy (a)}-{z} , otherwise .

It follows from the transformation process using Givens rotations.

Lemma A.2:

Proof:

For r>i, Adjy (¢ }C Adjy{e, )U{xf} -

It follows from Lemma A.1.

Corollary A.3:

For r>i+j, Adiy(9.)CAdjn,, (¢){m10  2e i} -
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Proof:
By repeated applications of Lemma A.2,

Lemma A.4:

For r>i, AdeI(Qr) = Reacﬁﬁ‘_!(Qrt{zi;Qixqi+ | PR ,q,_l},X)

Proof:

‘Case I : Z;&Adjﬂ,_l(%)
By Lemma A.1,

Adjy(g,) = Adjy_(¢,) = Reachy (q,8,X)=RHS. .

Case £ : x,vEAdeH{q,)
Consider z‘.EAde.(q,). If there exists 1<s<r such that z,-,zceAde'_l(q,), then
(¢,,%i,9,,7.} is a path in H;; and hence z,€R.H.S.. On the other hand, if z,€R.H.S.,
then there exists a path (g¢,%.90)%, " ,qup2) 0 Hyy, with i<f{k)<r, for
=1t I t=0, 2.€Adjy_(¢.)- {=} CLHS. I £>0, z,2,€Adjy (5. for
i<f({)<r, so that by Lemma A1, zceAdj,L"l(q,(‘))—{z;} CL.HS. Thus, z,EAdjy (4,)-

o

Corollary A.5:
For r>1, :rcGAdel(q,) if and only if there exists a path of length 1 or 3 from ¢, to =z,
tl"ouEh {3.'.%’. o .‘1771} in H,',l-

Proof:
By Lemma A.4, we can find a path

(innwu),z.-, T ,41;(1),15:)

in H;,, where i<f(k)<r for k=1, --,t. If t=0, (g,,z.) is a path of length 1. If ¢t>0,
(r,%i,97(1)»%) is 2 path of length 3. The converse is obvious from Lemma A 4.

o

Corollary A.6:

For r>i and ¢>1, zceAd]H(q,) if and only if either z,EAdJH(g,) or for some k<i,
there is a path (¢,,7;,4,,2.) in Hy_, with k<s<r.



Proof:

only if part »
Consider the case when z, is in Adjy(g,) but not in Adjy (g,). This means that the edge
(g-,%) must be created during the annihilation process. Let k be the smallest subscript
such that zteAdek(q,). By Corollary A.5, there is a path (g,,2,4,,2.). in Hy_,, where
k<c and k<s<r.

if part
In the first case, by Corollary A.3, zceAdeO(q,)gAdj,,-l(q,)U{zl, s ,z,»}. In the
second case, by Lemma A.4, we have £ <i with xceAdet(q,), so that again by Corollary
A3, zceAdef(q,)gAdeI(q,)U{z,,ﬂ, s ,1‘;}. In either case, z,€Adjy(q,).

1]

Pictorially, the result of Corollary A.6 can be illustrated as below:

T Z Ze
oo
1
0 L ——
|
|
t
1
gy X %{—0
1
¥
|
1
!

The path {g,,2,4,,2.) in Hy_; forms a “‘rectangular box” in the matrix. The conditions
k<e and s<r

mean that the rectangle must lie to the leff of column ¢ and above row r. Moreover, the
inequality

k<s

implies that the upper left “‘corner’” of this rectangle must not be above the matrix diagonal.

Another remark is that this path is in the bipartite graph H, ,, which implies that the
edges

(9r>%) » (:,%) , and (g,,z,)

can either be in the original bipartite graph H, or can be created earlier in the process.
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Proof of Theorem 3.1:

We prove this by induction on i. The result is obviously true when {==0, since
. €Adjy () = Reachy (g,,0,X) => z,€eRIS. .
Assume the result holds for values less than i. Consider zceAde.(q,). By Corollary A.6,

there are two cases,

Case 1: 7.€Adjy (¢, )CRH.S.
Case 2: there is a path (¢,,2;,4,.2.) in Hg_;, for some k<i and k<s <r. This implies
{‘Ir:“k} ' {qh“k} » and {9'“’:}
are edges in the bipartite graph H,_;. By inductive assumption,
-‘»’kGRBGChu‘,(Gn{% Tyt yqr-l}’X) R
ngReachHO(q,,{zl, R TN R ,q,,,},X) , and
ICEReachﬂo(q,,{xl, L Ee gy ,q,_,},X) .

Since ¢ <r and k<i<c, we can link these paths together to obtain one that goes from ¢,
to z, through nodes in

{zlr T EGL 1qr-1} .

Indeed, this path goes through z; and ¢,. Hence

zceRe“c'hHo(qr:{zlx BT 7Y ST x?r-l};x) .

Proof of Theorem 3.2:
We prove the result by induction on ¢. For t=1, we have the path

(9 2003 95 (1) %)
in Hy with
g) < f()<r and g(1) < ¥ .
This path is also in the bipartite graph Hy;) ;. Then by Corollary A.5, zcEAde’m(q,]. Hence, by
Corollary A.3, we obtain the result.

Assume that the result holds for values less than ¢t. Consider the given path

(9 200 Q1 (1) Tg@p Or 2 * 9 Ta () Iy (1 %e) -
Let 9wy be the node in this path that has the largest subscript among the ¢'s; that is,

F (k)< ("), for k=1, -+ - ,t. Furthermore, let Zya) be the one with the largest subscript
among the z's; that is, g(h}<g(h"), for k=1, - - - t. Then
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(o Zsp 970, " " Zy00)
Cneploy G
and
(qf(k']’z;(k'+l)’ e ,J?c)

are three paths in A, that are of length less than ¢ and satisfy the induction conditions. By the
inductive assumption, we have

7, 41EAdn (a.) .
2, €AGTE (9,400
and
2. €Adjg (4, 40)
for some u,v,w<g(h*). By Corollary A.3, we have
I,W)GAde,(‘,H(Qr) ,

Ty €A

o[k ')-1“’(*')) ’

and

1. €EAdjy

1 ’H(qf("')) ’

In other words, (q,,zﬂh‘), q.r(k']""f) is a path in Hl(k')—l with g(h*}<f(k’)<r. By Corollary A.6,
7, €Adjy ,(4,)
[t
and again by Corollary A.3,

5.€Adjug,) -



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

