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ABSTRACT

In taking the work of van Leeuwen and Overmars as a
basis, we present a uniform theory for the 1-pass top-down
manipulation of stratified search trees. This theory allows us to
consider many different classes of balanced trees and their
update schemes as special cases of a mew ‘super’-class of bal-
anced trees: the stratified search trees. However we show that
weight balanced trees do not fit into this framework.

We also consider various methods of representing keys in a
stratified search tree, that is routing schemes, and present a sin-
gle O (log n) 1-pass top-down algorithm for insertion and dele-
tion of keys in this class of trees. This algorithm can be used
for many more routing schemes than those explicitly mentioned
here.

1. INTRODUCTION

Traditional solutions to the dictionary problem, that is how to insert,
delete or search for a given key in a set of ordered keys, use balanced search
trees, see [AHU], [K], [BM], for example. The maintenance algorithms for
these data structures are usually of the following kind: starting at the root
perform a first pass to find the position among the leaves where a new key
should be inserted or deleted and in a second pass retrace the search path
towards the root and rebalance the tree if necessary. We call such algorithms
top-down bottom-up algorithms. However, there are other algorithms for
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these data structures which perform the rebalancing transformations on the
way down the tree. These algorithms are said to be top-down. An examina-
tion of the extensive literature on balanced search trecs shows that many top-
down algorithms have already been designed, for example [GS], [Z], [NR}],
[KW2], [0S1] and [OS2]. However the problems arising from this purely
top-down approach are much more involved than they appear at first plance.
Some of the algorithms, for example [Z], perform a first pass from the root
to a leaf to find a deepest safe node and then a second pass from this node to
a leaf. These algorithms should not really be considered as strictly top-down.
In fact two passes are still required as with the top-down bottom-up algo-
rithms; we say these algorithms are 2-pass top-down. We are really
interested in purely top-down algorithms, that is I-pass top-down algorithms.

In [NR] such an algorithm is given for weight-balanced search trees.
Unfortunately this algorithm does not work correctly if redundant updates,
have to be considered. An insertion is redundant, if the key to be inserted is
already present, and a deletion is redundant, if the key to be deleted is not
present. In this case a second top-down pass has to be carried out. Clearly,
this again is in conflict with the purely 1-pass top-down idea. In [KW1] the
crucial importance of a good choice of a so called routing scheme in this con-
text is explained in detail. It suffices to point out that some of the 1-pass
top-down algorithms, for example the one in [GS], neither work well for
arbitrary routing schemes nor for a given routing scheme when only inser-
tions or only deletions are considered. In contrast to these approaches we
consider 1-pass top-down algorithms for insertion, deletion and search
(including redundant insertion, and deletion ) in balanced search trees with
respect to different routing schemes. In [O82] such an algorithm is given for
the class of a—f trees, which are very similar to B-trees.

In [LO]J a unifying theory for balanced search trees is developed. Using
their framework many different classes of balanced trees can be handled simi-
larly. The maintenance algorithms for these stratified trees, however, are
top-down bottom-up, for which different routing schemes do not cause any
problems.

In this paper we give a slightly modified definition of the stratified trees
of [LO] and show how these trees can be updated in a 1-pass top-down
manner with different routing schemes. It should further be pointed out that
1-pass top-down algorithms can give code which is simple, efficient and
elegant since only one loop is needed. These slgorithms have also inherent
advantages in a concurrent environment as each updater need lock only a
bounded portion of the tree at any time.

The remainder of this paper is organized as follows: In Section 2 the
definition of stratified trees is given and the relevance of routing schemes is
discussed. Sections 3 and 4, which form the major part of the paper,
describe a 1-pass top-down update algorithm for stratified trees with different
routing schemes. Finally in Section 5 related results are discussed and modif-
ications as well as extensions are proposed, in particular it is proved that no
subclass of the BB(a) trees forms a stratified class of trees.
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2. STRATIFICATION AND ROUTING SCHEMES

Let some class X of (balanced) trees be given, then following [LO] we
introduce the notion of a stratified class of trees by way of four definitions.

Definition 2.1: X is a—proper, for some given non-negative integer o,
if and only if for each integer ¢ = « there is a tree in X with ¢ leaves.

This definition requires that each set of keys of size ¢+ = a can be
represented in the leaves of an X-tree with exactly ¢ leaves. For most known
classes of balanced trees a equals 1.

