EPARTMENT
EPARTMENT
EPARTMENT

A58 ERNE
WATERLOO COMPUT

ER
ED

i

&
C
SC

gt

WA
WATE

R g
i

On

Generating Test Problems

for

Nonlinear Programming Algorithms

Richard H. Bartels
Nezam Mahdavi-Amiri

CS-83-12

June, 1983

On Generating Test Problems for Nonlinear Programming
Algorithms

Richard H. Bartels

University of Waterloo
Department of Computer Science
Waterloo, Ontario
Canada N2L 3G1

Nezam Mahdavi-Amiri

York University
Department of Computer Science
Downsview, Ontario
Canada M3J 1P3

ABSTRACT

We present an approach to test-problem generation which
provides a way of constructing example nonlinear programming
problems from a wide variety of given functions. The approach
permits one to specify an arbitrary number of points at cach one
of which the problem should satisfy some "interesting” condi-
tions (i.e. be optimal or stationary or degenerate) and to deter-
mine the characteristics of functions and derivatives at these
points (i.e. choose predetermined values, gradients, Hessians
and Lagrange multipliers).

We give a sample of results obtained by using our approach
to generate test problems for two algorithms to minimize
nonlinear-least-squares objectives subject to nonlincar con-
straints.

This research was supported under NSERC grant number A4076 and under a Laidlaw
Fellowship administered by the University of Waterloo Computer Science Department.
Part of this work was included with that originatly submitted to the Department of
Mathematical Sciences of The Johns Hopkins University by the second author as a FhD
thesis,

Friday, 10 June, 1983

Test Generation 1

1. Introduction

During the last decade a number of methods have been developed for
minimizing general objective functions subject to general nonlinear con-
straints. These methods are characterized by their properties of global con-
vergence, asymptotic superlinear rates of convergence, and formulation in
terms of processes which can be efficiently and accurately implemented as
numerical algorithms. Examples would include [4, 5, 14, 15, 24, 25, 28].

No case has to be made for the fact that, in translating these or other
methods into mathematical software, a ready supply of test examples can be
extremely useful. It is less often recognized that such a supply of test exam-
ples can also be used to probe for oversights in the theory, and can therefore
be useful in earlier and more fundamental stages of algorithm development.
It was with the intention of exploring ways of making the generation of test
examples more automatic and more flexible that the present work was done.

In section 2 of this paper we review the commonly-given necessary and
sufficient conditions for a point to be an optimizer of a nonlinear program-
ming problem. In section 3 we convert this review into a scheme for con-
structing nonlinear programming example problems with one specified point
as an optimizer and with additional specifications on objective and constraint
functions and on dual variables. In section 4 we extend this approach to a
method for constructing nonlinear programming problems with any number
of critical points: maxima, minima, saddle points, degenerate points, etc.
This is done with a view for producing local "scenario" conditions which test
the assumptions upon which algorithms are based and which exercise critical
sections of computer codes. In section 5 we give a brief survey of two con-
strained nonlinear least squares programs which were written to explore the
usefulness of this test generation approach. In section 6 we give some sam-
ples of our experience in constructing problems for these codes.

The idea of building automatic test problem generators is not new.
References {2, 17, 19, 20, 22, 26, 29, 30, 34] provide a sampling of the litera-
ture. Automatic generation schemes provide a supplement to reference col-
lections of optimization problems; e.g. [3,8,16,31]. Finally, the following
references provide some discussions on software testing, and the reporting of
test results, from a broader perspective: [6,7,21].

The method developed in this paper represents an advance over the test
generation methods cited above in that it can specify the characteristics of an
arbitrary number of points, in a generally constrained setting, with a wide
latitude of sample functions.

Friday, 10 June, 1983

2 Bartels, Mahdavi-Amiri

2. Optimality Conditions
The minimization problems to be considered are of the form

minimize $o(x) @.1)

such that
¢j(x) =0, jeds
¢j(x) =20, je J[s

where J;={1,...,1} is the index set of equality constraints and
J; = {I+1, ... ,l+m} is the index set of inequality constraints. We will
denote the combined index set by

I=JUl.

Another important index set is that of the active constraints at any point

J(x) = {jeJ, d,(x) =0}

We first state necessary conditions for a given point to be a solution of
problem (2.1). In order that these conditions be applicable, constraint qual-
ifications must hold at the point. Appropriate ones, and the underlying
theory, can be found in [11]. In practice, the constraint qualifications given
in this reference (or any other of suitable generality) are hard to verify. In
order to implement algorithms, it is often assumed that the following more
strict constraint qualifications hold:

Nondegeneracy Assumption: Letting £ stand for the optimizer, as well as for
any point encountered by the algorithm,

Vo), ey U LG @.2)

are linearly independent .

This is more than enough to imply satisfaction of all of the constraint qualifi-
cations given in [11].

First Order Necessary Conditions: Let x* be a solution of (2.1), and let an
appropriate constraint qualification be satisfied at x*. Then there exist

Friday, 10 June, 1983

Test Generation 3

A/, j €J such that

Voo(x') — TNV - 2 NVe(") = 0 2.3)
Jeig TGN

A 0 jel.(x)

&) =0 jel

o) =0 jeJ,

Mo = 0 jed,

Second Order Necessary Conditions: Let x° be a solution to problem (2.1)
and satisfy an appropriate constraint qualification. Suppose that there
exist A} satisfying the first order necessary conditions. Then

for all zeR" s.t. 27Vd,(x") = 0 jelJ,
27V¢j(x') =0 J.GJA(J‘.)

we have

V() - T NVE) - S NVE) =00 (2.4)
1€3g 1 €345

For x* to be a strict local minimum of problem (2.1) we need the condi-
tions stated in the following result.

Friday, 10 June, 1983

4 Bartels, Mahdavi- Amiri

Second Order Sufficient Conditions: Let (x*,\") satisfy the first order
necessary conditions and an appropriate constraint qualification. If for
every nonzero z € R* such that

TV, (x") 0 jeJ,
V(") = 0 jeJ,(°) and A} > 0
7VG(x') 2 0 jel,(x') and A =0

it follows that

FTHG) - ENTRE) - T NV >0, @)

1e3,6N

then x* is a strict local minimum of problem (2.1).

Definition: The function
L{x,\) = d’u(x) - E)‘j‘bj(x)
Fi3]

which clearly plays a role in the above conditions is known as the
Lagrangian of the problem. If we regard V and V? to be differentiation
operators with respect to x alone, then

(2.3) can be written briefly as VL(x*,*) = 0 ;
(2.4) says that, on a certain subspace V2L(x",\") is nonnegative defin-
ite, and
(2.5) says that, on a certain (slightly smaller) subspace
V2L(x*,\"} is positive definite

The first order conditions clearly imply that \,=0 for all jeJ\J,(x*), hence
at (x*,*) the function L can be written in the more explicit form indicated
by the first and second order conditions.

The idea to be presented for generating test problems is straightfor-
ward: The functions &;(x), jeJ|J {0}, will be constructed from given func-
tions ¢;(x) to which perturbing functions are added. The perturbing functions
are chosen so as to force the first and/or second order conditions to hold at a
number of selected points. It will be seen that this choice is achieved by the
introduction of simple interpolating conditions on the perturbing functions.
As for the functions ¢,(x), they may be chosen to provide a desired nonlinear
characteristic (e.g. exponential growth or some degree of discontinuity).

