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ABSTRACT

Piecewise linear approximations to curves and surfaces have many disadvaniages which representational
techniques based on B-splines or Beta-splines alleviate. Unfortunately the existing literature on B-splines in
particular is more suitable for the numerical apalyst than for the computer scientist. We survey the
mathematics and use of these techniques, in the context of computer graphics, for the design and manipulation
of freeform curves and surfaces and with an emphasis on developing the reader’s intuition,

We begin with a brief discussion of cubic spline interpolation that leads naturally to a treatment of uni-
form cubic B-splines. These provide a convenient forum in which to introduce many of the ideas needed sub-
sequently.

We then present a development of the general B-splines, of order k over an arbitrary (i.e. non-uniform)
knot sequence, as a divided difference of the one-sided power function. Starting from the one-sided power
fanction makes the continuity properties of the B-splines intelligible. The divided difference operator is then
applied to the one-sided power function in order to symbolically pre-cancel high order terms so as to avoid
cancellation error and overfiow, resulting in the computationally satisfactory recursive definition of & B-spline.

The use of general B-splines specifically in the context of graphical applications is also discussed to show
how the flexibility inherent to them can be used to control the shape of parametric curves and surfaces. Of
particular interest is the Oslo algorithm, which follows naturally from our development of the B-splines, and
(among other things) can be used to refine the user's control over part of a curve or surface to an arbitrarily
small region for the purpose of intreducing fine detail.

Finally we introduce the Beta-splines. They provide an intuitive means of controlling the continuity loss
which results when multiple knots underlie 2 B-spline. We concentrate on cubic Beta-splines, and show how
replacing parametric continuity with geometric continuity makes available two shape parameters which con-
trol the tension in a curve or surlace.
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1. Introduction

The most basic output primitives in every computer graphies library are “LineSegment()” and
“Polygon(),” or their equivalent. These are, of course, sufficient in the sense that any curved line or sur-
face can be arbitrarily well approximated by straight line segments or planar polygons, but in many con-
texts that is not enough. Such approximations often require large amounts of data in order to obtain
satisfactory smoothness, and are awkward to manipulate. Then too, even with the most sophisticated
continuous shading models, polygonal techniques generally result in visually objectionable images: Mach
bands are apparent at the borders between adjacent polygons, and there is always a telltale jaggedness to
polygonal silhouettes. Hence many modelling systems are augmented by circles, spheres, cylinders, etc.,
and allow such simple primitives to be combined to form quite complex objects.

There is a substantial class of curves and surfaces, however, that do not display the sort of regular-
ity that makes such modelling convenient. For these, systems using primitives which can themselves be
irregularly curved are more natural. Broadly speaking these are based either on the interpolation or on
the approximation of points called control vertices that are supplied by the user. In either case a curve is
defined by piecing together a succession of curve segments, and a surface is defined by stitching together
a mosaic of surface patches; such a piecewise approach is taken for reasons of flexibility and generality.

Interpolatory approaches, most commonly based on cubic splines, are perhaps the more easily
understood by users, but they are less readily suited to real-time manipulations. We shall see that they
lack some of the desirable properties possessed by most approximation techniques, although in any case
they can provide a convenient means of generating an initial curve or surface from which one can com-
pute other representations based on approximation.

Early work by Coons [Coons64, Coons67] and Bézier [Bézier70, Bézier77] introduced the use of non-
linear parametric polynomial representations for the segments and patches from which we assemble piece-
wise curves and surfaces. Although the techmiques they introduced are still in use, we will emphasize the
B-splines introduced to computer graphics more recently by Riesenfeld [Riesenfeld73, Gordon74] and dis-
cussed extensively in [deBoor78] and [Schumaker81)] because they best combine flexibility, power and gen-
erality. Moreover, they are less widely understood.

Parametric B-spline curves have many advantages. Among them is the ability to control the degree
of continuity at the joints between adjacent curve segments, and at the borders between surface patches,
independent of the order of the segments or the number of control vertices being approximated. How-
ever, the notion of parametric first or second degree continuity at joints does not always correspond to
intuition or to a physically desired effect. For piecewise cubic curves and bicubic surfaces these
parametric continuity constraints can be replaced by the more meaningful requirements of continuous
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2 The Killer B’s

unit tangent and curvature vectors. Doing so introduces certain constrained discontinuities in the first
and second parametric derivatives which are expressed in terms of “bias” and “tension” parameters called
B1 and 2 in [Barsky81, Barsky85]. These provide additional means of locally controlling shape and give
rise to Beta-spline curves and surfaces, which we shall also discuss.

Our intent is to survey the spline techniques that seem most useful in computer graphics, developing
the theory in such a way as to emphasize the development of intuition and understanding, and to
encourage the use of these techniques by computer scientists. Although we are particularly interested in
the modelling of three dimensional freeform surfaces, the mathematics and algorithms of interest are best
understood in the context of two dimensional curves, which we can then generalize to define surfaces.
Because we are interested in being able to design such curves and surfaces as well as in being able to
represent them, we will also consider techniques for displaying them.

1.1. General References

For a general introduction to computer graphics which mentions splines briefly see {Foley82] or
[Newman73]. Foley and van Dam discuss Hermite, cubic BeZzier and cubic B-spline curves and surfaces.
They use matrix notation for compactness. Newman and Sproull discuss Bezier and uniform B-spline
curves. In both cases the treatment is short and prescriptive, as befits introductory texts.

A general survey of curve and surface representations may be found in [Rogers76]. A succinct
development is generally provided, together with an example or two. The text was not typeset, and as a

result the book is often hard to read. Program code is supplied in many cases, but unfortunately in
BASIC.

[Faux79] is an excellent and more recent text containing a good treatment of basic analytic and dil-
ferential geometry and introductions to most of the standard curve and surface techniques, although tne
treatment of B-splines is again rather summary.

[deBoor78] is an excellent and comprehensive treatment-of B-splines from the pumerical analyst’s
point of view. Much of it is also accessible to anyone with a decent mathematical background willing to
read carefully. All of the basic algorithms are presented in Fortran, and are available on magnetic tape
from International Math and Statistics Library, Inc., in Houston, Texas. [Schumaker81] provides an
excellent and extensive treatment of splines in general, but is accessible only to those with an advanced
grounding in mathematical analysis.
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2. Preliminaries

It is usually convenient to represent a two-dimensional curve parametrically as
Q(w) = (X(u), Y(u))

where X(u) and Y{(u) are each single-valued functions of the parameter & which yield the z- and y-
coordinates, respectively, of a point on the curve in question for any value of .

Q(u)

min

[~

max

Figure 1. A parametrically defined curve.

Although polynomials are computationally efficient and easy to work with, it is not usually possible to
define a satisfactory curve using single polynomials for X(#) and Y(u). Instead it is customary to break
the curve into some number m of pieces called segments, each defined by separate polynomials, and hook
the segments together to form a piecewise polynomial curve. The parameter # then varies between some
initial minimum value u;;, and some final maximum value %, as we move along the curve; the values

of 4 that correspond to joints between segments are called knots. The sequence of knot values is
required to be nondecreasing, so that

U min

EEOS'TIS'..SEM-EIHED('

The sequence of knot values is usually written

Ug, Uy, T, Uy, Up
and is called either a knot sequence or a knot vector.

Thus the parametric functions X(u) and Y(%) are each composed of m polynomial pieces, the first
covering the interval of w ranging from %, to u,, the second covering values from 4, to i, and so on.
Usually X(#) and Y(u) are required to satisfly some continuity constraints at the joints between successive
polynomial segments; if the 0 through d' derivatives are everywhere continuous (in particular, at the
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joints}), ther X and Y are said to be C? continuous. Sometimes we will assume that the knots are a con-
secutive sequence of integers, say with u; =1 this is called a uniform knot sequence.

Also, it will usually be simpler to write X(# —u;) rather than X(%) and we shall generally do so; the
reparametrization is easily accomplished by substitution. Thus for the :'® segment, which we shall agree

runs between #; and %4,, we might write Y(u)} = u?, so that u =0 corresponds to the left end of the seg-
ment, rather than the more ¢cumbersome

Yi(@) = (T-5,)% = & -2uu + a4 .

To distinguish between these two conventions, we shall write Y;(u) when we are parametrizing from the
left end of the it interval (u = —u;), and Y;(%) when referring to a single parametrization of the entire
curve. Thus

Y(u) = u?

and
= — =\ o =2 _o— 4 =2
Y(u) = (t—u;)* = a° — 2w + 4]
are equivalent, each being a reparametrization of the other.

There are a variety of ways in which to define a specific curve. They can be broadly classified as
being based on “interpolation” or on “approximation”. In both cases one begins by specifying a sequence
of points called control vertices, which we will represent in illustrations by a dot “®” or a “+” sign. In
the case of interpolation the curve is required to pass through the control vertices in the order specified:

Figure 2. A curve defined by interpolation.

For those techniques based on approximation the curve is required only to pass “near” the control ver-
tices — exactly what “near” means depends on the particular approximation technique used. (See Figure
3.)
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Figure 3. An example of a curve defined by a sequence of control vertices, represented here by *‘+" signs,
near which the curve passes. The lightly dotted line connecting the control vertices forms the control polygon,
and indicates the order in which the control vertices are to be approximated. The solid and heavily dotted
curves represent distinct curve segments. Each is a single parametric cubic. The point at which two succes-
sive segments meet is called a joint. The value of the parameter ¥ which corresponds to a joint is called a

knot.

In either case, moving the control vertices alters the curve.

We have connected the control vertices together with lightly dotted lines in Figure 3 to form what
is called the control polygon. This control polygon indicates the order in which the control vertices are

approximated.
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3. Hermite and Cubic Spline Interpolation

Suppose that we have m +1 data points V}, ..., V,, through which we wish to draw a curve such as
the following (in which m =6).

r
v 4
Figure 4. An interpolating cubic spline.

Each successive pair of control vertices is connected by a distinct curve segment. Since each such seg-
ment Q;(u) is represented parametrically as (X;(u),Y;{u)), we are really concerned with how the X;(u)
and Y;{u) are determined by the control vertices

V:' = (xi’ys') .

In general, the z-coordinates X{u) of points on a curve are determined solely by the z-coordinates zy, ..,
z,, of the control vertices, and similarly for Y{(&). Since both X (&) and Y{¥) are treated in the same way

we shall discuss only Y{Z); indeed, to obtain curves in three dimensions we simply define a Z(#) as well

" and let Q;{u) be given by (X (u),Yi{u),Z;(u)).

For ease of computation we shall limit ourselves to the use of polynomials in defining X;(u), Y{u)
and Z;(u). Indeed cubic polynomials usually provide sufficient flexibility at reascnable cost. For the
above curve, then, Y(u) is the following.
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I L) T ) 1 ] 1 'T
u=0 =6

Figure 5. Y{¥) for the curve shown in Figure 4 above. In this example we have rather arbitrarily chosen to
use uniform knot spacing, so that the knot sequence is (0,1,2,3,4,5,6).

Each Y;(u) is a cubic polynomial in the parameter u. We know two things in particular about
Yi{u) = a; +b;u +c;u? + d;u®
namely that
00 =y =a
Yil) = vins = a; +b; +¢; +d;
Notice that, as promised earlier, we have parametrized each Y;(u) separately so that u =0 corresponds to

its left end. We have used a uniform knot sequence, so # =1 must then correspond to its right end.

Because we have four coefficients to determine, we need two other constraints in order to com-
pletely determine a particular Y;(u}. One easy way to do this is to simply pick, arbitrarily, first deriva-
tives D; of Y(u) at each knot u;, so that

Y0) = D; =¥
Y1) = Diyq = b; + 2¢; +3d;
These four equations can be solved symbolically, once and for all, to yield
a; =y (1)
b; = D;
¢; = 3(vim—w) —2D; — Dy
di = 2(yi=yis1) ¥+ Dy + Dy .
Since we use D; as the derivative at the left end of the i** segment (i.e. as Y{))(0)) and at the right end of

the (i —1)** segment (as Y{¥, (1)), Y{u) has a continuous first derivative.

This technique is called Hermite interpolation. It can be generalized to higher order polynomials.
In fact we will subsequently need to perform interpolation by fifth degree polynomials whose first and
second derivatives match at the joints between successive segments. The development is entirely analo-
gous to that of cubic Hermite interpolation.

How are the D; specified? One possibility is to compute the tangents automatically, perhaps by fit-
ting a parabola through y; _, y;, and y;4,, and using its derivative at y; as D;; arbitrary values (such as 0)
can be used at the end points [Kochanek82]. Or tangents can be computed as weighted averages of the
vector from y;—; to y; and the vector from y; to y;4; |Kochanek84]. Or the user may directly specify the
derivatives. Since our curves are described parametrically, the user would actually specify an z and a y
derivative at each knot, comprising a derivative vector.

It is possible to arrange that successive segments match second as well as first derivatives at joints,
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using only cubic polynomials. Suppose, as above, that we want to interpolate the (m +1) vertices Vj, ...,
V,, by such a curve. Each of the m segments Yy(u), ..., Y;,~(u) is a cubic polynomial determined by four
coefficients. Hence we have 4m unknown values to determine. At each of the (m —1) interior knots uj,
vey U — (Where two segments meet) we have four conditions:

Yiu(1) = w

(00 =y

Yi (1) = Yi%0)

Y1) = Yi0) .
Since we also require that

Yo(0) = o

Yoa(l) = ynm

we have a total of 4m —2 conditions from which to determine our 4m unknowns. Thus we need two more
conditions. These may be chosen in a variety of ways. A common choice is simply to require that the
second derivatives at the endpoints uy and u,, both be zero; this yields what is called a natural cubic
spline. Figure 4 is actually a natural cubic spline.

3.1. Practical Considerations - Computing Natural Cubic Splines

We do not need to directly solve 4m equations — the problem can be simplified. Notice that a
natural cubic spline is actually a special case of Hermite interpolation; we have simply chosen first deriva-
tive vectors so as to match second derivatives as well. If we can compute the needed D;, we have zlready
obtained definitions of the ay, b;, ¢; and d; in terms of the D;.

Thus at each internal joint we want to choose D; so that -
Y2,01) = YP(0)
or
2¢;— +6d;, = 2¢;

Substituting in our earlier solutions (1) for ¢;~;, d;— and ¢;, we have
2 [3(.%' ~Yi-1) = 2D;4 — Di] + 6[2(9;-1‘1}.') + D + D;]

= 2[3(yi+:‘yi) -2D; ‘D£+1] .
Simplifving, and moving the unknowns to the left, we have
Dioy +4D; + Digy = 3{y;41~¥im) - (2)

Since there are m —1 internal joints, there are m —1 such equations. Requiring that the second derivative
at the beginning of the curve be zero implies that '

QCOEO

2[3('311"1:'0) "QDO“'Dz:! =0
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2Do + D, = 3(y1=yo) -
Requiring that the second derivative at the end of the curve be zero similarly results in
Dy~ +2D, = 3(ym—ym—l) .

We now have m +1 equations in m +1 unknowns. Representing them in matrix form we have

.2 1 D0'.| 3(!11-90) .|
141 D, 3(y2—vo)
141
141 -
141 : 3(Ym ~Ym—)
L 1 2. Ll)"‘. L3(ym “YUm '-1).
Beginning at the top, each row is easily combined with the row below it to yield
1 ag 1 Dy Bo
1 o D, Bs
1 [¢5}
Ay —
1 am -1 . .
D
! L I \.ﬁm )

(“forward elimination”). This directly yields the value of D,,, and it is then a simple matter to solve suc-
cessively for D, D,, -, ..., D, and finally Dy (“backward substitution”).

The multiplicative factors s; that accomplish the forward substitution and the corresponding values
a; need only be computed once. The f;’s must be computed and the backward substitution performed
separately for each coordinate. When a data point y; is moved the values §,, ..., 8, must be recomputed
and the entire backward substitution again performed.

8.2. Other End Conditions For Cubic Interpolating Splines

There are many other ways in which to determine the additional two constraints we need to fully
define a C? continuous interpolating cubic spline. It is generally most useful for these conditions to be
applied to the ends of a curve so that they have the most effect there, as for the natural cubic splines,
but even so the choice of conditions has some influence over the shape of the entire curve.

For example, instead of fixing the second derivatives at the first and last knot to be zero, we may
fix the first derivatives there to be zero.

Siggraph "85 3.2. Other End Conditions For Cubic Interpolating Splines San Francisco



10 The Killer B's

Figure 6, The solid line is a natural cubic interpolating spline; that is, the second parametric derivatives at the
ends of the solid curve are zero. For the dotted curve the first derivatives at the ends have been set to zero
instead.

Another possibility, which de Boor calls the not-a-knot condition [deBoor78], is to require C® continuity at

the second and next-to-last knots u; and u,, ;. In effect the first two segments are a single polynomial,
as are the last two.

Figure 7. The solid line is 2 natural cubic interpolating spline. For the dotted curve, c? continuity has been
forced between the (irst and second segments, and between the last and the next-to-last segments.

Yet another alternative, suggested by Forsythe, Malcolm and Moler [Forsythe77|, is to use the third
derivatives of the cubic polynomials that interpolate the first and last four control vertices as the (con-
stant) third derivatives of the first and last segments.

Figure 8. The solid line is a natural cubic interpolating spline. For the dotted curve the third derivative of
the polynomial that interpolates the first four control vertices is used as the {constant) third derivative of the
first segment, and similarly for the last segment.

Or one might allow the user to explicitly supply any two of the first, second, or third derivative vectors at
the ends. In any case, we can construct and solve a set of equations very much as we did for the natural
cubic splines. Additional discussicn of how this can be done, and algorithms, are given in chapter four of
[Forsythe77} and in chapter four of {deBeor78]. For a uniform knot vector, and indeed for any reasonable
strictly increasing sequence of knots, these equations are well-conditioned and can be solved easily and
accurately.
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3.3. Knot Spacing ‘

While the end conditions discussed above affect the entire curve, their principal influence is felt at
the endpoints. Gross changes to a curve’s shape can be made elsewhere without moving the control ver-
tices by varying the knot spacing.

v, vV, Vs

Figure 9. The solid line is a natural cubic interpolating spline in which the knots are spaced a unit apart.
Unit knot spacing is used also in the dotted curve except for the parametric interval corresponding to the seg-
ment between V,and Vi, for which the knots are spaced four units apart.

With the single exception of Figure 9, we have used a uniform knot sequence in defining the interpolating
cubic spline curves discussed above. Thus the knot vector for the solid curve in Figure 9 is

0,1, 2, 3, 4, 5
while the dotted curve interpolates the same data points, but for the knot vector
0,1 2, 6,7, 8

Thus knot spacing can be used to control shape; the more difficult question is how that control can be
used intuitively.

Uniform knot spacing is one obvious way to define a knot sequence. The Euclidean distance
between control vertices is a second natural choice for the length of the parametric interval over which u
varies in defining a segment.

Figure 10. The solid line in the above figure is a natural cubic interpolating spline in which the knots are
spaced a unit apart. In the case of the dotted curve, the knots corresponding to two successive control ver-
tices differ in value by the Euclidean distance separating the two control vertices.

8.4. Closed Curves

It is also sometimes useful to generate closed curves such as the following.
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12 The Killer B’s

Figure 11. A closed interpolating cubic spline.

In this case equation (2) applies at each of the m vertices, with the caveat that indices must be computed
modulo m +1. The system of equations that results looks a little different:

P4 1 ' 1. I:Dn1 3(y1=Ym)
141 D, 3(y2=vo)
141 .
141 . =
141} 1 3(Ym ~Ym =)
1 1 4] _Dm_ L3(yo‘ym‘-1) ]

Basically one solves this system as one solved for the D; for an open curve. During forward elimination,
however, it is necessary to compute and save nonzero values for entries in the rightmost column and to

successively cancel the leftmost nonzero value in the bottom row. The obvious change must also be made
to the back substitution process as well.
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4. A Simple Approximation Technique — Uniform Cubic B-splines

Later we will develop B-spline curves and surfaces in their full generality. In this section we will
introduce them by looking at a simpler and particularly useful special class of B-splines called the uni-
form cubic B-splines. As the name implies, we make use of parametric cubic polynomials on a uniform
knot sequence.

A particular property of the B-splines is local control, by which we mean that altering the position
of a single control vertex causes only a part of the curve to change. This makes it possible to modify part
of a curve (or surface) without affecting other portions that are already satisfactory, which is often useful
in geometric design and modelling. An added benefit of local control is that it minimizes the work
required to recompute a curve after a contro] vertex has been moved since only a small part of the curve
has changed.

The way in which local control is obtained is most easily explained by considering first a “piecewise
linear” interpolation of the control vertices. Consider the following “piecewise linear curve.”

Figure 12. A piecewise linear B-spline.

If we represent the segments of this curve in the obvious way we have
Qi(u) = (Xj4(u), Yiqy(u)) = (1-u) Vo, +uV,;, u = (i) /(U1
Qi(v) = (X;(u),Yi(u)) (1-u)V;y +uV; u = (u—u;) /(U4 4;)
Qin(u) = (Xip(u), Vi(u)) = (1-u)V;  +uViy  u = (U—t4) /(44U 4)
Qio(v) = ( Xiuolu), YVigolu) ) = (1=u) Vi +uVigy  u =(0—U4) /(U45~;42)

where

]
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Xiq{u) = (1-u)z;p +uz,_

Yio(u) = (1-u)y;—p +uy,
Xi(u) = (1-u)z;g +uz
Yi(u) = (1-u)y;o +uy,
Xipqu) = (1-u)z; +uziy
Yig(u) = (1-u)y;, +uyy

Xigolu) = (1-u)z,4q +uzyy
Yigo(u) = (1-u)y;s; +uy;4o

Altering V; clearly affects only the two segments Q;(u) and Q;4,(u) adjacent to it: V; does not appear
in the formulae for any other segments. We can represent our piecewise linear curve so as to isolate the

influence of each control vertex and make a generalization to higher order, smoother piecewise polynomial
curves straightforward.

If we plot Y(u) as a function of u, and represent the contribution of y; to Y{i&) by a dashed line, we
obtain

Yia

Yi.o

4 Y y;s contribution
—mpem-m=7=~~=oa i r——==q==——==" ==
Ui o Ui Uy Ui+ Ui 42 U; 43 Uiy

Figure 13. The contribution of y; to Y{&). Ia this example the knots are spaced one unit apart, although that
i3 not essential.

Notice that this contribution is zero both to the left of u; and to the right of u;4,. Similarly, the contri-
bution of y; - is

Y:ia

Figure 14. The contribution of y;~, to Y{&).

Plotting these two hat functions together gives us a graphical representation of the fact that
Yi{u) ={1—u)y;— +ry. (For the sake cf clarity we will stop extending these hat functions to the left
and right by zero when we draw them because these extensions would all be drawn on top of one
another).
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Vii yy(@)

Yio
Yiso
4 - N
N / N\
] | uy; ( F1=u)yia ] 1
Ui g U; U; U4 Ui42 Ui43 Uy

Figure 15. A simultaneous look at the contributions of y,—, and y; to the curve in general, and to Y;(i) in
particular.

It is useful to think of y;—, and y; as each scaling a corresponding ‘“‘unit hat function” (see below) whose
maximum height is one, and each of which is a simple translation of the others. It is also useful to think
of y;— and y; as each being weighted by a corresponding unit hat function. As @ increases from #;_,, the
contribution of y;~, grows from nothing at u =u;.;, peaks at ¥ =u;, and dies away to nothing again at
U =u;4;. A similar thing is true for y; on the interval u; Su <u;4,. More profoundly, we have seen that
Q(#) is entirely determined by V;-; and V; alone in the interval #; <% <i;4;. In this interval Y(2) is
just a weighted average of y;—; and y;, namely

— Uiy~ U U U
V(@) = | ————yim + |=———|u
Uj4 ~Ug U4 Uy

= (1-u)y~ +uy;

1
Ui o Uiy u; Ui+ Ui+ Ui+g Ujtq
Figure 16. Multiplying the two unit (height one) hat functions shown here by Ys— 2nd y; yields the scaled hat

functions shown in Figure 15.

If we call the “dotted” unit hat function B;_(#) and the “dashed” unit hat function B;(%) (to be compa-
tible with later material we name a hat function after the knot at its left extremity), then the line seg-
ment attaching y;-; to y; may be written as

Y(u) = yimBio(¥) + y; B;(u) foru; =u <4 (3)

where
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u—u; - -
;I u" =y < u.'+1
41T Uy
B:;(u) = - — . 4
@ =y sz (@
= Ui SU < U4
U o™ Ui 4y

We can represent the other segments of our piecewise linear curve in the same way; equation (3) is quite

general. In the following illustration we show all the hat functions B; (%), - - -, B;4{t) that define our
example “curve”.

// ;x\ "EE " L - o “-&Aﬁ
0 N T r 3

U; o Uiy Uy U4 Ui Ui4s Uy 4y

The weighted basis functions y;B;(u) and Y{u)

/ . AN -~ T m T B; (1)
S ) ‘ N/ .
\ 24 bl A
r N f
u;

Ui p Uy

N
Uj 4 Uiy U4z Ujny
The unweighted basis functions Bj{t)

Figure 17. Representing a piecewise linear curve as a linear combination of hat functions.

The entire curve can now be written as

Q@) = L ViBi(&) = )] («:8,(%), u: Bi{w)) . (5)

i

Vol

1 Depending on the point of view we wish to take, we may speak of (5) as a linear combination of the
" functions B;, or as a weighted sum of the control vertices V;. For any particular ¢, equation (5) simply
reduces to equation (3) because all the hat functions except B;—(%) and B;{4) are zero inside the interval
from #; to u;4;. It should be clear that we can represent any piecewise linear curve in this way, and the
unit hat functions B;(u) are called basis functions for this reason. Also, we may now turn our argument
around: any particular vertex V; contributes to the curve we are defining only where B;(@) is nonzero.
Since B;(¥) is nonzero only over the two successive intervals {t;,i;+) and [U; 4,8 45), the actual position
of V; can only influence the two corresponding segments Q; (%) and @, +,(7) of the curve — local control.

Notice that we have made use of the half-open intervals [U;,u;4;) and [t 4,4;4) so that Q;(%)
defines the curve for values of & up to but not including &;4, because the first interval is open at the
right, and Q;+,{¥) then takes over at u; 4, itsell because the second interval is closed at the left.

The hzt functions that we have introduced are continuous, although their derivatives usuzlly have
jumps at knots (the technical term is C° continuous). When we use them to weight control vertices and

ancisse

=
an &

oy
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sum them via equation (5) we obtain a curve that is consequently continuous, but whose first derivative
vector may be discontinuous at knots: a piecewise linear curve, as we knew from the beginning.

Our real objective, of course, is to define curves like the one below by assembling pieces that are
curved rather than straight. Just as in Chapter 3, and for the same reasons, we choose to consider piece-
wise cubic curves.

v
Vo 3:*. ............. ..}.v‘
. m
+ T Q) W
; Q) Q) |
. Qs(w) - Vi e .
: \~—/ + g
vl v2 V5

Figure 18. The curve shown is constructed from cubic B-splines over a uniform knot sequence. Notice how it
smoothly approximates the indicated vertices, and indeed the control polygon.

The technique we are now developing does not, in general, interpolate the control vertices — that is a
special property of the piecewise linear curves we have considered. Instead, each sequence of control ver-
tices defines a curve that “passes near” those vertices. As before we may restrict our attention to a sin-
gle coordinate such as Y{u).

Y{u)

2|

u=7

£l
c'!a

Figure 18. Y{&) for the curve in Figure 18.

We choose to focus on piecewise cubic polynomial curves assembled from cubic polynomials X;(u) and
Y;(u) that have positional, first derivative and second derivative continuity (C? continuity) at the joints
between successive segments, so that they satisfy the equations

Qi(1;) = in:‘) (6)
Q&) = Qi) (7)
Bym) = QPw) . (8)

In particular, this implies that
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Yiu(u) = Yi(w)
Ysml("-[i) - Yt(l)(&-i)
Yﬁh(m) = Yam(ai)

and similarly for X (). We can achieve the desired continuity if the basis functions with which we define
X(@) and Y(i) are themselves C? continuous piecewise cubic polynomials with knots at the @, since a
linear combination (scaled sum) of such basis functions will also be a C? continuous piecewise cubic poly-
nomial. Much as for the piecewise linear case, locality can be obtained if all but a small number of the
parametric polynomial segments defining a basis function are identically zero. The basis functions we use
will be smoother, and it turns out that this means they have to be nonzero on a somewhat wider interval,
but the construction is otherwise quite analogous to the linear case we have already considered. For
example, Y{&) for the curve of Figure 18 can be represented in the following way as a sum of scaled C?
continuous piecewise cubic basis functions.

4+ on= /N v By(u)
. Yo — - = Byu)
. ; . +
. +(j_\ / R SN - Bdu)
{ - - -T_._—/"- .rc-' /.'\-s r.— -.] ~ - . . '\ ! B3(u)
=3 u=7 _ By(u)
The weighted basis functions y; B;(¥) and Y{4) TTTT
""" Be(u)
By(ir) Byu)
. : ST TN et - - - elu
s X “X R4 S
e r | I =i " 1 [
u=3 u=7

The unweighted basis functions B;(u)

Figure 20. The y component of the curve ir Figure 18 as a scaled sum of basis functions.

Figure 20 illustrates several conventions. We choose to index control vertices from zero through m (here
6). As we shall see, it requires four basis functions to properly define each cubic curve segment. Hence
there are three more basis functions (and three more control vertices) than there are curve segments.
Each basis function is nonzero over four parametric intervals. The leftmost basis function extends three
additional intervals to the left of the curve, and the rightmost basis function extends three additicnal
intervals to the right. Summarizing: there are m+1 control vertices, m+1 basis functions, m =2 curve
segments bounded by m—1 knots, and m—1+3+3 = m+5 knots altogether. The curve is generated
(swept out) as & runs from # to Uy, 4.

Let us now see how to actually define these basis functions. Using a little foresight, we suppose
each basis function to be nonzero over four successive intervals (which for convenience we assume all
have length one),
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boy(u) - b_g(u)
rffw Solu)
......... I L I- -I e I—v- /)
u; U 41 U; 49 U 43 Uy

Figure 21. The uniform cubic B-spline B;(¥) is 2 cubic C? basis function centred at T4, It is zero for T =i
and for ¥2i; 4, The nonzero portion of Bi(¥) is composed of the four polynomial segments b_g(u}), b—(u),
bo(u) and b_gu).

and ask that within each interval a basis function be defined by a cubic polynomial
a; + b;u + A':J-u2 + d_,-u3 , 1—3=gy=<q

having four coefficients. Thus the nonzero portion of our cubic B-spline basis function B(u) consists
(from left to right) of four basis segments b_(u), b_(u), b_(u) and b_s(u), and there are sixteen coeffi-
cients to determine. By assumption B;() is identically zero for 4 = 4; and for ¥ = 1, 44, so the first and
second derivatives B} and Bf?(&) are also identically zero outside the interval (i; i5; ;). The require-
ment that positions, first derivatives, and second derivatives match at each knot 4; then implies that

0 = b_4(0) 0 = 5W(0) 0 = 53(0)
bo(1) =b5(0)  bY(1) =e80)  s3(1) =Y (0)
bo(1) =550  sU(1) =080) Y1) = +8(0)
b(1) = bﬂ(O) um bli0) b8 = b-%(O)
bg(1) = b8(1) =0 b8(1) =

where for simplicity each segment is individually parametrized so that u =0 corresponds to its left end-
point and u =1 corresponds to its right endpoint. These constitute fifteen constraints. We shall see that
it is convenient to require that

bo(0) +b4(0) + b5(0) + b40) = 1 . (10)
Because b_o(0) = 0 this simplifies to
b_(0) +b5(0) +b40) =1 .