The next two definitions identify specific subtrees in X, which will form
the required subclass, and also are good in the sense that they allow 1-pass
top-down restructuring of some bounded portion of the tree along the search
path. This idea will be pursued in the next section. Let Z be a set of trees,
and let 7, and h, be the least and greatest, respectively, number of leaves
that members of Z can have.

Definition 2.2: Z is a fB—variety if and only if the following conditions
are satisfied

(i) all trees in Z have height B.

(i) 1<l <h-1,"

(iii) for eacht with L =t < h, thereis a tree in Z with exactly ¢ lcaves.

Notation 2.3: Let T, ..., T, be trees and let T be a tree with leaves
Xy, ..., x, from left to right. We shall denote by T[T}, ..., T,] the tree
obtained by replacing each x, in T by T, (1 = i = ¢), see Figure 2.1.

Definition 2.4: Z is a regular B-variety for X if and only if the following
conditions are satisfied:
(i) Z isaB-variety

(ii) forallr=a, forall T in X with ¢ Jeaves and for all T, ..., T, in Z,
T[T, ..., T,]isin X.

Definition 2.4 ensures that given an X-tree we obtain another X-tree by
! In [LOJ this conditionis 1 < I, < h, .
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Figure 2.1

appending Z-trees to each of the leaves of the given X-tree. This holds for
X-trees with at least a leaves since smaller X-trees may behave irregularly.
Condition (iii) of Definition 2.2 makes it possible to obtain an X-tree with {
leaves, for all / in the range [f, - ¢, h, - t] by starting with an X-tree with ¢
leaves, see Figure 2.2. In particular it is possible to replace one of the
appended Z-trees by any other Z-tree in order to obtain a new X-tree.

We now define those subclasses of X that can be maintained in a 1-pass
top-down manner by the methods of Section 3. Let X be an a-proper class of
trees and Z be a regular B-variety for X (Z + ). Let

-1
= z . f
k max{al"[h,"l,l l,} .

Let y be the smallest integer such that for each t with o =< 7 < k thereisaT
in X of height = vy with exactly ¢ leaves.

Deflnition 2.5: The class $(X,Z) of Z-stratified trees (in X ) is the smal-
lest class of trees satisfying the following properties:

() Each T in X of height =<y having t leaves, a =<r=k, is Z-

stratified,
(i) If T is Z-stratified and has ¢ leaves and T,, ..., T, are in Z,then
T[Ty, ..., T,] is Z-stratified.

-1
 In [LO] this value is max {al, , Ih—'_—l-] . l,}-—-l
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Figure 2.2

Thus for each r, a < t < k there is a tree T in the class $(X,Z) with ¢
leaves, and other trees in §(X,Z) are obtained by appending layers or strata
of Z-trees to some tree in S(X,Z). Hence each T in S(X,Z) can be decom-
posed as shown in Figure 2.3.

We further note that the constant k must be at least « I, — 1, since al,
is the least value for which another stratum can be obtained from the rop giv-
ing a new top with o leaves and a layer consisting of trees having /, leaves.
We shall explain in Section 3 why we choose k to be = al, (and not

L~1
=al — 1) Thevalueof[ 2

=1 | 1, is irrelevant in this context, how-
x £ ]

ever it is necessary for showing that the class $(X,Z) of X is a-proper, which
we leave for the reader to demonstrate (cf. [LO])).

In [KW1] the problem of updating routing information when rebalane-
ing search trees has been discussed in detail. We only want to summarize
and discuss briefly the results of [KW1]. In order to allow searching in a
tree, routing information (also called routers and separating keys) must be
provided in a uniform way. In leaf search trees these routers are associated
with the internal nodes. (Note that node search trees are not really different
from leaf search trees in this context.) We consider as routing information
any method of associating routers with the internal nodes, provided that start-
ing at the root node with a query value we end up at the appropriate leaf
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height

i s layers
of trees
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Figure 2.3

when following the routing information. Because of the generality of this
idea it is not possible to formulate update algorithms for trees without refer-
ting to the specific routing scheme involved.

A method commonly used in the literature is to assign as a router the
largest key in the subtree immediately to the left of the router (routers are
used to separate subtrees). This method, however, is bad with respect to
deletion. According to [KW1] bad or dirty means that restructuring an inter-
nal node may affect the routers of nodes above it, and good or clean means
that this is not the case.