Friday, 10 June, 1983

Test Generation 5

3. Specifying a Single Point
Consider the problem

min ¢y(x) = golx) + Q(x — 2"V D(x —)] + B (x ~ £") + o
such that

o) = () + Kx-2")+a, =0, jel

and

&, (x) = g,(x) + Af(x — *)+te, =0, jel,,

where the ¢,(x) are chosen functions from R" to R', where x* is the proposed
optimizer, where D is an nXn symmetric matrix, the h, are vectors in R* and
the a, are scalars all to be determined, and where) is any function satisfying

@ # 0 3.1)
The gradient and the Hessian of ¢, respectively, are

Voy(x) = Vay(x) + Q'[%(x ~ x*YD(x = ")ID(x — x°) + &y
and

Vio(x) = Vigolx) + Q'[h(x = "Y' D(x — x")]D

+ Q''[4(x — =*YD(x - x")ID(x - x")x — x")D .

The gradient and the Hessian of the Lagrangian, respectively, are

VLGN = V() = ZNTa0) = o) = F M9 +)

and

VLA = V) = ST = Vo) = 3 0V
€, \ji

At (x",*) we have:
VL(x' ') = Vgo(x') + by — 3T N(Vg,(x*) + &) .

]
kli'ﬂ

VIL(x",\") = Vigy(x") + Q' (0)D - 3 A\ Vig(x') .

h;f(l

Friday, 10 June, 1983

6 Bartels, Mahdavi-Amiri

If we let
b = [Z NTqE) +) — Vgl
Af#0
and
D =

[-Vig(s) + T Vi) + HYX'O)

Aj#0
we will have

VL(x,\) = 0
and

VLG) = H .

So the characteristics of the Hessian of the Lagrangian at x* can be predeter-
mined by H. If we further select an index set J, (x"), and let

o = —q=") Jjel U L&)

o = "QJ(x.) JeINLOGTY
then we will ensure the feasibility of the constraints as well as the desired
activiies. With proper choice of the o, the &, and of {} and D, we can

arrange that some or all of (2.2) — (2.5) will hold at x*. To be raore pre-
cise, we may

(1) Choose J,, J;, and J,.
(2) Choose q; and g, for jelJ.
(3) Select x* and * consistent with Jg, J;.
(4) Choose a function Q so that 0'(0) # 0.
(5) Choose vectors k, for jeJ and a matrix H.
(6) Compute

hy = T N(Vg(x) + By) = Vao(x")

afwo0
and

D = [-Vig() + T NV) + HYAO) .

AJiD

Friday, 10 June, 1983

M

Notes:

(a)
(b)

©

(@

()

®

(8

Test Generation 7

Choose a, arbitrarily, and let

o = —qx") jedrU L&)
and

o, = _‘IJ(I.) jeJI\JA(x‘) .

The quantity o, can be selected to specify a desired value for &, at

X .

The remaining «,, j¢J provide the values of the constraint func-
tions at x', ¢,(x'). These can be chosen to ensure that
&,(x")=0, jeJ,(x")U J and that ,(x")=0, jel,.

The vectors &, , jeJ can be selected arbitrarily in advance of k, so
as to specify gradients for the constraints. Choosing these vectors
to be linearly dependent for jeJgU J,(x") (assuming that any
necessary constraint qualifications are satisfied for x°) yields
degenerate test cases.

The \; may be chosen arbitrarily, consistent only with the incqual-
ities of (2.3). The selection of A; =0 for some j¢J,(x") is often of
particular difficulty for algorithms to handle properly.

If the matrix H is chosen to be positive definite, then the inequali-
ties of (2.4) and (2.5) will be satisfied automatically. A more sub-
tle choice of H is indicated below in (g).

Notes (a)-(¢) provide enough flexibility in the choice of
k,,Vd>,,VL,V’¢,,V’L to specify that chosen constraints shall be
active at x*, that the gradients of these constraints shall be equal to
specified vectors at x*, and that the Lagrangian shall have a speci-
fied matrix as its Hessian at x*. All of this is sufficient to specify
that x” shall be a minimum (or maximum or stationary point or
saddle point, among other possibilities).

Indefinite or ill-conditioned test problems can be obtained by let-
ting

b= Vg)+w, jel U TG

where the vectors w, form an orthonormal set. Then

Friday, 10 June, 1983

Bartels, Mahdavi-Amiri

V¢,(x') =w jel: U 1) .

Let W stand for the matrix whose columns are given by the w;; let
the vectors z; constitute a basis for the orthogonal complement of
the space spanned by the w;, and let Z represent the matrix whose
columns are given by the z;. Consequently

wriiw z] I 0
- el
Then let

[W Z] oV, 1] wT } I+ IJA(X‘)I

H
0 |z } n—1— |1,

with positive definite matrices V,, i=1,2. The matrix H will be
indefinite if and only if one of o or 7 is nonpositive. For any
nonzero vector y € R" we may write

Yy =nty.

where y, is in the space spanned by w, and y, is orthogonal to this
space. The condition »Vé,(x") =0, jeJ, U L), is
equivalent to y, = 0 since Vd,(x*) = w,. This leads to

YVAIL(G Ay = 1yfVoy,

which guarantees the satisfaction of the second order conditions for
all values of o, provided that +>0. For ill-conditioned examples,
V, and V, can be chosen accordingly. This scheme of generating H
in a partitioned format in order to obtain ill-conditioned projected
Hessians is necessary in the light of the results contained in [33].

Note that the strategy which was used provides control of the values of
the ¢, jeJJ {0} by way of the choice of the a,. Similarly the gradients of
the &, are determined by way of the choice of the &, The properties of ¢,
(or alternatively the Lagrangian) are specified by the choice of ay, by, D,
and {2, so long as an "interpolating condition” on {}, namely (3.1), holds.

Friday, 10 June, 1983

Test Generation 9

This provides the fundamental outline of the way in which a single
selected point x1) = x* can be made to satisfy various portions of the first
and second order conditions. The next section will expand upon these ideas.
In this regard, it may be seen that the &, could just as well have been defined
to have the form

&) = 40 + QUG—x VD, (x—2")] + Y E=2)] + a8 (dx2)) .

So long as appropriate interpolating conditions on the functions
), v,, and &, hold, we can specify values, gradients, and Hessians via
D,, h;, o, and d; with a great deal of freedom.

4. Specifying Several Points
We will extend the idea presented in the previous section to characterize

the behaviour of any finite number, s, of selected points x1), . . ., x{n).
Let
¢](x) = 'I;(x) + lzl{aﬂaﬂ[djrl(x_x(‘))] (4.1)

+ A -]

+ [~ =0)TD, (x =]},

where x, i=1,....,s, and g,(x), jeJ{U {0} are given, D, ¢ R™x, d,,
h, ¢ R" and a, € R' are to be chosen, and 0,,v, 8, are functions from
R!-R! to be determined. The functions gq;, and hence ¢,, are to map R* into
R

The gradient and the Hessian of ¢, are:

v¢j(x) = V‘Ij(x) + ‘ztl{ajlajllldj,; x_x('))]djl
+ 'Y_]l'[hj,ll(‘t_x(‘))]hjl

+ O, [A(e=2OYD, (x = x)]D, (x—x")}

Friday, 10 June, 1983

10 Bartels, Mahdavi-Amiri
Vi, (x) = V?q,(x)
+ 121{“11814”[415(-”—"('))]411‘{1’: + 'y”"[h};(x—x(‘))]hﬁh};
+ ﬂﬂ"['b(x—x"))rDﬂ(x--x(’))]DJ,(x—x(‘))(x"x('))TDﬂ

+ O, [~ 20)D, (x—x")]D,).