Because our knots are equally spaced, this amounts to assuming that when we add together an unscaled
sequence of basis functions B;, each of which is a copy of B shifted so that its support (the parameter
values for which it is nonzero) begins at u;, the three basis functions B;—, B;— and B;— which are
nonzero at &, sum to one. Such an assumption is said to be a normalizing condition and serves to define
the function B(u) uniquely. Rather miraculously, we shall see in the next section that this normalizing
condition will in fact hold at all other values of & as well; that is,

bo(u) +by(u) +by(u) +byu) =1, forall0=u <1.

(Notice that our hat functions also summed to one.)
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i3 Uj2 U1 Uy Ui+ Ui Ui

Figure 22. The basis functions which are not 0 at u;.

We now have sixteen equations in sixteen unknowns (that is why we assumed that our basis func-
tion had four cubic segments), and we may solve for the coefficients a;, b;, ¢; and d; of the four segments
b, b, b—y, and b comprising our basis function B.- Doing so yields the poiynomials

bofu) = ‘é— u® (11)
boy(u) = ';T (1 +3u +3u” - 3u%)

bofu) =% (4 - 6u2 + 3u®)

boglu) = -é— (1-3u +3u—-u®) .

These four segments define the uniform cubic B-spline; again, the term uniform means that the knots
are equally spaced. The “B” is short for “Basis”, whick is.appropriate because they can be used to
represent any C” spline over a uniform knot sequence. Finally, it is easy to directly verify that these seg-
ments have the continuity necessary to qualify them as C? splines. Consider, for example, the joint
between b(u) and b_g(u). So far as positional continuity is concerned, we have '

bol1) = bf0) = &

Consider the first parametric derivative at their common joint. We have

[

]

bl(u) = = (= 12u + %u?)

[=]

[

bA(u) = = (=3 +6u —3u?)

o

and

881 = sl(0) = -

[ I

Their second parametric derivatives are given by
) = (-2 +3u)
P& () = (1 =u)

s0 that

ir:
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88(1) = 88(0) = 1
However,
b (u) = 3
b (u) = —1
so that their common third parametric derivatives are not equal. Notice that we also have
b(1) = b%(1) = +8(1) =0 .

Since the basis function (and consequently all its derivatives) are identically zero to the right of b_4(1), we
have positional as well as first and second derivative continuity at the right end of b_g(u) as well.

To determine a curve, we select a set of control vertices V; and use them to define the curve
Q) = ZviBi(r‘) = ) (=:Bi(W), y: B;(%) ) (12)
[ {

in which each B; is simply a copy of B, shifted so that its support extends from #; to 4;4y, and the coeffi-
cients in the summation are given by the control vertices

V. =(z,9) .

Notice that because the basis functions are nonzero on only four successive intervals, if u; < @ < @4
then

Qi(E) = 5 Vi Biar(i) (13)

r=3
= V;B;4(tt) + V;,B; o(u) + V; B, (u) + V; B; (u) .

If we replace each basis function B,(u) by the particular segment which pertains to the interval [u;,u;4,),
then (13) can be written as

r=0
Qi(v) = £V;ﬁbr(u) (14)

= Vigbg(u) + Viby(u) + Vi b_y(u) + Vi obo(u) .

Notice that the segments of our basis function are numbered from right to left because that is the order
in which they appear when summed to form a curve: the leftmost control vertex scales the rightmost basis
segment, and so on. Equation (14) also reflects the convenience of parametrizing each basis segment from
u =0 at its left end; since the basis functions are all translates of one another, this convention allows us to
use the same formulas in defining each basis function, and hence in computing each curve segment.
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Bi—a B:'-z Bi—l Ba’

'u--u""' -------- .' ................. ‘ ........ , AT ‘
Ujg Ui Uiy u; U4 Ui  Uigy Uiy

Figure 23. The four uniform cubic B-spline basis functions which are nonzero on the ¢* interval {u;,u;4,).

4.1. The Convex Hull Property

The convex hull of a set of control vertices in the plane can be thought of as the region lying inside
a rubber band stretched so as to contain the control vertices, and then released so that it “snaps tightly
against them.” Formally, the convex hull defined by the control vertices V; consists of all points that can
be written as Jw;V; where Zw; =1 and w; =0. Thus the line segment joining any two points in a convex
hull is also within the convex hull.

Figure 24, The convex hull of a set of control vertices,

It turns out to be a consequence of the way in which we have constructed the B; {specifically, a
result of their normalization) that the i*! segment of a uniform cubic B-spline curve lies within the convex
hull of the vertices V; 4, V;—, ¥V, and V;, as shown below.

: vi_
i + 7 LV
Q:(u)
+ i
Via Via

Figure 25. The i*® segment lies within the convex hull of Vg, V; 5 V;- aad V.

Although we only required that the basis functions sum to one at the knots, it is easy to verify directly by
summing equations (11) that
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r=0

D b(u) = bg(u) +by{u) +by(u) +bglu) =1 (15)

r=3
for the entire interval (0=u <1). This is important because of the following general proposition: if we
weight any set of m+1 points V,, ..., V,, by nonnegative coefficients ¢g, ..., €5 Which sum to one
(cotcy+ -+ +e¢, =1), then the resulting point

P = CoVo + Clvl + -+ Cm—lvm_l + Cmvm

lies within the convex hull of the V;. Although we are only interested in such convex combinations of
four vertices at the moment, we shall go ahead and show that it is true for an arbitrary number of ver-
tices because we shall need the more general result later. An induction proof is straightforward:

First of all, notice that this is trivially true for one vertex. It is almost as trivially true for two ver-
tices, say V; and V,;. We have

P = CQVO + Clvl .
Since ¢y + ¢; =1 we may rewrite this as
P = (1—Cl)vO +c1V1

which for 0=c;=1 we recognize as lying on the line segment joining V, and V;. Thus the basis step.

Now suppose for the induction hypothesis that a convex combination of m vertices lies within the
convex hull of those vertices, and suppose that we have m+1 vertices Vo, V,, .., V.., V,. and

corresponding nonnegative weights ¢g, ¢4, ..., €=, ¢,, Which sum to one. To make use of our induction
hypothesis we form the following convex combination W of the first m vertices.

S =cote + - Fepgteyo F 0 (else trivial)
Ci

E‘;
W = dVo+d, Vi + - +d, Vo +d,a Ve .

d,'= 0=i=m-1

We have defined the d; in such a way that they sum to one (dg +d; + - -+ +d,, - = 1); hence W lies
within the convex hull of the Vi, V,, ...,V V,__,. Now consider

P = SW +(1-5)V,,

Since V, is a control vertex and we already know that W is in the convex hull of the V;, P is in the con-
vex hull of the V;. But by substituting in the definitions of S and of W, and noting that (1—S) is ¢,,, we
see that P is simply

CoVQ + Clvl + -+ Cm_lvm....l + Cmvm

which is the point we wished to establish as being in the convex hull of the control vertices Vi, Vy,
V-1, V. Thus the induction step.

veny

It now follows from equation (15) that the " segment of a uniform cubic B-spline curve lies within
the convex hull of V;_5, V;, V,;_, and V;. Thus if four successive control vertices of such a curve are
visible on a display screen, so is the segment they define. An entire curve “follows’ the control vertices in
the sense that each successive segment lies within the convex hull of the next group of four control ver-
tices; as we go from one segment to the next, the “oldest” is dropped because it no longer contributes to
the curve, and a new vertex is picked up.

It also follows from this discussion that we may consider the B-splines as a “parameter dependent,
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varying convex combination” or “running average” of the control vertices.

4.2. Translation Invariance

It is highly desirable that translating all the control vertices by the same amount not change the
shape of the curve defined. Like the convex hull property, this is an easy consequence of equation (15).

Suppose that we translate the control vertices by t =(dz,dy). Let Q(%) be the curve defined by the
control vertices V;, and let Q,(«) be the curve defined by the control vertices V; +t. From (12) we have

Q#) = L (Vi +)Bi(¥) = }ViBi(¥) + ¢ }B,(u) .

From (15), then, we have

Q) = DViBi(u) +t = Q@) +t .

Thus we may either translate the control vertices and then compute the curve they define, or compute
the curve first and then translate the points lying on it — the result is the same.

4.3. Rotation and Scaling Invariance
It is also important that we be able to rotate a curve without changing its shape.

Suppose that we rotate the control points by some angle §. Let R be the matrix accomplishing this
rotation. Again Q(%) is the curve defined by the control points V;, and let Q (&) be the curve defined
by the control points R-V;. From (12) we have

Q) = ) (RVy)B(i)

Since for any matrix M and vectors a and b, M-a+M'b = M+(a+b), we have

Q. (u) = R‘ZVin(J) = R-Q(u) .

Thus we may either rotate the control points and then compute the curve they define, or compute the
curve first and then rotate the points lying on it — the result is the same.

Since scaling can be represented as a matrix operation, a similar argument establishes that the
shape of a cubic B-spline curve is not affected by scaling the control vertices — the same curve is
obtained if we scale points on the curve instead.

4.4. The Perspective Transformation

We note in passing that the perspective transformation does npot preserve the shape of B-spline sur-
faces. That is, the surface obtained by computing points on a surface and then applying the perspective
transformation is not identical to the surface obtained by applying the perspective transformation to the
control vertices and then computing poinis on the surface defined by the transformed control vertices. In
fact, the perspective transformation of a cubic curve or surface is not necessarily expressible as a cubic.
It is instead a rational polynomial, namely the quotient of a cubic polynomial and a linear polynomial in 2z
which represents the depth of the surface, and it is easy to construct examples of these which are rela-
tively prime. '
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4.5. End Conditions for Curves

Let’s consider the beginning of a uniform cubic B-spline curve.

Figure 26. The four basis functions which define the first curve segment.

It is only in the fourth interval [u3,u,) that we have four vertices with which to properly define a curve
segment using equation (14). We might, of course, choose to define segments in the first three intervals
by simply eliminating from equation (14) those terms for which we do not have a control vertex. This is
not prudent, however, since the resulting curve segments will not necessarily lie within the convex hull of
the control vertices defining them. Consider the first interval [ug,u;): the corresponding curve segment
will necessarily begin at O since only the one control vertex V; is available and at the left end of the
interval its corresponding basis function has the value 0.

Similarly, we can continue plotting a curve only so long as we have four control vertices with which
to scale B-splines. The last knot is u,,4,, but the last interval on which the curve can be defined is

[Em 1Em -H)-

Up3 Upmo Uy Uy Up+1 Un+z Um4d Um+s

Figure 27. The four basis functions which define the last curve segment.

Thus for a uniform cubic B-spline curve we have three fewer segments than we have control ver-
tices.

Since we often want the beginning or ending of a curve to have some particular property, the
behaviour of uniform cubic B-spline curves at their end points is of interest. This subject is discussed in
[Barsky82], from which the following presentation is drawn.

4.5.1. Curvature

One of the properties in which we are interested is curvature: whether, or how much, a curve
“bends” at some point. Curvature is defined quantitatively in the following way.

At a given point P on a parametrically defined curve Q(%), the circle which has the same first and
second derivative vectors as the curve is called the osculating circle. The centre and radius of this circle
are called the centre of curvature c(i) and the radius of curvature p(it), respectively, at this point; the
curvature k(@) at this point is the reciprocal, 1/p(&t), of the radius of curvature. Thus if the osculating
circle has a large radius, the curvature is small, as our intuition tells us. The curvature vector K(u) has a
magnitude equal to the curvature and points from P towards the centre of curvature.
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the tangent

Figure 28. The oscuiating circle,

With the use of a bit of differential geometry it is possible to show (see [Barsky81] [Barsky85], or [Faux79,
pp 99-101}) that the vector

QU(#) x QW)
IQUE) I
has magnitude equal to the curvature. However, this vector is perpendicular to the plane containing the
osculating circle (the osculating plane). An additional eross-product with

Qo (16)
1QWM(u)|
results in a vector of the same length lying in the osculating plane, which is the curvature vector:

o o (0W) xQBm)) x ol(#)
e Q@) I

(17)

From (17) it follows that: )

@ if the second derivative vector is zero, then the curvature is zero;

® i the first and second derivative vectors are nonzero but linearly dependent (collinear), then the
curvature is zero;

® if the first and second derivative vectors are linearly independent (not collinear), then the curvature
is nonzero. )

4.5.2. No End Conditions

If we sirﬁp]y evaluate equation (14) at u =0 for the vertices Vi, V|, Vo, and V3, and at u =1 for the
vertices Vs, V.., V.., 2nd V,,, using (11) to define the basis functions, we find that the curve
begins at

P, = Q0) = 5 (Vo+ iV, +V,) (1)
and ends at

Pe = Qm(i) = -é_("rm—?.'{'t*vm-l +V~n) '
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+ +
Pc ’
+ +
Vo Vg
T R
+ +
Vo Vv,

Figure 29. A 3-segment B-spline curve with no end conditions.

There are two natural ways in which to better control, among other things, the positions of P, and P,.
The first is to simply extend the vertex sequence Vg, V,, ..., YV, , V. by repeating the end vertices V
and V,, some number of times; this technique is said to make use of multiple vertices. A second tech-
nique is to compute additional phantom vertices V_, and V,, 4, at either end (instead of having the user
specify them), extending the curve by two segments so that P, and P, satisfy some condition.

4.5.3. Double Vertices

Suppose that we double the first and last vertices. That is, the user specifies the sequence of m+1
vertices Vg, Vy, ..., Vi, V.., but we actually compute a curve of m segments from the sequence of
m+3 vertices Vy, Vo, Vi, ..., V., V., V,,. By adding a vertex to each end of the curve, we add an
additional segment to each end as well. The new segments have the form

Qyu) = Volbg(u)+b(u)] + Viboy(u) + Vb fu) (19)
Qr+i(u) = Vb g(u) + Vb o(u) +V, [b—y(u) +b(u)] - ' (20)

If we evaluate these at u =0 and u =1, respectively, to obtain the first and last points on the curve (or
substitute V, for V; and V, for V, in (18)) we find that

1 1 1
P, = Qy0) = 3 (5Vo+V,) =(1 "T{)vo + gvl
1 1 1
Pc = Qm'ﬂ(l) = -é— ( vm—l + 5.Vm ) = va'—l + (I—E)vm
Thus the curve begins at a point P, which is one-sixth of the way from V; to V; and ends at a point P,

which is one-sixth of the way from V,, to V,,-;. Differentiating (19) and (20) and evaluating at u =0 and
u =1, we find the first derivative vectors at P, and P, to be

Qfgl)(o) = % (V, - Yo )

1
Q!fi)ﬂ(l) = 'E' ( Voo =V )

Thus the curve is tangent at its endpoints to the first and last line segments of the control polygon.
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‘ +V: +Vs
P, / : e
+ E P,
Vo, g ’ +

Figure 30. Vj,and V are double vertices.

If we compute the second derivative vectors at P, and P, as well we find that they are collinear with the
tangent vectors, so that the curvature at P, and P, is 0. However, it is not necessary to verify this
directly, as it follows from the consideration of triple vertices below.

4.5.4. Triple Vertices

Suppose instead that we now triple the first and last vertices, so that the curve is computed from
the m +5 vertices Vy, Vi, Vo, Vy, .., Vo, V., V., V.. This adds two additional segments

Qi(u) = Volbg(u)+by(u)+by(u)] + Vb glu) (21)
Qolu) = Vylbg(u)+by(u)] + Vibo{u) + Vol (u)

to the beginning of the curve and two additional segments

Qutlt) = Viobo(u) + Vo b o(u) + Vo [boy(u)+bo(u)]
Qmolu) = Viypobglu) + Vo, [bop(u) +by{u) +bfu)] 22)

to the end of the curve. If we now substitute in equations {11) and evaluate Q/{0) and Q,, +5{1) we find
that ‘

P, = Q0 =YV,
Pe = Qmﬁ(l) = Vm

That is, the curve interpolates the first and last control vertices.
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Figure 31. V,and V,, are triple vertices, and are interpolated. The control polygon has been omitted so that
the curve can be seen to reach Voyand V.

Moreover, the first and last segments of the curve are now short straight line segments. We can verify
this easily by simplifying (21) and (22). The equation which results for the first segment is

u3 u3
Qi(u) = [1_?]"0 + [?]VI
Qis) = (1-6)Vy+sV,

for s =u®/6, which we recognize as the equation of a line. The last segment of the curve is, analogously,

Qm*‘Z(u) = [1';"3 ]vm-l + [1_ l_ﬁus ]Vm

or

Qm*‘Z(t) = tvm‘—I + (l—t)vm
for ¢t =(1—u?) /6.
The second and penultimate segments Qu(u) and Q,, 4;(u) begin and end, respectively, with a dou-
ble vertex, and so exhibit the behaviour described for double vertices. Thus Q.(0) lies on the line seg-
ment from V, to V; and the curvature of Qy(u) is zero at that point, since it has the same first and

second derivatives there as Q(u), which is a straight line. By the same argument the curvature at
Q. +1(1) is zero.

4.5.5. Multiple Interior Vertices

The analysis of double and triple vertices is equally applicable on the interior of a B-spline curve.
Triple interior vertices are particularly interesting. So long as the triple vertex and the vertices immedi-
ately preceding and succeeding it fail to be collinear, the left and right derivative vectors at the triple
vertex also fail to be collinear; the curve is said to be have a cusp.

At first sight this may seem to contradict the fact that the curve is C? continuous. As we will see in
the chapter on continuity, the first derivative vector is O at the joint and is continuous there. A cusp
results because the derivative vectors just to the left and right of the joint point in different directions.
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a single vertex
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a double vertex
+

VAR

+ +

a triple vertex
+ +

Figure 32. Forming a cusp by tripling a vertex. The double control vertex is not interpolated, while the triple

vertex is.

4.5.6. Collinear Vertices

It is also useful to know that the segment defined by four collinear control vertices V; 5, V;, V4
and V, is a straight line.

4+

Figure 33. Four collinear controf vertices produce a straight line segment.

This follows easily from the convex hull property.

4.5.7. Phantom Vertices: Position Specification

The essential idea behind all the phantom verter techniques is to introduce two additional vertices
V., and V4, thus defining two additional segments Qgfu) and Q,,+;(z). The positions of V_; and
V,, + are obtained by solving some constraint equations expressed in terms of Q{0) and Q,, (1) for V_,

is to begin and end, respectively, and then solve the equations

for

Siggraph "85
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Qy0) = P, = —S-(V-]+4V0+VI)

Qr.m’H(l] = Pe

V_, = 6P, =4V~ V,
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Vm+1 - SPG "4Vm _vm-] .

The curvature at P, and P, is analyzed by computing the first and second dertvative vectors at these
two points:

QfY0) = —5— = Vi +2V, - 3P, (24)
Vs =V,

QW,,(1) = —ié—-‘- - 3P, -2V, -V, _, (25)

QX0) = V_, -2V, +V, = 6(P,~V,) (26)

Qg)ﬂ(l) = vm—l - 2\rm +Vm+1 - B(Pe -Vm) . (27)

Since V, appears in (24) but not in (26), Q{Y(0) is not a scalar multiple of Q?(0), so that the first and
second derivative vectors are linearly independent. As we saw earlier, this is sufficient to conclude that

the curvature at P, is nonzero. Similarly, V,, appears in (25) but not in (27), so that the curvature at P,
is also nonzero.

4.5.8. Phantom Vertices: End Vertex Interpolation

This is really a special case of the position specification described above. Instead of supplying new
end points, we ask that phantom vertices V_; and V4, be found that cause the curve to interpolate V,
and V,,. Substituting V; for P, and V,, for P,, in (23) yields the following equations for the phantom
vertices V_; and V4.

Vo, =2V,-YV,
Ve =2V, =V, .
For this special case the derivative vectors given in equations (24)}-(27) become
Q) = vV, -V,
Q1) = Vpu = Vi
Qi0) = o0
Qn(1) =0 .

Thus for end vertex interpolation by means of phantom vertices the curve is tangent to the control
polygon with zero curvature at its endpoints. This case is distinct from the end vertex interpolation
resulting from triple end vertices since it does not usually result in straight line segments for the first and
last curve segments. '

__i_vl +Vs (phantom')'_i_vs =V,

V_1+(phantom ) V,

Figure 34. End vertex interpolation via phantom vertices
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4.5.9. Phantom Vertices: Fixing Derivative Vectors

It is also possible to compute phantom vertices that give the curve selected first or second derivative
vectors at its initial and final points. The zctual initial and final positions of the curve are fixed as a
result of specifying a derivative vector; since they do not coincide with any particularly meaningful posi-
tions (such as a control vertex), we will not discuss them. Further details may be found in [Barsky82].

4.5.10. End Conditions: Closed Curves

The curves we have discussed so {ar are open curves, which is to say that the two endpoints do not,
in general, coincide. A C? continuous closed curve whose endpoints do meet, and which is C? continuous
there as well, is obtained if the first three control vertices are identical to the last three, since if we use
the m +4 vertex sequence V, V;, Vo, ..., V. oy, V., Vi, V,, ¥V, to define m +1 segments,

P, -%(v0+4vl+v2) (18)
and ends at

P, = ‘é‘(vm+1+4vm+2'*'vmﬂ) - é—(v0+4vl+v2)

- so that the curve is continuous. To see that the curve is, in fact, C? continuous, notice that the last

curve segment defined by this vertex sequence is determined by V,,, Vi, V, and V,; if we think of the
vertex sequence as wrapping around on itsell circularly, with V,, followed by V,, then the following seg-
ment (with which it would jein C? continuousiy) would be determined by Vg, V), V, and V,. But this is
simply the first segment cf the curve we have defined, so it is clear that the head and tail of the curve
join with first and second derivative continuity.

+ o+
,,,,,, e
+
- +
+
UL Y
+ +

Figure 35. A closed uniform cubic B-spline curve,

4.8. Uniform Bicubic B-Spline Surfaces

The formation of uniform bicubic B-spline surfaces is a natural and straightforward generalization
of the uniform cubic B-spline curves. We want to form our surface as a scaled sum of basis functions, as
in {12), but now X, ¥ and Z must be functions of two independent parameters:

Q(u,¥) = 3V ;B {u.9) (28)
5.7
= 3 ( z;B:,89), vi;Bi(u9), z;B {w;) )
%)
For scale factors we again use the z-, y- and z-coordinates of what is now a two-dimensional array of
control vertices V; ; called the control mesh or control graph near which the surface is to pass. {Ses
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Figure 36 below.) To obtain locality we would like the new basis functions B; ;(4#,U) to be nonzero only
for a small range of ¥ and U. An easy way to arrange this is to let B; {u,0)=B;(4)B;(v), where B;(u)
and B{(v) are simply the univariate B-splines defined by (11). Since each is nonzero only over four suc-
cessive intervals, if %;.; =% =%; and v;—; =V =v; we can rewrite (28) as

L) ‘
Q@,5) = 3] J) Vit j Biwn(u)Bine(9) - (29)
r=3 s==3
This is simply the tensor or Cartesian product of two univariate B-spline curve segments. If we rewrite
(29) in terms of basis segments instead of basis functions and adopt the convention that the portion of
Q(u,v) defined by this set of values for ¥ and v is denoted by Q; f(u,v), then we can write

Qs’.j(uiv) = i‘ i‘ Vi+r,,1'+cbr(u)ba(v) (30)

r=3 =3

so that Q; j(u,v), the 1, 7% patch, is completely determined by sixteen control vertices. Thus the four by
four array

VO,O le v2,0 V30

Figure 36, A B-spline surface, consisting of a single patch, with its control graph. The patch is rendered here
by drawing seven lines of constant # which are equally spaced in ¥, and seven lines of constant ¥ which are
equally spaced in ¥. Adjacent vertices in the control graph are connected by straight line segments. Notice
how the patch lies close to the central four control vertices.

The separability of B; ;(i,0) into B;(%) and B;(¥) can be useful. For example, we can expand (30)
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Qiuw) = (31)

[vt"SJ b“ﬂ(u) + vt-QJ b-2(u) +Vt—13 ( ) + V!',J' b"O(u)] b'O(v) +

[ Viegjmbg(u) + Vi jmbp(u) + Vo juba(u) + V, joib(u)] boy(v)

[ v:-GJ-'Zb"G(u) + V:-QJ-’.’b-‘Z(u) +V; ”lJ"’b—l(u) + vi.j—Qb'O(u)] b'?(v) +

[ Vigjmab—g(tt) + Vg juabo(u) + Vioy jgboi{u) +V; jgbo(u)] bg(v) .
From this it is clear that if we fix u at some arbitrary value between 0 and 1 then we can write (31) as

Qi,j.u(v) = Wob_4(v) + Wib(v) + Wyb_y(v) + W3b(v)

+

where the appearance of u in the subscript indicates that its value has been fixed, and
Wy = Vi boyu) + Vi bofu) + Vo boy(u) + Vi by(u)
Wy = Viegjm bog(u) + Vi bofu) + Vi bo(u) + Vi bo(u)
W, = Vigjm bog(u) + Vi bolu) + Vo boy(u) + Vi bg(u)
Wo = Vi bglu) + Vigig bo(u) + Viqq bo(u) + Vg bylu)
Thus Q; ;,(v) is simply the uniform cubic B-spline curve segment defined by the “control vertices” W),

W, W, and W, It is not hard to see that the curve segment Q, ;4;,(v), in the next patch “up”, is
given by

Qi j+u(v) = Wibg(v) + Wb g(v) + Wib_{v) + W,b_[v)
where
W, = Vi inbg{u) + Vg jabolu) + Vi sabo{u) +V, b (u) .

This is simply the second segment in a uniform cubic B-spline curve defined by the “control vertices” W,
W,, W, and W,. It follows immediately that this curve is C? continuous. Since a completely analogous
argument can be made with respect to u by factoring the b,(t;) out of (30) instead of the ,(v), the uni-
form cubic B-spline surface we have defined is C? continuous along lines of constant u and v. It follows
from elementary calculus that the uniform cubic B-spline surfaces are therefore C? continuous in every
direction.

4.7, Boundary Conditions for Surfaces

Just as we are interested in specifying end conditions to control the way in which curves terminate,
so are we interested in specifying boundary conditions to control the behaviour on the periphery of a sur-
face.

Recall from equation (30) and Figure 36 that it requires sixteen control vertices to define a single
patch. Adding an additional “column” of four control vertices would enable us to define an additional
horizontally adjacent patch; adding m additional columns defines m additional patches.
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Vos Vis Vs Vis Vs

Voo Vie Voo Vio Vg

A four row by five column array of control vertices, defining two adjacent patches. Columns one, two, three
and four together define one patch. Columns two, three, four and five together define the second.

If there are m+1 such columns in the control mesh, each with four vertices, then we can generate m—2
patches.

Similarly, adding a “row” of four vertices enables us to add an adjacent vertical patch; adding n
additional rows of four vertices each adds n additional patches, stacked vertically. A total of n—2 such
patches result if we have n+1 rows.

In general, then, there are three fewer rows and columns of patches than there are rows and
columns of control vertices. Hence an (m+1)X(n+1) array of control vertices defines (m —2)X(n —2)
patches. We can, in a natural way, define additional boundary patches either by repeating boundary ver-
tices or by defining phantom vertices, much as we did for curves.

4.7.1. Multiple Vertices

It is easiest to describe and illustrate this process if we start with an array of sixteen control vertices

v03 vl,3 v2,3 v33

d

VOZ v1,2 V2,2 v32

g

Vou Vi Vi Vg

Voo Vie Voo Vo

defining a single patch which is physically proximate to the four central vertices V,,;, Vo, V5 and Vg,
(as in Figure 36). If we double the boundary vertices we obtain the control mesh

V03 VO,.'S v1,3 v2,3 V3,3 v3,3
V03 v03 vl,S v23 VS,S v3,3

v0,2 VOZ v12 V2,2 v32 V3,2

vOO VO,O VI.O VZ,O v30 VS,O

which adds a “strip” of boundary patches around the periphery of the original single-patch surface.
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Notice that the corner vertices Vs, Va3, Vo and Vg are actually replicated three times (once horizon-
tally, once vertically, and once diagonally to define a new corner vertex), while all other boundary ver-
tices are replicated once (doubled). The surface on the right in the following figure, which is shown from
above, is the result.

VO,S v3,3 v03 V33

Y g

! ot
1Y — Z
VO,O Vayo VO.O V3'0
No boundary conditions, Double boundary vertices.

Figure 37. The single patch shown on the left has been rendered by drawing 7 equally spaced lines of constant
¥ and 7 equally spaced lines of constant 7. Ar example of double boundary vertices is shown on the right.
This surface, consisting of 9 patches, has been rendered by drawing 19 equally-spaced lines of constant & and
19 equally spaced lines of constant ¥. Both surfaces are shown from above.

Suppose that we now triple the boundary vertices, so as to define two additional strips of boundary
patches. For our example surface this yields the control mesh

V0,3 v0,3 v0,3 V1.3 VZ,S V3,3 VSS V33
v03 VO" V03 V1,3 V2,3 v3,3 V33 v3.3

V'Os VOB V03 Vl,S v"’S va* V33 VSS

and defines the following surface.
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Vos Vs
Vos Vs
A = a
1 -
b1 P
| 4] -
N 1
- 1
1
Voo Vo
Voo Ve
Triple boundary vertices. The same surface the front.

Figure 38. Triple boundary vertices. This surface, consisting of 25 patches, has been rendered by drawing 31
equally-spaced lines of constant ® and 31 equally spaced lines of constant v.