In order to facilitate the discussion in the next two sections, we restrict
ourselves to one of the following routing schemes: If poripiry © © = Py 1Pm—1

represent the m roots of subtrees of an m-ary node and the m--1 routers and
T{p) denotes the subtree with root p, thenforalli, 1=i=m—1:

(a) (=, <)-scheme:

all keys in T(p,_,} = r, < all keys in T(p,)
(b) (<, =)-scheme:

all keys in T'(p,..;) < r, = all keys in T(p))
(¢) (<, <)-scheme:

all keys in T(p,_,) < r, < all keysinT(p,)
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(d) (max, <)-scheme:

r, = largestkeyin T'(p,.,) and r, < all keys in T(p,)
(e) (<, min)-scheme:

r, = smallest key in T(p,) and all keys in T(p,_,) < r, .

Observe that every router does indeed serve as a separator for the keys in its
left and right subtree. Figures 2.4 and 2.5 give examples of binary trees with
a good and an insertion-bad routing scheme, respectively.

Figure 2,4
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Figure 2.5
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3. A 1-PASS TOP-DOWN UPDATE ALGORITHM FOR STRATIFIED
TREES WITH GOOD ROUTING SCHEMES

In this section we consider only good routing schemes for this enables us
to concentrate on the main idea of 1-pass top-down update algorithms. In
order to achieve 1-pass top-down update algorithms we must ensure that once
the frontier of the given tree has been reached, the insertion or deletion of a
leaf yields a new stratified tree without affecting any internal nodes higher
up in the tree. We do, however, allow restructurings within a bounded
region or window of the leaf being considered. This implies that the Z-tree
containing the leaf in question has neither the minimum nor the maximum
number of leaves, that is /, < # leaves of Z-tree < h, . Because of condi-
tion (ii) in Definition 2.2 such a Z-tree always exists. In order to perform
the update operation we may either leave the Z-tree unchanged in the case of
a redundant operation or replace it by a Z-tree with one more leaf or one
fewer leaf giving a new stratified tree, So it only remains to form a Z-tree of
the desired size in the proper position, that is where the addition or removal
of a key has to be carried out. As we don't know the structure of the tree at
the leaf level when starting at the root, we must take into account both possi-
bilities, namely a dense or sparse tree.

We do this by building a Z-tree of the desired size higher up in the tree
(near to the root) and moving it down the search path,

The following algorithm is just a formalization of this idea. Let T be
the given stratified tree. Let T be decomposed into a root portion T, and a
number of strata. Let T, be the tree on stratum i on the search path. Note
that the height of a stratum is the height of the Z-trees in the stratum, that is
B, while the height of the root portion is known when constructing the tree
from the empty tree. (Every time a new stratum is formed, the height of the
root portion is updated. In other words the stratification of the tree is known
globally.) Let ¢(T) be the number of leaves of T. Let x be the key to be
inserted or deleted, see Figure 3.1. Then Update(x, T) begins at the root of
T (and of Ty).
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Update(x,T):

begin
it +(T) < k then
(O { Construct a new Z-stratified tree 7' with t(T)+1 or ¢(T)-1
leaves containing the updated set of keys}

else
begin
i=1;
repeat
it+(1,) =1, or t(T)=h, then
(£19)] { Rebuild 7,_, and all the trees of stratum i appended

to T,_, such that &) T, is on the search path, and
b) I, < ((T)) < h};
if i=1 then { Update height of T; } ;
it=i+1
until { The bottom stratum has been reached with ,<¢(T,.)<h, };
(1) {InsertordeletexinT,_, };
end
end { Update }

t(T) leaves

Figure 3.1
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Theorem 3.1: Let S(X,Z) be a class of Z-siratified trees with a good
routing scheme. Then for any tree T in S(X,Z} and any key x Update(x, T)
is again a tree in S(X, Z) .

Proof: We consider the three possible restructurings separately.

Restructuring I:
It is clear that this restructuring is correct because S(X, Z) is a-proper and

we never perform an update operation yielding a tree with less than «
leaves.

Restructuring II:

Let T, +sons denote the tree consisting of 7, and the Z-trees appended to
the leaves of T, .

(A) i= 1{T; +sons has to be reformed }

In this case:
k+1=1t(Ty + sons) = k- h,

We show that t(T; + sons) is large enough, but not too large, to form the
desired tree.