We introduce the following quantities:

0, (x) = df(x—x"), 0=, (x") = di(xI-z) ,

n;(x) = Ai(x—x), nff) =, (xD) = BG-20)

7u(x) = B(x—xNTD,(x—x D), 2D m 7, (x0), = (xO= DY D, (0 -x7) |
Note that 8{?=n{?=1{0=0.

The gradient and the Hessian of the Lagrangian are:
VL(x,)) = V(x) — ZA,V,(x)
]

= Vgy(x)
+ é‘{amﬁm’[em(x)]dol + Yo, g)by, + @y, [10, ()10, (x— 2}
=3 Vel + e, (0,00, + v @k,

JeIp U3, (0)

+ n]l '[Tﬂ (I)ID_n (= —x(i))}}

Friday, 10 June, 1983

Test Generation 11

VIL(x,\) = V2 (x) — A Vi,(x)
i

= Vigo(x)

+ gi{"-m&m”[sm(x)]dmdgt + o [0 (x) o 1,
+ ﬂm"['rm(x)],Dm(x-x(’))(x—x('))rDm + O, [70,/(x)1D0}
- IMVg) + ?_f,l{a,,s,,"[e,,(x)]a,,a,f,

+ 'Yn”[“'lﬂ(x)]hﬂh};
+ -Qﬂ ! '["ﬂ (x)]Djl (x~x0)(x "1('))TDJJ
+ Ojl'[Tll(x)]Dﬂ}}'

The vectors d;, and the functions 8, may be exploited to define ¢, (x),
for all j,7. The vectors h, and the functions vy, may be used to specify the
gradient of &,(x*) for all j,+. (When j=0, the gradicnt of the Lagrangian
or of the objective function may be specified; but not both.) The matrices D,
and the functions £, may be defined so that the Hessian of ¢,(x) for all
j,t. is specified. (When j=0, cither the Hessian of the objective function or
of the Lagrangian may be specified; but not both.)

To elaborate, note how the quantities &,(x®), Vé,(x?), and V?$,(x*))
depend upon the values of the functions &,, -y, {3, and their first and second
derivatives at the argument values 6{%, nf, =f?. For a fixed j and chosen
points x® i = 1, . . ., s suppose that the vectors d,, i = 1, . . . , s, happen
to have been chosen so that 8§?+0 for all i,r =1, ..., sbuti#r. Simi-
larly, suppose h,andD,,i=1, ...,s, have been chosen so that
nP#0and TP #0fori,t =1, ..., ,sbuti#r. Thisisa critical assumption,
but one which frequently holds for small s even for randomly chosen x's, d's,
h's and for nonsingular D’s. Now, if a fixed index t is selected, and if the
following conditions hold

5,(60) =0 foralli#t,i=1,...,s,
and
5,(80) = 8,(0) = 1,

and

Friday, 10 June, 1983

12 Bartels, Mahdavi- Amiri

V(i) =0 foralli =1, ..., s(including),
and

0,60 =0 foralli=1, ..., s (including £),

then, from (4.1), ¢,(x*?) reduces to
$,() = ¢(:) + a,

Using this, the value of ¢, (x)) can be specified (for its own sake, or by way
of specifying L(x*, A®) for some chosen vector A)). The conditions listed
above for &, v, Q},, i=1,s, represent interpolatory conditions for
these 3xs functions of fixed index j. Any functions constructed to satisfy
these conditions will provide the means of fixing the value of ¢, at x),

A similar discussion involving appropriate interpolatory conditions for
8, v's Q" will lead to the equation
v‘b}(’“) = V‘Ij(xm) + hjl

from which the choice of &, has served to specify Vo, (x?) (cither for its own
sake, or as a means of specifying VL(x®), A\®) for a selected A(.) Finally,
considerations involving appropriate interpolatory conditions for 5,"', v;"’,
Q,"", will serve to specify V2¢,(x*) as

Vig,(x) = VZQJ(xm) + Dy,
(for its own sake or as part of the process for specifying V2L(x{*, A?).)

To determine various conditions at various points, then, one selects
values

¢, (x9) = ¢,(=) + o,
gradients

Vé,(x9) = Vq,(x) + h,
and Hessians

V24, () = Vg,(x) + D,

by specifying o’s, h’s and D’s appropriately. For a fixed ¢ one checks that
0%, m{, 7i) are nonzero for i#t. One collects all of the interpolatory condi-
tions together which result from the various specifications to be made, and
one constructs any functions 8, v, and {3, which satisfy those conditions.
(We note that, if any functional value ¢,(x®)) is not to be set specifically then

Friday, 10 June, 1983

Test Generation 13

the corresponding appending function 8, may be set identically to zero. This
choice of 8, here would not violate any interpolatory conditions which may
arise from other specifications since those conditions only insist that the first
or the second derivatives of §,, are to be zero at other points. Likewise, v, or
), may be set identically to zero when the corresponding gradient or Hessian
is not demanded.) The result determines &, . . . , &,,, and the characteris-
tics of the problem (2.1). The specification of L, VL, V2L follows by natural
extension from the above.

By way of example, the following two procedures give the flavour of
specifying desired gradients and Hessians for the Lagrangian. The method of
specifying values, gradients and Hessians for the ¢, is similar.

Procedure 4.1:
The functions 8,,,,{,,j>0,for all i are determined elsewhere. The
vectors gg,, which are to be specified as VL(x®,\®) at selected valucs

of tef{l, . . . ,s}, are given.

for t=1 step 1 until s do
if VL(x,\®) is to be specified then
begin
{ 86ss Yo, and O, must satisfy

8,,'(8§7) = 0 foralli;

Yo, (0) = 1;

Yo' (n§) = 0 for all i#1;
0,/ =0 foralli#r;}

hy, - [80:_un(x('))
+ TANHVq,(x)

I
+ ‘E:{aﬂ sjl ! [O}J‘)]djl
+ Y '['ﬂ}f)]hﬁ

+ 0[]0,z — sNH ;

Friday, 10 June, 1983

14 Bartels, Mahdavi-Amiri

end
end do

Procedure 4.2:
The functions §;,%;,{Y,,j>0,for all i are determined elsewhere. The
matrices H,,, which are to be specified as V2L(x®,\¥) at selected

values of t€{1, . . . ,s}, are given.

for t = 1 step 1 until s do
if V2L(x®, A1) is to be specified then
begin

{ By, Yo,» and 0, must satisfy
8,,/"(8f)) = 0 for all i;

Yo' '(nff) = 0 foralli;

Q' (1) = 0 foralli¥¢;
0,'0)=1;

0,/ =0 foralli#r;}

Dg,~ [Hm - qun(x(‘))
+ AV, (=)
Sty 00

+ ["l}a')]"ﬂ h]’l
+ 0y P10, (-2 (<O-20)D,

+ n]l'[T}:)]D]l}}] H

end
end do

Friday, 10 June, 1983

Test Generation 15

These procedures, and their like for specifying values, gradients and
Hessians for the individual ¢,, imply that the following (Hermite) interpola-
tion conditions be imposed on 8,

81;[0] =1
5,[0[7] = 0 for all i# ¢ such that ¢,(x?) is specified.