Doubling and tripling the boundary vertices adds patches which bring the surface closer to the periphery
of the control graph. Indeed, for this control graph, tripling the boundary vertices causes the boundary of
the surface to interpolate the line segments joining the peripheral boundary vertices. To see why this is
s0, it is necessary to know that this is a special case; the ‘‘bottom” four vertices in the control graph are
collinear, as are the “‘top” four vertices in the control graph, the leftmost four vertices, and the rightmost
four vertices. Let us pick an arbitrary four by four sub-array of the control graph that defines a boundary
patch of the “tripled” surface, say

Voa Voa Vo Vi,

Voo Voo Voo Vig
and substitute these into equation (31) to obtain the patch they define. We have

Qi afu,r) = (32)

[Vo,ab-s(") + Vzb_o(u) + Vo,swa(“) + Vigb_olu)] b_o(v)
[ Vosb_alu) + Voob_o(u) + Voeb_yfu) + Vyab_o(u)] b_y(v
[ Voib_slu) + Vb o{u) + Vo boy(u) + Vipboolu)] boofv) +
[ Vopb_slu) + Voob_ofu) + Voob-1{u) + Vygb_ofu)] b_s(v)

+

Once again we fix u at some arbitrary value between 0 and 1 and write {32) as
Qusu(v) = Wob_o(v) + Wib_ofv) + Wib_,(v) + Wyb_o(v)

where
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W, = Vg bylu) + Vo bfu) + Vg boy(u) + Vi bug(u)
W, = Vi, boglu) + Voo bfu) + Voo boy(u) + Vg bglu)
W, = Vo, bgu) + Vo, bfu) + Vo, by(u) + Vi bg(u)
Wy = Voo boglu) + Voo bgfu) + Voo boy(u) + Vo bglu)

However, these four vertices W,, Wy, W, and W, are each points on a uniform cubic B-spline curve seg-
ment in which the first three vertices are identical. We already know that such a segment lies on the
straight line joining the two distinct control vertices involved, and interpolates the triple vertex. Hence at
u =0

Qx,a,o(”) = Voob—{v) + Vo0 5{v) + Vo.25—1(’~’) + Vb ~ofv) . (33)

But the four control vertices appearing in this equation are exactly the leftmost four vertices in our con-
trol graph, which are collinear, and we therefore know that they define a segment of the straight line
through Vg4, Vi, Voo and Vi,

A similar argument establishes that, for this particular surface, all the other boundary curves are
straight line segments. Furthermore, since the control vertices along each boundary are collinear, the seg-
ments along each boundary are also collinear.

Consider a corner patch, such as the one defined by

vOl VO,! VOl vll

VOO VO,O v0.0 VH)

VOO '\[00 VOO VIO

i

Voo VYoo Voo Vig
The left boundary curve of this patch is
QI,I,O(U) = Vogb—(v) + Voob—(v} + Vo.ob—l(’-’) + Vo,lb—o(”)

which, for v=0, will interpolate the corner vertex Vo Thus the boundary of this surface consists of four
straight line segments which join the four corner control vertices.

Unfortunately this behaviour is not very general. We have only to arrange that the boundary ver-
tices not be collinear in order to destroy it, as we illustrate in Figure 39,
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From above. From the front.

Figure 39. This i3 also an example of a 25 patch surface produced from sixteen control vertices by tripling the
boundary vertices. Unlike the previous illustrations, however, these boundary vertices are not coplanar. As a
result the surface boundary does not interpolate the boundary of the control polygon.

although the boundary of the surface does closely approximate the periphery of the control graph. It is
not hard to see why the failure occurs; if Vo3, Voo, Vo and Vo are not collinear then we still have
W=V, Wo=V,, W, =V, and W,=V,,, but now (33) simply defines an arbitrary uniform cubic
B-spline curve segment. The most that we can conclude is that the four corner vertices of the control
graph will be interpolated by the four corners of the surface, since a similar analysis of the four corner
patches yields a boundary curve in which the corner vertex is tripled.

Some additional analysis of these boundary conditions appears in {Barsky82]. One can al-o define
phantom vertices by specifving derivative vectors at the boundaries. However, this is probubly ton
cumbersome to be useful. It may occasionally be useful to define phantom vertices which yicld zero curva-
ture around the periphery of a patch; again, the details may be found in {Barsky82j

4.7.2. Periodic Surfaces

We can ‘‘glue together" opposite edges of a surface, in much the same way that we produced closed
curves, by simply wrapping the control graph around on itself. By way of example, let’s construct some-
thing resembling a cylinder. Suppose that u is to increase as we move circularly around the cylinder, and
the v is to increase as we move down the length of the cylinder. We can get a fairly good approximation
to a circle by making a closed curve out of four control vertices laid out in a square, using the control ver-
tex sequence

vO; vlv v2v vsv v07 vlr v2
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Vo, Vs Vs,

v v - =

Figure 40. The closed curve defined by four control vertices arranged in a square is approximately & circle. A
better approximation can be obtained by distributing more control vertices in a regular circular pattern.

To get a cylinder we simply translate these four control vertices at right angles to the plane in which they
lie, making several copies of them as we go. The resulting surface looks like this.

/]
RRaARAWAV/RNT/RE] /
SESSEEECY

Without the control graph. With the entire control graph.

Figure 41. “Extruding” the control vertices of Figure 40 produces 2 control graph yielding & reasonable
approximation to a cylinder.

Interesting effects can be achieved by pulling some of the “wrz;pped” points apart. If we take the middle

square of control vertices in Figure 41 and pull the two vertices V; and V, at one end away from the two
vertices Vi and V, at the other end to yield

+ -
VS:VO

Figure 42.

without moving the other control vertices, we obtain the following surface.
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e~ " Y

Figure 43. If we take the control graph shown in Figure 41 and separate the midmost plane of control vertices
as in Figure 42 so that by themselves they no longer define a closed curve, we open a hole in the cylinder.

We can also "glue” the ends of the control vertex array together at the same time we are wrapping the
sides together. If we take the same square of four control vertices, but now revolve it circularly in space
at some distance from the origin, we can define a torus.

A8 SN O Al L I
. . }.

ey i P—

Figure 44. This surface is defined by treating the control vertex array periodically in both ¢ and v.
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5. Interlude

Thus far our treatment of splines has focused on the uniform cubic B-splines. This has enabled us
to introduce most of the concepts in which we are interested in a fairly simple setting which minimized
the complexity of the mathematics involved. Moreover, the uniform cubic B-splines are of substantial
interest in their own right since they can be efficiently computed and suffice for many applications.

Nevertheless, there are a number of ways in which we might seek to generalize them to obtain
greater flexibility and power:

® we might use polynomials of some other degree;
® we might use an irregularly spaced (nonuni form) knot sequence;

. . . . 9 . . .« . .
® we might wish to impose something other than C~ continuity at the joints between successive curve
segmentis.

In principle we could accomplish all of these by simply repeating the development of Section 4, defining
the appropriate constraint equations and solving them for the coefficients of the basis segments involved.
In fact this might be satisfactory for some especially interesting special cases (such as uniform quintic B-
splines). It would be terribly cumbersome, however, to carry this out every time the user wished to try
the effect of a different order spline, or of changing the knot spacing. Fortunately we can do better.

It is a remarkable fact, resulting principally from the work of Isaac Schoenberg, Car! de Boor and
Maurice Cox [deBoor72, deBoor78, Cox71], that there exists a single unified algorithm by which 2ll three
of these generalizations of the uniform cubic B-splines can be accomplished.

Our next objective, then, is to develop a general treatment of B-splines of arbitrary order k£, defined
over irregularly spaced knot sequences, and with any of C° through C*™2 continuity at the joints
between segments (or the borders between surface patches). Not surprisingly, this development will be
more involved than was our treatment of the uniform cubic B-splines. It does not, however, require any-
thing more than a careful consideration of easily understood properties of polynomials, and so is readily
accessible to the careful reader. It is quite beautiful as well.

. e (3] Sar i
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6. Splines in a More General Setting

8.1. Preliminaries

By way of introduction we will begin with a few examples, explaining much of the vocabulary that
we will need later. Most of what we will do in the following theoretical sections parallels the develop-
ments in [Schumaker81], in {deBoor78|, and finally in [Cohen80|, though with a greater emphasis on intui-
tion and at a much lower level of rigour and formality.

We will carry out our theoretical discussions purely in terms of the variable &, never reparametriz-
ing the separate segment polynomials into [0,1]. For example, we will now represent the uniform cubic
B-spline of (11) on the knot sequence 0,1,2,3,4 by

(

0 —o<u<0
b_o(@) = %173 0sT<1

by (T) = —%(3«73—12172“217-4) 1=sa<2

By(u) =] 1

)

b_y(7) (3u°-24u’+60u~44) 2T <3

booT) = -T(E-123+48T-61) 3= T <4

| 0 4=u<+oo .

The splines we have discussed so far have usually involved cubic polynomials, so for variety we will
use quadratics in the next few paragraphs.

A typical segment polynomial of degree two has the form
p(@) = co +cqi +cpu”

If we are to use quadratics, or any other polynomials, to concoct splines, we must carry out, explicitly or
implicitly, the sort of construction that we used to form the uniform B-splines. That means, having
selected some knot # =u; and having decided that

_ — —9
Pregtt) = cgp gt +egou

and
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- ~ 2
Prigh() = €19 + ey ¥ + cypt

will meet at u&; with a certain continuity, we are left with the problem of imposing conditions on the coef-
ficients

€00 » o1+ Co2 » €105 €11 > and €y
so that the meeting takes place as desired. One possibility, of course, is to request C? continuity:
}t(u = pnght(—)
1 =
pih(@) = pi(@)
(., }t przg)h‘( )

This can only be accomplished by imposing the conditions

- -2 - -2
cog T eort; Fegoty = ey teyyu; oo
o1 + 2c02u‘- = ¢y + 2c12u,-

2c02 = 2512 .

This clearly results in

pleﬂ(g) = pright(a) '

which is a completely uninteresting outcome; the knot %; might as well not exist. The remaining possibili-
ties are C! continuity,

/'_\

Prese(t) =
Cm+C011’I+CmF

/

N

pr:’gh!(i) = \

¢iotey e ot

)

4
i
u.
Figure 45. C! or first derivative continuity at ;.

C? continuity,
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Pren(u) =
Cm+C 0117+C 02172

——-‘——u‘\

— ™~
pn'y}l!(u) -
[ 10+C u;I""C 12772

)

i
1
u;

Figure 46, C°or positional continuity at %;, with a failure of first derivative continuity.

and even the case of no continuity at all (which we will refer to as C™ continuity).

Plejt(g) =
Cm+c 0117"'0 02172

Pin(u) = \
/ i cyptepuite 1002

i
I
i

143

Figure 47. A discontinuity at ;. piep (W) and pyig(¥) are said to be ™ continuous at ;.

What becomes clear is that, in imposing the conditions that force p,;, to join p,p with some degree of
continuity, the very fact that three coefficients are involved limits what is possible and what is interest-
ing. In the cubic case there were four coefficients, so C? continuity was both interesting and attainable,
and we should expect that for polynomials having k coefficients, i.e. having highest power at most k-1,
only continuities C™* through C*™ are both interesting and attainable. In particular, imposing C* ™ con-

tinuity is uninteresting because it forces p;.z(w) and p,;,(%) to be identical, resulting not only in ot
continuity, but also C*, C¥* | . 0% continuity.

To understand splines properly, it will be necessary to review a few facts about polynomials first.

6.2. Polynomials

We will focus our attention on k'-order polynomials. By this we mean polynomials having pre-

cisely k coefficients, with zero coefficients allowed. For example, polynomials of order 4 consist of all func-
tions p(u) of the variable & which can be written in the form

p('l_l.) = CO + Clg + C21’l—2 + 03173 ,
and this is intended to include the cases in which
¢3=0 and/or c,=0 and/or ¢; =0 and/or c;=0

As a consequence, 4'8-order polynomials are the polynomials having at most degree 3. This means that
the k**-order polynomials include all polynomials up to and including those of degree k~1.
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Notation: P* stands for the set of all k*®-order polynomials, i.e. all functions of a real variable u
which can be represented as

k- .
p(@) = ECHT
i=0

for any choice of real constants ¢g, . . ., Cp—-

8.3. Vector Spaces

To be able to treat polynomials and splines more generally, we will draw a great deal from the con-

cept of a vector space. To review: a vector space over the real numbers is any collection of objects for
which there are defined operations of

® yector addition between any two members of the collection, yielding a member of the collection, and

® scalar multiplication between any real number and any member of the collection, yielding a
member of the collection.

These operations must satisfly a number of algebraic conditions: Suppose Z,Y,X, - -+ stand for the
objects in the collection, suppose a,b,c, - - + stand for real numbers, and suppose the operations of scalar

multiplication and vector addition are denoted in a natural way; i.e. a X and X +Y. It is required that
the following hold:

¢ X+Y = Y+X (commutativity of addition);
® (X+Y)+Z = X +(Y+Z) (associativity of addition);

® there is a “zero” vector © having the property that X +6 = X for all X
(the additive identity element}; -

a{X+Y) = (aX)+{aY) (distributivity of scalar multiplication over addition);
{a+b)X = (aX)+(bX) (distributivity of addition over scalar multiplication);
(ab)X = a(bX) (associativity of scalar multiplication);

1X =X for all X (the multiplicative identity element).

The question of what object constitutes the zero vector is of particular interest, because in the
answer lies the de facto definition of what constitutes the equality (i.e. the equivalence or indistinguisha-
bility) of two vectors. This is a remark which will have particular relevance to splines.

The usual example one has in mind for a vector space is 3-space, i.e. the collection of all objects of
the form

P = (z,y,2)
where z, y, and z are real numbers. Vector addition follows the familiar format:

Py = (z,,y1,7))
P, = (%,yz,zz)
P +P, = (z,+zq, ¥y Ty, ntz) .

Scalar multiplication (“scaling™) follows the format
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P = (z,y,2)
aP = (az,ay,az) .

The zero vector is, of course,
6 = (0,0,0) =0,
which implies that P, =P, if and only if 2,=2,, y, =y, and z,=z,.

3-space is only one example. The definition of a vector space is general enough and powerful
enough to include many different types of objects. For our deliberations it will be important to observe

that k**-order polynomials (and later, k*-order splines on a fixed knot sequence) constitute a vector
space.

6.4. Polynomials as a Vector Space

It is easily seen that the set of all k*'-order polynomials

X(u), Y(u), Z(),
form a vector space, since the conventional addition of such polynomials

X(@) +Y(@) = (cob - Hepit™ ) + (dot - - +dpy@ )

= (cotdo) + - + (cpmytdp)T

and the conventional scaling of such polynomials

aX(@) = afcot - +eymqu )

= (acg) + - + (acp—)u* ™"

satisfy all the rules listed for vector spaces. The polynomial corresponding to € is, of course,

Bu) = 0+0uw+ - +0u* ",

which implies that X{@)=Y{u) if and only if X and Y have precisely the same coefficients. Stating this
formally:

Theorem: For any k > 0, P* is a vector space with the usual definitions of polynomial addition
and of multiplication by a real number playing the roles, respectively, of vector addition and scalar
multiplication.

Polynomials can even be written so as to look like ordinary vectors; that is, they can be written as
k-tuples of numbers. Since a polynomial is completely determined by its “powers of # coefficients,” for
example, we could write

X(@) = (cq,1,¢2)
with the interpretation that
(cg,e1,¢0) = ¢4(1,0,0) + ¢,(0,1,0) + ¢,(0,0,1)

and, of course,
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(1,0,0) = 18°+0a' +07% = &°
(0,1,0) = 02° + 13" + 0% = 7
(0,0,1) = 0a® + 0’ + 1% = o* .
The mechanics of this interpretation of polynomials as vectors requires two things:

® that we have chosen coordinate system or, as we will refer to it, a basts, and

® that the k-tuple of coefficients given as the description of the polynomial is, in fact, a correct
representation in terms of the chosen basis.

These points are worth raising because many coordinate systems (bases) are possible in any given
vector space. In the case of polynomials, the following illustration is worth considering. It is easily veri-
fied {by expanding the quantities in parentheses and collecting the terms together according to powers of
u ) that the polynomial given by

5(z —1) + 4(u —2)° + 3(u —3)?
is exactly the same as the polynomial given by
48%7° ~ 447" +127° .
In the first case the basis
(@-12, @-2), (@-3F
and the coefficients
5,4, 3

go together. The polynomial can be expressed as the 3-tuple (5,4,3) in the “(z =1)°,(¥ —2)*,(5 —3)*”
coordinate system. In the second case the basis -

and the coefficients

48, —44, 12

~~1

go together. The polynomial can be expressed as the 3-tuple (48,—44,12) in the “@°, @', 7% coordinate
system.

It would clearly be inapprepriate to take the 3-tuple (5,4,3) and to interpret it as a mechanism for
describing this polynomial in terms of powers of u, but it is a valid description of the polynomial in terms
of another basis. Thus, we should usually expect to say that some k-tuple {cy,...,cx—) represents some
vector P of some vector space V with respect to some basis By,...,By—,. General practice is often less pre-
cise than this. When a basis is not explicitly mentioned, some “canonical” basis is understood by common
agreement. Thus, for poiynomials, we generally interpret a vector

i
(Cos v vsChmt)
as a polynomial in terms of the “powers basis” when no basis is explicitly designated, i.e.

CO'ITO + -+ Crald ,

just as in our usual notion of k-space we use the “unit coordinates”

Siggraph "85 6. Splines in a More General Setting San Franeises



An Introduction to the Use of Splines in Computer Graphics 49

(1,.,0), ..., (0,..,1)
to interpret a list of numbers
(copersCh—1)
as a vector

co(1,-.,0) + - + ¢;4(0,...,1) .

<t

(0,0,1)

A A
(co,c1,c2) cot'i0+c1171+c2272

(0,1,0) a

(1,0,0) a°
Figure 48. Canonical coordinate systems (bases).

In the following section we expand on the notion of a basis and of the relationships between alterna-
tive bases.
6.5. Bases and Dimension
To understand what a basis is for a general vector space, it is important to recall the concept of
linear independence:
Vectors Z,Y, X, - - - are linearly independent if the only scalars a ,b,¢, - - - for which
aX +bY+ - +¢eZ = 6
are the trivial ones
a=b= - -- =¢c=0 .

A consequence of this is that if some vector W can be represented in terms of linearly independent vec-
tors X,Y, ..., 2Z:

W= rX+sY+ - +t2

then the coefficients in the combination r,s, ..., are uniquely defined.

For an arbitrary W and an arbitrary collection X,Y,...,Z we can’t guarantee that W has a
representation in terms of the collection, even if the collection is linearly independent. For example a°
can’t be expressed in terms of 2°, @', and @° alone. Collections of linearly independent vectors that have
the power of representing every vector in a space have a special importance.
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Definition: A basis of a vector space is a collection of vectors that is linearly independent and that
can express any vector in the space as a linear combination.

Some spaces are so “rich” that they can only be expressed in terms of infinite collections of vectors.
Any space of interest to us, however, will be generated by a {inite collection of basis vectors. Bases are
not unique, but if one finite basis (containing, say, k vectors) for a space exists, then any other basis for
that space must also be comprised of exactly &k vectors.

Definition: The number % (if finite) of the elements in any basis for a vector space, does not

depend on the basis. This number is the same for all bases, and it is called the dimension of the
space.

The dimension of 3-space is, of course, 3. The dimension of P* is k.

As we have already remarked, we will ultimately discover that splines, as well as polynomials, form
vector spaces. The B-splines will form our canonical basis. From the point of view of graphics and the
construction of objects using splines or polynomials, the dimension of a space may be thought of as indi-
cating the number of “controls” which may be varied to obtain distinct members of the space. The con-
trol variables may be regarded as the coefficients of the basis elements

ag , .., Qmy
and each is “independent™ in the sense that it can be varied by itself to obtain new vectors not obtainable
by using any of the other parameters. We will eventually associate the dimension of a spline space with
the number of control vertices that may be used to construct the spline curves or surfaces in that space.

8.6. Change of Basis

The modeling transformations of graphics lead one to confront different bases which define the
same space. For example, if 3-space is represented in terms of the basis

(1,0,0), (0,1,0), (0,0,1)
and this space is subjected to some transformation, A, then the basis undergoes the change
(1,0,0)A = (%o0,te1,tee)
(0,1,0)A = (ty,ty,110)
{0,0,1)A = (to,t5,t2) -
Under what conditions will
(toostoiston) (tm:tn:‘fxz)y (t20,ta1,t22)

represent a new coordinate system? The necessary and sufficient condition for these transformed vectors
to be a basis is that A has to be nonsingular {that is tnvertible).

More generally, if
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Xo, ) Xnm
is one basis for a vector space and
Yo,..., Y,

is another, then each vector in the one basis can be expressed as a linear combination of the vectors in
the other basis; e.g.

X; = ag;Yo¥ - +a, Y,
m
= )oY
i=0
for 7=0,1,---,m. Conversely, if Y,,...,Y, is a basis for a vector space, and if coefficients a; ; are

chosen to create linearly independent combinations
X; = ag; Yo+ - +a,;Y, for j=0,...,m

then these combinations, X;, will also be a basis. The constants a; ; appearing in the above assertions
make up the change of basis matriz

Qy " Gom

that is,
[X0 o X, ] - [Yo o Yo ] A
Note: A change of basis matrix must be nonsingular.
Notice that normal 3-space could be represented by the basis
Xo =(1,0,0), X, =(1,1,0), X, =(1,1,1)
as well as by the basis
Y, =(1,0,0), Y; =(0,1,0), Y, =(0,0,1) .

The 3-tuples representing the X’s and Y’s are to be interpreted in terms of the canonical 3-space coordi-
nates:

X, = 1(1,0,0) + 0(0,1,0) + 0(0,0,1)

X, = 1{1,0,0) + 1(0,1,0) + 0(0,0,1)

X, = 1(1,0,0) + 1(0,1,0) + 1(0,0,1)
and, trivially,

Y, = 1(1,0,0) + 0(0,1,0) + 0(0,0,1)

Y, = 0(1,0,0) + 1(0,1,0) + 0(0,0,1)
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Y, = 0(1,00) + 0(0,1,0) + 1(0,0,1) .

This means that

100
[o0), wro), 1,1) ] - [00), 010, ©01) 1t 10],
111
and conversely,
1 00
[100), 010, 0on ] = [100), 10, @] |- 10
0 -11
Or, for example in more expanded format, this means that
1 00
(0,1,0) = (1,1,0)]-1 1 0
0 -11
For another example, the power basis for the quadratic polynomials
2, 7, and #°
could be replaced by
(=), (g—=t)!, and (w-t) (34)
for any fixed value of ¢.
(0,0,1) ;rz
- . S
(toostorton) (w—t)
/ y
I’ Il
-1
K (0,1,0) !
’/’ \"-.\; ’/’ h-..."-)-

(tio,tin tye) < (w-t) #

&L

(1,0,0)
Figure 49, Two bases (coordinate systems) for 3-space or quadratics.

The change of basis matrix for this alternative to the power basis for quadratics is given by
1

[1 -t 2
A=i0 1—2:!.
0 0 1

Since this matrix has a determinant equal to 1, it is nonsingular, and this verifies that (34) is, indeed, a
legitimate basis.
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Another important example of an alternative polynomial basis is
E (‘7-55)2 s ('T_Ei'l'l)2 , and ('T_El'*‘ZF ’ (35)
which will be a legitimate basis when u;, 4;4,, and «; 4, are distinct numbers. We will have many occa-
sions to consider extensions of (34) and (35) to k**-order polynomials in the material which follows.

As a final example, this time for the cubics, the power basis
@, 7, &,
could be replaced by the linear combinations

—@®+357-3T+1 = (1-7)® = Py,

370 —6u°+37 = 35(1-T)* = Py,
3u*-3u° = 35%(1-T) = P,,
.‘f . ‘!76 = 2-1'3 = P3,3

to obtain an alternative basis for the cubics. The change of basis equations for this example are usually

written
[53172171170] 1-3 3- - [P3,3P2,3P1,3P0,3] .
0 3 -6 3
0 0 3 -3
6 0 0 1

(The members of this new basis for the cubics are called the “Bernstein polynomials” — they are used to
define “BeZzier curves,” which will be discussed in Chapter 11.)

6.7. An Alternative Polynomial Basis

Thus far we have institutionalized the power basis for P¥, i.e. the functions

golw) = u’

(@) =

G—{w) = TR

but we have indicated that other bases are also interesting. If &, , ..., Uy~ are distinct values for u,
consider functions of the sort mentioned in (35) above: '

@ = (@-TH

ri(e) = (E—El)"ﬂ

(36)

ri—fu) = (v —"Tk-l)k_l

These, too, constitute a basis for P¥. This may be verified by observing that each power of u,
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*L

—k—1
b, ,

can be expressed in terms of these functions, i.e. constants a; ; can be found such that
a;oro(d) + = F @ gy rpy(T) = q(T) = T for i=0,...,k-1 .

We will not establish this formally but will merely give as example which suggests the general pattern.
Consider k =3 and i =0. In order to represent &', aqy, ap;, and ag, must satisly

aoo(F =) + 6o (T =7, + ago(0~%)° = =1

Expanding the terms in parentheses and looking at each power of & separately on the left-hand side of
the equation, it is evident that the a’s must satisfy the equalities
17200’0 + Eaao‘l + 172(10‘2 = 0172 =
2T Tgagy — 2T d,ap, — Siizagy = 04 = 0

-0 - -—
ugagy + "1200,1 + ugao,g =15 =1,

This system is uninteresting for & =0, so we assume that « is nonzero, and we divide the first equation by
@? and the second by —2&, which produces

1 1 1 a0,0

Uy Uy Ug apgyy *= .
2 al w2

Ug U; Ug do2

The coefficients of the resuliing system of linear equations form the well-known Vandermonde matriz of
order 2

e

— O O

1
’zl-o ﬁ-i 172 -
2 ~2 =2
Ug u; Ug

whose determinant is
(170“’71)(170”’72)(51 "‘72)

Thus, since g, %;, and &, are distinct by assumption, the determinant is not zero; hence, the system is
nonsingular and can be solved. Finding constants to represent & and % in terms of the r basis leads to
exactly the same system matrix.

For general k, the matrix which arises in this exercise is the Vandermonde matriz of order k

1 1 -1

Uy Uy R T

—k=] —k=~1 . =kl
L“o Uy Ugp~y

whose determinant is
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('70"171)(170’172)“‘('70‘!71:—1)(171"-‘-2)'"(171:-2'5&-1) '

= H('Ti_gj) .

i<y

Suppose the values 4y, . . ., #;-y are not distinct. For example, let 4; and ;4 be brought together,
so that

o < U =G4 < Gy .
Then it will no longer do to use ry, .. . ,rp— as a basis, since
(@) = (@) = r@) = (TG
and this destroys linear independénce. We will see that
(T-%)* and (T-w4)'7 = (0-;)*7
can be used in place of
(T-% )7 and (F-84)"
to produce an alternative basis. If more knots are brought together, i.e.
Uimp < Uy =0 =gy < Upgid
then the pattern continues:
(-7 (E-g)? .., (E-w)
are used in place of
(F—w)7 (@-g)™ ., (E-mg) T
Of course, we need take no more than the first k of these terms if 7=k —1, since P* has dimension k.

Note that the alternative basis being taken when some of the u; values are repeated relates to the
derivatives of (@ —u; )t ™

@ - (3~
I
@) = (ko) h) ) )

AIE) = (e @EROE-TS - (T

1t is as if pushing knots together demanded that derivatives be taken as a compensation. This connection
between multiple knots and derivatives will resurface later, when we define the k*-order B-splines in
Chapter 9.

If all the functions of (37) are used for some fixed #;=t, they constitute a basis for the k*®-order
polynomials. We may scale the function r,m(t'f ) by the factor
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. 1
(k=1 (k1)

if we wish, to leave merely
(T-5) .
The basis (34) mentioned above is an example of this for quadratics.

6.8. Subspaces

If any set of ! linearly independent vectors is chosen from a space,
X={X,,....X},
and the collection of all vectors formed as linear combinations of this set is considered,
W ={WiW=a X, + - +aX},

then W can be seen to be a vector space of dimension [ with the members of X as a basis. W may or
may not contain all the vectors of the original space — if I =<k, then it is a subspace of the original.

A simple example of a subspace is provided by any of the 2-space planes which are imbedded in 3-
space and pass through the origin. The z,y plane is a particular instance which is generated by all linear
combinations of the collection

(1,0,0) and (0,1,0) .
That is, the z,y plane consists of all linear combinations
z(1,0,0) + y(0,1,0) = (z,9,0) .
In the same sense, the linear polynomials constitute a subspace of the quadratics.
(0,0,1) a
A A

(0,1,0) !

\J

iinear polynomizals
(1,0,0) a
Figure 50. Representative subspaces in 3-space and quadratic polynomials.
More profoundly, we will come to see that the space P* is a subspace of the space of k*-order splines.

A basis for a subspace need not be chosen as a subset of the basis for a full space, as was the case in
the above two examples. The set of all “linear combinations” of
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(1,2,3)

i.e. all scalar multiples of this vector, forms a subspace (in this case a 1-D subspace — a line) of 3-space.
However, if Ny, ..., N, form a basis for a vector space, and By, . . . , B,, {m <n) constitutes a basis for
one of its subspaces, then we must have the representations

B,' = O’,"oNO + - + 0’,"” Nn

for i =0,...,m and some (unique) coefficients, &;, . . . ,a;,, since each B; is a member of the space
described by the basis Ny, ... ,N,. That is, the B's may be found from the N’s by the use of an m*n
table (matrix) of numbers o ;.

We will show over the course of the next several chapters that the k'*-order splines with knots
{4y, . ..,Un+:} form a vector space, and that the B-splines constitute a basis. The “Oslo algorithm” for
B-spline subdivision with which we shall end this theoretical development is simply a method for finding
the o’s for a given “/N-basis” spline space and a corresponding “B-basis” spline subspace. The N-space is
generated from the B-space by subdividing the range of the parameter into smaller knot intervals,

6.9. Knots and Parameter Ranges: Splines as a Vector Space

The order, k, of the polynomials with which we deal will force us to change our notion of how many

knots we must have and what constitutes the legal range of the parameter among those knots. For cubics
(k =4) we required knots

‘170, 171 s 172, and 173
to lie “to the left” of the parameter # at all times, and knots
"Tm-ﬂ ’ ;Im+2 y Jm%’ and Emﬂ

to lie “to the right”. This meant that, for any legal value of u, we were on the nonzero domain of four
B-splines, precisely the number needed to define any of the cubic segments of the spline curve we sought
to construct. The correct numbers for general k£ turn out to be

Ug o, uk_l

on the left,

Upty ;- oy Umbk
on the right, and
Upey = U < U,y
as the legal range for the parameter.

For k =4 in our introductory sections on uniform cubic B-splines we constructed curves and surfaces
from pieces of cubics which existed as functions for all values of o

-0 < U < too .
The cubic pieces were, however, not very interesting for
T<iu; and 4 = U4 (38)

since the pieces were quite limited in their character throughout these regions. (Any function which we
constructed was zero for #f <i,, was some multiple of (Z—i,)® for #,=u <u#; — the leftmost piece of the
leftmost B-spline which we were using — and so on. Similar statements apply to the range u =, 4.)
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We took account of such limitations in the ranges (38) by only constructing our curves (or surfaces)
for values of the parameter range |{&f3,i,,+,). The piecewise cubic functions existed everywhere, but we

found them useful only on a fixed parameter range. More profoundly, if we had constructed two piece-
wise C? cubics

s;{(uw) and sy{u)
which were equal on the range
Uy S U <Upy

but which differed outside this interval (on the ranges (38)), then it should make no difference whatever

to the appearance of s, or s, if they are rendered only for ¥ in the range [¥3,4,4+;). For any practical
purpose, 5; and s, are equivalent.