As the new root portion must have at least a leaves and all but one son must
have at least /, leaves while the remaining one must have at least 2, +1 leaves,
we must have at least:

(@-1)- L+ (+1) =a- +1

leaves, which is = k+1 by the choice of k. So there are enough leaves
available for the desired tree. (We need the modified value of k here).

It might be necessary to form one additional stratum or layer between T, and
the first Jayer. We show that in this case ¢(7, + sons) is small enough to
enable the desired structure to be formed.

The new root portion and the first layer have at most k - &, leaves. All but

one of the Z-trees in the next (second) layer has at most &, leaves and the
remaining one has at most #,—1 leaves. Thus we have at most:

(k-h=1)-h + (h=1)=k-h,-h—1
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leaves, whichis = k-h, . So we don’t need to form a further layer.
It remains to show that there is no gap between no additional layer and one

additional layer, so that we can form the desired structure for the whole
range of 1(T,+sons) . We have:

(&—1) - h,+(h,—1) =z (al,-1)-L+(+1)

Maximum # of leaves Minimum # of leaves
with no additional with one additional
layer, that is root layer, that is root
portion plus one portion plus two
layer layers

which is equivalent to:
k-h—~1=al -L+1,andsince k= al,
the latter inequality follows from:
alh,~1=al, - L+1 or
ol (h,~1) =2 .
Now because a = 1, 1, > 1, h, > I,+1 this inequality holds.

(B) i>1 {T,_, +sons has to be reformed }.

By the invariant condition ¢(7,-,) must be in the range [,+1, h,—1], so we
have:

(4, +1)-1, = T,_y+sons) < (h,—1)-h,

Again we must show that this is enough to form the desired structure. After
the restructuring the Z-tree replacing T,_, might have [, leaves and all but
one of the Z-trees appended to its leaves might have I, leaves, and the
remaining one must have at least J,+1 leaves yielding at least:

G-+ @+ =1 -1L+1

leaves, which is less than the number of leaves of T,_; +sons. We further
show that ¢(T,_,+sons) is small enough to form the desired structure. We
have at most:
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(h,—1)-h, + (h,—1)=h,-h—1=(h—1)-h, leaves.

Restructuring HI:

When T,_, is part of the bottom layer:
L+1=1¢(T_,)=s h-1
an insertion yields:
L+2=<t(T_)<h,
and a deletion yields:
L=siT,_)=<h -2
giving a stratified tree once more. O

The algorithm clearly can be carried out in time O (log n) since a sin-
gle pass from the root of the tree to a leaf is performed and for each node on
the search path only a constant number of other nodes are visited.

It seems worthwhile to say something about the routing scheme, The
algorithm does not take into account any routing information. This is valid
because of the definition of good routing schemes, that is restructuring at an
internal node does not affect routers above it. With this idea in mind it is
clear that we may always leave correct routing information behind us when
moving the window down the search path. This changes when considering
bad routing schemes as will be shown in the next section.
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4. A 1-PASS TOP-DOWN UPDATE ALGORITHM FOR STRATIFIED
TREES WITH BAD ROUTING SCHEMES

With the routing schemes under consideration it might happen that a
router, at an internal node, has to be replaced by a new value depending on
the immediate successor or predecessor of the old router and the routing
scheme chosen. Figure 4.1 gives an example of a binary tree with the
(<, <)-scheme where the router with value 7 has to be replaced by a new
one in the open interval (7, 10) when the key with value 7 is inserted.

Before:

Figure 4.1

All routing schemes considered here have the property that an insertion
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or deletion affects at most one router higher up in the tree and this router can
be uniquely identified when running down the search path. This fact can be
used to modify the algorithm of Section 3 such that an update operation will
never affect routers higher up in the tree.

The only change in the modified algorithm is in the restructuring part:
as soon as we have identified the router which might be affected by the
update operation (it need not be affected if the operation is redundant) we
restructure the tree such that the router will always remain within the window
as we move down the search path, Observe that routers are not changed in
value when moving downwards: we just reassemble the leaves of Z-trees on
two layers in a different way. The following theorem shows that all restruc-
turings can be carried out such that one router can be moved down the search
path together with the structure we need to carry out the update operation.

Theorem 4.1: Let S(X, Z) be a class of Z-stratified trees with a bad rout-
ing scheme. Then for any tree T in S(X, Z) and any key x, Update(x, T) is
again a tree in S(X, Z) .