8,'[6?] = 0 for all i such that the gradient at x() is specified.
5,''[6{9] = 0 for all i such that the Hessian at x'¥) is specified.

Likewise, for vy, and Q,, the corresponding conditions are:

vx[nf] = 0 for all i such that & (x") is specified.

Wil =1

¥y,'[m§?] = Ofor all i # rsuch that the gradient at x(* is specified.
v, '[n{?] = 0 for all i such that the Hessian at x(") is specified.

and
,[7{?] = 0 for all i such that ¢, (") is specified.
0,'[7{?] = 0 for all i# such that the gradient or the Hessian at x(¥) is specificc
Q0] =1
Q,""[+?] = 0 for all i such that the Hessian at x) is specified.
Notes:

(a) One should be advised that the above interpolating conditions do
not constitute the only ways of achieving our ends. Some of the
conditions imposed could be reduced at the expense of a more
complicated presentation.

{b) If 8,, v,, and , are all taken to be polynomials, then [1] pro-
vides the necessary background for fixing these functions for any
suitable 057, n{?, and 7{2.

(¢} We note that the following assumptions are necessary:

Friday, 10 June, 1983

16 Bartels, Mahdavi-Amiri

P = KGO = x) # 0 for all i#t.
2D = %(x — D)D) —~ 50) # 0

The first set of these assumptions corresponding to 8, may be
satisfied automatically by choosing d,, appropriately. However,
the remaining assumptions are not always guaranteed for all &y,
D, and &, i=1,...,s. When a failure occurs, one should
merely select a new set of points x). Such failures will be rare.

5. Algorithms

In order to gain experience with the ideas described in the foregoing
sections, we have prepared two experimental codes to solve the constrained
nonlinear least squares problem; i.e. problem (2.1) for the special objective
function

minimize o(x) = W(E)F(x)

where
F(x) = [A(x).£()]

It is worth noting that this structure in the objective function provides the fol-
lowing structure to the gradient and the Hessian:

Voo(x) = J&)F(x) ,
where J(x) is the Jacobian of F(x) (the matrix whose ith row is Vf,(x)7), and

Vigg(x) = J)TI(x) + gv*f,(x)

We took two of the currently popular techniques for nonlinear program-
ming, the successive quadratic programming technique with the watchdog
modification due to Han, Powell, et al. [14,15,25], and the exact penalty
technique due to Coleman and Conn [4, 5], and we made some modifications
to these techniques to take account of the special structure of the objective
function. Our modifications were along the lines of those suggested by
Dennis, et. al. in [10}, extended to account for constraints. Qur reasons for
not experimenting with (2.1) directly were twofold: (1) by treating a problem
for which there is not widely available software, we were forced to write pro-
grams from scratch, which meant that we could code both techniques in a rea-
sonably uniform manner — which we hoped would suppress artifacts arising
from different coding styles, and (2) by making changes to both techniques to

Friday, 10 June, 1983

Test Generation 17

account for the special nature of the problem, the blame for any poor show-
ing of one technique over another could be laid to us for botching the job —
we were interested in the mechanisms of test generation and of its utility to
researchers and programmers, rather than being interested in passing judge-
ment on specific optimization techniques. We will give a brief rundown on
both techniques and indicate the modifications which we made.

A certain imbalance in the treatment will be unavoidable. The authors
have worked on much of this material in close proximity to Coleman and
Conn, during some of the later stages of the development of their exact
penalty algorithm. It was hard to aveid becoming much more familiar with
their technique than with the successive quadratic programming algorithm of
Powell, et. al. The reader will, hopefully, make allowence for this in what
follows.

The references above are to be consulted for further details about the
basics and the theory — references [5, 4, 25] being the most pertinent.

For both techniques a point x° and an nXn positive definite matrix B°
are needed to begin. The starting point is user-provided and the initial choice
of B°, dependent upon the technique being used, is some approximation to
second derivative information. From then on, a sequence of points {x*} and a
sequence of positive definite matrices {Bt} (k = 1,2,3,...) is generated itera-
tively.

5.1. Successive Quadratic Programming with Watchdog

At the beginning of the k-th iteration, both x* and B* are known. A
search direction &* is obtained by solving the quadratic program:

mini‘mize dTVdy(x*) + %d™Btd

subject to
&, + V() =0 j=1,...,1
&) + TV =0 =141, .. +m

The solution of this quadratic program also yields Lagrange multipliers A*?,
The search direction d* is taken with a stepsize of to yield a new point
xtl = xt 4 atdt, and B**! is defined by

Bt = gt (b)+ $h !

We have chosen §¥*! as a quasi-Newton approximation to:

I+m
gﬁ(x‘”)vzf.(x*“) - E NIV ()

Friday, 10 June, 1983

18 Bartels, Mahdavi-Amiri
The choice was made as follows:

Find Vo(z**1) = J(x**1)TF(x+*1).
If k = O then set $° « 0,,, otherwise:

yk+l - {J(le) _ J(x")]’F(f“) — HE":)‘Ipl[v¢l(x1+l)_v¢j(xk)];

=
shtl o o1 .X*.

Use y**1 and s**! in the BFGS formula (switching to DFP if using BFGS
would result in a division by zero — see, e.g. [9], for a reference to
these) to update §* to §**1,

In solving the above quadratic programming problem, the techniques
presented in [12] were followed:

At each step in finding the optimal value of 4 a working set of con-
straints is determined, the gradients of which, ¢,(x*), are taken to form
the columns of a matrix A.

The columns of the matrix Z are determined to form an orthonormal
basis for the nullspace of AT.

A modification to the current d is found by solving a system of equa-
tions based upon the matrix 278*Z.

The equation-solving process involves using the Cholesky decomposition
of

Z'B*Z = LDL” + E , (5.1.1)

where E is a diagonal matrix of small norm chosen to make Z7B*Z posi-
tive definite. (£ is a zero matrix when Z7B*Z is already positive defin-
ite.)

After d* is determined from the quadratic model, the stepsize ot is chosen
with the aid of two merit functions. The primary of these is
Ylo) = W(t+ad,pt) = ¢yx) + 3 ufl ¢, +ad)|
. i
+3 i"]tl min(o’¢j(f+a“i))| ’
i€l

where the parameters p} for each jeJ were updated according to:

Friday, 10 June, 1983

Test Generation 19

On the first iteration:
w = 2} VA [

On other iterations:
If pi-l<1.5|ak1

then pt = 2|\
else pf = pt-t .

The secondary merit function used is merely an approximation to the Lagran-
gian function:

L(#+ad) = dy(t+ad) — T A4, +ad)
JeJ

Line searches, as needed, were performed on y,(a) using the line search of
[23] with termination set by 4=0.9. This is a very tight termination require-
ment, which should ensure satisfaction of the line search condition given in
[25], namely

YO ut) = W t) - oW, k- ¥, uh)] (5.1.2)

where 6 is a constant chosen from the interval (0,%). To ensure that the
choice @=1 is ultimately always made, we test whether taking the point
x*+d* as x**1 will ensure that either one of the inequalities (5.1.2) or

L (x*+d%) < L(x*)

is satisfied. If so, we accept x*+d* as x**! without carrying out a line search
on Y, (a).
All other details are identical to those laid out in [25].