This has its reflection in general, particularly if we wish to use vector space terminology on splines.
Splines will constitute, for us, pieces of k*-order polynomials, each piece being defined on one interval of
a collection of intervals, with some differentiability properties satisfied by adjacent pieces. Our notation
will be different in the next section, for reasons which we will explain, but for the present this means
roughly that a spline will be defined for knots

Ug, Uy, « « « , Uy

as a function s{u)} of the form

’

p (%) defined on  (—oo0,up)
po(t) defined on  [uy, ;)
p(%) defined on  [u,u5y)

Pm+r-i(#) defined on  [Up dtmys U 44 )

D +4(U) defined on (U 4, +00)

\

where p;(¥) and p;4.,(i) are expected to disagree at & =u;4, in their “highest pu; derivatives”, that is,
" derivatives k=1, ..., k—u;, for some reasonable collection of “continuity-loss indices” y;. For the pur-
poses of setting continuity conditions, then, we will associate an index 0<y; =<k with each ;. For exam-
ple, a picture might be something like the following:
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Pm +k

- Em e o . -

&)

Ug U Ug Ug Uy, +k

) () () () T ()

P
E
i

Figure 51. A look at an arbitrary spline.

Vector addition will consist of adding these piecewise polynomials together piece by piece, ie. if
8y(u) is defined in terms of pieces p,;(i) on a collection of intervals [i;,u;4;), and another spline s,(u) is
defined in terms of pieces p,;(u) on the same intervals, and with the same continuity properties between
the pieces, then we can set

sy(u) + sg(w) = p1i(¥) + pyi(t) on the interval [u;,u;4)
for each? =0, ...,m+k-1.

Similarly, the multiplication of a single spline by a scalar can be defined in piece-by-piece fashion.
These definitions satisfy the conditions for vector addition and scalar multiplication.

To completely regard these functions as members of a vector space, it will be necessary to define
what we mean by equality. We will say that any two splines s,(i#) and s,(u) are equal if they do not
differ for any 4 € (3 ~;,u,,, +;)- This means that the polynomials

P—x(a) FIRIRIRIN pk-‘Z('T) and pm'H({[) PRI pm+k(17)

are of no interest to us when we are comparing two splines. The difference (or identity) of two splines is
only a matter to be determined from the polynomials

pk-l('a-) LA pm(a) .
Equivalently, as we mentioned in the section above on vector spaces, this is making a statement about
what we consider to be the ‘“zero vector”

§,() — so(u) = B(u) = has value zero for all W€ [Uy—1,Upy+1) -

The idea that differences are important only if they take place on the legal parameter range, that the
concept of a spline space is fundamentally entwined with a restricted parameter range, and that splines

! are equivalent if they are equal on that range — all this is a reflection of the fact that we kept u to the
right of 43 and to the left of u,, 4 for cubics.

For splines this makes the concept of linear independence a bit more subtle than it was for pure
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polynomials. The concept of linear independence that is applicable to a spline is that two splines
si(u) and sy(u)

are linearly independent if and only if
a8,(F) + ansoT) = O

implies
a = ay, = 0

when only the values of 4 on the parameter range of interest are taken into account. As an example, the
functions 8; and s, shown below are linearly independent if we are only being shown a section of them
and their parameter range happens to include the interval [—1,3). But viewed as functions whose parame-
ter range is [0,2), they are linearly dependent — s, is a multiple of s,.

&)

Figure 52. Two k =2 splines that are {or are not) linearly independent.

8.10. Spline Continuity and Multiple Knots

One of our stated intentions is to relax the requirement that a cubic (4'"-order) spline need have C?
continuity across any knot % or, in general, that a spline involving k'®-order polynomial segments have
C*™ continuity. We suggested above that we associate an index g; with each knot u;, indicating what
order of continuity is to be imposed at that knot. We could use this index to “count the continuity loss”
at the knot #; by the following sort of scheme (remembering that C*™ continuity at a knot implies C®
continuity at the knot): let u,; =1 indicate that Ok‘l-”‘ =C*2 continuity is required, let g; =2 indicate
that C* ' H =g continuity is required, and so on through p; =k indicating that no continuity at all,
¢ Heo™ continuity, is required at u;. This means that we would have to deal with two sequences of
numbers to deline splines in any generality: the knot sequence

Ug, "7 5 Um+g

and the “index of continuity” sequence
o, 777 s Bm+k

This does not turn out to be the best thing to do. The actual situation is more intricate than that,
because continuity at a knot turns out to be influenced by the process of moving knots around. For
design purposes we might wish to allow the position of knots to be varied, and this will require the option
of allowing kncts to be pushed together, e.g.
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U; Uiy

Suppose that each of these knots is associated with C* 2 continuity, and suppose a spline is constructed,
for varying choices of u; as it “moves close to” ;4,; for example:

=y | =107, g =ty =102, ..., |@—Ty]| =107 .

When this is tried computationally, and the (k—2)" derivative of the spline is studied in sequence, this
derivative comes closer and closer to being discontinuous as %; moves closer and closer to t;4;. The fol-
lowing is an example.

Consider the knots
170 *0, 171 -1, 172 "1+d, and 173 = 2+d
and construct the quadratic spline (k =3) on the knot intervals

[0,1), [1,14d), and [1+d,2+d)

defined by
f 0 <0
i 0=sz<1
s(w) = {- 2"(“_d;2)+d+2 1=7 <1+d
(2+d—-u)? 1+d s 4 < 24d
. 0 24d s u

This spline is shown in Figure 53:

Figure 53. A quadratic B-spline-like spline.

Note that this looks very much like a B-spline — it is zero to the left of & =0, quadratic in each of the
three knot intervals, zero to the right of & =2+d, positive on (0,2+d), and C32=C" continuous every-
where (i.e. continuous in position and tangent). Its value is 1 at &, and u,, and its derivative at these two
points is 2 and =2, respectively. Both value and derivative at u, and u, are independent of d. The value
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of this spline at the midpoint of its support

_ d
¢ 2
is
d d+2
1+5) = 232
s(1+5) 2

If we take the limit of this function as d goes to zero, the result is clearly

0 u<o
_ i 0sT<l1
s(®@) (2-u)? 1=g<?
0 2=y
which looks as follows.
367
I
I
1
1
!
]
1
1
1
1
1
!
]
]
| l l
! | l
ug u, Uy
Uy

Figure 54, The limiting case as 4 goes to zero.

When this is done more generally, carefully and mathematically with arbitrary splines, thenr the
resulting continuity at a double knot

U = Uy

is always seen to be C* ' =C*"3 which is just what one would have specified by assigning a p-index of
2 to the knot value represented by the doublet. If a single, simple knot can be regarded as a point at
which there is a single “continuity-loss” for a spline, then this seems to suggest that double knots and
double continuity-loss go together. This rule proves true more generally: when more and more knots
coalesce together, discontinuities of higher and higher order result at the rate of one p-index count per
multiplicity.

As a further example, suppose i, is pushed together with # and u; in our above quadratic exampie.
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The resulting ‘“B-spline-like” object will look as follows.

s(u)

O —t
[ e

Figure 55. A B-spline-like quadratic with three knots put together. 8(&) is zero for <0 and &¥>1.

If we move i into %=1 to join i, iy, and ifs, then the spline disappears altogether. Since k =3 for qua-
dratics and disappearance took place when 4 knots came together, this suggests that we will find it unpro-
fitable in general to push more than & knots together.

More formally, for any m k>0 we will let {&;};" ** stand for a chosen sequence of m+k+1 knots

uO,...,tTm-[.k}

where
TpsSi;S - S, 4 .
Notice that more than one knot can fall on the same value. Thus we might have
Cw <y = =d g =E =ia = T U <Yy

a situation which we will depict graphically as follows.
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Ui

Uyt
F i : @
u; Uy, UJ'-(-!

U4

u,

Figure 56. The knots ¥;4, through tTj have the same value,

We will say that i) is a knot of multiplicity p,=j~i. (The same is said of any one of the knots
%41, - - - ,14;.) That is, the multiplicity of a knot ), is the count of the knots in the sequence with value
equal to i#,. Having introduced y, as a continuity-loss index, and then argued that continuity loss is to be
associated with knot multiplicity, we will use p, to denote the multiplicity of %,. The multiplicity count
includes ), itself. Notice that &, would be a knot of multiplicity 1, if u#y— <@y <ty4;. The continuity

. - . k=1 o .
requirement at any knot @, will be C ; “X and the number p, will be equal to the number of knots in
the knot sequence which are equal to ).

As a simple example, consider the knot sequence

Ug uy Ug Ug Uy Ug t-‘-c .
; (59

For this sequence
Bo=1, =2, po=2, ps=4, p,=4, ps=4, and pe=4

If we wish to restrict ourselves only to the distinct knots in the Sequence, then we may pick 3 representa-

tive knot from each “cluster” of one or more equal knots and list these representatives in their sequence
order

where M+1 is the number of distinct values in the knot sequence. As an example, M =2 for the knot
sequence given in (39), and it could be restricted to

Up, iy, Uy (£p=0,1;=1,i,=3)
or

U, Un,Ug (ig'lﬂ,i!“ﬁ,'ig"ﬁ)
or

Ug, Uy, kg (10=0,7,=1,1,=6)
or any of the other obvious combinations.

A handy way of selecting one representative knot from each cluster, and of specifying a nontrivial
interval between adjacent clusters, is to define ~4{i) as the index of the leftmost knot whose value is
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actually greater than ;. For example, in (39) above we would have

71H0) =1, 74(1) =3, and 74(2) =3 .

65

In order to give 4 meaning for knots at the right end of a sequence, we will establish the convention that

400 is the knot #,, +4+;, Which means that, in (39):

143) =7, 1{4) =7, 745) =7, and 74{6) =7 .

This definition can conveniently be used to choose a fepresentative collection of knots by the following

scheme:

iy =0
and

i; = yt) for g=1,...,M .
In (39) é.bove, this would select

tp=0, 2; =1, and ¢, =3 .

More formally,

Definition: For any 1€{0, ..., m+k} we define
v4{7)

to be the smallest index satisfying
U6 > U -

In order to define ~v4{7) for any i satisfying

U = Uptr

we let
i) = mtk+l i @, =4, 4

and we let

Upp+ = too .

Referring to Figure 56:
i) = i+l
and

(i +l) == oqyN) == oqulg) = 4L

This definition can be “run backwards” by letting ~(7) be the index of the rightmost knot whose

value is strictly less than ;. In (39) above, we have
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v-{1) =0
7{2) =0
7-{3) =2
v-(4) =2
~-{5
76

In order to give - meaning for knots at the left end of a sequence, we will establish the convention that
—co is the knot #~), which means that, in {38}

7{0) = ~1 .

Again more formally,

=2
=2

)
)

Definition: For any : €{0, ..., m+k} we define
7-{1)

to be the largest index satisfying
U, ) <

In order to define (i) for any { satisfying

u; = U, .
We let
yi) = -1 =g, '
and we let

Referring to Figure 56,
r{j*1) = J
and

7g) == Y] = i 4 =

The set of distinct, consecutive values of ¥ across which a spline changes from one polynomial into
another are often referred to as the breakpoints of a spline. In the above example, then, the breakpoints
are 1.0, 3.0, and 5.0. The usual practice is to associate the multiplicity of a knot with the unique break-
point on which it falls. In the above example, then, we may speak of 5.0 as “being associated with (knots
of) multiplicity 4.”

Also associated with the breakpoints u; are the breakpoint intervals,
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[ 5y 40)
the half-open intervals over which a spline is merely an ordinary polynomial segment.

There are some subtleties here: the breakpoints are simply values. They demarcate the intervals on
which a spline is simply a polynomial. The knots, however, are a sequence. They might be viewed as
“tokens” which are allocated, in order, to the breakpoint positions along the # axis — sometimes one to a
breakpoint, but sometimes several in a cluster. To list the breakpoints, we may simply select one knot at
each breakpoint, thereby choosing a sub-sequence of the knots. That sub-sequence can be chosen when-

ever and however it suits our convenience. The rules denoted by 4+ and ~— are simply two handy ways
of determining the sub-sequence.

There is a need for this pedantry. In previous chapters, knots corresponded to breakpoints and
there was nothing unusual about the interval between two knots, [u;,u;4;). If, however, &; =i, this
half-open interval, which is supposed to consist of all values of u satisfying u; S@ <i;4,, is vacuous.

Indeed, the fact that [#;,4;4;) can be vacuous when #; and i;4, are repeated knots leads to a con-

venient way of designating the breakpoint interval into which a given value of @ falls. Suppose that
Uy=u<i,,. Then the phrase

“Let 6 be an index such that #; < ¥ < u54,”

is a phrase which uniquely specifies §. This is easiest to see with an example. Consider the knots of (39)
and the value of 4 =4.

6=0isnotsuchthat u; =1 =4 < ugy =3
6=1is not such that #; =3 = 4 < uzy =3
§=21is (1) such that 5, =3 =4 < uz4; =5
§=3 is not such that 4; =5 < 4 < #iz4; =5
ete.
Clearly, 6=2, and the breakpoint interval containing u =4 is
[tz,u3) = [3,5) .
If knots remained frozen in place, we would have no reason to separate the concepts of “knot” and
“breakpoint”’; it would suffice to flag each &; with a “continuity-loss” index p;, as was suggested above.

The need to distinguish between knots and breakpoints arises when knots are moved about, pushed
together, and pulled apart.

We close with a formal notation for the set of all splines. In this definition p; (%) is the segment
polynomial describing () in the breakpoint interval

['77_(i):17x) = [&,4) ,
and p,;n(%) is the segment polynomial describing s(u) on
[y, w0 = [8,;)

the next breakpoint interval to the right Figure 57 below shows this in more detail.
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Ck-h-:

Prigh
Plese right

2|

£t

b Uj41

Figure 57. An overview of breakpoint intervals.

The I** derivative of p;. s, at @, will be denoted by p[ﬁ},(z’[ »), and similarly for p; .

Definition: Assuming that k=1, that k—1<m+1, that @ <¥,4, and that & =u;4 for all
i=0,...,m+k—1, then S(P* {;}7"**), the set of all k'™-order splines on the parameter range
(@3 =y, U +1) With the knot sequence {&;}7" ** is the set of all functions (i) satisfying:

s(Z)EP* for each interval [=oo, ), [#;,%,,4)), and [Tm4e) (5=0,...,M-1)

and for any knot @y, AE{0, ..., m+k}, with associated multiplicity p,,

if
§() = Pien(T) EP* on [T, g5, 1)

and -
6(¥) = prign(T)EP* on (¥, Wy )

f,hen

Pg}z(ax) = Pﬁlht(‘?x) for {=0,...,k=1~pu, .
No continuity at all is assumed if k—1-p, <O0.

Two splines are considered to be identical if they are equal for all ¥ in the parameter range, even
though they may differ outside that range.

It is a trivial observation, but one very useful to make, that any k*-order polynomial is a spiine in
S(P* {@1{ ﬂ); the converse is not necessarily true. The argument goes something like this:

® On each breakpoint interval a k*'-order polynomial is, of course, a k**-order polynomial.
: ) s . . - . k=l=py ..
® At each breakpoint uy a k™-order polynomial is C* differentiable; thus it is certainly C A dif-

ferentiable, There are, obviously, splines in S(P?{T;};'**) that are not polynomials, so
S(P* {&;}§ **) is larger than P*.

. . . . — +Ey .
A more profound observation is that the sum of any two functions in S(P* {#;}"*) is also a func-
tion in S{P* {#;}"**), and that any constant times a function in S{Pk,{z'f,-}é"%) is also a function in
S(P* {Z;}5**). Again, a brief argument:

® On any of the breakpoint intervals we are merely dealing with polynomials. The sum of any two
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‘k*-order polynomials is still a k*-order polynomial, and a constant times a k'"-order polynomial is
just a k'*-order polynomial.

® At any point in {U;—;,u,,4) We are dealing with functions having the same fixed differentiability
properties. At each point of any breakpoint interval that isn’t a knot, all derivatives of any kb
order polynomial exist, and so do those of the sums of any two such polynomials or a constant times
either one of them. On the other hand, at any knot #;, any two members of S(P* {7} **) will
have derivatives of order 0 through #—p;—1, hence so must their sum or any constant multiple of
either.

That is, in short:

Theorem: S(P* {#;}7*)is a vector space.

Theorem: P* is a (proper) subspace of S(P* {Z;} **).

As always, u is restricted to the range [@y—, % 41)-

We will establish a few chapters hence that B-splines (suitably generalized) form a basis for this

space, but we will arrive at that fact by first discussing a more easily understood basis for constructing
S(P* AT} ™).
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7. The One-Sided Basis

7.1. The One-sided Cubic

This chapter will focus on functions of the form (4 —1 ), their properties, and the means by which
they are transformed into B-splines. We shall begin with an example.

Suppose that we have a cubic polynomial p(ir), let t be some arbitrary position on the ¥ axis, and
let © indicate the displacement from ¢:

—+
=t
=0

ef

s
il

o

CTI-Y)

Figure 58.

It is easy to see how to express the value of p(u) in terms of the displacement ¥ from the point v =t,
instead of the displacement # from the point ¥ =0). We know that # =t +¢, and all we have to do is sub-
stitute v+t for u in the expression for p(%). For example, if

plI) =3 - +at -3

and ¢ =1 then
p(F) = 2 =20 =20, - &°

Since U =u —1, an alternative representation for p(w) is now easily seen to be
p(f) = 2 -=2(T-1)-2Au—-1)° —(T-1)®

Thus, if we are given any polynomial p(¥) and constant ¢, these observations show how easily p{u) may
be given in terms of the powers (& —t).
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- -
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-~ ~e

— ~ -
Pn‘gm(“) N
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N\

Diest (‘7)

&

Figure 58. pjp(¥) and Prighe{T) are cubic polynomials which meed at Tt with C? continuity.

Now suppose that we have two cubic polynomials p.p (i) and pygn (%) which meet with C? con-
tinuity, and no more, at the arbitrary parameter value # =t (see Figure 59). Consider the change

d(iT) = pripht({‘—) - plcft({[)

as we cross the knot ¢. Since d(#) is clearly a cubic polynomial, we know that d(%) can be represented in
terms of an expansion about # =¢, and so we can write

d(@) = cp+c)(u~1) +e(u~1)2+cg(w—1)° .
What are the coefficients ¢;? Consider the following:

d(@) = co+ e (u—t)! + co(u—t)® + co(ti—t)® ,
consequently d(u) =cgat ¥ =t¢, and

-;:d(i) = oy + 2c(T~t)' + Beg(@—t)? ,
u

consequently -dd—_d(ff) =c;atu =¢, and
u

d? -
~Zd(@) = 2o +6eyfi-t)

d? . _ — .
consequently -Fd(u) =2¢, at w =, and finally,
m

d3
_3d(17) = 663 ’
du

e -
consequently Fd(u) =6cgat u =t.
u

The ¢; are, essentially, the derivatives of d() at ¥ =t. But because p;, (%) and pyg (W) are C? continu-
ous, we know that they have the same value, first derivative and second derivative at ¢; that is,

d{t) = 0, d'(t) = 0, and d"{t) = 0 .
So

cg =0, ¢ =0,andc2¥0,

and we have
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d(T) = ex(@~t)? .

In fact, it is clear the value of ¢, is determined by the size of the change in the third derivative of the
spline at ¢; we have

€3 = %’[pr(?y)ht(t) = o t))

It simplifies things a bit if we define a modified version

(F-t)i
(notice the subscript “+” ) of (& —¢)® which is zero to the left of &=t and acts just like (& —¢)® for all
u=t. The form of such a function, for t = 4y, . . . , Ug, is shown below in Figure 60.

Why is all this useful? Notice that (& —t)3 has the value zero at u =t. So do the first and second
derivatives of (7 —t)3. But the third derivative of (& —t )3 is discontinuous at # =t:

L function value: (Z-t)Plo, = (t-t) =0
first derivative value: 3 (T~t)lga = 3(t-t) = 0
| second derivative value: - 6-(7—t)|zo, = 6:(t—t) =90
third derivative value: 6]-_, = 6 (a constant) .

Suspiciously, this is exactly the sort of discontinuity displayed by C? splines in general.

Since (@ —t )3 is zero for # <t we can now write
Prep(®) = Prep() + ci&—1)3

and for uw =¢ we also have
Prignt(®) = prep(il) + cg(@—1)% .

What we have obtained is a succinct representation, equally valid on either side of t, for the spline
represented by pi.5(%) and p,;,,, (7). All of the foregoing is a special case of Taylor’s theorem (in which
we have “expanded d(i) about 4 =1").

Suppose that we have the C? cubic spline shown in Figure 60.

po(T) p4(t) ps(u)

i) @) pel®

~ ~ L] ” ~ ~ ~
...‘\:- ,\1- 2 2\ * 2 2>
/;v

.Jwﬂﬁj

Figure 60. A C? cubic spline expressed with the aid of '‘one-sided basis functions”, Each p,{¥) is a scaled sum
of all the basis functions which depart from zero left of, or at, &;.

: 2 20
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If we identify p4(@) with Pies(¥) in the above discussion and p,(&) with p.uit), using t = &}, then
ps = pa(u) + 03,4(17“'74)'3-

for some constant ¢g4. It is also important to note that ps(#) can be expressed in terms of (@ —ug)3,
(17.—;‘-1)3-7 (17_'72)3'1 and (17_;[3)31-:

pa(t) = 03.0(17‘*70)1 + 63,1('7"'71)3- + 03,2(17"52)1 + 03,3('7_'73)1 .
This is true simply because
(T~ug)} = (=8p)® for TE[uyuy)
(F-T)3 = (@~4)° for WEldsT,)
(17-’172)34- = (E‘Ez)a fOr EE[E&E*)
(17—173).%. = (17—173)3 for 56[63,174) y
and (§-1,)%, . . ., (W—,)° constitutes a basis for the cubics.
If we shift our attention one interval to the right and regard p,(@) as p;.,(%), then we see that
ps(t) = pyu) + egp(u—~u5)% .
But note that this can also be written as
ps() = psyu) + °3,4("7"’74)?+ + 03,5({‘-"‘75)?4- )
or even as

ps(¥) = cgoli—ug)} + - + cgg(ti—u15)3 .

Continuing in this fashion, we can convince ourselves that the entire cubic spline may be
represented as

8
2 Ca; (“7"171' )i
i=0

for some coefficients c3; that we know how to compute.

Now let us see how to generalize what we have learned to establish an easily understood basis for

S(P* {m;}*). We will proceed intuitively; for a rigourous development of this material see
[Schumaker81] or [deBoor78).

7.2. The General Case

The first segment polynomial of any spline (%) that could interest us is the one that is defined on
the first breakpoint interval of the parameter range, namely

[‘Tk-—l :‘Twlk-l)) :

Let us denote this (k''-order) segment polynomial by pip(#). If g, ...,#— are distinct, then
(&) = pj.;(¥) can be represented on this interval as a linear combination of the k basis functions
(F=io) ™, (@=L, (T )T (40)

which is the basis mentioned in (36). If the first k knots are not distinct, then some mixture of the basis
described by (36) and (37) will be necessary to describe p, (). We will keep things simple, just for the
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moment, and assume that the basis functions (40) are appropriate, so that

k=1
8(@) = piepl@) = Yeroy, (T2 on [,y u-y) (41)
r=0
for some selection of real coefficients ¢y— g, €4=1,1, - - - , €g=1,4~1- The picture to have in mind for the fol-

lowing discussion is Figure 61:

S N

1
| 1
uo . uk—l

Figure 61. Schema of the knots at the beginning of the parameter range (example for the purpose of discus-
sion).

As ¥ crosses the breakpoint at
Unyh-t) = Uy

s(w) changes from p, (), a k*-order polynomial, into (@), also a k**-order polynomial. But p; ()
and p,;;,(u) are expected to agree in their first k—1—p, derivatives at @ =), because of the multiplicity
of the knots associated with this breakpoint. Consequently:

PI(S}t(Ex) - Pi?;m(a)\)
P[el}t(ix) = Pﬂzht(ax)

(42)
(F=1=my) , — (k=1=py)
Plest May) = Pright Y,
Generalizing the argument of the last section we see that
d(a‘} = pripht(g) - ple}t(g)

1
(k-1)!

(This representation is also a simple instance of Taylor’s Theorem.) We are particularly interested in

= dT)(T-T,)° +dI@)T-T,) + - + dE@ ) E-T ) .

this expression for u,=u<u, A\ =iy which is the next breakpoint interval to the right, since for these

values

8(€) = Prign(¥) = prp(w) +d() .
Now, because of (42) above,

dO(@,) = - = d* "M@ =0 .

Hence d{i) can be written more simply as
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—_ — ke N N — e \k=l
d{u) == c,,_“»x(u—u)\) + ck_“)‘ﬂ‘)‘(u —ux) + -+ ck_m(u _UA)
! for some some constants ¢y, , ..., cx—). This suggests that we can write &(u) on the entire interval
luk-laug) as

8() = prp(u) + d(@)4 ,
where

-— —_ -k — o kmu 1 - e -]
d(@)s = hopa @)+ >+ cpmpann (@) * + - F o (T-H)ET

giving us
f‘ plcﬂ(i) tTi:--ls"-;<;ik
| s(u) =

Prigne(¥) @, Su<u, .

(This assumes that uy=<k. If u,>k, then we take O as the lowest exponent in the above, i.e. we use
min(k,u, ) in place of uy.)

d(u)+

&1

Figure 62. d(&)4is the amount which must be “added” to py,5(i) as we cross &) to obtain pgp(¥).

This means that for 4 €[, —,u., () =[Uk—1,U), we have
_ k-t min(k,s,) .
s(u) = Eck"l,j(u -uj)k Y+ 2 ckﬂ',)\(u -u)\)'f_r ’
J=0 r=1
since

k-l
Prep(T) = Eck-l.j(g—ij)k-l
J=0

for come constants ¢~y 0, . - ., Cxmy g1

Let us number the breakpoints consecutively:

'Uio = Uy

u; = u
Uy, T U
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Jib"‘l = Y

iy = Y fmt)

where the last breakpoint which needs to be considered is the one associated with the last knot lying
strictly within the parameter range, which we have denoted by t'[,-L.

The same argument that we made at the breakpoint % =u, =4, can be repeated across each succes-

sive breakpoint in the parameter range. s(u) picks up the powers
(zT-iI,-J,)""‘ for I=1, ... ,min(k,u,-’.)

at each breakpoint tT;J,. This means that s(u) can be represented across the entire parameter range
U € [t —,U;, 41) by the formula

mm(k,u'

k=1
= gck-lg -u; )k 7+ 2 2 ls‘ﬂ'i -'Tij)s'-' ’
3

where the ¢’s are appropriate coefficients.

Since we are only interested in s{u) for 217,-"__1, we may subscript all of the terms in the first sum-

mation by “+”, since to the right of z'[,-k_1=17,,_1

(=) =(@-w)}, (@-0) =(@-0)}, .., (@G’ = (@-T)3

M(k-u. )

Eck‘l:] _u k 1+E E clc—r: 171)'4‘-“7 .

Note that the second summation is doubled, with each breakpoint contributing as many terms (suc-
cessive powers) as there are knots multiply located on that breakpoint. The simplest version of this for-
mula would be the one in which all knots are simple:

m
= )lck;(E ‘17;,)5»'1
=0

This is the formula which describes the curve shown in Figure 60, namely
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(po(@) for TE[TT,)
pfu) for w€ [ts,t5)
ps(w) for € [i;u,)
pe(¥) for @€ [uguy)
prl@) for @€ [iy,is)

[pg(if) for € [ug,iy)

s(u) =

8
= ZC&J‘(E—EJ')Q. .
J=0

On the other hand, the formula takes on its most general form if we drop our initial assummption that

Uy, 00 oy Up—y

are distinct. These knots, too, could be multiple, giving:
, min(ku )

— J — —
6@ = X D i @-m )t
=0 r=

The functions (w—t)}, for t= any knot and any power r =0, ...,k=1, are clearly worth studying,
since the discussion above leads us to believe that any spline on any collection of knots can be represented
as a linear combination of such “one-sided power functions.”

7.3. One-sided Power Functions

Let us begin with the simplest version of (u—t)%, namely the one with r =0. This is the step func-
tion given by

(F-1)} = (43)

This function is an instance of two first order polynomials (constants) tied together with no continuity
whatsoever across the single breakpoint t, which also constitutes a knot of multiplicity 1. It is the sim-
plest possible example of a spline: k =1, &,=t, y=1, and we have C™' continuity across the breakpoint.
Moreover, it is just what we need to represent functions like d(&)+ above, where d(u) is of order 1;
(v —17‘-0)9.. is identically zero to the left of ¥; , and can be used to represent any constant (polynomial of

order 1) to the right of 4; . Thus
d(@#)+ = constant - (u—1t)% .

Figuratively we have
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...............

Figure 63. The step function (¥ —¢)%

The “cup and ball” representation used here indicates visually that (& —t )3 has the value 0 from —co up
to, but not including, @ =t and the value 1 at & =¢{ and thereafter to +oo. This is a convention we will
use often in subsequent figures.

Definition: The r** one-sided power function is given by
(T-t)% = (F~t)YT -1y ' (44)

0 i<t
(T~ty aT=t,

where r =0,1,2,... and (u —t)% is given by (43) above.

It is easily checked that (& —1)% is C" ™! continuous across any fixed ¢: there will be a match at ¥ =t in
value and in the first r—1 derivatives, while the r*! derivative will be discontinuous at % =t.

7.4. The One-sided Basis

The discontinuities in any spline we will ever construct are exactly like the discontinuity in
(-1)%

i.e. all our splines will be “open on the right” in any breakpoint interval. This means that they have one
characterization up to, but not including, each breakpoint, and they will have another directly at and to
the right of that breakpoint. This derives directly from the way in which we have defined
S(P* {&;}7**), but it also follows from the way in which we will be representing splines using the func-
tions (¥ —t)}.

For an arbitrary spline, when all knots have been considered, and all transitions from
Piesi(%) = Pyigne(¥) dealt with on the parameter interval ;- S@ <i,, 4;, we will have made use of the fol-
lowing one-sided power functions in representing the spline:
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- — -— k_mn(kr” ) -—
(7= 57 (F-g )42, ..., (TG )+ o for u;
k—min(k,u; )
oo k=1 e — \k=2 I i —
(@ “i,)+ » (€ “i,)+ yoees (W “il)+ l for @,
' (45)
[} L ] [ [ ] [ ] [ ]
- — k=1 ;= — k=2 - - k"IIliI](k,[l,-M) —
(u _u?M)+  {u *uiM)+ y ooy (U —u, )+ for u, -
The first k£ of the one-sided power functions in (45) derive from the knots @, . . . , #;—, and the remain-

ing ones are due to the knots which lie within the legal parameter range. The followmg points should be
kept in mind about equations (45).