Proof: The proof is similar to that of Theorem 3.1. But instead of just
redistributing the leaves over the sons of T,_,, we must ensure that every
router occurring in T,_; or in one of the Z-trees appended to it can be moved
into a Z-tree appended to the tree T}] replacing T,_, with this Z-tree having
the properties of being on the search path and satisfying I, < number of
leaves < k, .

In order to show this we use the fact that a router is in the tree T} if
and only if it has a (not necessarily immediate) successor and predecessor key
appearing at the leaves of T{**. For, assume that a router occurring in 77"
has neither a successor nor a predecessor in T7**, then this would imply that
the router separates 77" from some other tree T;*"# T;** and, thus, cannot
occur in T,

We consider the possible restructurings separately.

Restructuring I:

It is clear that this restructuring can be carried out correctly beause S(X, Z)
is a-proper and we do not perform update operations yielding trees with less
than o« leaves. No router has to be moved downwards because the tree is
small enough.

Restructuring II:

(A) i =1 {T, + sons has to be reformed }
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We leave this case to the reader since it is similar to both the corresponding
case in the proof of Theorem 3.1 and the following case.

(B) i>1 {T,_; + sons has to be reformed }

By the invariant condition #(T,_,) must be in the range [,,+1, h—1}, sowe
have:

(L+1) I, = T, + sons) < (h,~1) - h,

Let us assume that the leaves of 7,_, + sons are indexed consecutively from

left to right. We show that for every pair of adjacent leaves G,Jj+1),

1 = j < (T,_, + sons) , the following holds:

We can construct new Z-trees such that:

(1) Trev contains the leaves j and j+1 with [, +1 = t(T")y < h—1,

(2) to the left of T;” there are ¢ trees T}, ..., T;™ (g = 0) with
LS(Iey sk, mn(g)snsg,

(3) to the right of 77" there are 7 trees T, ..., Ti" (r = 0) with

[ <tTy)=h, , mn(lyr)<m=r, and

4 ILsq+t1l+r=h.

Figure 4.2 illustrates these conditions. The proof is by induction on the
indices of the pair of leaves.
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Before:

N\ search path

[1,#1,h,-1]

Teaves

/1\“‘/::
[TZ,hZ] .

[lz,hz] Teaves

After the restructuring step:

Ay
L)
1

search path

Thew

i-1
A 01, ]
leaves
The VoL

[lz,hZ] []z,hzl[lz+1,hznilllz,hz] Teaves

Figure 4.2

Basis:j =1 and j+1=2.

g=0; (J,j+1) areleavesof T";
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Already in the proof of Theorem 3.1 we did not make any assumptions about
the placement of the desired Z-tree, having neither the minimal nor the maxi-
mal number of leaves, amongst the Z-trees appended to T7¢7.

Hence, we
can form this Z-tree in the leftmost position. Now the hypothesis holds with:
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L+1 = «(Tp™) < h,—1;
LstoTy<h, mn(lr)=m=r;
Ls (Q+r)=tTr) < h, .

Induction Hypothesis:

For all pairs (j,j+1) of leaves, 1= j =k, for some k = 1, the following
holds:

We can construct new Z-trees such that:

(i) (j, j+1) are leaves of T} and [ +1 = t(Tp) = h,—1,
(i) ¢=0, L, s«T)=h, min(lg)=n=gq,

Gi) r=0, L=#Tam=sh, mn(lr)sms=r,
(iv) I, = (g+1+r) = ((T[2) =< h,.

Induction Step:

Consider the case j = k+1, that is the pair of leaves (k+1, k+2). In
order to show that the desired new trees can be formed we distinguish the fol-
lowing two cases.

(a) Using the induction hypothesis for the leaves (k, k+1) yields a new tree
T7** containing not only the leaves (k, k+1) but also the leaf k+2. In this
case (i)-(iv) are trivially fulfilled.

() The tree T;** obtained by using the induction hypothesis for the leaves
(k, k+1) does not contain the leaf k+2 . In this case the (k+2)nd leaf
clearly must occur in T7™ which is the right neighbor of 77¢". We show
that a different restructuring is possible yielding new trees
Ty’ - .- Toey,, and Tiv' such that T7™' mnow contains leaves
(k+1, k+2). (The superscript new always indicates trees obtained by the
induction hypothesis; the superscript new’ deriotes the finally formed trees.)
We distinguish the following cases.