5.2. The Exact Penalty Technique
A single merit function is used by this technique:

V() = wdx) = T)+ T sgn(d,()éx) ,

je "‘.’1(') je J%z(z)

where for any x and € >0 we define

‘ua(") ={l$,(x)| <e, j=1+1, . . . ,I+m} the set of e-active
inequality constraints
35, = {|$,(x)| <e, j=1, . .., I} the set of e-active

Friday, 10 June, 1983

20 Bartels, Mahdavi- Amiri

equality constraints
3y, () = {d,(x)<e, j=I+1, . .. ,1+m} the set of e-violated
inequality constraints

n&) = {|¢,(x)|>€, j=1, . . . ,1} the set of e-violated
equality constraints,
L) = B,0U 3,0

Implicitly with these index sets there is an approximate Lagrangian which we
will denote by

L(x,\) = Y- 3 Xltb](x)

I3 163}

The quantity € is a parameter of the method which is set positive initially and
is (possibly) revised downward at certain times during the course of the algo-
rithm. Similarly . is set initially to 1.0, and it may be revised downward.
The decisions for revision are much like those given in [4,5]. (In particular,
we will have occasion to make reference to the flowchart on page 147 of {4],
where e appears as ¢,.)

We start with x? and
B = J(D)TJ(x®)

The technique for determining B*, x* is divided into a global, a dropping, an
intermediate, and a local mode, each characterized by the use of different
quadratic subproblems and/or a different selection of step directions.

The quadratic model always has the form

mini‘mizc V. (*)h + %hTB*h (5.2.1)
subject to VoI(x*)h =0 j € Ji(@x*) ,

but Bf approximates either V2¥ (x*) or V2L (x*,*), depending upon which
mode is currently in force. The modes are determined by letting

Ak-[,__.,V¢_,(x")] forjEJ;(x‘),

by selecting vectors z, to form an orthonormal basis for the nullspace of A*”,
by constructing the matrix Z* with columns z, and then by inspecting the
norm

|Z7 Ve, - ¢.2.2)

Friday, 10 June, 1983

Test Generation 21

We outline the decisions made and the structure of each of the modes below.
Our outline is based upon a prepublication version of the exact penalty algo-
rithm, and it is distinguished from the publication version by the presence of
the intermediate mode, which serves to provide a more cautious transition
from the global algorithm of [4] and its asymptotic variant, discussed in [5].

Global Mode

B* is taken to approximate V2W (x*) for this mode — its updating will
be discussed later. Whenever (5.2.2) is greater than or equal to a tolerance
7, then the global mode is used, and a direction 4* is found by solving
(5.2.1). A new point

X+l = ¥+ atht
is found by using the line search of [23] with n=0.9 on
Y (a) = P (F + abp?

Dropping Mode
If (5.2.2) is less than 7,, then
Lagrange multiplier estimates A* are obtained by solving
mlm:mzc | AfA =V ()], , (5.2.3)

and a test is made to see whether any A}, cxists satisfying

IAE] £[0,+1] jpedi, ()

or (5.2.4)
INE| &[-1,+1] joeds G .

In this event, A* is found by solving the underdetermined linear equa-

tions
VoIh = =1 (5.2.5)
Volh = 0 jeBh(FMi) ,

Friday, 10 June, 1983

22 Bartels, Mahdavi-Amiri

the sign being chosen to provide descent for ¥,. A tolerance 5 is used
to accept or reject h* as providing sufficient local descent:

[V (5 + (i,;\7¢(‘.jk(‘1c*)]’h‘r <&,

where 0, ¢{—1, +1,0} depending upon the membership of j, in J, or J,
and upon the sign chosen in (5.2.5).

If no \ satisfies {5.2.4), then the intermediate mode of the technique is ini-
tiated. Otherwise a new point

#7 = x4 otk

is found as using the line search. If #* does not pass the test of sufficient
decrease, however, then €, 7,, and another tolerance 7, (used below) are
reduced, the index sets J are reassessed, and the global mode is put in force.

Intermediate Mode

In the intermediate mode B! is still taken to approximate
Vi (=) ,

and kt is determined by (5.2.1). (5.2.3) is solved at the beginning of each
iteration of the mode to provide values of A}, and the conditions (5.2.4) are
checked. To remain in the intermediate mode, these conditions must fail to
hold. (If any A}, can be found to satisfy (5.2.4), then the dropping mode is
put into force.) Assuming that the intermediate mode is permitted to con-
tinue, At is determined from (5.2.1), and a line search is made on
P (a) = ¥ (x*+ak*). This yields the point x* +ath*. The vector

O +atht) = [« -, b, (t+atht), - - T, jedi(d)

is formed; a direction v* is found by solving

ATy = —@(t+atht) , (5.2.6)
and the point
*+atht+

is considered. If a tolerance test indicates that
¥, (x* + atht +*%) is sufficiently smaller than ¥ (x*) ,
then

Friday, 10 June, 1983

Test Generation 23

= ottt

otherwise
= b4 otpt
€, 7, andT,

are reduced, and the global mode is put in force.

Local Mode

If the norm (5.2.2) is less than a tolerance 7, {1, <), and if
xt+a*ht++* has been accepted as xt*! on the intermediate-mode iteration
step last taken, then the local mode will be in force. In this mode B* is main-
tained as a quasi-Newton approximation to

VIL(x*,\Y)

and a direction k* is determined from (5.2.1). The quantity &= a* is setto 1
without a line search, and the vector v* is determined from (5.2.6) with this
version of Bt. The point

A= g pE

is accepted, provided a tolerance test indicates that ¥ (x* + h* + v*) shows suf.
ficient decrease over ¥, (x*). If this point is not accepted, then the intermedi-
ate mode is put into force after

€, 7, and T,

have been reduced.
Updating

The quasi-Newton updating for
Bt = pr@Et)TI(t) + s
must take account of the fact that
St = VI () = p(xF)TI(at)
in the global and intermediate mode, and that
St o= VAL (AN = wWI(xt)TI(xt)
in tlic local mode. This is attempted by setting

Friday, 10 June, 1983

24 Bartels, Mahdavi-Amiri

P e I —IETFE) - B [V) -V, ERT)

I<J%1(x“ P!

+ 3 sgn(d, ([, - Ve, ()]

Juaz(xh- l)

+ it {local mode} then

T AT - V()]

]02(1** !)

else 0 ,

and

8’”1 - k- x& .
The vectors y**! and s**! are used in the BFGS formula to update $* to §***
(switching to DFP if division by zero is to be avoided).

In any event, the solution of (5.2.1), for B* obtained in this fashion, is
accomplished in all modes (global, intermediate, and local) via the LDLT
decomposition described in (5.1.1).

Comparisons

The above has been a superficial, verbal description of the algorithm
given in flowchart form on page 147 of [4] provided certain changes are intro-
duced (the foremost of which being to correct the chart by introducing j into
those boxes from which it is missing).

1. The quantity A, in the chart has been split into 7, and 7, in the descrip-
tion, and the dependence upon k has been suppressed. Likewise € in
the description corresponds to €, in the chart.

2. The box at the top of the chart containing

k-k+1
Identify It

should now read

Friday, 10 June, 1983

Test Generation 25

Identify I}
NEWT - false

The box containing

W - -Z,(Z[B,Z,)'Z[Vp
Solve ATvE = — O (xt+A4t)

should be split into several parts. To begin, there should be a box con-
taining

oy ~1
B - —Z,(Z{B,Z,)"'Z] Vp
Following this there should be a diamond, asking
IZIVPI >m
and
NEWT = true
?