® Since u > #;.,, we may write
(@Y . (T-To) = (F-T),..., (F-G=)}

for all powers j, that is we were able to affix the subscript “+ to each of the first k functions in
(45) without changing them on the legal parameter range.

@ The first k one-sided power functions are simply
(F=%)i™ o, (B4
if the ug, . . ., 43— are distinct.

Schematically we have the following.

Figure 64. It is fairly easy to see how we can build, from these functions, an arbitrary spline having the sort of
continuity at knots which we desire. The vertical scale here has been much reduced.

The functions in (45) are linearly independent, and it can easily be seen that each is a member of
S(P* {Z )5 ™).

Theorem: The functions of (45) above form a basis for S(P’c A '”‘),
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Definition: The functions (¥ —t)}, are called the one-sided or truncated power basis for
S(P* {Z}5 ™).

By way of illustrating (45), consider the knot sequence

—

U U, Uy Uy Uy @y i
1 3 3 5 5 5 5
)

introduced as (39) in the last chapter. Let us use it to construct quadratic splines (k =3). We have
Upmy = Up and U,y ™ Uy .

If we choose
fg=0, ¢, =1, and i, =3

then the basis (45) would be
(T-To)} , (@-3)}, (F-T)}, snd (T-T)}

and the space of all quadratic splines on this knot sequence has dimension 4.

To reinforce the concept of a one-sided basis, let’s consider the uniform cubic B-spline given in
equation (11) on

It is, of course, a C? cubic spline. By a change of variables we have the alternative representation

(

-1=u<0
bofi) = @ 0=z<1
(@) = —<(3°-128°+120 —4) 1su<2
Bl =1 4@y = 1(sa-2ai+607-44) 2=T <3
bo(¥) = —(@°-120°+484 —64) 3ST<4
| 0 4=T<5 .

As we have seen, the appropriate one-sided basis is
(T-0)%, (T-1)%, (#-2)%, (¥-3)%, and (¥—4)3 .
It is straightforward to verify that
Bfi) = @-0)% - Z@-ni + 1@-2)} - @33 + G@E-9t . (47)

This is true, since for 0T <1 all terms in (47) after the equal sign are zero save the first, and (47)
becomes

Bf@) = ¢(@-0)}
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- 1
For the range 1su <2:
Prep(u) = by,
Prign(¥) = b,
the knot at which these segment polynomials join is
u =1,
and consequently our previous discussions lead us to believe that
by = bgtc(u-1)®

for some constant 3. Indeed,

b-—] _b..Q
¢ = ————
(@=1y?
242 12004 1o
_ 5 U + s U % u+6 5l
(@-1)°
- -2
3

The verification follows this pattern for the remaining breakpoint intervals.

“We can, in fact, construct any B-spline we have ever seen, or indeed any spline, as a linear combina-
tion of one-sided power functions. Why do we choose to use the B-splines instead of the simpler power
functions? Because, for a number of reasons, the one-sided power functions are computationally unsatis-
fying. Their utility to us is not in constructing splines; for that purpose they suffer from two severe
shortcomings: numerical instability and lack of local control. The utility of the one-sided basis is that it

can be easily described and understood. From it we will define the basis we really want to use, namely
the B-spline basis. :

To elaborate on these shortcomings, consider the above example. The uniform B-spline that we
constructed is representative of the curves and surfaces that we encounter in graphics: they do not
behave wildly. Indeed, the uniform B-spline goes to zero to the left and to the right; a more randomly-
chosen spline can be expected merely to maintain bounded behaviour throughout the region of interest.
The one-sided basis, on the other hand, blows up as # increases. Hence if the one-sided basis is used to
express “reasonable” spline curves and surfaces, the coefficients required to do this can be expected to
alternate between large positive and negative values in order to force numerical cancellation of the basis
function values as 4 increases. Cancellation is computationally undesirable.

A second shortcoming, from the point of view of graphics, is that the one-sided basis functions do
not have local support; they are all nonzero on at least half the real line. If one represents a curve or sur-
face in the usual way as a scaled sum of basis functions, the lack of local support translates into a lack of
local control: the adjustment of any scale factor has an influence over the shape of the remainder of the
curve. A change in the first scale factor will affect the entire curve. As a result, the adjustment of any
scale factor will then give rise to a system of linear equations that must be solved to determine the effect
of the adjustment on the curve or surface. The system of equations will be large, involving data from all
the control vertices, and the continual need to solve such systems whenever vertices are adjusted is a
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bottleneck in real-time interactive graphical design. It is precisely because the uniform B-spline goes to
zero outside of a closed, bounded interval that it is of such interest to us.

Finally, there is no intuitive relationship between the scale factors weighting the one-sided basis
functions and the shape of the curve they define. On the other hand, we have already seen that the scale
factors weighting the B-spline representation of a spline curve have a direct physical interpretation as
control vertices.

7.5. Linear Combinations and Cancellation

The key to constructing a desirable basis from the less desirable {but conceptually simple) one-sided
basis i8 to recognize that cancellation can occur and local support can be achieved analytically, by a sym-

“bolic process, before any numerical computation is begun. To this end we will rearrange the one-sided

basis functions in the above example by taking linear combinations of them to produce new functions that
behave in a much more bounded fashion.

Qur game plan is as follows, We will begin with
(7-0)% ,
which grows cubically for w20, and
(w-1)% ,
which grows cubically for #=1. By taking an appropriate linear combination
o —0)F + ¢ (w—-1)%

of these two functions we can produce a third (combined) function whose #° term is cancelled away for
g =1. The three functions

(u-0)3
(w-1)}
and
colu=0)% + ey (¥-1)%

are linearly dependent, but any two of them will be independent. That is, any one of these three func-
tions can be written as a linear combination of the other two, but no single one of them is merely a multi-
ple of one of the others. Since any two of them can represent the third, any two of them can represent
anything that could have been represented by the original two. Since

co(@=0)3 + ¢\ (T~1)3

is better behaved than either of the original two functions, i.e. it has no @° term for @=1 and conse-
quently “grows more slowly” as & - +co, we would like to use this combined function as a replacement for
one of the original two to obtain a revised basis. Arbitrarily, we will use it to replace

(#-0)% .
This combination process can be repeated for the pairs

(¥-1)% and (¥ —2)%
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b (¥ -2)3} and (¥ -3)}
and
(€-3)% and (w-4)}

to yield functions that can be substituted for

(F-1)3
‘ (#-2)%
| and
" (2-3)%

More precisely, we see that

0 g
(-1)3-(v-0)3 = §-2° 0su<l
-37°+3u-1 1=<u ,

which grows quadratically for 4 =1.

83

Note that (#—1)3~(Z—0)} goes negative at # =0, and continues to —co. From Figure 65 it is clear
why this is so: (€ —0)} is positive between 0 and 1, so —(Z=0)} is negative between 0 and 1. Since (Z-1)%

is zero in this interval, the entire expression is negative on [0,1).

ok @k et ek Eed

A

Will this work more generally? Observe that

0

_ - @)

(F-Tn)i ~ (F-0)§ =

- 3'72(171‘4-1"'7:') + 3’7(17£+1"5;')(’7i+1+5-£)

—  —\=2 g =2
{ = (0 = (T 8 )

Figure 65. The one-sided basis functions for a uniform C? cubic spline.

u < 17.‘
% S u <y
(48)

Ui = u

We are left, as for uniform knot spacing, with a function that grows only quadratically as Uco.
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7.8. Cancellation as a Divided Difference

Our objective will now be to carry this one stage further. We will try to take two such
“quadratically-growing” combinations of the one-sided power functions and combine them further so as to
cancel away any - behaviour as T~o0. It was easy to remove the T° terms, for % >4, by combining
the two one-sided power functions

(,','_,7‘._{_1)& =534 ...

and
(T-7)3 = @+ -

because their dominating (Z°) terms had the same, constant coefficient (namely 1). The coefficient of the
dominating term {as ¥ =oo) in the rightmost segment of (48}, however, is troublesome — it depends on f.
But notice that the factor (¥;4,~%4;) occurs in every term of the function for ¥ &=u;4,. We will divide this
factor out to simplify matters. (For the time being we will assume that all the knots are distinct.) That
is, we will consider the divided difference function

’

0 u <
—_ = \3 - =3 -3
u—u,; —fu -y, -—1
( :':l)*' (_ t)+ _ (.u u:z !7;51.7<17,+1
Upg = Uy = (“eﬂ"“i)
(49)
= 3° + 3u(U 4 +E) Ui S U

— (U iy )

because for U24;y4, it both cancels the cubic term and ensures that the remaining quadratic term will
have the constant coefficient 3. This means that we are setting

1
c PSR
0 ( Ui 41 '_!-L:' )

and

So as to have a short-hand notation for this expression we will write

[T 17+tj(l—!"‘f)i - (E-Egi‘l)')l-—(u"ﬁ,);- (50)
£ 1. — - ;
L ‘ Uiy T Yy

to indicate the operations of (1) selecting the two values #;4; and 7;, (2) substituting them for { in two

copies of (& —1)% {3) subtracting the results, and {4) dividing by #;4,—%;. Thus our original divided
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difference for uniformly spaced knots is

0,1:¢)(F-1)3 = (‘7'1)'31*:5;7"0)*

- (H)(@-1D3+H-1)@-0)} .

We emphasize that this divided difference function (50) is a linear combination of the one-sided
power functions (¥—%;)3 and (#—1;4;)} and that it can be used to substitute for either of these one-sided
power functions in the collection of basis functions. Because it is a linear combination of (¥ —u;)$ and
(¥—1;4,)3, its differentiability properties will be the “union” of those possessed by the two functions indi-
vidually: it is C? at #; and @4, and fully differentiable elsewhere.

We choose to let
[0,1:¢)(w—-1)}
(shown in Figure 66) replace
(T-0)% ,

and in doing so we have modified our basis into one which is “nicer” in the sense that its first one-sided
member grows only quadratically as & = oo.

0 1 2 -
........................... i. - .l. - U
1 [
| \
0 I , '
1 I ]
[ 1 |
} [ ]
| Ly
: : t _3u+31u-1
1 |
I I !
| 1 |
! ] 1
} | !
) ' E |
! ! P
[ [ B
! | A
( | B
1 ! A
| [ i
! 1 i
[ 1 1
! ! 1
! | L
I ' £
' ) I
) ] I
[ ] 13
) . .

Figure 66. [0,1:t](T—t Y% This function is quadratic for T21.

In a like fashion it may be verified that
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(@-2)%-(a-1)3

[1,2:¢)(u—t)} = a1

0 <1
= 1 - (z-1)® 1sg<2
-3l 4+90u -7 2su

that
— (#-3)3-(u~2)%
2,3:t](u~t)} =
[ J(w~t)% 3 2
0 zT<2
- 1-(z-2)® 2su<3
~3u+ 150 ~19 3su ,
and that
- (-4 —(w-3)%
3,4:t)(u—t)} =
[ J(w=t)3 4—3
0 7<3
= 1-(z-3)® 3=T<4

-3 +217 —-37 4sq .

That is, the trick that worked with respect to the first and second knots will work with respect to the
remaining adjacent pairs of knots, and we may use the above three functions to substitute for (& ~1)3,
(7-2)3%, and (¥ —3)3, respectively.

Thus we can replace some of the “eventually-cubic” functions in our original basis with these
“eventually-quadratic” functions. In particular,

[0,1:t)(w—1t)

[1,2:t
(2,3:t
(3,4:¢

] )3  replaces (u—-0)3
J(~t)% replaces (w-1)%
(=)}
J(F=t)%

:I
N’ N’ e

replaces (@ —2)%
3
+

-3)

]

replaces

Figure 67 illustrates this process, The original basis appears on the left in Figure 67, consisting of one-
sided power functions which grow as @° for #=+co. The new basis appears on the right, and consists of
four functions that begin to go negative cubically but eventually grow as —i” for i =+00, and one of the
original truncated cubics which cannot be replaced because there is no truncated cubic to its right with
which it can be differenced.

7.7. Cancelling the Quadratic Term — The Second Difference

In the previous section we saw that dividing by the knot spacing u;4,—%; set us up to repeat the
cancellation process by ensuring that the coefficient of the quadratic term for the rightmost segment was
the constant 3. What does the difference

(T4, Uit (T =) = 4, Gt (T 1)}

look like for sufficiently large #? Well, the first term is a spline with breakpoints at %;4;, and u;4,, while
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Figure 67. All five of the function shown on the left are cubic. The first four are replaced by four
“eventually-quadratic” functions on the right. Each “eventually-quadratic” function consists of three polyno-
mial segments: the first is identically zero, begins at —oo, and is not plotted; the second, drawn as a solid line,
is cubic; the third, drawn dotted, is quadratic and continues indefinitely to —oo.

The fifth function on the left cannot be replaced by an “eventually-quadratic” function because there is
no one-sided cubic to its right with which it can be differenced. We will deal with this technicality later.

the second term is a spline with breakpoints at #; and u;4;. The difference will therefore have break-
ponts at 4, u;4; and u;4. Since we are interested in the asymptotic behaviour of this difference as
u = +00, it is sufficient for our purposes to compute the difference of the rightmost segments for these two
terms. From (49) we see that

(@, Ta t (T =)} = — 30 + 3u(t; 4 +i0;) — ('7;‘2+x+‘7i+117i+“7£2) )
from which it is clear that
[T, Tt (T =) = = 3T% + B0 (Fpap i) — (Tiag + gy 41 ki 41)

Hence
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(@41, Gt (T =)} = [T, Ga t YT =)} = BU(Ujir— %) — (Wrae— ) (Tiae H U4 FE;) .

The quadratic term has disappeared, as expected. In order to obtain a constant coefficient for the linear
term, it is clear that we need to divide by u;4,—u;. What we want to compute, then, is

(E-Ta)i-(T—%4)}  (F-%4)i-(E-5)%

Uigo " Ui U4 T Y;

Ujp — Y;
=3 Uy~ U~ foru = uy
Expanding our short-hand notation, we write this as
(8, e, Uit J(E 1)

This second difference goes positive at ;. It is easy to figure out why: we saw earlier that
[, 41:t (€ —1)% goes negative, so — [if; ,#;41:t](# —1)% goes positive. Since (41,840t ](F—1)3 is
zero between #; and ©;4; (and &;4,>1;, so that the denominator is positive), the difference (51) is initially
positive. (In fact it remains so.)

Notice that
[17;,1-1‘.'4-1,?7:‘*2?”(’7"1)3 (51)

_ 1T Bt (@ -1} — [, Gt (w3

U4 — U

This suggests a recursive definition for divided differences — such a definition is to be a subject of the
next chapter.

Our second difference, then, is a function which grows only linearly as w=o00. Such functions can be
used to replace the functions of (50), which in turn replaced certain of the original one-sided power func-
tions, to yield an even “nicer” basis containing functions which grow only linearly as u = +co.

|
i
|
i
!
|
L]

£ 1-37+37°-0.5°

- - - A W wm - v s AN e e W - —
o - - - —— e w — e e = e

Figure 68. [0,1,2:¢|(#—t)3 This function is linear for ¥ =2,
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In the case of our example,

[0,1,2:¢](¥—1)%

3 3 3 3 0 w<0
3 (e o e
(v -2)3-(u-1)3 _ (@-1)3-(u-0)% Ly osa<l
- 2-1 1-0 I
2-0 @ -sutesu-2) 1=E<2
| 5(67-6) 2=q

As expected, this function is linear for # =2 (see Figure 68). Now that we know how to cancel the qua-
dratic term, we can do this for each successive pair of eventually-quadratic basis functions:

[0,1,2:t)(¥~t)} replaces [0,1:t](¥—t)}
B (1,2,3:t](¥=t)} replaces [1,2:t](u—t)3
' (2,3,4:¢](Z—t)} replaces [2,3:t](T—1)} .

: Figure 69 illustrates this process.

7.8. Cancelling the Linear Term — The Third Difference
In the preceding section we accomplished the replacement of (& ~; )} by
(€ 04, Tt (T - )5
! = 3U ~ Uiy = U4y — Uy foru = w4, .
In the same way we replaced (i —;4;) by
(41, T 4o, Lt t (T — )3
= 3U = Uy = Uiy ~ Y for v = ;45
, and so on. Since
[ 41, T U a ) (T =) = [, Tt (T 1) = (e~ 1)
we now replace [4; ,U;41,%;49:t |(& —t )3 by the third difference

[Eiﬂ:aiﬂ"-‘-i%:t](i‘t )?a- - [17; ;17£+1,!7i+21t](17"t )i

Ui4g = U

3T = Ty = Tysg = Tyt = 37 + Byap ¥ Ty +

— foru = TT{%

Ujas — U;
=1 | for T = T4g -
which we will denote by
(W Uy 4 Uiag t (T =)
In a like manner we replace | 41, %; 40, % 4a:t | (¥ —t )3 by
(s 41, it Ty, Ty st (T 1)

(% 40, Uy By g (=) = [0, By, Uit (0 2 )%
-

Uiqg — Ui

Siggraph ‘85 7.8. Cancelling the Linear Term — The Third Difference San Francisco



90 The Killer B's

Figure 69. Taking a second divided difference of two ‘‘eventually-quadratic’” functions allows us to obtain
“eventually-linear” functions. Since we only have four “eventually-quadratic” functions on the left, we can

only do this three times.

BU ~ Ujgy = Ujgg — Ujap = U + Uug + Uy + U4y

Uiy = Uity

and so on.
Returning to our example, we have
[1,2,3,4:t (7 1)}

[1,2,3:t)(g=t)} = [0,1,2:t [ (u—t)}
- 3-0
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E-3)i-(E-2%  (E-2)i-(E-1i (@-23-(@-1% _ (@E-Di-(E-0)
3-2 2~1 _ 2-1 1-0
3-1 2 -0
3 -0

( _
0 u <0
~&(@) 0=<7<1
=1 fF-oFf+ou-3) 1=u¥<2

—H(Z°-9ut+27i—-21) 2sT<3

-1 3=<u .

\

(See Figure 70.) As expected, it is constant for ¥ =3.

i
——mn o = m— o e
t

Figure 70, [0,1,2,3:¢](#~¢)% This function is constant for ¥ =3.

As before, we can now replace successive pairs of eventually-linear functions with eventually-constant
functions:

[0,1,2,3:t)(w~t)] replaces [0,1,2:t](a~t)
[1,2,3,4:t](2—t)} replaces [1,2,3:t)(7—t)

Figure 71 illustrates the result.

7.9. The Uniform Cubic B-spline — A Fourth Difference

The third divided differences are constant, in fact —1, for sufficiently large &«. This avoids the need
to cancel large positive values with large negative values. To obtain locality, that is, to obtain functions

that return all the way to zero, requires the computation of one more difference. To be consistent with
earlier steps we compute

(@1, U 42 Wi Uy 2t (T —0)F = [, U, Ui ap, Uit | (F )3

—— (52)
Uiy ™ Uy
=0 foru = 'L-l',ﬁ R
although the division by ¥; 4 ~; is actually superfluous. We denote this quantity by
[ U1, T4, i g1 ) (T =) (53)

For the uniform knot sequence we have been using as an example, [0,1,2,3,4:t])(¥ —t)3 is exactly the spline
of equation (46) — the uniform cubic B-spline for the knots {0,1,2,3,4} (see Figure 72).
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e

Figure 71. One more difference cancels the coefficient of a linear term to 0, leaving us with a constant func-

tion -1 for sufficiently large values of Z. Since we have three eventually-linear functions, we can do this twice
to produce two eventually-constant functions.

—— - ——— ——— -

Figure 72. [0,1,2,3,4:¢|(¥ —t)5 This is the uniform cubic B-spline we met in Chapter 4.

We can use this eventually-zero function as a substitute for the eventually-constant function (see
Figure 73), which substituted for the eventually-linear function, which substituted for the eventually-
quadratic function, which substituted for the original cubic function (w=—i;)}. We arrive at this
eventually-zero function by combining differences of (Z—0)3, . . . ,(¥—4)3 so as to cancel, in succession,
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Figure 73. The final differencing step cancels away the constant term for large enough i, resulting in a piece-
wise polynomial which is nonzero for only four intervals. The two eventually-constant functions on the left are
exactly what we need to produce the single eventually-zero function on the right that has been our objective
for the last few pages.

~ -0
the powers @, %%, @, and "

For future reference we note that because (53) involves an even number of differences it will go
positive at u;.

We emphasize that for the knot sequences we have been considering, the divided difference notation
we have been using is simply shorthand. If we let f; =(u —17,-...,-)?. then
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['71 7'7|'+11'7|"|‘2!Ei+3:'7i+4:t](E_t)‘sf =

J1=Ja _ fo= /s Jo—11 - ¥ Pl P Jo— 1y - Js—fo Ja— /2 - S /Ss
U, Uy~ _ Uy, Ug—i, T,~T, Hg—i, Uy—iiy Uiy
TP =1, U=~ =iy
!73""70 Uy—U,
u,—up

Admittedly this is a rather complicated expression, but we have seen why each of the terms appears. It is
also clear from this expression that all we have done is replace (#—~;)3 by a particularly desirable linear
combination of (¥ =)}, (F~¥;4)}, (T- 403 (F-T;40)3 and (T-7;40)5-

Our development has shown us how to obtain the single eventually-zero basis function shown in Fig-
ure 73. In actual fact we start with a larger number of one-sided cubics, and replace as many as we can
at each step — five truncated cubics would have allowed us to compute two eventually-zero basis func-
tions, and so on. So as to be able to replace all the truncated cubics needed to represent the curve in
question, we add four more one-sided cubics, positioned arbitrarily to the right of u,, (see Figure 74).

Figure 74. The dotted curves on the right are truncated cubics. They make it possible to difference the right-
most of the original cubics (which are drawn dashed) in order to replace all of the original truncated power
functions by B-splines. Notice that there are an equal number of each.

Thus it appears that B-splines can be constructed by differencing one-sided power functions. This
proves to be the case, but a little more preparation is needed if we are going to handle completely arbi-
trary knot sequences: the differencing process we have developed breaks down if two or more knots move
together. If we had encountered a situation in which u; =u;4;, we would at some point have divided by
zero. The remedy for this difficulty becomes obvious if we watch what happens as u; and #;4, “move
close together,” namely:

_ (‘T‘jﬁ'ﬂ:)k—l - (17“17.’)”_1‘

. d , —
by Ujgy U dt o

This suggests that it would be useful to study derivatives of one-sided power functions, and to expand the
idea of differencing to include differentiation when multiple knots are encountered.

This, then, is the motivation for the next chapter. In it we will digress briefly from splines to for-
mally introduce the divided difference operation, to study its relationship to differentiation, and to con-
sider the properties of one-sided power functions under differencing and differentiation.
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8. Divided Differences

In the previous section three important things occurred: we introduced the one-sided basis for the
splines S(Pk,{ﬁ;}(')" *+k), we motivated the consideration of divided differences, and we gave the (correct)
impression that uniform B-splines can be represented as divided differences of the one-sided power func-
tions. A logical development would proceed as follows from this background.

® S(P* {#;}"**) is a vector space, and we know a set of functions that form a basis for that space.

® Any basis for a vector space can be obtained from suitable linear combinations of the elements of

any other basis.

® The divided difference operation, at least in the uniform-knot case, is a mechanism for
a) constructing linear combinations of functions, and
b) manufacturing the B-splines.
We should, therefore, investigate the extent to which, for non-uniform knot sequences, functions like
B-splines can be produced from differencing the one-sided power functions.

® We should further investigate the extent to which these difference-manufactured B-splines can be

used to generate all splines in S(P* {#,}] *F).

Such an investigation is our next objective. To begin, however, we must develop a tool kit of

results about the one-sided power functions and their interactions with derivative and difference opera-
tions.

8.1. Differentiation and One-sided Power Functions

We will begin with differentiation. Notice that (& —t)} suffers a discontinuity (as a function of @
for fixed t) in the r'! derivative when i =t, where it is a C" ! function, and that it is a C" function (at
least) everywhere else. In fact, even the discontinuity is not too serious. The discontinuity in any deriva-
tive of any spline in S(P* A} ) derives ultimately from the behaviour of the function (& —t )3, and
since this function is “open on the right”, we can easily verify (and we do just that in the next couple of
pages) that a right-handed derivative of (# —t )% with respect to # does exist at the point u =t. Moreover,
at all other values of # the right-handed derivative exists and is equivalent to the standard derivative of
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the function.

Definition: The derivative
D_1(u)
of any function f(%) is said to be taken in the right-handed sense, if

D.-f(tT) = limL@*.e) - f@
Y €~0 € i
€e>0

Note that the limit is approached from the positive side. Since ¢ is positive, & +¢ lies to the right of u.

Convention: The derivatives of the one-sided power function (% —t )} with respect to @ for fixed ¢
are:

for the zero!! derivative,
OV =4\ = (o .
DO -t)} = (T-1); ;

for the first derivative,

DI ~1);

N
o
N
2|
J
=
m
3

and recursively,

DY(E-1)}

D (D™ ~t)}]

for all the succeeding derivatives, I =2,3, - - - {understood in the right-handed sense).

Consider what this means for r =0 and [ =1. For any chosen u <t,

(T+e=t)) - (Z~t)3 =0-0 =0
for all ¢>0 small enough. Hence the limit defined above for €=0 is equal to zero. On the other hand, for
any chosen =t

(T+e—t)3 —(F-t) = 1-1 =0
for all ¢€>0. Again, the limit defined above is zero. This means that the one-sided power function
(~1)Y, for variable u and fixed t, behaves exactly like a constant (a polynomial of order 1) under the
application of right-handed differentiation with respect to #. Since (u —t¢ )% is a simple spline of order 1,

this is very appealing. Furthermore, for higher orders the product rule for differentiation may be applied,

giving
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D(T~t)} = Dy[(F~)%(T~1Y] (54)
= [Dg(@=t)}]-(F=t) +(@-1)%:[Dg(@=1)]

0-(a=t) + (a—t)}[r(w—t) 7]
= r(i—t)’;_l .

Hence we have the following.

Theorem: For all r,l =0,

f
-(T:T)'-(E—t)f,,"l forl =r
D\ -ty =

0 forl >r .

This is also very appealing. It means, under the agreement that we consider only right-handed deriva-
tives whenever (4 —t )} is being regarded as a function of # for fixed ¢, that (& —t)% behaves just like
the ordinary polynomial (& ~t)".

Notice that (' —t)5 is also a function of t. As such, for fixed «, it is at least a C" function of ¢,
except when ¢ =u, and at that critical value of ¢ it has a left-handed derivative with respect to t. We can

see this best by turning the equations (43) and (44) around to look at them from the “t point of view.”
Equation (43) becomes

(Z-1)f =
and (44) becomes

(@=t); = (@-1)%(F~ty

0 t>u

and Figure 63 becomes

Y ]

Figure 75.
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Somewhat later we will begin dealing with (& —¢)} as a function of t. Observe that, as such, it is “open
on the left”. Consequently our intuition with respect to # can be applied to ¢ as well. For example:

Definition: The derivative
Dyg ()
of any function g(t) is said to be taken in the left-handed sense if

D,glt) = lin})ﬂu);ﬂﬂ

-€

b

e>0

Note that the limit is approached from the pegative side. Since ¢ is positive, t ¢ lies to the left of ¢.

Convention: The derivatives of the one-sided power function (# —%)% with respect to ¢t for fixed &
are: '

for the zero-th derivative,
DONE-1)} = (i-1)} ;
for the first derivative,
DN —t)} = D(a-1)}
- (w~(t=€))f — (v —1)}

€e=0D —€
€e>0

and recursively,
DT ~1)} = D, D} (@~ );]

for all the succeeding derivatives, ! =2,3, - - - (understood in the lefi-handed sense).

Results similar to those of (54) hold for Dt(l)(tT -t)%.

Theorem: For all r,l =0,

!
(1) (rr—-l)' (=t} forl=r
Di(a-t)} =
0 fori >r .

Divided differences are close relatives of derivatives. In the previous chapter we took the function
(7 —t)%, evaluated it at some knot t =%, evaluated it again at some other knot t =i, 4,;, and formed the

combination
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(T =0;4q)% —(¥-4;)%

Uit ~ Y
We can only write this if we assume that #,4; and @; are distinct. However, if we should choose to let u;
approach and join u;4,, the above combination would be consistent with the left-handed derivative. That
is, letting € =u; 4 ;—u, >0).

(w—upqy)y — (F-2)% (7—u;)%

lim = — lim —
Ug Uiy Uiy — Y Cad Uy

(W —1,4)%

U4

- lim (T—(F =)} = (T =;4)%

e~0 -€
€e>0

- D,(T-1)}|

t=iiy

It is this observation that will provide us with a definition for divided differences that includes the case of
repeated values, namely, that distinct values are handled by differencing and dividing while repeated
values are handled by differentiation.

8.2. Divided Differences in a General Setting

Let us work up to a definition for general divided differences gradually, reminding ourselves a little
about calculus along the way. To forget about the specific form of the one-sided power functions for a
moment, we will frame our discussion in terms of general functions, f, g, h, - -, of general variables,
z,y,2, * . Wewill come back to our specific functions (# ~t)% in a short while.

Consider any differentiable function. Recall that differentiation is an operator which provides a
mapping of differentiable functions onto other functions; e.g.

D, f(zy) = g(z,y)
and
D, f(zy) = h(zy) .

The “source” function, f(z,y), and the “target” function, g(x,y) or h(z,y), have the same number of
variables. In a like fashion we can regard the divided difference to be an operator which provides us with
a mapping:

I(z9,9) = f(21.9)

[21’22:x]f(x)y) = _ = G(Zl,22,y)
29 T %
or
f(z,29) = f(2,2,)
Vuzziy]f(fﬂ,y) = (z.2) — = o= H(z,2q,29) -
Zg T 2

These mappings convert the source function, f, of two variables into target functions, G or H, of three
variables. If the appropriate two of these variables are permitted to merge to a common value,
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zl -2 22
then we obtain a function of two variables again. In fact,
[Z ,z:x]f(:r,y) = zlisz(zlrz2yy) - Dz f(zry)'z-z = g(z!y)
. 1
22 -z
or
[2,2:9) f(zy) = lim H(z,zy,25) = D, F(@ ) lym; = h(z)2) .
1
22"2
For higher differences this becomes slightly more complicated, so it will be worthwhile to economize

on notation for the purpose of clarity. All except the one variable undergoing the differencing will now
be suppressed; i.e. f(z,y)= f(z), if we are differencing with respect to z.