1-Pass Top-Down Update Algorithms 19

1. oIy < h,—1

1.1

1.2

S o(fe) >l

z
m=1

Shift leaf k+2 to 77" and redistribute the remaining leaves to the right
of T** over the r trees, yielding trees T7™' and T2 .

S @y =r-1,

m=1
Form new trees such that #(Tj¢y) =1, (with I, leaves taken from
™)
(T3 ) = o(T7™) — (T35 + ((T7™)
= t(n‘”) = lx + lz = ‘(1‘;‘“)'

Since k+1 was at least the (J,+1)-th leaf in T7*” it is in T} as is leaf
k+2.

2. «(T3) = h,—1.

2.1

2.2

3 o) =7,

-1

Form new trees such that ¢(T797) = (T}™) —1=h -2 = I, and

Ty = I, + 1 (leaf k+1 plus I, leaves from T7°".)

S (T >l

m=1 '
2.2.1 3 1(T") < g-h,.
n=1

Shift the leftmost leaf of 77 to the left and leaf k+2 from T3
to T7 and redistribute the leaves left and right of T~ over the
q , respectively r, trees.

2.2.2 3 HT) = q-h,.

a=1

2.2.2.1 2 (Te"y <r- b1

m=1



20

Ottmann, Schrapp and Woed

Form new trees such that o(T99%) = #(T7") — 1 =4 - 2.
Build 77" such that I +1 =< ¢(T?*") = h,—1 (leaves k-+1
and k+2 are in T7**'.) After this the number of leaves to the
right of T}’ is:

r-1 _ .,
re L=((T1)-1) < }-:1 (™)

<r-h—1- (@T)-1).

On the one hand if #(7}**") = [.+1 then

r—1

3 US> (=1L,
1

that is we have enough leaves left. On the other hand if
t(Tr**') = h,—1 then
r~1

S (T < (r=1)- b,+1 or

m=1

-1 _ R

2HL) = (=1 b,
m=1

that is we don’t have too many leaves to form the desired
trees.

’ —
2222 r-h—1s St <r-h,
m=1

By the assumptions of this case we know that
t(T,_,+sons) = (h,—1) - b, «(T+) =h,—1,

?
2 () =q-h , and
LLBY

r

S (T € {rh—1,rh}.

mel

We show that in this case g+1+r < h,. For assume the
contrary, thatis g+1+r = h, then

g-h, + (h,=1)+rh~1 < 1(T}+s0ns)
= g-h+(h,—1)+rh, .
or
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(g+1+r) - h,=2 = t(T!*{+sons)
< (g+1+r) - h—1

which is, by assumption, equivalent to
h,- b,—2 = t(T}*+sons) = h, - h~1 .

Clearly, (T} +sons) = t(T,_,+sons) thus
t(T,_y+sons) < (h,—1)- h, leads to a contradiction
because h, > 2. This shows that T3] cannot have the
maximal number of leaves. Hence, we can reform it to
obtain one more leaf to the left of the root of 7M.
Therefore we can shift the leftmost leaf of T/ to the left
and redistribute the leaves over the trees to the left of T}
and shift leaf k+2 from T{™ to T} to give T***’. To the
right of T7**’ we then have:

r

S Tey=roh -2 =11 .

m=1

Restructuring (IIT)

Same as in the proof of Theorem 3.1. 0O

Theorem 4.1 states that there is a 1-pass top-down update algorithm for
stratified trees with the bad routing schemes of Section 2. The following sec-
tion gives an overview of related results, modifications to the algorithm and
further considerations.
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5. RELATED RESULTS

Many known classes of balanced trees are either stratified or contain
stratified subclasses, for example AVL-trees [AVL], B-trees [BM], a-f
trees [0S2], and 1-2 brother trecs [OW], cf. [LO]. It is thus clear from
Theorems 3.1 and 4.1 that for all of these classes there exists a 1-pass top-
down update algorithm. Nevertheless it should be noted that the given algo-
sithm is far from being optimal for any single class. In fact, the 1-pass top-
down update algorithm given in [OS2] for the class of a—p trees bears evi-
dence of this as it involves at most 4 nodes at a resiructuring step instead of a
node and all of its sons. However the results given here hold for virtually all
classes of height balanced trees, but what about the weight-balanced trees or
BB(o)-trees of [NR]?

The following theorem shows that BB(a)-trees are not stratified, so it
remains an open problem whether or not there are 1-pass top-down update
algorithms for this class. There probably isw't, but as with most negative
results, it seems difficult to prove.