If the answer is "YES", then downward flow should continue into a box
containing

Solve AJvt = —d(xt+ht) |,

and further action is as shown on page 147. If the answer is "NO", then
flow should be directed to the right, into a box with

Determine a, via
Algorithm 1

Following this should be a box with
Solve AJvt = —d(xt+ o, ht)
and a diamond with the question

POt +aht+vk) < p(xt+a,ht)—p ?

Friday, 10 June, 1983

26 Bartels, Mahdavi- Amiri

(where B is some fixed, positive tolerance which determines acceptable
decrease). If the answer is "YES", then flow proceeds to the bottom,
left box in the chart, which now reads

NEWT - true
1o xb o Rt 4
k~k+1

If the answer is "NO", then flow proceeds to a box which contains

2 ext o bt
NEWT - false

and this box exits into the one at the lower right of the flowchart, which
adjusts €, 7,, and T,:

€~€/2
T, -7, /2
T, ~Ty/2
Identify It

6. Example Results
The nonlinear programming problems to be considered here have the
form

minimize %F(z)'F(x) + Qp(h(x—x" YD (x—x")) + vo((x=2")"hy)

subject to

&) = g + Hx—x)+a=0 j=1,...,1

d,(0) = g(x) + HG—x") + ;=0 j= +1,...,1+m
where F(x) = [fi(x).f,(®)]7, with

£ = é:l(xfx,)-: i=1.....p .

where

n
qj(x) = lzl(xlle) —j j = 1' AL] I+m ’

and where

Friday, 10 June, 1983

Test Generation 27

0,() = vp(1) = %(t + 1)* for reR
Note that this is consistent with the choice

a, = 0

v; = identity

8 =1

0, =0.

We have arranged the form of £, and +, so that the objective function will be
a sum of squares.

In all cases we assigned values to the optimizer and its associated
Lagrange multipliers by using the portable random number generator given in
[32]. The components of x* and the Lagrange multipliers of the active equal-
ity constraints A* were chosen between -1.0 and 1.0, while the Lagrange mul-
tipliers of the active inequality constraints were chosen between 0.0 and 1.0.
We had

=5 - number of variables
p =5 - number of components in F(x)
{ =2 - number of equality constraints
m =3 - number of inequality constraints
v =2 - number of active incquality constraints

and for all problems

0.30467
0.62076
Optimizer x* = | —0.80999
0.41441
0.95425
Active constraints set = {1,2,3,4}
0.12629
Lagrange multipliers A* = 8§?§;§

0.58508

The Lagrangian Hessian was set to be
oUTU, 0
H =
0 uviv,

where U, was a (v+{)x(v+!) upper triangular matrix. Except for U,[1,1],
which was sct to 2, all elements of U, were generated by using a random
number generator and were in the range -1.0 to 1.0. U, was also an upper

Friday, 10 June, 1983

28 Bartels, Mahdavi-Amiri

triangular matrix with elements all generated between -1.0 and 1.0. The con-
stant o determined whether H was positive definite or indefinite, and
o =1, -1, and ~10 were used. To obtain nondegenerate test problems,
the gradient of each constraint ¢, at x* was set to ¢, (the elementary column
vector with component j equal to one and all others zero). To obtain degen-
erate problems, all save the fourth constraint gradient were set this way, and
the gradient of the fourth active constraint was chosen to be linearly depen-
dent on the gradients of the first three active constraints. (We trusted to luck
on the constraint qualifications.) The constants a, were set so that
¢,(x*) = 0 for the active constraints, and &,(x*) = 1 for the inactive con-
straints.

Implementation:

All codes were written in ANSIT FORTRAN, as verified by the PFORT
verifier [27], and were run on the Honeywell 66/60 of the Mathematics
Faculty Computing Facility at the University of Waterloo. The generation of
random numbers was based upon the technique of [32], modified for double
precision. The basic linear algebra computations (e.g. dot products) were
carried out using the Basic Linear Algebra Subroutines of [18], and the more
advanced linear algebra (e.g. forming QR factorizations and finding the
LDLT factorization of a — possibly nonnegative definite — symmetric matrix)
is carried out by using or modifying programs from the NPL optimization
library [13]. The quadratic programming code needed for the technique of
[25] was also obtained from this library, which was made available through
the courtesy of P. E. Gill and W. Murray. The line search routine which
was used in all codes comes from reference [23] and was kindly provided by
Michael Overton. All random numbers were produced by [32] as modified
for double precision.

Employment

We illustrate the use of these test problems in two typical ways, firstly
in the "shotgun” mode of software testing, in which the problems are dumped
into the codes and the results are summarized in tabular or statistical format,
secondly in a "scalpel” mode, in which selected problems are followed, step-
by-step, through an algorithm see what insights can be gained. For the
former mode, the computational results are given in tables which follow.
Unless otherwise indicated, all tests were terminated if more than 50 itera-
tions were taken, in- the interests of saving our computing budget. For the
latter mode, we include summary remarks after each table indicating a few of
the interesting features of the execution. Again, we remind the reader that
our remarks reflect studies of the techniques of [4, 5, 25] as subjected to our
interpretation, for a problem of special structure, applying quasi-Newton

Friday, 10 June, 1983

Test Generation 29

updates of our choice, and suffering (possibly) under our blind spots in
rendering these techniques into computer code.

Table Headings

Tables

EP - exact penalty method
SQP - successive quadratic programming with watchdog technique
NI - number of iterations
SP - starting point:
starting point 1 - x with all component equal to 1.0
starting point 2 - x with all component equal to 10.0
starting point 3 - x with all component equal to 100.0.
FE - number of objective function evaluations
(each evaluation of F was counted as p+2)
CE - number of constraint evaluations
GFE - number of gradient evaluations in the objective function
(each Jacobian evaluation was counted as p+2)
GCE - number of gradient evaluations in the constraints
R - result:
C - Constructed optimizer found
A - Another point of termination
F - Failure, code aborted
M - Maximum iteration count reached

Non-degeneracy with positive definite H (o = 1.0)

TABLE 1
P EP sQpP
NI | FE {CE |GFE |GCE |R|NI| FE | CE | GFE | GCE | R
22 | 245 1175 | 210 169 | C | 19 | 147 | 105 | 105 103 | C
35 | 490 | 350 | 435 375 | C | 10 98 | 70 70 65 | F
3 | 38 |497 | 355§ 420 448 | C | 47 | 434 | 310 | 310 298 | C
Remarks:

(1) In SQP with starting point 1 the first 4 penalty parameters were deter-
mined by the Lagrange multipliers of the first quadratic subproblem,
and the last penalty parameter was determined by a multiplier of the
second quadratic subproblem. The penalty parameters ranged from 51

Friday, 10 June, 1983

30

@

€)

Q)

)

Bartels, Mahdavi-Amiri

to 350 and remained unchanged throughout iterations 3 - 19.

In SQP with starting point 2, the penalty parameters were set between
16750 and 89016 by the first quadratic subproblem. At iteration 6, a
quadratic-programming subproblem was encountered with Lagrange
multipliers of the order of 10°. This forced the penalty parameters to
become large as well. On the next two iterations, multipliers became
10%? and 103 respectively. The line search became unable to find lower
merit function values with the search directions produced, and the code
was aborted.