Consider

[29,23:2] [(2) = [21,29:2] [ (2)

[21,29,23:2] f(z) =

23T %
f(z3) = f(zg) _ J(z0) = f(2y)
- 23" 29 2972y
2374

Using a Taylor series expansion we have

T(z5) = f(29)

s, " 1)+ ez ) + O(zgm2))

where the expression O((z3—22)2) indicates that the remainder of the series will behave like a constant
times (z3—22)2 (“will have the same order of behaviour as (z3~z2)2”) if the values of z3 and z, approach
each other. Similarly

_ f(zQ)—f(zl) _ f(zl)"f("-'z)

22_21 22"21

= = fzg) = 2{z;=25)"(z5) + O((z,=25)") -

Consequently
I(z3)— 1 (zy) _ flz9) = f(2))
2372y Z972)
3T %
B 1 " 0((23—22)2) + O((zl—22)2}
= m[(?—g-ffg) = (zy=29)] f"(29) + Ga=rD)

0((23"’2’2)2) + 0((21_22)2)

(z3=2y)

= _;_f"(z‘z) +

o zq,29,73 are allowed to approach a common value, z, in a reasonable way, then the trailing expression

will go to zero. This motivates the following interpretation:
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[z,2z,2:2) f(z) = zlixg[zl,zz,zszm]f(:t)

22"43

28"2

1
= ?Dz(z)f(x)lsz-zlﬁz2=zs .

And in general, not surprisingly:

(25 -+ > 2y4:2) f(z) = —llTugl)f(x)lz,zl.,..gzm

when z; ==z,

With these preliminaries, we will give a recursive definition of the divided difference operator. The
definition begins by regarding the zero! divided difference as the operation that evaluates a function at a
specified value of a variable. This corresponds roughly to the zerot! differentiation operator; l.e.

DO f(2)| =y, = f(z)) -

Definition: For any values z;= - - - =<z, the I-th divided difjerence is given by
[z;:2] f(z) = f{z)
for I =0, and by

(2. s ziapi2 ] f(2)

(

741, - zwezl @) =z e (=)
if 24 > 2
B4l T A
1 D(l) if =
702 1 (@), if 24 =2
{

forlz=1.

Observe that the notation
[Z" :Z] y [zi ,z".‘_l:x] , [Zi ,z'-+1,z‘-+2:1‘] , etc.
is reasonably suggestive for low-order divided differences. However, something like
[Z", ey, Z".H_.l?l‘]

is often more confusing than helpful. Thus we will sometimes use the more compact form below.
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Notation: (z;,...,2z4:z] = [z,(r):z] .

The intent of this definition is to express, in shorthand, that z; followed by the next r elements in the {z}
sequence define the % order divided difference.

Two comments are worth making here, before we proceed with our development:

Once we move back to the specific case of the one-sided power functions, we will only be interested
in the divided differences of (& —t )} with respect to & or with respect to t, rather than the divided
differences of general functions. In this case, obviously, the differentiation in the above definition

will either be right-handed, for differences with respect to u, or left-handed, for differences with
respect to t.

The definition was motivated by the idea that divided differences could be equated with derivatives
when any two or more of the values, z;, ... ,2;4;, join together. The discussion about this was
only motivational, but it can be made rigourous. It is proven in [Schumaker81] that, if z; 4 (¢), for
r=0,1,,...,[, is any sequence of points with z;.,_,,(e)-z'-_h. as €-0, then it is true for any suffi-
ciently smooth function, p = p(t) {e.g. (¥ —t)}), that:

lcifg (2i(€)ziaa(e), - - zpqle):t]p(t) = [2,2040, - - it ]P(2E)

In particular, the divided difference over an arbitrary set of points z;,...,z;4; that contains
repetitions is the limit of divided differences over distinct points. Up until now we have thought of
the knots «; in S(P* A} *#) as being fixed, and usually we have regarded them as distinct. This
gives us the permission to regard knots as movable and, at times, confluent.

8.3. Algebraic and Analytic Properties

We have reminded ourselves that differentiation can be regarded as an operator that maps func-

tions into functions, and we have taken this same view in the case of the divided difference. We close by
establishing a few of the algebraic properties of these operators.

Let us begin by recalling that the differentiation operator is a linear operator; i.e.

D {af(z)} = o{D, f(2)}

for any scalar «, and

D {fy(z)+]oz)} = {D, 1 (=)} +{D, fy(z)}

for any two functions f(r} and f,(z). This holds for right-handed and left-handed differentiation as
well as for ordinary, unrestricted differentiation. This means that, for any sum,

Dz{Zajfj(I)} = Eaj{Dxfj(-T)} .
J J

It is just as easily seen that the simple divided difference operation (50} also behaves linearly. For exam-

ple:

_ af(z9) —af(z)

[z1,29:2 [{a [ (2)}

2y T 2y
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- f(z9) = /(%)

2275
= of[zy,29:2] f(2)}

for any scalar a. Similarly,
lzl,zgizl{fl(z)"'fg(-‘f)} = {Izl,zzzz]fl(a:)} +{[zl,z2:x]j2(w)}

for any two functions, f(z) and fo(z). As a result of the definition above and some of our preceding
observations, we have the following.

Theorem: The divided difference is a linear operator; i.e.
for each fixed [, if

{2;(1):z]f (=)
exists for each 7 in some set of indices J, then

[z;(1):z{ Y ajf )} = Yadlz(D):e]f ()}

JEI JEI

for any scalars o, J€J.

This provides us with a final observation. Notice that the order in which we perform differencing
and differentiation can be swapped whenever these operations act on different variables.

Corollary:
DI [5():9] f(=,y) = [z(1):w) DY) f(=.v)
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9. General B-splines

Back in Chapter 7 we found that
[0,1,2,3,4:t)(u~1)3
is exactly the uniform B-spline of Chapter 4. More generally, we found that
(i, iy, o, 5, ¥t} (W ~1)3

yielded an eventually-zero function. Of course, any scalar multiple of an eventually-zero function is also
eventually-zero, and we shall see that if we use

(g =) |[Tg, Ty, Uy, Ty, i :t ) (W —2)F = (W, —Tg)|Ug(4):e)(T—1)3

as our cubic B-spline then the curves we define will have the convex hull property. We will denote this
function by

By 4(u)
The notation is intended to remind us of the following.
® B (u) is a member of s(p* ,{Q'I‘-}(')""'k); the second subseript indicates its order.

® B, 4(u) is positive for & between %, and #; the two subscripts together indicate its support, i.e. the
range of parameter values for which it is nonzero.

For B-splines in general, i.e. with unequally-spaced or multiple knots, these will continue to be important
observations.

Definition: Assuming that ¢ =m, the B-spline of order k associated with the knots U, . . ., ;4
is given by

B, (@) = (~D¥(& 4~ [ (k):t) (@ —0)§7T .

It should be observed that B; | (i) is vacuous if 4; = ;4.

In Chapter 7 we saw that odd divided differences of (7 —t )%™ were negative. The term (-1)¥, which is
~1 for odd values of k and +1 for even values of k, is therefore introduced so that B; ;(u) will be posi-
tive for all k.

Our earlier observations about the cubic B-splines generalize as follows.
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® B; ;(u) is a member of S(P¥ Audg +"); it is composed of segment polynomials having order k.

® Knot multiplicities greater than k are of no interest in constructing splines, and in their absence we
have ;44 >1; for every i. As we shall see later, it follows that B, ,(@) > 0 for u between u; and
Ujtg

® B, (u) =0, for u<u; and #;4;=u. Thus ¢,k indicates the interval of support. (The value of
B; (@) at w=u; will depend upon the multiplicity of #; and upon the value of k. Notice particu-
larly that @; is included and ;4 is ezcluded. This is a result of the fact that B; ((u) is con-
structed from the functions (% —¢ )} and is open on the right.)

9.1. A Simple Example — Step Function B-splines

et

Let us recall how we arrived at this definition by examining the B-spline representation of piecewise
linear functions. First consider

B; (@) = (=1)(@4,—;) |7 (1):t] (0 —t)%
= ("D = %) [0, 84yt (F-1)3

Since k=1, only multiplicities of 1 are interesting, and we must have u;<u;4;. The definition of a
divided difference tells us that

Figure 76 illustrates the differencing process from which this function is constructed as a means of
displaying, in this very simple context, the idea of combining two adjacent one-sided functions to obtain a
function that dies away to zero.
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_._._..___C ............. I
u;
imiis
.——_—-—
C. . . . ... o
- u
Ui 41
i C
b _— Y
U Uiy

Figure 76. The construction of B ,(¥) (bottom) from (F—%;)3 (top) and (Z—%;+,)% (middle).

This B-spline is as reasonable a function to associate with piecewise, first-order, C™* polynomials (i.e. step

functions) as were the one-sided functions (Z—%;)% and (Z—%;4,)% Let us consider the simple case in
which the knots are

uo tTl UZ U3
0 2 4 5

1

the legal parameter range is
Upmy = Up S U < U = Uy ,

and the randomly-chosen step function to be represented {see Figure 77) is:

025 uw<0
050 O0=u<2
s)(w) = 1075 2=u<4
125 4=su<5
200 5=4u .

L
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Figure 77. A piecewise constant function.

i This step function is a member of the space

S(P',{0,2,4,5}) ,

for which the appropriate one-sided basis is

(7-0)% = {‘1’ .

0 u
(T-2)% = {1 .
(T4} = {f .

U —
&)

(see Figure 78). Note that there is no one-sided power function in the basis which could possibly account
for the behavour of the step function outside of [0,5). That region of the u axis, however, is outside of
the parameter range associated with the spline space that we are considering.
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®

0 2 4 5
(ﬁ” 2) +
(o e e e e e e e e e e a
l N | |
0 2 4 1)
@-4)%

Figure 78. The one-sided basis for S(P?,{0,2,4,5})

The one-sided power functions cannot reproduce s,(#) on the entire axis, as we have remarked before,
but we can reproduce the behaviour of s,(u) restricted to the parameter range [0,5) by a function s():

so(u) = (0.50)(z—0)% + (0.25)(7 —2)% + (0.50) (= —4)% (55)

(see Figure 79).

so{tr

. C
-— el ~
¢ L

......................... u

9 | | I
0 2 4 5
ki T t t
g ) Uy g

Figure 79. The one-sided basis representation of the function 8,(¥) in Figure 77.

Again, notice that the representation so(i#) differs from the given step function s,(u) outside
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i [#o,%3) = [0,5), a fact which is not at all disturbing: recall that members of S(P?,{0,2,4,5}) are indistin-
guishable if they only differ outside the legal parameter range.

The obvious divided-differencing process to be considered uses
(Z-0)} and (T-2)% |

to construct the B-spline

0 u<0
By, (@) =(-1)(2-0)[0,2:¢)(a~t) = {1 0=z <2
0 2=su
. which is substituted for (¥ —0)}, and uses
(T-2)% and (T-4)3
‘ to construct the B-spline
| 0 u<?2
By (@) = (-1)(d-2)[2,4:t)(@—t)% = {1 2=u <4
0 4=qu

which is substituted for (z~2)}. Finally, the one-sided power function
(#-5)% ,
which was not needed for the one-sided-basis representation, can be differenced with
(T-4)% ,
to produce the final B-spline:
e 0 <5
-t = (@-sp - {0 P52

Byo(u) =(=1)}{(5—4)[4,5¢)(u~t)} = 11 4=u <5

3

which substitutes for (z—4)$. Figure 80 below depicts this basis. Note, as for the one-sided basis, that
this (B-spline) basis can not account for the behavour of the step function to the left of the leftmost knot
and to the right of the rightmost knot.
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Bm U
.- \
Co o ... - T
I N 1 I
0 2 4 b
B, ()
—(C
o u
[ [ b !
0 2 4 5

Figure 80. The B-spline basis for S(P!,{0,2,4,5})

This allows us to represent s,(), restricted to [0,5), by the functions s4(%):
s3() = (0.50)By,(&) + (0.75) B, y(u) + (1.25) By, ()
(see Figure 81).

53(17)
—(
a e
- & -
..... l]‘] u
0 2 4 5
1 g t
Uy uy Uy U3

Figure 81. The B-spline representation of the function in Figure 77.

Compare this B-spline representation s4(@) (shown in Figure 81) with the the original step function s,(u)
(given by (55) and shown in Figure 77), and with its one-sided representation so{¥} (shown in Figure 79).
All three are identical on the parameter range [0,5); consequently they are, by convention, the same spline
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with respect to the space S(P! {0,2,4,5}). In practice, too, they are indistinguishable, since they should
never be rendered for values of the parameter ¥ outside [0,5), in the same sense as uniform cubic splines
were not to be rendered outside the interval |73, +1)-

9.2, Linear B-splines

The reader should be cautious about following us too far without objection. The above example
was chosen to have unequally-spaced knots, so it is a bit more general than the uniform case. But it is
possible that any inferences we might draw from this example break down in the presence of multiple
knots. Let us introduce another knot at & =4 to see what can be learned. To do this, we will go to order
k =2, since knots of multiplicity 2 are uninteresting for k =1. Furthermore, so that this multiplicity falls

strictly within the parameter range and contributes to the “significant” portion of any spline, we will add
the knot

ES=7

so that the knot sequence is

Up Uy Uy Uy Uy U
0 2 4 4 5 7
Consider $(P?,{0,2,4,4,57} }. The elements of this space are:
linear for u <0
(o atu =0
linear for0=u <2
c? atu =2
linear for2 =u <4
C™ atu =4
linear for4=u <5
c® atu =5
linear for5=u <7
C° atu =7
. linear for7=u .

A representative spline from this space is shown in Figure 82.
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- - .i ..... .! ----- i- - .1 ..... I- - -
0 2 4 5 7
1 ? T 1 ?
60 171 272 &-4 'TS
1
£ u;

Figure 82. A piecewise linear function.

L The legal parameter range of this space is
171‘_1?51715!7<174217m+1.
The legal parameter range begins with #, because we need two (linearly independent) functions to define

the first segment; the knot u; is added to the right of the legal parameter range so that there will be a
one-sided function to difference with (7 ~u,)}.

The one-sided basis for this space is
' (F-0)}, (F-2)}, (@-4)%, (F-4)} .

The one-sided representation for the spline shown in Figure 82 is shown in Figure 83 below.

) 1 T T r--
0 2 4 5 7
i 0 0 O ¥ )
b o U, Uy Uy ug
T
Uy

Figure 83.

We use
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(T-0)4, (T-2)k, (T-4)} ,

i together with the extra one-sided power functions
(@=5)% and (T-7)} ,

to construct the B-splines

Boo(@) = (—1)(@,=io) [0, uy, a:t | (T —t)}

’
- — [El,gg't](;z_t)l - [go,il:t](ﬂ —t).l‘.
= (uy—i,) . —_—
v ] Ug™Up
(@@=t} - [@u)(E-0}  [@et)(E-0% = [@etl@-1)}
i - —_— o~ -—
= (ip =) 2 — b M
L Uy~
(T-w)h - (F-)}  (F-@)} — (T i)k
= (@y-i7,) Ug = Uy — Uy = Ug
' Uz~ Up
(F-1)L - (7-2)%  (F-2)} - (@-0)}
4 -2 2—-0
= {4-0
(4-0) yE
{
0 z <0
u=0 0=a <2
< 2“‘
=1, .
——+1 2=y <4
4_
L 0 4=q
By} = (—1P(uy=u,) [, T, us:t ) (T 1)}
| lEsti(E -y = (@ et (@)

'73 ‘171
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— - 1 - — ——
(I = g3t _ [up:t)(u—t)s — [u:t]}(u—t)
D=t )+lyug=q, T T,
('73-‘71)
Uz~ Uy
PPN C o o1
2/+ — —
(*73"171) E— e Bt
L Uz~ Uy
PP ;o
4 -
4-2
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0 u <4
u—4 -
= <
4 51 4=y 5
5-1u —
75 1 fsu ‘7
L0 (- ETI

These B-splines are plotted in Figure 84. Pay particular attention to the B-splines B, (%) and B, (@),
which contain a discontinuity at the breakpoint @ =4.
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By By 1% B
N
- \\/\ -
. . .r ..... ' ....... .I c e e s FEE'Y]
0 2 4 5 7
i) t O 1
!To !71 {[2 174 '75
4
s

a Figure 84. The B-splines of order 2 with which we can represent the piecewise linear curve shown in Figure
82.

Multiplying these B-splines by the appropriate scale factors results in a curve indistinguishable from that
of Figure 82 on the legal parameter range [2,5).

] . P \\ y
e R .
e ~ N T
T T = l u
0 2 4 5 7
0 0 + 1 0
7, a u, s
1\
Uy

Figure 85. The piecewise linear curve of Figure 82 (shown with a lightly dotted line) represented as a linear

combination of 22.order B-splines. Notice how the double knot at &' =4 allows us to represent a discontinuity

in the curve at this point.

Any spline of the sort shown in Figure 82 can be represented by this collection of B-splines on the

parameter range [u),i,) = [2,5).

9.3. General B-spline Bases
The previous example suggests how a pure B-spline basis can be constructed for any spline space

S(P* {Z} ™).

Construction: For any given knot sequence {i;}" *¥, let

| Biy@) = (~OH (4 — ;) [ ()t ) (T = )4

fori=0,...,m.
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Theorem: The By,(4), . ..,B, (i) constructed in this fashion are a basis for S(P* {g} *).

This is a result due to Curry and Schoenberg, and a proof may be found in [deBoor78]. It implies that
the dimension of S(P* {Z;}7"**) is m +1, provided no knot has multiplicity greater than k, which would
result in some of the B-splines being vacuous. (Recall that the legal parameter range is [}, 4%y,+).)

9.4. Examples — Quadratic B-splines
The divided-difference formulation could be used directly to evaluate the B-splines (though we will

discourage this from the standpoint of numerical accuracy in some subsequent remarks). We will illus-
trate this process of evaluation with a couple of examples. First, consider Bg (i} with u =2 on the knots
Up Uy up Uy,
01 3 4

shown in Figure 86.

Figure 86. A quadratic B-spline with single knots.

In the table below, beginning at the second column, each entry is the divided difference of the entry to its
left in the preceding column and the entry just above that. That is, for each pattern

A
B C

we have

c =24
Yy T U
1 2

for some appropriate knots tT;l and #;,.
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u  (T-)i [**] [¥** [**.**

f 0 (2-0)3=4 '

1-4
F (2-1)3 o

0-1 1 _';—*'3 5
% 3 (2-3)i=0 —— m—— =
(2-8)4=0 3-1 2 3-0 6
L 0-0 °+% 1 'tls_ "% 1
! 4 (2-4)3=0 —b - — D -

(2-4)3 13 0 -1 6 4—0 6

The above differencing process establishes that
Bog®) = (~1)4-0)(~7)
-l
3
for the knot sequence
{z;}r* = {0,1,3,4} .
A more involved example is given by the computation of Byg(2) if the knot sequence is
Uy U Uy Uy,
0 1 1 3

shown in Figure 87.

&1

Figure 87. A quadratic B-spline with a double knot.

The table for the divided-difference computation is given below. Note that the repeated knot requires the
computation of a derivative. ‘
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g’_ ('7—{‘-5)-20- [*’*] [*7*’* [w’*’*,*]
0 (2-0)3=4
o 1“4
1 2=-1)i= —_— =3
(2-1)% o
-2+
I (-18=1 D-tPlg=-2 I -y
1 3
- +2 —=1
0-1 1 2 3 4 1
3 2-3)i=0 —— =—— —_— —_—
(2-3)% 3-1 2 3-1 4 3-0 12

This table establishes that

1
Bod®) = (-1f3-0-) = .
This example raises another issue we should consider. Our preliminary discussions introduced the

operation of divided differencing in the context of simple knots. We motivated the use of divided differ-
ences informally on the grounds that, when

U <<ty

this operation was precisely what was needed to form linear combinations of

@-TW o, (T )i
having compact support. That is, the differencing process is a means of finding coefficients d;, ..., d;+
for which : '

Bia@) = dim(T-m )57 + -0 Hdi(w-)ET

had the property that
B;i(7) = 0 for u=q; 4,

This informal explanation does not apply when knots become multiple, yet we proceeded to define
the divided difference operator in general, including the case of multiple knots, and then claim, or at least
imply, that the functions

Bia(w) = (-0 (i — ;) [T (k) )(u — )57

would have this property of compact support. We will give empirical evidence below that this is true, and
we will prove it formally in a later section. Let us look at the example of the knots {0,1,1,3} to see what
happens.

The one-sided power functions that are appropriate for this knot sequence are
(@-0)%, (@-1)%, (§-1)}, and (T-3)% . (56)

Note that there are two powers of {# —1) associated with the double knot w=1, a first power and a
square. Recall that (% — 1)% allows us to alter the third derivative as we cross a knot; in the same way,
the truncated power function (i —1)} allows us to alter the second derivative as we cross a knot. To
develop any spline basis suitable for this knot sequence we must restrict our attention to linear
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combinations of these functions.

The divided difference table above, for general #, would be

171' (E-_i)?i- {*>*] *y*>*] [*’*7*7*
0 (u-0)3
(-1)3—(T-0)%
1 —7112
(u-1)3 =0
1 @-1F  D@-tPla=-2E-1} A
3 (-z LSBTy B C
3—-1
where
__1 2 — '-_0 2
—9(7-1)} - (v~1)3 — (2-0)%
A = 1-0
1-0
v-3)% - (7-1)3
( )";_1( ki +2(z~-1)}%
B =
3—1
and
A-B
C 3—-0

Clearly, we are still producing linear combinations of the one-sided power functions (56). Indeed, the
derivative that arises when a multiple knot is encountered reduces the order of the one-sided function just
enough to introduce the appropriate lower-degree continuity.

What is more, the compact support property (locality) also holds. If the expression for C above is
written out, and then simplified symbolically under the assumption that ¥ >3 so that the “+” subscripts
are no longer relevant, then all terms in the numerator cancel to zero.

We end this section with a cautionary remark. Observe that both computational tables above, for
By 4(2) with single knots and for a double knot, involve arithmetic with a mixture of positive and negative
numbers. This implies that cancellations can take place in floating-point to produce inaccurate results.
These inaccuracies will be pronounced in cases where knots are nearly but notexactly multiple. The
divided-difference definition of a B-spline is not the recommended formula to use in numeric computa-
tions. We will establish more viable methods of computation in a later chapter.

9.5. The Visual Effect of Knot Multiplicities — Cubic B-splines

We will end this section with a few more examples of B-splines, chosen now from the more useful
cubic case. (Most of the material in this and the following subsection is taken from [Barsky83].) Let us
begin with the knots we have been using for the uniform B-spline discussions:
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0 1 2 3 4

We will progressively increase the multiplicity of the knot at w =1 to watch what bappens. As a rem-
inder, we give the description of the uniform B-spline on these knots once again:

Bod(@) = (—1)(i,~ o) |@o(4):t (T 1)}

- = (1) (o) [T, By, T, B Ty t ) (T =)
= (4-0)[0,1,2,3,4:t](v—t)}

b

bof@) 2=T<3

) O0=u<l1
0

) 1s=u<2

bo(#) 8sT<4,

where the segment polynomials are given by

bgo(u) = _u;'_
b (T) = _363—1217:“217—4
i) = 3{[3—24172;6017—44
bo(d) = _ a0 =123 +487 —64

6
Figure 88 shows the graph of By ().

. (@) b7
.......... _ -, . ', - & e & = r ¢ = s = e r "“.‘-.-.....r_— [ 7]
UO#) '171=1 172=2 173=3 u4'=4

Figure 88. B, &), a uniform cubic B-spline, with each of the segment polynomials comprising the basis func-
tion labeled and distinguished by the alternating use of dotted and solid lines.

If the knot at @ =1 is doubled, then B (i) looks as follows.
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b_o(w) b_o(i) _
.......... ..-.- o - r e« » & = = r P n.-]»---. u
up=0 u,=1 uy=2 =3 4
!72""1

Figure 89. The double knot at & =1 eliminates second derivative (curvature} continuity there, although first
derivative (slope) continuity remains, Notice that the basis function is no longer symmetric.

Notice that the support of this function (the region on which it is different from zero) is still (%, ), but
this now represents the interval

0 <u <3

because the knots &, and #, have “moved together.” The segment polynomials b.o(%) and b_,(u) have
only their value and first derivative in common at @ =1; i.e. By (%) has C' continuity at the breakpoint
#;. The segment polynomials are given by

b-,(&) 1s vacuous

5%° =275 +457 —21
4

and

B -9t +27u—27
4

b (%)

Since there are now only three segments to the B-spline instead of four, we have had to choose a new
numbering of the segment polynomials. Our choice reflects the idea that, since the interval between

and u, has now disappeared, we should dispense with &_,(z). The first derivatives of the remaining seg-
ment polynomials are

sL(¥)

_ 1502 —547 +45
bU(r) = B E—

30’
2

and

—2 o

b)) = -3 148u+27
Notice that 54J(1)=bC}(1)=1.5 and that b{(2)=b{)(2)=-0.75, thus establishing first derivative con-
tinuity at € =1 and u=2. The second derivatives are

b3 (@) = 37

b = 30u4—-54

and
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bQ(G) - _bu—-18
4
We see that b@(1)=3 while b3(1)=-6, so that B; (%) has a discontinuous second derivative at u =u.
Observe however, that b(_%(z) =bZ(2)=15, so B; 4(#) does have a continuous second derivative at & =i,
This follows, of course, from the fact that we have not increased the knot multiplicity at « =2, and the

discontinuity that we have introduced at the breakpoint @ =iu;=u,=1 has no influence on the other
breakpoints.

T T T u
!-1_0=0 T 1 =] 174-2 3 4

Figure 90. A knot of multiplicity 3, which reduces the cubic B-spline to positional continuity at #=1.

Ty=1
Ty=1
7=

Figure 91. A knot of multiplicity 4, which eliminates even positional continuity at ¥=1.

Figure 90 contains a knot of multiplicity three (C°, or positional continuity) and Figure 91 a knot of mul-
tiplicity four (no continuity). Notice that in each case the basis function, which is cubic, is nonzero over
the span of four knots, namely for u €|ug,u,). The two cubics that meet at the triple knot in Figure 90
meet only with C° (that is, C*™'™* continuity). Each additional time a knot is repeated, the parametric
continuity of the underlying basis functions, and hence the parametric continuity of any curve they might
construct, is reduced by one order. The segment polynomials for the triple-knot case are:

b(@) = @

b_(u) ts vacuous

b_(u) is vacuous

b)) = —T+6T2—127 +8

Finally, the segment polynomials for the quadruple-knot case are:
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b_(u) 1s vacuous
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b4(%) fs vacuous .

123

For purposes of comparison, Figure 92 summarizes the various ways in which multiplicities may be
distributed among the knots defining a cubic B-spline in which the non-vacuous intervals all have unit

length.

R N
O ooon 0 o
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m o® o o
m o 0 @
T R T T
m ©®
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@

@

()

@

.(1,) .

.({)-

.(;} >

)

/

(8)

3
@
SN
@
()

()

@

Figure 92. The various ways in which knot maultiplicities can be distributed among the knots defiring a cubic

B-spline. The multiplicities are indicated in parentheses.

The following set of figures illustrates the effect that multiple knots have on the shape of a

parametric curve.
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v,

T e +
RN S N
=5 T=6 -, . b

, vo-!- .
=4 o

S NG

+ - \——/ N +

Vs

Figure 93. This is a uniform cubic B-spline curve: The knots are equally spaced and of multiplicity 1.

Figure 93 shows a simple curve obtained from ten control vertices using uniform cubic B-splines.

"s_‘ ..... I -.|
10 11 12 13

Figure 94. These are the B-splines used in constructing the curve of Figure 93. They are all translates of one
another.

We have flagged the B-splines as follows in Figure 94:
34'4(6) nd 84 and BM(E) - 85 .

These particular B-splines are distinguished because we will be increasing the multiplicity of the knot at
u =5, and these basis functions are the ones that will show the most effect. The curve will likewise
display the largest change in the interval between the control vertices V,; and Vg,

The space of splines under consideration is
S(P4){Ei}(113)

and the dimension of this space is 10, which is just what we need to manage ten control vertices. The
parameter range is [3,10), and as & travels from 3 to 10, it passes through the seven intervals

(3,4), [4,5), [5,6), [6,7), [7,8), [8,9), and [9,10) .

The portions of the curve generated as # runs through these segments are indicated by alternating solid
and dotted lines.

Consider now what happens if we double the knot at & =5. To retain the same dimension, i.e. to
use the same control vertices, we have now to use the knot sequence
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{0,1,2,3,4,5,5,6,7,8,9,10,11,12}

so that the parameter range becomes [3,9). This means that & will now travel through only the six inter-
vals

[3:4)r [4’5)7 [5’6): [6:7)’ [7¢8): and [8:9)

as the curve is traced out. That is, there are six curve segments. Figures 95 and 86 show what happens.

Figure 95. The breakpoints defining this curve are equally spaced, but there is a double knot at &' =5. (See
Figure 96.)

T T
10 11 12 13 .

()

Figure 96. The B-splines used to construet the curve of Figure 96. There is a double knot at i =5.

When the knot at & =5 is tripled, the knot sequence becomes
{0,1,2,3,4,5,5,5,6,7,8,9,10,11} ,

the parameter range becomes [3,8), and there are five segments. The fact that some of the underlying
B-splines have discontinuities in the first derivative is apparent in Figures 97 and 98.
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Figure 97. The breakpoints defining this curve are equally spaced, but there is a triple knot at #=5. Since
this is a cubic B-spline, we are left with positional continuity only at the triple knot. (See Figure 98.)

B R T
10 11 12 13

Figure 98. The B-splines used to construct the curve of Figure 97. There is a triple knot at &'=b5.

Finally, quadrupling the knot at & =5 yields the knot sequence
{0’15273}4?5’5’5)5’6,7]8’9310}7

the parameter range {3,7), and four segments. Some of the underlying B-splines in Figure 100 are now
discontinuous, as is the curve in Figure 99 which results.

Figure 99. The breakpoints defining this curve are equally spaced, but there is a quadruple knot at u=5.
Since this is a cubic B-spline, we are left with no continuity whatsoever at the multiple knot. {See Figure 100.)
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[ N
10 1t 12 13

Figure 100. The B-splines used to construct the curve of Figure 99. There is a quadruple knot at ¥'=5.
} Although B, and Bg, both have the value 1 at Z =5, they are scaled by distinct control vertices and so a
- positional discontinuity will result in the curve so long as the control vertices scaling them are not identical.

6.6. Altering Knot Spacing -— More Cubic B-splines

It is also interesting to see what effect results from changing the knot spacing rather than knot
multiplicity. Figure 101 shows the original uniform cubic B-spline curve of Figure 93, generated by the B-
splines of Figure 94, superimposed on the curve obtained when the knot interval [tg,#;) = [6,7) defining
the middle curve segment in Figure 93 is shrunk to 0.2 units in length.

Figure 101. The middle segment in both curves is dotted. The remainder of the uniform cubic B-spline is
drawn with a solid line while the remainder of the non-uniformly spaced curve is drawn dashed. The
parametric length of the dotted segment is here being changed from 1.0 to 0.2.

- Figure 102 illustrates what happens when the same interval is instead expanded to 5 units in length.