Theorem 5.1: For every «, there is no Z, such that Z is a regular B-
variety for the class of BB(c)-trees.

Corollary 5.2: There is no stratified subclass of the class of BB (a)-trees.

Proof of Theorem 5.1: Let o be such that 0 < a < 1/2 ., For each sub-
tree T ' of T in BB(a) the following inequality must hold:

i+1

G EICE

a

where ! and r are the number of internal nodes in the left and right subtree of
T ', respectively. It follows that:

_1_%0_: (+1) = (r+1) = 11%“-)- a+1) . 5.1)

We also need the following extension of the notation introduced in Section 2:

T[Ty ..., T =TI, ..., T)]

T[Ty, ..., TY =TTy, o, T U Ty, s T

So T[Ty, ..., T}’ is the tree obtained by appending s layers to the leaves of



1-Pass Top-Down Update Algorithms 23

tree T.

In order to prove the theorem we assume that there exists a regular -
variety Z for the class of BB(«)-trees. From our definition of B-varieties,
c.f. Section 2, we infer that 1 <! < h —1. For the proof of Theorem 5.1
the weaker condition 1</ < h, suffices. Hence our proof also holds for
B-varieties as introduced in [LO].

Thus, because Z is a regular B-variety, it follows that:
(a) 1< <h and

(5.2)
(b) forall ¢, I =<t = h, implies there exists T in Z with ¢ leaves.

We now show that for any tree 7T in BB (a) with r leaves we can find an s and
obtain a tree T[Ty, ..., T} with all 7, from Z that is not in the class
BB(a) . It follows directly that Z is not a regular B-variety for BB(«).

Let T in BB(a) have t leaves. We know that there exists at least one
node v in T with two leaves as its sons. Because of (5.2) there is a tree
T" in Z andatree T® in Z with i =/, and i+1=<h, leaves, respec-
tively.

We build T[Ty, ..., T,}* such that the tree appended to the left leaf of
node v and all trees of layers subsequently appended to that tree are equal
to T' and the tree appended to the right leaf of node v and all trees of
layers subsequently appended to that tree are equal to T2 . (See Figure 5.1.)

We now choose s to be equal to llog(m),, (I?T“ Y +1|. Inthe left

toggy, (122 +1 l

subtree of node v we have a = il leaves. In the right

tog ==y
subtree of node v we then have b = (i+1)‘ Gty
quality (5.1) implies:

leaves. Ine-

b iI-a
a a

1~
RESRY el e I TP
i o

yielding
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layer 1

layer 2

giving a contradiction.
So after appending s layers to tree T, node v is out of balance. O

Furthermore in addition to the algorithm given for stratified trees, 1-
pass top-down algorithms can also be developed for unbalanced trees with
different routing schemes. The downward movement of a router can be
achieved by rotations. Another feature of our algorithm is that it deals with
insertions and deletions, The algorithm is oblivious to the kind of update
required until the leaf level is reached. This is the reason for changing the
conditionfor Z tol<l <h -1, cf. Section 2.

If we need only an insertion algorithm we can drop this restriction and
have 1< I, < B, as in [LO], and similarly if only a deletion algorithm is

required. The algorithm changes slightly in the sense that we allow a tree to
have I, leaves for insertion and b, leaves for deletion.

In Section 4 we have considered only bad routing schemes chosen from
the five given in Section 2. In these cases the values of routers depend on at
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most two keys. In particular for the (<, <)-scheme these values depend on
the leftmost key in the subtree immediately to the right of a router and the
rightmost key in the subtree immediately to its left. Other routing schemes
with the value of the router depending on more than the above mentioned
keys can also be considered. As long as the router’s value depends on at
most k, keys immediately to its left and at most &, keys immediately to its
right, where k; and k, are constants, our algorithm can be used with the fol-
lowing rider. The window at the bottom of the tree must be large encugh to
contain all the routers affected by the deletion or insertion of a key. Note
that the height of the window is O(log, (2(k, + k;)—1)) = O(1). In this
case we always have to move at most one router downwards. Only if the
value of a router depends on keys which are not within a constant range to
the left or right of the router, might it be necessary to move more than one
router down the search path; also the size of the window almost certainly
increases in this case. It seems to us that even with such a routing scheme a
1-pass top-down update algorithm could be achieved albeit being of little
practical importance.
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