In SQP, with starting point 3, the penalty parameters had been set to
numbers of magnitude 10° by iteration 3. These values held throughout
the subsequent iterations without change.

It is a general observation that the first few quadratic programs encoun-
tered by SQP for all of our starting points and for all of our generated
problems were associated with large Lagrange multipliers. These, in
turn, set the values of the penalty parameters quite large, and subse-
quent quadratic programs, with their much more reasonably sized multi-
pliers, had no influence on the magnitude of the parameters. A revi-
sion of the code with some sort of "restart” provision is needed to pro-
vide for a periodic (or dynamic) reassessment of the penalty parameters
to account for cases in which Lagrange multipliers show significant
decreases. This would not necessarily have helped in (2) above, since
multiplier growth was generally upward in that problem, nor would it
have prevented the failures recorded in tables below, for which the
same growth was true. But it might have made a significant difference
in the following cases in which SQP was not able to reach termination
within 50 iterations,

Each of the three executions of the EP method was characterized by an
initial number of steps in which all constraints were deemed active,
causing (very large) Lagrange multipliers to be computed. These gen-
erated "dropping directions”, (5.2.5). There followed an intermediate
number of global iterations in which steps were obtained from (5.2.1),
during which |ZTV¥,| decreased almost monotonically. These steps
gathered the activities which represented the optimal constraint mani-
fold, and ended when the intermediate mode was entered. After
several intermediate mode iterations, the local mode was begun, and
convergence to the constructed optimizer decidedly appeared to be
superlinear. For starting point 2, for example, the breakdown was: 7
iterations of dropping steps, 16 of global steps, 3 intermediate steps,
and 9 local steps. The components of x* agreed with those at termina-
tion in the final 5 steps respectively to 3, 4, 7, 12, and >15 digits.

Friday, 10 June, 1983

Test Generation 31

Non-degeneracy with mildly indefinite # (o = —1.0)

TABLE 2
P EP SQP
NI | FE |CE | GFE [GCE |R{NI| FE | CE | GFE | GCE | R
23 | 252 | 180 | 205 159 | C | 22 [182 | 130 | 130 126 | C
2 (32 |455 | 325 | 385 33 [Cj10)] 98} 70 70 65 | F
3 | 44| 518 | 370 | 395 347 | A | 50 | 672 | 480 | 480 4464 | M

Remark:

(1) The SQP method failed in the same manner as for starting point 2 in the
previous problem — quadratic programs were encountered with large
Lagrange multipliers.

(2) For starting point 3, the EP method terminated on a point (not the con-

structed optimizer) which satisfied the first order necessary conditions.
The code does not check second order conditions.

Non-degeneracy with strongly indefinite H (o = —10.0)

TABLE 3

Sp

EP sQp

NIi; FE [CE |GFE |GCE| R {NI | FE | CE | GFE | GCE | R
50 |1 1015 | 830 | 675 | 634 | A (19 { 140 | 100 | 100 99 | C
50] 868 | 625 | 715 | 646 | M | 10| 98| 70| 70 65 | F
3 |50 798 | 590 | 645 | 577 | M |33 |238 170 170 | 169 | C
Remarks:
(1) The EP code converged to a stationary point (a first order point which

was infeasible for the given constraints) on iteration 30. Progress to
this stage involved an initial mixture of global and dropping steps, an
attempted intermediate step followed by several successful intermediate
steps, and a final number of local steps. The stationary point had con-
straints 2 and 4 active (1, 2, 3, and 4 are active at the constructed
optimizer), and was infeasible in constraint 1. The penalty parameter p
was reduced to an cighth of its value, and the remaining 20 itcrations
brought convergence to a point which satisfied the first order conditions.
This point was {0.299,0.610, —0.740,0.407,0.87], which is close to
the constructed optimizer, but it has only constraints 1, 2, and 4 active

Friday, 10 June, 1983

K7

@

Bartels, Mahdavi- Amiri

(values =10~?%). Constraint 3, which is zero at the constructed optim-
izer, has the value 0.0401 at this point. There is a good chance that the
projected Hessian of the Lagrangian — by the nature of the Hessian's
construction, by the proximity of this point to the constructed optimizer,
and by the fact that the gradient of constraint 3 is not included in the
projection — is indefinite. This should be examined. This points to a
possible limitation in the EP code (using (5.2.7) to update the matrix B
of (5.2.1) and using the Cholesky decomposition indicated by (5.1.1)).
Namely, second order information relating to negative curvature is
being ignored.

The EP method behaved much the same way on starting points 2 and 3,
but lagged enough behind its progress on starting point 1 that it was cut
off at iteration 50 just on or after a reduction in w.

(3) SQP failure was as before.
Degeneracy with positive definite H (o = 1.0)
TABLE 4

<P EP sQp

NI | FE [CE {GFE |GCE | R |NI| FE | CE | GFE | GCE | R
1 (33 (392|280 285 | 237 | C |50 658 | 470 | 470 | 445 | M
2 150|791)|656 | 615 | 555 | M | 50| 728 | 520 | 520 | 516 (M
3 149 | 588|420 | 425 | 455 | € | 22 [1519 | 1085 | 1085 | 1080 [F
Remarks:
(1) With starting points 1 and 3, EP cdnverged to the optimizer. The

@
®

Lagrange multipliers at the termination point were in agreement with
the first order conditions, but they were different in value from those
assigned due to the linear dependence of the constraint gradients.

For starting point 2, EP attained a stationary point, reduced ., and was
making normal progress when iteration 50 was reached.

The failures of SQP were as above.

Degeneracy with mildly indefinite H (o = —1.0)

TABLE 5

Friday, 10 June, 1983

Test Generation 33 .
P EP SQP
NI | FE CE |GFE [GCE | R |[NI|{ FE | CE | GFE | GCE | R
50 | 623 | 445 | 485 391 [M | 50 | 1379 | 985 | 985 926 | M
50 | 1645 | 1195 | 1245 | 1137 { M | 49 | 1050 [750 | 750 | 746 | F
3 15 | 623 | 445 | 565 456 | M | 29 | 315 (225 | 225 25 ([C
Remarks:

(1) For starting point 1, the behaviour noted above was to be seen. A sta-
tionary point was reached, p was reduced, and normal progress
appeared to continue as iteration 50 was reached. To verify the impres-
sion that progress was normal, a second run was made with 100 itera-
tions allowed. The method terminated at the constructed optimum after
95 iterations.

(2) For starting point 2, the EP code stalls. The tolerance used to judge
sufficient decrease in the "constraint dropping direction”, (5.2.5), was
set at 0.02 for all of the problems. This appears to be too small for this
one case. The method is able to make no progress in dropping a con-
straint, yet is not prompted to reduce its tolerance, €, used for judging
activity by failing the "sufficient decrease test”. A priori selection of
tolerances, and associated issues of problem scaling, are perennial items
of concern in nonlinear programming codes.

(3) For starting point 3, the EP code attained a stationary point around
iteration 50. It was cut off before a reduction in p could take place.

(4) The SQP method again developed large penalty parameters and ceased
making progress.

Summary:

We make note of the fact that the problems were easy to generate, that
the generation process was flexible enough to handle a special request on the
form of the objective function (i.e. that it be a sum of squares), and that use-
ful information pointing to the areas which need further study was readily
obtained.