Siggraph ‘85 9.6. Altering Knot Spacing — More Cubic B-splines San Francisco



128 The Killer B's

P T

Figure 102. The middle segment in both curves is dotted. The remainder of the uniform cubic B-spline is
drawn with 2 solid line while the remainder of the non-uniformly spaced curve is drawn dashed. The
parametric length of the dotted segment is here being changed from 1.0 to 5.0.
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10. B-Spline Properties

The previous section has given the basic definition of B-splines in general terms and showed the
manner in which they can be used to construct parametric spline curves and surfaces. To proceed

further, it will be necessary to discuss a few more of the theoretical properties that B-splines possess. We
want to know, for example,

@ whether every B-spline constructed according to the general definition is positive on the interval of
its associated knots (something we surely want it to be if it is to be used as a “weight function” for
constructing curves from control vertices);

® whether the general B-splines have compact support {“local control”);

® whether the general B-splines sum to one (which will mean, together with the property of positivity,
that general B-splines have the conver hull property);

® what constitutes a good way of evaluating the B-splines.

This section will establish some results in this regard.

10.1. Differencing Products — The Leibnitz Rule .
We will begin by establishing that the B-splines can be evaluated by means of a recurrence.

Let us try the following exercise in creative algebra, and see where it leads. First, recall that
Bis(@) = (-0 (T —T) [T (1)) (T-0)57"
But note the obvious fact that
(@)™ = (@-t)(w-0f7

at least for k=2. This means that B, ,(«) is constructed by differencing a product, for k>1. If the
difference operator were a differentiation operator instead, it would be natural for us to follow this obser-
vation by an application of the product rule; for example,

p(@-0) (@04 = [-@-057] + [@-0-(oe-2@-05]

- [-@-ox2] + [Fe-aE-n]

While this might not seem very productive, it would, in effect, have split a k*"-order B-spline, constructed
from (T—t)%7, into a combination of two terms involving (¥ —t)k72, from which we might attempt to
draw a connection with B-splines of order k—1. By this route, perhaps a recurrence could be established.
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That is, if we can relate the k*.order B-splines to those of order k—1, then we can relate those of order
k=1 to those of order k~2, and so0 on down to 1%-order B-splines (the simple step functions).

This is precisely the approach we will take. In order to pursue this, we will have to establish a pro-
duct rule for the divided difference operator.

We begin by recalling the product rule for differentiation:
D {f(z) fof=)}t = {D, f1(=)} fofz) + f{z}AD; fofx)} .

A more general version of the product rule is the Leibniz rule:

1R !
DI f1(2) fofz)} = 2[,]{Dwfl(x)}-{D;‘""fgm} ,
r=0

[‘] I

is the binomial coefficient. That is, for example (using superscript notation for derivatives in the interests
of succinctness),

{£1(2) 142D = 7 P(2) 1 O(=) + 27(2) 7P2) + 12) 1PMa)

where

and
{£1(2) £4(2)}®) = ;@) 1 O(z) + 37 (2) 1P(=) + 37{0(=) 1P} + 1P0=) 1)

and so on through the Pascal triangle.

The corresponding Leibniz rule for divided differences is as follows:

Theorem: For any z;, ..., 2,4, and any appropriately differentiable functions

[1(z) and fo(z):
[z;(1):z{ f1(z) fof=)}

= 2{1”;(’")%11‘1(9«*)}{{:«’;%(1 —r):z) fo(z)} .

Note that this is virtually the same as the rule for differentiating a product, save that the binomial coeffi-
cients do not appear. For example if | =2,

[2:(2):2]{ f1(2) o)} = [2(0):2] f1(2)-[2(2):2] fol=)
+(2;(1):2] /()[40 (1) 2] f o)
+ [2;(2):2] f ({z) [2;42(0):2] foz) -

This result is important enough that we owe ourselves the struggle of seeing how it can be esta-
blished.
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Argument: Assume, for convenience, that z;= - -+ =z 4,.
We proceed by induction on 1.

1 =0:

[zi(o):“]{fl(“’)fz(x)} = fl(zg)fz(z;)
- ﬁ{ (0):z] £ ()M [(0):] f ofz))

by definition (trivially).
{>0and z; =24

In this case the Leibniz rule for derivatives applies:

()2} 1) Toe)} = FDPU ) ofe) ey

i
= 7 X v PP MDY e e,
= DD MG DI e e

]
= 2:2{h:(r)rw]fl(z)}{[z,-,,,,(t—r):x}fz(x)} .

l >0 and Zl' <Z‘+l

Now we make use of the inductive assumption that the theorem holds for {—1.
Then

[2;():z [{f1(2)f oz}
_ [z.-+1(l‘l)iff]{fl(m)fz(w)} = [z (=1):z[{f,(#)fof=)}

i+ TOF

- {2{[""&1(’):‘5]fl(x)}{[z,'+1+,-(l "1"")155”2(1')}

- Z'{ (@M [z4p (11 -r):2 ”2(“)}] /(Z¢+¢ - %)

We can add and subtract

.....................................................................................................................................................................
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................................................................................................................................................................................

in the numerator to obtain

["Zz{[z.-ﬂ(r):xlf,(z)mz.mu “1r)] o)
‘2{ z)f (2 2j4r 1 (1 —1=r):2 ] fo(2)}

+ zz{lz;(r):xul(x)}{[zmﬂu—l-r):x]fzm}

‘2{ r):z]f1(2)H([zi4, (1 ~1-r):2] [ o(2) ]/(zxﬂ %)

The first and the second terms in the numerator can be combined, as can the third and fourth, to
change the numerator into the following:

3 (Fiarnt1mr)i2110)) (f1aa()2)14(0) 153 )21 4(2)) (57)
r=0
+

i1

L (w:0):21740) (miaran=1-r)i2 11 ole) e, (-1 =r)ia] o)

But in the first term the recursive definition of the divided difference provides the substitution
[z 41(r):z]fo(2) = [z(r):2] f 1 (2)

=[z(r+1):z]f1(2) (zi4r+1—2:) -

(This, in itself, deserves a short argument. Two cases present themselves: in the first, z; <z 4.4y,
and in the second z; =z;4,4,. In the former case, the substitution is obvious. In the latter, because
of the assumed ordering of the z values, z; = * * - =z;4,4, and consequently both

[2i41(r):2] f1(2)
and

[2;(r):2 ] f1(2)
are equal to

D(’+l)f1(x)lz=z,. .

z

Hence their difference is zero. On the other hand

.......................................................................
..........................................................................................................
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................................................................................................................................................................................

[z;(r+1):2] fo{=2) (2i4p 41— 20)
= DI @) g} (e =)

which is also zero because of the second factor.)

In the second term of (57) we similarly have the substitution
[zi4r 1 (1mr)iz ] folz) = (254, (I =1-r):2] fo(2)
=z (mr)iz] fol) (2540 = 2i40) -

After making these substitutions, we can multiply out the factors (2;4,43—2;) and (z;4;~2;4,) t0
obtain

=1
[gzih'ﬂ [z;(r+1):a:]f1(:t)[z,-+r+1(l —-1-r):z] fz(x)
- Znlaslr41)ia) o) i (1-1)i2] ofe)
{=1
+ 2::2;41 [2;(r):z] fy(2) 254, (=) iz ] [ o(2)

11
- Zzn‘ﬁ{zi("):m]fl(x)lziﬁ(l—r):a’]f2(m)] / (240 = %) -
r=0
The first and the last sum collapse, leaving only the two terms

+z(2(0):2] [4(2) 24 (0):2] fof2)

and
—2;[2;(0):2] f1(z)] 2 (1):2] f o)

respectively. The second of these terms can be put into the second sum, and the first of these terms
can be put into the third sum, to yield

[.+12 l25(r):z ) f1(2) (240 (1=7): 2] T ol)

-2 2 Jol@) [zar (1= )z ] fof I)] /(zul-t z;)

And, finally, the term (z;4,—2;) can be divided out to give

...................................................................
...............................................................................................................
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................................................................................................................................................................................

i;o[z.-(r)w}fl(x)izmu “r):z]fofe)

This completes our discussion the Leibnitz rule for divided differences.

10.2. Establishing a Recurrence To repeat the observations made at the beginning of this chapter, the
definition of a general B-spline is:

k(@) = (~OF (T —T)IT (k) ) (F - )57
We observe that
(F=t)§7 = (T-t)(z-)k7%

at least for k>1. So, for k>1, B.-'k(if) is constructed by differencing a product. We apply the Leibniz
rule:

[ (k):t] (@ —)5™
= [w(k):t)(@-t)(@-0)§7

= Z;{lis(fﬁf]("t)} {[Z4;(k=5):t (@ ~1)§

= [ (0):¢)(@—t) i, (k):t}(@—t)§™*
+ [ F () (T ) [Fy (=1)st (T )52
+ [@(2): (T~ ) [T gk —2):t (T —1)57
+ o [ (k) (T —8) [T 4 (0):t ) (F —)572

But note that

[4;(0):t](w=t) = (i) ,
that
T = S TR
Uiy ~ U
- 1}'"‘7;4»1 -1
Uiy ~ Y
that

(@4 (1)t )(T =) = [ (0):t ) (T 1)

Ujgg — Uy
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U +2 ui

and that all further differences of (# —t) are also zero. (A useful observation to make is that the Kt
divided-difference operator has the same property as does the k'" differentiation operator in that it will
cancel to zero any k*"-order polynomial.) So

[ (k):¢)(F )%
= (=) [ (k) )(F =042 = [y (k1) J(T-0)57
From the recursive definition of divided differences, the first term can be written as
(¥ =) [ (k):t)(F -1)§7*

)[u,ﬂ(k D:t)(T-1)5 72 - [ (k-1):t)(F-t)4 7

Uig — Yy

(We assume that this expression is legal, i.e. the denominator is not zero, since if u; =u;4,, this means
that #; would have multiplicity greater than k, and such cases are not interesting.) Consequently,

:k(a) = ( 1) (ut+k )[ |(k) t]("—t) -

- —

= (D (=T T k-1t (T 05

Uy "YU

= (D (g =) e [T, (1)t (T 04
Upp ~ Y

= (P (T~ ) [ (k1)) (T 1)

The first and last terms can be combined to give

B (@) = (~DF (T =T ) [@4q (k1)) (@ —0)57

= (0N E =) [ (k-)se (T -5

Note, now, that

(VO (E-Tp) = (-1 (T —T)
and that

—(-)ME-%) =+ N E-E)
This means that

B (@) = (-1 (g @) [Fa (b -1):t) (@ —0)57° (58)

Sl VA A A S VEA T

But, in this expression, it is easy to recognize two lower-order B-splines.

Let us look carefully at the first term. If
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Uiy = Uy
then, by the definition of the divided difference,

1
(k—1)!

(@4a (k=1):t)(u—-)§72 = DF Y @-t)k2 =0 .
On the other hand, if

Uiy < Ui s
then, since by the definition of the B-splines we would have

Bisyp—1(E) = (7 (T~ Ty (B (k1)) (T -1)572

it follows that the first term equals

U4y U _
——— By 4(¥) - (59)
Uitk T Ui
That is, the first term is zero if @; ;= - - - =u,4; and it equals (59) if 44, <u;4;. A similar discussion

applies to the second term. This means that we can reasonably write the equation

B, (@) = — )+ —TE g m 60
i,k(“) = = B;,k-1(u) + - - £+1,k—1(“) (60)
Uigp—y Y Uidp Ui+

provided that we interpret the terms

U= - ‘T:'-i-]c_" —
————— B, ;4(@) and ————=— Bjy;;(¥)
Uipp—17Y; Ui TUj4

as zero, respectively, whenever
U1 T Y = 0 and Uigr “ U4 = (0 .

That is, we have discovered that the B-splines satisfy a recurrence relation.

10.3. The Recurrence and Examples

Theorem: For any: €{0,1,...,m+k}

1 u,-Su <u‘-+1

B,-’l(zT) =
0  otherwise
and
- U~ ' - Ui, U -
B; (#) = ———— B;, (@) + ——— Bi41,-1(¥)
Ui =17 Yy Uiy “U41

forr=2,3,...,k,

.............................................................................
...................................................................................................
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where we interpret the terms

€ ~—u,; L -

[ - +r

- — B; . -1(#) and —
Uidr—1 "% Yidr T %4

as gero respectively whenever

17"#_1-6‘ = 0 and Ei"h‘—it"'l = (

To get a feeling for this recurrence, we will use it to construct all the possible linear B-splines. Con-
sider the general case of three knots

Uy Uiy and U; 4o

If these three knots are distinct, then according to the recurrence

- — i+2 J
B; o() = B;\(u) + B, 41,4(¥)
C Ui Ty Uit T U 4
- - 1 u.=u<uy; _ _ 1 g su<u;
T—-i i i+1 T i i+1 i+2
t i+2
- —— + —
Uigy T Y 0 otherwise Yite T U4 0 otherwise

That is, according to the recursive formula,

u-—u o
— o u‘-Su<u,-+1
Ui Y
< E. "'lT
- i 42 - - -
B {u) = | ——— Upy SUSUpyg
Ui U 4
0 otherwise
\

This is just the familiar “hat function” pictured below.

u; Ui+ Ui 4o

Figure 103. B; ,(¥) for knots of multiplicity 1.

Suppose that the right-hand two knots are pushed together; i.e.
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U < Y = Uy

| Then the recursive formula becomes

— U~y -
B;',z(“) = - = B;(u) +0

1 ysu<u;y

U -

H t 3
. — — ?
: U, u; .
; PHOM 10 otherwise
o which leaves us with
=
‘ i

- — 4, Su<yjy
P Ui U,

B; g(u) =
0 otherwise

This function has the form given in Figure 104.

&

U4

Figure 104. B; (i) with 2 double knot at the right.

Finally, if

U = Uiy <ty

then the recursive formula becomes

17" -
Bi:z@-) =0+ = ._u Bi+‘1,1(a)

Ui~ Ui

- 1} wyaSu<yp
U qo—U

Uy o — U, .
42 %+ {0 otherwise

which leaves us with

e g graph ‘85 10. B-Spline Properties San Francisco
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Upo—8
‘ T 4 Su<uyp
! Uitz T U4
! B;o(u) =

0 otherwise |,

which 1s shown in Figure 105.

:

b+

Figure 105, B, (¥) with a double knot at the left.

10.4. Evaluating B-splines Through Recurrence

The evaluation of general B-splines may be carried out directly by this recurrence. To illustrate, we
will find the value of By 5(2) on the knot sequence 0,1,3,4 and on the knot sequence 0,1,1,3. These are

the two examples that we used to illustrate the divided-difference evaluation of a B-spline in Chapter 9,
‘ and the pictures were

Bos

23> O

(=4
1= o
2l

w

1 T u
0 1 u=2 3 4
T 4 t '
U u) uy
Uy

! Figure 107. A quadratic B-spline with a double knot.
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The tables have the same flavour as those used in the divided-difference illustration, namely that an entry
in one column is obtained by performing a computation on the adjacent entries to its left. Note that #; is
needed in the computation for i =0, . ..,3, but we only need the values of B; ,(¥) for i =0, ... ,2. For
the distinct-knot example we have

; g B (%) B; A1) B, o)

0 0

(3—1) (1-0) 2
. | 1 1 (4-2)1 (201
(=1) 2 T (3-0) 2 3
i__)_—-? 0+ lg_l)_ =1

(4—3) (3-1) 2

and for the double-knot example we have

8

Ba®)  B®) B, o)
0 0

(2-0)
o+(1_0) 0=0

(3~1) P (1-0) 4
3 1)

Observe that in all instances in the above two computational tables arithmetic was carried out entirely
with nonnegative numbers. The implication of this is that the recurrence computation of the values of a
B-spline will be numerically safe and accurate,

10.5. Compact Support, Positivity, and the Convex Hull Property

We will end by disposing of the remaining items that were listed at the beginning of this section.
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Theorem:
B,',k(i) >0 for 17" <u< 17.‘-4.*
and

Biy@) =0 for 4<iu; and W4 S

(The value of B; 4(#%;) will depend upon the multiplicity of #; and upon the value of k. In particular,
B; x(u;) =1 when the multiplicity of u; is k, and is otherwise zero.) '

Argument: We have deliberated so long over the divided-difference construction of the B-splines,
that the B; (%) =0 part of the statement should be clear. Briefly, B, (1) is constructed as the
difference (i.e. a linear combination) of functions that are all zero for ¥<u;. Consequently, B; ,(u)

itself has to be zero for ¥ <w;. On the other hand, the difference is chosen so that B; i(u) dies to
zero for 4 =u; 4.

To establish the positivity for u; <% <#;4;, we work inductively from the recurrence.
k=1:

In this case the B-spline is just the step function whose value is 1 on the interval [u;,4;4) and zero
everywhere outside that interval.

Assumed true for k—1:

‘We have
- U —u; - Uigs —U -
B; y(#) = ———— B; ;&) + ——— B4y ~(¥)
Ujpp—1 U Uik U

Notice that both of the {actors
Ty —7 and T—0,

v are positive for u; <u <u;4,. Furthermore, each of the ratios
B; 41,4 —(%)
Uk Ui 4y

and

\ B; (1)

: g Y

is, by the induction hypothesis, either positive or zero. They could not both be zero, since this would
have to imply

................................................................................................................................................................................

g
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..................................................................................... e eeetreeereeitseAesbensibeesetesteteaairaeneateatetesestnseesarensaetensetatsaeneatinsen
U =Ujag—y and Ly = U4y
which would force
U; = U4

and we have been working under the assumption that u; <u <u;4;, which disallows this. Hence,

B; (1) is the sum of two positive quantities {or one positive and one zero quantity) on the interval in
question.

The above result establishes at least the plausibility of using the general B-splines as weight func-
tions to construct curves and surfaces. A more important result is that the general B-splines sum to one.

The two properties of positivity and summation to one, together, are referred to as the convez hull
property. This means that, if Q is any curve constructed from control vertices V,

Q) = ) ViBi\(u) |

then each point on the curve, that is
Q@ = (x@,v@)

for each value of the curve parameter #, is a weighted average (lies in the convex hull) of the vertices
vO P vm

More specifically, since the B-splines are nonzero on at most k successive breakpoint intervals, the curve

point always lies in the convex hull of at most k successive control vertices {and, in the case of multiple
knots, even fewer than k).

Theorem: For any fixed value of & € [€y—;,Up41)-

m
ZBi,k('T) =1
i=0

Argument:
k=1:

In this case the result is trivial. On any breakpoint interval for which #; is the last knot in a multi-
plicity cluster B; ;(u) appears as is given below.
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g J~
+
&1

Figure 108.

B; - i(%) is vacuous for r=1, . .. j.
Assume true for k—1:

Then

m —- m U~y - U4y —U -
%’ Bip(#) = )] | ———= B;4a(u5) + ———— Bi414(¥)
13

=0 | Uidp— 7Y Uitk ~ Ui

m ° —1. _ m+1 {I"l'k—l—a' _
= ) ———— B, 4(7) + ) — — B; y (1) ,
10 Uj4p— T Y i=1 Yk T U

where the sum has been broken into two parts, and then the index has been shifted by one in the
second summation.

Consider the quantity .

Y- 7 U

B; p—(u)

Uj =1 ~ Yy

which appears in the second sum. Suppose we set the index value to £ =0. Then this quantity would
become

Uy —U —
———— By(#)
Up—1 T Up

But 4 €[t;—y, ¥y +), Which means that #=4,_;. On the other hand, Bg,— (%) has to be zero for
t=u;—y. This means that we can add this term to the first sum without changing the value of that
sum. A similar argument shows that we can add the term

.................................................................................................................................................................................
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u- tTm + -
— e B, ‘H,k-l(“)
U 4k T U +1

to the second sum, since By, 4, ,—(u) will be zero for all values of ¥ <, 4;. This gives

m _ m+1 t-t; - -J‘. - m+1 _
2 Biy@) = )] BALC B p-i(#) = 3] Big~(u) =1
i=0 i=0

=0 Uigp 7Y

by the induction assumption.

10.6. Practical Implications

Now that we have generalized the uniform cubic B-splines to arbitrary order, let us see how the
properties of corresponding curves generalize. (The material in the remainder of this section is taken
from [Barsky83].)

10.6.1. B-splines of Different Order

We begin with a uniform cubic B-spline curve like the one shown in Figure 109. Because it requires
four vertices — and basis functions — to define a segment, there are three fewer segments than there are
control vertices in a cubic B-spline curve; for a curve of order k there are k—1 fewer segments than con-
trol vertices. If we increase the order of the B-splines for a fixed set of control vertices we therefore
reduce the number of segments, and we have consequently placed a large number of initial and final ver-
tices in the control polygon for Figure 109.

.....

Figure 109. A uniform cubic (order 4) B-spline curve. The control vertices are circled.

Figure 110 illustrates what happens when we use tenth order B-splines. There are six fewer seg-
ments than in the fourth order curve of Figure 109: three fewer at the beginning and three fewer at the
end. Also, the curve “oscillates less”; the influence of a given control vertex on any particular segment
has been reduced. This follows from the fact that there are more vertices influencing the segment, since
each B-spline has larger support. Each segment also lies within the convex hull of ten control vertices
now instead of four.
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.....
......

.....

Figure 110. A uniform B-spline curve of order 10.

Conversely, if we reduce the order of the B-splines then each vertex influences fewer segments; how-
ever, its influence on these segments is stronger. For second order B-splines each segment is determined
by two control vertices. Since it must lie within the convex hull of the two vertices, and the basis func-

tions go to zero at either end, the segment is simply a straight line from the first vertex to the second.
Figure 111 illustrates this.

G OO O ) G- —O

Figure 111. A uniform B-spline curve of order 2 (the control polygon is not shown). A B-spline curve of order
1 would consist simply of the control vertices,

To facilitate comparison, we show several curves of differing order in the following figure.

Figure 112. Uniform B-spline curves of orders 2, 3, 4, 5, 10 and 20 for the same control vertices.
The second order curve is shown with a dotted line, and connects the control vertices with straight line

segments. The curve of order 20 is shown with a solid line. Intermediate curves are drawn dashed.

Higher order curves are, of course, more expensive to compute.
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10.6.2. Multiple Knots

In a B-spline of order k we may usefully associate a breakpoint with at most k knots. Figure 113
illustrates why, as do Figures 99 and 100.

Uy g1

'Ts"!-k
Figure 113. Since ;4 is 2 knot of multiplicity k, B; (%) and B;4x(i) span only one non-vacuous interval
each, as shown. All other basis functions must be zero at i;4;. B, (&) approaches the values 1 from the left

as ¥ approaches i[;4;, and B; 4, 3(T) must attain the value one at @;4;. Consequently V4, will be, and V; will

appear to be, interpolated at ;4,, and the curve Q(¥) constructed from the control vertices {... Vi Vig, -}
will, in general, be discontinuous. \

i Since the ;™ B-spline Bj (%) spans the k intervals from ¥, to #4, there are only two B-splines whose
support is associated with the breakpoint at u;4,. If #;4, were of multiplicity k+1, then B;4, (i) would
span the zero length interval from ;4 to #;444;. (The right hand or dotted B-spline in Figure 113 would
now be called B; 4, ,().) Greater multiplicity would simply introduce additional vacuous B-splines.

For the breakpoint % =i 4, we have C* '™ =C™ continuity, i.e. no continuity at all. Moreover,

lim B; (@4} =1
Ty

Consider any infinitesimal step to the left of ;4
U4 — € for e>0

and consider the B-splines,
Bi—u(6), . - o) Bicpai (@)

that have support on [¥;,#;+;) and that, together with B; ,(u), contribute to a curve segment Q(u) for &
in this interval. Firstly, we will have

B; it —e) = 1

The next B-spline to the left, B;.., (i), has a knot of multiplicity £—1 at 4,4, and is consequently C°
there. Since

! Bi— (%41} = Biop(@ise) = 0,

we will have
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B;i(tin—e) = 0 .
Similarly
Biqna(tin=e} = -+ = Biy(iiy) = 0 .
Since
Bipsipltin=e) + -+ + Biy(tipn—e) = 1
for all small, positive values of ¢, we must be able to make Q(if; 4,—¢) arbitrarily close to
VignBigaipltin—e) + -+ + VB (hn—¢) = V;
as ¢>0 is made arbitrarily close to zero. As & becomes equal to u;4;, B; 4(¢) drops abruptly to zero and
B; 41 4(%) jumps abruptly to one. Since Q(#;4,) is given by
Vi Bikai(@in) + - + VB (i) + Vi Bigp(tin) +
and since all of these B-spline values are zero save B;4 4(%;41), which is 1,
Q#in) = Vin
and there will be a jump in the curve from V; to V; 4 (assuming V; #V; ).

A slight adaptation of this argument can also be used to show that a knot of multiplicity k~1 will
result in a positionally continuous B-spline curve Q(%) which interpolates V;. This is because B; ,(u) will
be a function like that shown in Figure 114 which rises to one and then falls back to zero continuously,

while all “surrounding’ B-splines whose intervals of support are associated with the knot #;4; will have
the value zero at 4;4;.

U k-1

Figure 114. Since &4, is a knot of multiplicity k=1, B; 4(#) is the only B-spline among B; (W), B; 4 +%0),
iated in this situation.

10.8.3. Collinear Control Vertices

If k successive control vertices are collinear then they define a straight line segment. This follows
easily from the convex hull property. If the knot sequence is such as to require the adjoining segments to
meet this straight line with C? continuity (i.e. the breakpoint corresponding to that joint has multiplicity
at most k—3) then the ends of those segments must have zero curvature there. Hence if a control
polygon ends in k—1 collinear control vertices and the terminating breakpoint has multiplicity at most
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k—3 (one for a cubic) then the curve will end with zero curvature.

10.6.4. Multiple Vertices

Just as we can repeat values in the knot sequence underlying a B-spline curve, so we can repeat ver-
tices in the control polygon. First let us recall that the i*" segment in a B-spline curve of order k is
defined by control vertices V,_, 4, -, V;. Furthermore, since B;_ (1) is zero at 45, V; 4, does
not affect the last point Q;(%;4;) of the i** segment. Q;(%;4,) is therefore entirely determined by V;_;4,,

-, V;. If these k—1 vertices are identical we have

[1] 0
Qi) = ) VieBinaltis) = Y Vi Biwi(Tin)

r=k+1 r=—k42

0 .
= Vi ) Binaliin) = Vi
r=—k+1
Thus a control vertex of multiplicity k—1 is interpolated, regardless of the knot sequence at hand. More-
over, Q;(¢) is guaranteed to be a straight line segment, since in this case we can factor the equation for

Qi (%;) as

0
VicknBiasp(€) + V; 3 Big (@)
r=—k+2

= VianBi (7)) + V; [1 ‘Bi—k+1,k('7))

which is a convex combination of V;_,4; and V; and so defines a straight line segment. V;_,4 and V;
are not, in general, interpolated.

Unless the knot #;—; has multiplicity k—2 or greater, the previous curve segment, namely Q, (%),
will be at least C? continuous with Q;(%) at #;—, and must therefore have a zero second derivative and
zero curvature there since Q;{u) is a straight line segment. Moreover, Q; () must terminate some-
where on the line segment connecting V;— 4, and V;_, 4=+ =V;. A similar argument establishes that
Q; +,{¥) begins with zero curvature at a point lying between V4= "+ =V; and V;4,.

10.8.5. End Conditions

Our description of multiple knots and multiple vertices is applicable to any part of the curve, but is
particularly useful in controlling the behaviour at the beginning and end of a curve. In general the most
we can say about these endpoints is that they lie within the convex hull of the first and last =1 control
vertices, respectively. From earlier remarks it follows that either an initial knot of multiplicity k—1, or an
initial control vertex of multiplicity k—1, will cause the curve to interpolate the first control vertex. In
the latter case the first curve segment is a short straight line. Moreover, an initial vertex of multiplicity
k—2 will cause the curve to begin somewhere on the line segment joining the first and second control ver-
tices with zero curvature. The end of a curve may be similarly controlled. A more detailed discussion
may be found in [Barsky82|.

It is actually quite common to ensure interpolation of the first and last control vertices by giving
them multiplicity k=1 and giving the first and last breakpoints multiplicity k—1 as well, although this is
unnecessarily restrictive.
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11. Bezier Curves

L Bezier curves and surfaces [Bézier70, Bézier77, Forrest72] were one of the earliest attempts to

o develop a flexible and intuitive interface for computer aided design, and have been used for some years by
Renauit-Peugeot to design the “skin” or outer panels of automobiles [Bezier74]. They are interesting in
their own right, relate naturally to B-spline curves and provide a convenient context in which to intro-
duce the idea of “subdivision.”

+
vl

Vs
AL

Figure 115. A cubic Bezier curve. The endpoints are interpolated.

A degree d BeZier curve is defined, much like a B-spline curve, as
d
Qu) = JJViP,(u) (61)
=0

for 0su =1, where
di ; d=i 2
P 4(u) = ;v (1-u) (62)

are the Bernstein polynomials. Using the Binomial Theorem it is is easy to show that a BeZier curve lies
within the convex hull of its defining control vertices. First we write

1 = [(l*u) +u ]d = i‘[‘:]ui(l—u)d—i
' i=0
= (1~u)® +du(l—u)*™ + - - 4 dutTH{i-u) +uf
= Pouu) + Prg(u) + -+ + Py q(u) + Pyalu) . (63)

Thus the P; 4(u) sum to one. Because 0=u =1 the quantities u and (1—u) are both nonnegative; it fol-
lows that the P; 4(u) are also nonnegative. Therefore a Bezier curve must lie within the convex hull of its
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control vertices.

It is a fact, although we shall not bother to prove it, that the Bernstein polynomials of degree d are

a basis for the polynomials of degree d. [ref]

By way of example, for cubic Bezier curves we have

Q(u) = VOP0,3 + VIP1,3 + V2P2r3 + V3P3'3

= Vo(1-u)® + V,3u(1-u)? + V,3u?(1—u) + V3u® .

Figure 117. The quintic (degree 5) Beier basis functions.

£)

&

By inspection it is easy to see from (61) and {62) that Q(0)=V; and Q(1)=V; — the first and last control

vertices are interpolated.

11.1. Increasing the Degree of a Bezier Curve

Suppose that we are unable to produce a curve of the desired shape with a degree d BeZzier curve.
One option is simply to use a Bezier curve of higher degree. Having chosen to work at a higher degree,
we may simply define a2 new curve. On the other hand, a polynomial of degree d is also a polynomial of
degree d+1; hence there exists a set of d +2 control vertices W, which define a degree d BeZzier curve ori-
ginally defined by d+1 control vertices V;. The relationship between the V; and the W;, which appears

in [Forrest72, Ramshaw85], is given by the following formulae.

WQ=VO

W, = |——|v.+|i-———|v
: d+1) ' d+1 )’
Wi =V, .
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T o %

Figure 118. This is the curve of Figure 115, defined as a degree 4 BeZier curve ("+™s) and as & degree 8 Beier
curve ("o™s).