Acknowledgements:
The authors wish to thank A, R. Conn, who has given freely of his sugges-
tions and encouragement. Thanks are also due to R. H. Byrd and A. L.

Goldman, who undertook careful readings of the thesis from which much of
this material is derived, and to W. Murray, P. E. Gill, and M. L. Overton

Friday, 10 June, 1983

34 Bartels, Mahdavi-Amiri

for providing the use of various of their software routines. Finally, the
authors are grateful to J. T. Hon for generating the example problems
reported here, running the algorithms, and creating the tables of this section.

7. References

[1] A. Bjorck and T. Elfving (1973), Algorithms for Confluent Vander-
monde Systems, Numerische Mathematik 21, 130-137.

[2] A. Charnes, W.M. Raike, J.D. Stutz, and A.S. Walters (1974), On
Generation of Test Problems for Linear Programming Codes,
CACM 17(10), 583-586.

[3] A.R. Coleville (1970), A Comparative Study on Nonlinear Programming
Codes, Proceedings of the Princeton Symposium on Mathematical
Programming, Princeton University Press, Princeton, New Jersey,
H. W. Kuhn (ed.), '

[4] A.R. Conn and T.F. Coleman (1982), Nonlinear Programming via an
Exact Penalty Function: Global Analysis, Mathematical Program-
ming 24, North-Holland, 137-161.

[5] A.R. Conn and T.F. Coleman (1982), Nonlinear Programming via an
Exact Penalty Function: Asymptotic Analysis, Mathematical Pro-
gramming 24, North-Holland, 123-136.

[6] H. Crowder, R. S. Dembo, and J. M. Mulvey (1978), Reporting Com-
putational Experiments in Mathematical Programming, Mathemati-
cal Programming 15, North-Holland, 316-329.

[7] H. Crowder, R. 8. Dembo, and J. M. Mulvey (1979), On Reporting
Computational Experiments with Mathematical Software, ACM
Transactions on Mathematical Software, 5(2), June, 193-203.

[8] R. S. Dembo (1976), A Set of Geometric Programming Test Problems
and their Solutions, Mathematical Programming 10, North-
Holland, 192-213.

[9] J. E. Dennis, Jr. and I. J. More (1977), Quasi-Newton Methods:
Motivation and Theory, SIAM Review 19, 46-89.

[10] J. E. Dennis, Jr., D. M. Gay, and R, E. Welsch (1981), An Adaptive
Nonlinear Least-Squares Algorithm, ACM Trans. on Mathematical
Software 7, 348-383.

[11] A.V. Fiacco and G.P. McCormick (1968), Nonlinear Programming:
Sequential Unconstrained Minimization Techniques, John Wiley and

Friday, 10 June, 1983

Test Generation 35

Sons, New York,

[12] P. E. Gill and W. Murray (1978), Numerically Stable Methods for Qua-
dratic Programming, Mathematical Programming 14, North-
Holland, 349-372.

[13]) P.E. Gill, W. Murray, and S. Picken (1978), The NPL Numerical
Optimization Software Library, Division of Numerical Analysis
and Computer Science, National Physical Laboratory, Teddington,
Middlesex, TW11 OLW, England.

[14] S-P. Han (1976), Superlinearly Convergent Variable Metric Algorithms
for General Nonlinear Programming Problems, Mathematical Pro-
gramming 11, North-Holland, 263-282.

[15] S-P. Han (1977), A Globally Convergent Method for Nonlinear Pro-
gramming, Journal of Optimization Theory and Applications 22(3),
July.

{16] D. M. Himmelblau (1972), Applied Nonlinear Programming, McGraw-
Hill, New York, New York.

f17] K. L. Hoffman and D. R. Shier (1980), A Test Problem Generator for
Discrete Linear L1 Approximation Problems, ACM Trans. Math
Software 6, 587-593,

(18] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh (1979),
Basic Linear Algebra Subprograms for FORTRAN Usage, ACM
Trans. on Math. Software 5, 308-325.

(19] 1. H. May and R. L. Smith (1980), Random Polytopes: Their Defini-
tion, Generation and Aggregate Properties, 80-6, Department of
Industrial and Operations Engineering, University of Michigan ,
Ann Arbor, Michigan, USA 48106, 31 pages.

[20] W. M. Michaels and R. P. O'Neill (1980), A Mathematical Program
Generator MPGENR, A.C.M. Trans. on Math. Software 6,
March, 31-44.

[21] 1.J. More (1978), Implementation and Testing of Optimization
Software, , IFIP WG 2.5 Working Conference on Performance
Evaluation of Numerical Software, December, Baden, Austria,

{22] 1.1. More, B.S. Garbow, and K.E. Hillstrom (1981), Algorithm 566:
FORTRAN Subroutines for Testing Unconstrained Optimization
Software, ACM Trans. on Math. Sofiware, vol. 7, 136-140.

{23] W. Murray and M. L. Overton (1978), Steplength Algorithms for
Minimizing a Class of Nondifferentiable Functions, STAN-CS-78-

679, Computer Science Department, Stanford University, Stan-

Friday, 10 June, 1983

36 Bartels, Mahdavi- Amiri

ford, California, November.

[24] W. Murray and M. H. Wright (1978), Projected Lagrangian Methods
Based on the Trajectories of Penalty and Barrier Functions, SOL
78-23, Operations Research Department, Systems Optimization
Laboratory, Stanford University, Stanford, California, USA
94305, 67 pages.

[25] M.1.D. Powell, R.M. Chamberlain, C. Lemarechal, and H. C. Pedes-
sen {1979), The Watchdog Technique for Forcing Convergence in
Algorithms for Constrained Optimization, Tenth International Sym-
posium on Mathematical Progamming, Montreal, Canada, August.

[26] I.B. Rosen and S, Suzuki (1965), Construction of Nonlinear Program-
ming Test Problems, CACM 8(2), 113.

[27] B. G. Ryder (1974), The PFORT Verifier, Software Practice and Experi-
ence 4, 359-377.

[28] R.W.H. Sargent (1982), Recursive Quadratic Programming Algorithms
and their Convergence Properties, Numerical Analysis, Proceed-
ings, Cocoyoc, Mexico 1981, I.P. Hennert (ed.), Springer-Verlag
[Lecture Notes Mathematics #909].

[29] K. Schittkowski (), A Numerical Comparison of 13 Nonlinear Program-
ming Codes with Randomly Generated Test Problems, Numerical
Optimization of Dynamic Systems, L.C.W. Dixon and G.P. Szego
(eds.), North-Holland Publishing Company. [to appear].

[30] K. Schittkowski (1979), Randomly Generated Nonlinear Programming
Test Problems, 9-th IFIP Conference on Optimization Techniques,
Warszawa.

[31] K. Schittkowski and W. Hock {(1981), Test Examples for Nonlinear Pro-
gramming Codes, Springer-Verlag [Lecture Notes in Economic and
Mathematical Systems #187].

[32] L. Schrage (1979), A Mor: Portable FORTRAN Random Number Genera-
tor, vol. 5, .

[33] G. W. Stewart (1981), Constrained Definite Hessians Tend to Be Well
Conditioned, Mathematical Programming 21, North-Holland, 235-
238.

[34] J. Telgen and W. B. vanDam (1979), Randomly Generated Polytopes
for Testing Mathematical Programming Algorithms, 7929/0,
Economics Institut, Erasmus University, HOLLAND, 14 pages.

Friday, 10 June, 1983

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