11.2. Composite Bezier Curves

Using a higher degree BeZzier curve gives us more flexibility, but it also increases the cost of evalua-
tion. Then too, the movement of any one control vertex still alters the entirety of a simple BeZier curve.
An alternative is to construct a composite curve from several simple Bezier curves by causing the last ver-
tex of the i*" segment to coincide with the first vertex of the (i +1)" segment. Since the first and last
vertices of a BeZzier curve are interpolated, this results in C° continuity. Differentiating (61) we see that

Q(‘)(O) = d(V,~V,) (64)
and
QM) = d(Va-Vu) , (65)

so that the tangents at either end are collinear with the line segment between the first two and last two
control vertices, respectively. Consecutive segments in a composite BeZzier curve can therefore be made
C! continuous simply by arranging that the penultimate control vertex of the first curve, the shared end-
point, and the second vertex of the next curve be collinear and equally spaced. {see Figure 119).

Figure 119. A composite cubic Bezier curve. The unprimed vertices define one curve segment and the primed
vertices define another. Because V,, V3=V’ and V', are collinear and V5=V | =|V!;=V!(| the composite
curve will be C? continuous.

The second derivatives at the beginning and end of a simple Bezier curve are given by
Q¥(0) = d(d—l)[(Vz—Vl) = (V1=Vy) ]
and
Q) = d(d=D)[ (Veu=Vim) = (Veu=Va )] -

Suppose that we want to link two Bezier curves together with C? continuity. If the first segment is
defined by the control vertices V, V|, ... V,, then: the position of the first control vertex in the second
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segment is fixed at V; by the requirement that the segments join; the requirement for first derivative
continuity fixes the position of the second vertex at V;+(V,—V,;,); and the requirement for second
derivative continuity fixes the position of the third vertex at Vy5+4(V4~ —V,). Thus if we are dealing
with cubic Bezier curves, when we add another curve segment we are free to position only the last of the
control vertices for the new segment. The positions of the first three control vertices are fixed by the
requirement of C? continuity. The use of higher degree curves leaves more of the internal control vertices

for this segment free of constraints. Requiring higher degree continuity imposes constraints on additional
control vertices neighboring each joint.

If we move the joint between two segments in a composite cubic BeZzier curve, the above considera-
tions tell us that if we demand only C? continuity then only the segments which meet at the joint in ques-
tions are altered; only the control vertices on either side of the joint must be moved (so as to remain col-
linear with the joint), and neither affects C! continuity at neighbouring joints.

If we insist on maintaining O continuity of a cubic Bezier curve when moving a joint then the two
neighboring control vertices on at least one side will need to be moved. Since these in turn determine the
second derivative at the next joint, the change may ripple the entire length of the curve. We must work
with fifth degree Bezier curves to localize (to two segments) the changes needed to maintain C? con-
tinuity.

Similar observations obtain from considering the movement of other control vertices in a composite
cubic Bezier curve.

11.3. Local versus Global Contro!

When comparing Bezier and B-spline curves it is sometimes said that the former exhibit “global con-
trol” while the latter exhibit “Jocal control.” This is true only in the following sense. When drawing
Bezier curves people very often make use of a single segment, adding control vertices (and consequently
raising the degree of the curve) when they need more control or when a lower degree is unable to

represent the shape they desire. Each of the control vertices then affects the entire curve — its effect is
[13 »
global.

When drawing B-splines, one usually makes use of composite curves because there is no need to
worry about satisfying constraints among the control vertices in order to maintain continuity. In such a
curve moving a given control vertex alters only a part of the curve — the effect is “‘local.”

Technically speaking, however, this is misleading. If we restrict ourselves to a curve consisting of a
single segment then moving any control vertex alters the entire segment for both BeZzier and B-spline
curves. If we look at composite curves, then in either case moving a single control vertex will affect only
part of the curve (if Bezier curves of sufficiently high degree are used, as discussed above).

11.4. Subdivision of Bezier Curves

Now let us ask ourselves the following question: can we find an easy way to break a cubic Bezier
curve in half? That is, suppose we have the Bezier curve

Qu) = Vo(1=u)® + V 3u(1—u)® + Vy3u?(1—u) + Vyu? for 0 < u =1
Can we find control vertices

Sy, 8, 8,8, T, T, T, T,
such that the BeZzier curve

L(s) = Sy(1=s)® + 8,;3s(1—s)? + S,3s%(1—s) + Sys® for 0 = u =1
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is the first half of the curve defined by Vg, V;, V, and Vj (i.e. Q(u) for 0=u =0.5), and
R(t) = To(1-t)* + T 3t (1—t)? + T,3t%(1—t) + Tst® frdsus|
is the second half of the curve defined by Vg, V,, V; and V; (i.e. Q(u) for 0.5 =u =<|}!

SO=V0 Vs-T3

b B Figure 120. Subdivision of a cubic Bezier curve. The original control vertices Vg, V, Vyui¥ym
Vi represented with a ““+"”. The new control vertices are represented with an "o,

Not surprisingly (since we bothered to ask the question), the answer is yes. T here ar twramsy
the question is interesting:

® doing so doubles the number of control vertices, “halving’ the size of each segmen ud duress
ing the extent of the curve which is affected by the movement of a single contr v,

® it turns out that the resulting control vertices lie closer to the curve than the origulwnl v
tices, and one method of rendering the curve is to repeatedly subdivide wunti the et wries
are so close to the curve that the control polygon is an adequate approximation of e —
and moreover the subdivision can be applied adaptively a greater number of tins i ngosdf
relatively high curvature.

We illustrate these points by considering the simple case of midpoint subdivision for eibi: b s,
We know that

S =V,

S = Q(3) = %[V0+3V1+3V2+V3] :
From (64) and (65) we know that

L(0) = 3(8,-5,)
and

LO(1) = 3(S;-8,) .

Since we have § =2u, by the chain rule we have

LL(sw)) = L) o(u) = 2L0w)

whence

LU0) = 5 QU©) = F(Vi-Vo)

and
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L(l)(l) = %Q(l)(%) = 'g’ [V3+V2—V1—V0] .
We now have four equations, namely
S, =V,
3(8,-8,) = %(VI_VO)
3(8s-8) = L(Vy+V,-v,-v,)
S, - %[V0+3V,+3V2+V3] .
Solving them yields
Sy, =V,
5, = %(VO'*'VX)
S, = 4 (Vot2V,+V,)
S, = %(v0+3v1+3v2+v3) .
In a completely analogous way we can show that
T, = %(V0+3v1+3v2+v3)
T, = 4 (Vi+2V,+Vy)
T, = 'i‘(vz*'va)
T; =V, .
These vertices are more efficiently computed in the following order:
S =YV,
5 = %(Vo"'vl)
t = 4(VitVy)
5, = ‘;‘(Sx*"t)
Ty =V,
T, = “12"(V2+V3)
T, = 4{t+T)

8, =T, = %(SQ"'TI) .

Again, there are two reasons why this process is interesting. Firstly, it can be shown that the new control
polygons lie closer to the curve than the original control polygon [Lane80]. Thus one technique for
rendering a curve is to continue subdividing until the control polygons are a sufficiently good approxima-

tion to the curve and then simply draw the control polygon.
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Figure 121. A second level of subdivision applied to Figure 120. There are four cubic BeZier curves here.

Figure 122. A third level of subdivision. There are eight cubic Bezier curves here.

Because a BeZzier curve lies within the convex hull of its defining control vertices, one may test to see if
the length of the control polygon is within some tolerance of the distance between the first and last con-
trol vertices [Blinn80], or whether the distance between each pair of control vertices is less than some
tolerance, or whether the deviation of internal control vertices from a line segment joining the end ver-
tices is sufficiently small [Lane80|, etc. The convergence test can be applied to each subdivided curve
individually, so that the subdivision process ceases adaptively when the curve has become “locally flat.”

Secondly, subdivision can aid in the design of a curve since it provides more control vertices, whose
movement affects the shape of a smaller portion of the curve. Of course one must be careful not to des-
troy the desired continuity at joints when moving control vertices; as we have seen, this can be a fairly
severe restriction unless sufficiently high degree BeZzier curves are used.

Midpoint subdivision of higher order BeZzier curves, having degree d, can be accomplished using the
formula '

i [V,
S; = );0'(1]2— fori =0,1, .., d
derived in [Clark79]. From symmetry we have
4 v
d -1 r —
T; = Z{d—rlzﬁl—:‘ fors =0,1,..,d
r=

Clark’s proof makes use of the Binomial Theorem and various binomial identities. An induction proof of
essentially the same result is given in {Lane80], where the following algorithm for efficiently computing the
S; and T, is presented as weli.
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for i ~ 0 step 1 until 4 do
S; - V;
endfor
R, -V,
for 7 « 1 step 1 until d do
tmp2 - S,
for k ~ j step 1 until d do
tmpl - tmp2
tmp?2 - %(s,,_l +S,)
Si— = tmpl
endfor
8, ~ T,~; « tmp2

endfor

A general technique for directly subdividing elsewhere than at the parametric midpoint of a BeZier curve
is given in [Barsky83).
The midpoint subdivision of uniform B-spline curves is also discussed in [Lane80]. This is a special

case of the “Oslo Algorithm™ developed subsequently by Cohen, Lyche and Riesenfeld, to which we will
turn in the next chapter.

11.5. Bezier Curves From B-splines

There is an interesting connection between the Bernstein polynomials and the B-splines: the B-
splines of order d+1 over a knot sequence in which each breakpoint has multiplicity d+1 are exactly the
Bernstein polynomials of degree d. It is easiest to convey the idea of this connection by considering the
simple knot sequence

Eﬂ Uy 1?2 ;.1-3 Uy Ug Ug 177
0 0 0 0 1 1 1 1

Our claim is that the four B-splines By (%), By4#), By4(¥) and By) over this knot sequence are
exactly the Bernstein polynomials Py 5(i), Py g(i), Pys(t) and P;4(w) given by (62).
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Figure 123.
Recall that
_ U~ _ Uiy —U -
B;(u) = — — B;y—(¥) ¥ ————— Biyx(¥) . (66)
Ui k- —U; Ui Ui 4

Let us expand the B-spline By (), which has support {u,,u,), all the way down to the B; ().

By,
T=ity U
4
———B —Bis
Ug™ilg 4+ 4
=iy Ty—T -z T
3 1 4
- Bos —— B ——— B ———Bj2
Up—uy Ug™i; ugTu, Y42
E—7, =it -z, Tg—u T, fig—% ©=i, Ty—u
—Boa ——— B —— B, ——B,, —— B, ~——B,, — By, —Bs,
et Bt YTy U™, Uzl U7, ugTug Uz~ Uz UqTUg

The following points are of interest.
Since we are evaluating a B-spline of order 4, the tree must have depth 3.

The value of By, is a sum of eight terms. Each term is the product of the coefficients in one of
the eight root-leaf paths of this tree.

® A leaf of this tree will be nonzero only if its denominator is u4—~u3s. In this case only the right-

most leaf is nonzero.

® To arrive at a leaf we begin with the root By,, which has support (tp,i,) and proceed down the
tree. Going left as we leave a node corresponds to following the left term of the recurrence (66),
and removes one knot interval from the end of the support; going right as we leave a node
corresponds to following the right term of the recurrence (66), and removes one knot interval
from the beginning of the support. The goal is to prune the support down to the two knots u3
and u, which immediately surround the only non-vacuous interval.
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The denominators along the path to a nonzero leal are one since they must include [u3,%,) and
u,—tz=1. The numerator at a node is & if the node is entered by a left branch, and (1—u) if the

node is entered by a right branch.
Since in this case we begin with (&,,,) and must end with (¥3,1,), it is clear that we must always

take a rightmost branch, pruning (&,u,;), (¥),4;) and (Us,u3) in succession. For future reference
we record this tree as being one in which the nonzero leaf is reached by taking zero left branches,

and that there are exactly (g) =1 such paths.
Hence By (u) = {g](l—i)s = (1-u)

Now consider B, (i), which has support (u;,u;).

=i U
—— B, —Bss
U4, UgTup
=i u4—zT u—u2 us-u
——— B, 32,2
ity u;’ug us—us
=i ey -u2 Py T,
———B,, - Da = 1 — B3, —— By, = _Us,l ——— B — _Bm
U=ty Ty Ty u2 u,—ig uy—iy Uty Uy UsTUy

In this case we must prune (i,,u;} down to (usu,) to obtain a nonzero leaf.

The root-leaf paths that

accomplish this are those that involve exactly one left branch, to reduce u; to u,, and there are exactly

(?)‘3 such paths, Hence
By f(u} = [?]17(1‘17)2 = 3z(1-T)* .

Next consider B, (), which has support {u,,u).

B,
T, Ty~
— By —Bss
Ug—u, UgT™Us
=i, B Ty B T B Ty—v
— - Y22 — D3ae =~ g2 — 42
4T P Ug=Ug U Uy
i, T, i~y e ¥—ily Ts—i i—u, g~ B
B B B —B3, ——B,, — 1 ~——DB;,
—— g — = D31 - = P31 —— P4 o= T T .3
Y3~ Uy UgTg U Tug UgTUy 4743 5T Uy 5Tty 5
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Now we must prune (¥z,ug) down to (¥;,u,) to obtain a nonzero leaf. The root-leaf paths that accomplish
this are those that involve exactly two left branches, thus reducing t4 to 4 and ty to 4, and there are

exactly (g] =3 such paths. Hence

By (i) = [2]#(1—;} = 3a41-7)

Finally, consider Bj ((#), which has support (#g,u7)
By,

- T
4 [
By,
Ug—i, uo—us Ug—ilg

1'1'-1:3 u5—u =i, ua—u T Tg—u L T,y
Pua TBa TP 17-—1? Bis  Tom DM T, M mea
5 4 [} 5 & () & -] & 7 .}

'74""‘3 ' us—i,
Now we must prune (u3,i7) down to (is,u,) to obtain a nonzero leaf. The root-leaf paths which accom-

plish this are exactly those that involve three left branches, to reduce #; to uy, ts to ty and ug to u,, and

there are exactly (g) =1 such paths. Hence

= =3
=4

By () = [g]t73

Summarizing, we have
- 3=y e
B, u) = K (1-u)
for i =0,1,2,3. By a slight generalization of this argument we have

— d —d i
B; 4nlu) = L-]‘T -u)i~
d if the B; 44, are defined over a knot sequence with uniformly spaced breakpoints of mul-

for1=0,1,- -,
tiplicity d+1. We compare this with (62} and conclude that

Bi.d+1[‘7) = x‘,d(i)

in these ecircumstances.
The Bernstein polynomials take the form

T—a i iy 4=
) = [[J el

if we are interested in the interval [a,b) rather than [0,1). We leave for the reader the exercise of

11.5. Bezier Curves From B-splines San Francisco
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verifying that for the knot sequence consisting of (d+1) a’s followed by (d+1) b’s we have

Biun(@) = (‘f]‘“—‘ SO - paw

11.8. A Matrix Formulation

It is common to use matrix notation in representing parametric curves. For example, the Bezier
curve

Q) = Up(l-@) + U,3u(1-7) + Upsu?(1-5) + Ugu®

can be written as

U

1 0 0 o]V

Q@) = {1*7'72’73] -3 3 0 ol|WU
3 -6 3 o|]u, (67)

-1 3 -3 1}y,

- — 23 | T
luu Bez - | Uy U, U, Uy )

where T is the transpose operator, which converts a row vector into a column vector and vice versa. The
i** segment of a uniform cubic B-spline can be written as

2
_ _ 1 4 1 0 i
Q:(¥) [""" 61-3 0o 3 oflVi=
3~ 3 0|{Vig (68)
-1 3-3 1]lv

= [1 {517253]-38,)1 . [V,._e,v.-_zV.-—l V; )

the Hermite interpolation formula can be represented by

_ a1t 00 o] Y
Q;(U) = [1 uu u ] 0 1 0 0 D,‘
_'3 -2 3 -1 U,'+1

Di+
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T
= [litﬁﬁa]‘Herm'[U,’D;U.‘HD:‘-H ,

|

As [Smith83] points out, the use of matrices emphasizes the ease with which one can render curves
represented in a variety of ways. One need write only a single procedure, whose parameters are simply a
coefficient matrix and a data vector. We have avoided matrix representations because they are less intui-
tive to the newcomer. Matrices do, however, provide a concise and powerful notation; the survey of sur-
face modelling techniques given in [Barsky84] illustrates this nicely.

and, of course, the power series representation
Q(Z) = a +bu +ci® + di®

is represented trivially by

Q@) = [15&263]1

O C O
[ T s
D =00
-0 O O
Lo TR

11.7. Converting Between Representations

Another point which it is convenient to recall here is that each of the curve representations men-
tioned above relies on some particular basis for the cubic polynomials, and there is consequently a
transformation from each to any of the others that can conveniently be expressed in terms of a matrix.
To convert the control vertices for a uniform cubic B-spline curve segment into a Bezier representation

we need only equate the coefficients of the u’ (which must be unique, since the u’ are a basis) in (67) and
(68) and solve for

T
[UOUI U2U3] = .BA@Z-"1 Bspl . [vovl v2v3]

Vo
Vi
Vo
Vs

Conversely, to convert the control vertices for a Bezier representation into a B-spline representation we
compute

-1
6

SO Qo
L - I N
[
Lol = e

T
{v(,vl V2V3] = Bspl™ - Bez - [UQU1 U2U3]
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6 =1 2 o] |VYo
0 2 -1 0}|U
“lo-1 2 olly,
0 2-7 6f|u,

To go from the power series representation to the Bezier control vertices we can compute

T
[UGU,UQU:;] = Be!- [abed]

and to go from the power series representation to the B-spline control vertices involves computing

[V0V1V2V3] Bspl™ - abcd]

-3 2
0 -1
3 2
6 11

The above discussion tells us only how to convert a single curve segment from one representation to
another. This is sufficient if we are translating into the power basis. But what happens if we convert

from the power basis to Bernstein polynomials or B-splines? Do the control vertices match up so as to
form a single composite curve?

-1
3

W oW W W
LW oW = O
W - 00
w oo o
(=PRI -

-+ (69)

LW W W W
noe o

Suppose that we have two consecutive cubic segments Qg(#) and Q%) that meet with C? con-
tinuity. Let Vg, ¥V, V, and V, be the B-spline control vertices that define Q3 and let W;, W, W and
W, be the B-spline control vertices that define Q,. Now consider the five B-spline control vertices Vy,
V), Vy, V3 and V, that define the composite curve Q) consisting of Qg(%) and Q4(u). Because the B-
splines are a basis, we must have V; =W, V,=W, and V;=W;. Thus the B-spline control vertices must
match up.

It is inefficient to compute all four control vertices for Q4(#) — three of them have already been

generated for Qa(%). We have only to compute W, which from (69) we see is exactly

W, = 2(3a +6b+1lc +18d) .

This computation is then repeated for each segment to yield all the control vertices.

By the same sort of argument it follows that we can go uniquely from a C? Bezier curve to the (still
CQ) unique power representation, and thence to a B-spline representation in which the control vertices
must match up. The four control vertices defining the first segment are computed as above. The addi-
tional vertex for the second and succeeding segments are given by

w, = —;—(2U1—7U2+6U3) ,

If the BeZzier curve is not C? then the control vertices will not match up since the curve is not, in fact, a
uniform cubic B-spline. It is, of course, possible to represent it as a B-spline by using a knot vector
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containing multiple knots.

Conversion from a B-spline to a Bezier curve proceeds simply by repeated application of the
appropriate matrix equation given above. The Bezier control vertices computed will necessarily satisfy
the C? continuity constraints developed previously.

11.8. Bezier Surfaces

Bezier surfaces are defined from BeZzier curves in exactly the same way that B-spline surfaces are
built from B-spline curves. We take the tensor product of two Bezier curves:

d_ 1
Q(u,v) = ) IV, ;P a(@)Pi(0)
£=0 =0
The Bernstein polynomials P, 4(&) and P;;(7) need not be of the same degree. Indeed, the same is true of
the B-splines from which we constructed B-spline surfaces.

Techniques for building multipatch Bezier surfaces with C* or C? continuity at patch boundaries are
discussed in [Faux79].
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12. Preliminaries Regarding Knot Refinement

In this section and the next we will consider the general subdivision problem for B-splines: suppose
we have constructed a curve

Q@) = )JV;B,(u)
or a surface
Q(@v) = ) )V, ; B, (u) B;(v)

using some set of control vertices, and we now wish to express the same curve or surface in terms of a
larger number of control vertices. There are two different reasons for wanting to do this.

The first reason is that we may wish to “fine tune’ the curve or surface by increasing the number
of control vertices near a section that requires adjustment.

The second reason is that we may wish to increase the number of control vertices as an intermedi-
ate step in displaying the curve or surface. It is the case that, if control vertices are added in a “reason-
able” way in the manner to be established in this chapter and the next (where “reasonable” means spread
uniformly about and not allowed to bunch up only in certain regions) then the control polygon will con-
verge to the curve. Similar results apply to surfaces constructed from tensor products of B-splines and to
the control graphs that define the surfaces. This suggests that vertices can be added to such an extent
that the control polygon “converges visually” to the curve or surface; i.e. the polygon “clamps down on”
the curve or surface as each facet of the control polygon is replaced by more and smaller facets. This
exactly follows the behaviour displayed in figures 120 through 122 of chapter 11. When the facets are
“small enough,” the polygon, rather than the curve or surface, can then be subjected to all the display
transformations and shading needed to produce a presentable image on a graphics display.

The ideas of subdivision have been introduced in the context of Bezier curves and surfaces. In this
chapter and the next we shall establish subdivision results for B-splines.

12.1. Knots and Vertices

Using curves as the subject of our discussion, we begin by noting the connection between control
vertices and knots. Each new control vertex that we might like to add needs to be weighted by some new
B-spline; each new B-spline that we might like to construct needs some knot at which to become nonzero.
Thus, we can approach the problem in two ways. We want
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Q@ = I viBu@ = 5 W N, @ (70
i=0 =0
where
n>0
and
{Vg, ...,V } becomes {W,,..., W,__.}.

We can attempt to find the vertices W explicitly, or we can attempt to find the new B-splines, N M(E ),
and use them to determine the W implicitly. The latter is the route that we take. We will find that we
can obtain the new B-splines merely by adding new knots to the existing knot sequence, and this addition
process will implicitly define the new control vertices. This is the approach developed in [Cohen80).

Let us consider adding n new knots to the existing sequence {@y, . . . , T, 43} = {T;} ™ to obtain
a new sequence {w,, . . ., W gp k) = {1'171-}6""""”‘ , where {u;}¢" +’°C{"u7j}6"+”+k , as suggested by the fol-
lowing picture.

110 --------- wk-—l wk ........ wj a e wmhwmr“'l wml—n+k
1 ] l ] |

1 i 1 |

Ug reeenes Ek—l .................................. Upgy oo Uy 4k

Figure 124, Changing the existing knot sequence by adding additional knots.
It is to be understood from this picture that each #; is identical to one of the w;, and that some

further @ knots have been scattered along the parameter interval. As the picture suggests, additional
knots are to be added strictly within the parameter range |%, _,,,, 4;) so that

Wo B Up . Wy = Uy

Upy SW = Sw . Su, g

W1 = Ut 5 - oy W = Uy
The reason for this is as follows. If we were to add a knot Ej in, for example, the interval
(g, %g~1)

then the resulting knot sequence would apparently allow the parameter u to vary to the left of u;_,
since we would now have all the conditions for constructing, by divided differences, k linearly indepen-
dent B-splines on an interval extending from #_ left to w;. As an example, for k =4 (cubics), if we add
the knot wy in the interval [u,,u,), we would be permitting four linearly independent B-splines to exist on
the interval

wy S u < Uz .
Since the given curve Q(%) does not exist for these values of 4, expanding the legal parameter range in

this way would have the effect of “growing” the curve. We could ignore this effect, of course, by con-
tinuing to restrict our attention (and the parameter ) to the range [i3,#,, 4;), but then the B-spline
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No(u} ,
constructable from the knots
'-D-O=‘70tt-‘5]_ =611E2=|72,63,and64 =QT3 »

would be zero on [u3,u,, 4;). Hence, any control vertex W created implicitly by the addition of wj,
which Nj (&) would weight, would have absolutely no influence on Q(i).

While either of these artifacts — growing curves or creating useless control vertices — might else-
where be interesting, we will not explore them here.

Restricting the introduction of new knots to the range [Z;—;,%,, +1) is consistent in spirit to the dis-
cussion in [Cohen80] and to the related material on adding knots in [Schumaker81i], for example. A con-
vention followed in these references, as well, is that whenever new knots are added on top of existing
knots u;, or are added multiply by themselves, it will be required that
for all ;. That is, we will prohibit curselves from adding new knots to any location on the u axis where
the result of the addition would be to create a cluster (multiple knot) of multiplicity higher than k. If
this were not observed, then we would be creating k-segment “knot intervals” of zero length for which
the corresponding B-splines would be vacuous, clearly a futile exercise.

Notation: We will denote the multiplicity of each w; by v;.

The sense of the refinement process is that knots are “interspersed” among the knots of the
L}y’ ** sequence, and then the resulting sequence is renamed using w ‘‘labels”, as shown in Figure 125.

* *

Uy uy u, ug uy up ug u;  ug Ug Uy
6 -4 3 2 @ -1 0 @ 2 4 5 5
Wy w,; Wy Wy wy Wy Wy w,; Wy Wy W Wy Wyo

Figure 125. A specific example of the refinement and relabelling process.

Observe that a knot (which happens to have the yalue —1) is inserted between %, and @y (which also
have the value —1). That new knot could have been inserted before #, (in which case it would have
received the label @, and &, would have been relabeled i;), or it could have been inserted after @y (in
which case it would have received the label @, so that &, and #g would have become i, and wj, respec-
tively).

If we are firm about our policy of not adding new knots outside the legal parameter range — that is
if we do not allow ourselves to add knots “to the left of &, ;” and “to the right of i, 4;” — then all the
knots added to {u;}7" *k that are numerically equal to &, _; are to be regarded as being inserted in the
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sequence after u;_,. Similarly, all the knots added to {;}{" *k that are numerically equal to U, 4+, are to
be regarded as being inserted in the sequence before 4, 4;.

Definition: The knot sequence
— + - —
{wj}{,"h ko= {wWy,..., Wy4n+x } where n >0

formed in accord with the above discussion will be called a refinement of the knot sequence

{E‘_}(r!n+k C{{U-j}an'l'n-i-k .

We have been using the convention that, for each given index {E{0,...,m+k-1}, v,(i) is

defined to be the smallest index such that 1.7,., i) > ii;. This convention will now be extended to the knot

Jr 4+ in the same way. We will use v,4(j)} as the index of the leftmost knot in {Ej}""h‘“‘

sequence {w :

J
whose value is strictly greater than w;. For example, in Figure 125 above, il j=4, then v,(7)=7.

Notation: For any index jE{0,...,m+n+k}
7+7)

is defined to be the smallest index such that
Uadd) 7 i

By convention, the index m +n 4k +1 will be associated with +oc, so
ym+n+k) = m+n+k+l

and

Wt +k41 = Foo .

The only caveat to be observed is that each time we use «, we will now have to be clear whether we
intend ~, to be understood as applying to the index set for the #’s or as applying to the index set for the
w’s. For instance with respect to Figure 125 above,

74(5) = 6,
if 74 is used for the ¥ knots, and
1+8) =7,

if 44 is used for the w knots. Usually the meaning will be clear from context, and when it isn’t clear we
will state explicitly which meaning is intended.

A similar definition applies to v_(7):
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Notation: For any index s€{0,...,m+n+k—1}
7-(7)
is defined to be the largest index such that

Wy (j) < wj -

By convention, the index —1 will be associated with —oo, so
7-{0) = -1

and

We will find it handy in this section, and in those following, to establish two further indexing nota-
tions. The first of these serves to locate the breakpoint interval in the sequence {:Ti}ﬁn'“" into which each
w; falls. We will use 6(7) as the index of the rightmost knot in {u;}{" ** whose value does not exceed @ 5
This will mean that, strictly according to yalue and not according to position in sequence, we will have

i) = W) < Uy
and this will serve to place iEj in its proper breakpoint interval. For example, in Figure 125 above, if
J=4, then §(5)}=5, which locates @, =-1 in the breakpoint interval

[¥5,%) = [-1,0) .

Notation: For any index j€{0, ..., m+n+k} chosen to select a knot w;,
6(3)

is defined to be the unique index
§7)Efo, ... ,m+k}

satisfying
175(1-) = w; < 175(}-)“ for j=0,...,m¥ntk .

The convention holds that 4,44, = +0o, which will correctly place W, 4n+¢ i0 the interval
[ 4£,F00)-

Finally, we introduce an indexing convention that provides a convenient way of relating the knots of
{17,-}6”+k to the knots of {Ej}{)""'""'k that represent them in the refinement. We will denote by #(1) the
index of the knot in {w}g* itk orresponding to ;. For example, in Figure 125 above, if i =5, then

n(i) =6, since uy was, indeed, relabled as wg.
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Notation: For any index t €{0, . . ., m+k} chosen to select a knot u;,
n(7)
is defined to be the unique index

n(1)E{0, ..., m+n+k}

for which #,; m +n +k

) is the member of {1'5]-}0 identified with u;.

12.2. A Representation Result

Recall that the reason for considering knot refinement is to represent any curve defined by the B-
splines By (i), . . ., By, 4 (i) in terms of the B-splines Noi(@), ..., Ny 4y k(). The following picture
gives an overview of what happens when k =2 and a single knot is added.

B, B B, By
o T _

...... Z
| i 1 T T | )
Uy U, Uy iy Uy Us

N, N, N, N, N,
RN P - “w FAS
// > N -7 \\\./ ’ \\// \\
4 /v\ ,>\ s 7N Y
’ , N - ~ 4 ~ 7 ~ S -
~ 7 , u
1 | l ] 1 1 i
Wy 1?1 GQ 1.?3 Wy Wg We

Figure 126. Adding a knot when k=2, Note that we show the normalized basis functions — they are not
scaled by the corresponding control vertex.

The refinement process replaces the space S(P* {#}F *) with S(P* ,{Ej}(’,"*"ﬂ), which contains

the space S(P* {Z;} **) as a subspace. The B-splines N, (%) that can be constructed on the new knots
are given by :

Ni(@) = (=1 (@ =) [,(R) ) (T = )37 (71)
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for j=0,...,m+n

Our task is to see whether we can express a curve that has been constructed in terms of the B; ,(i), in
terms of the N, () instead, as is shown in equation (70) above. The next theorem assures us that we

can, and it indicates that the new control vertices W; will be simple linear combinations of the old con-
trol vertices V.

The theorem follows easily from the fact that each B; i(i) is itself a spline in S(P* AT, s0
we can “substitute” an expression in terms of N; (i) for each B;;(¢) and from the V; deduce the W.
For example, it is easy to see that in Figure 126

Boo{#t) = 1.0-Nyg(u)

B o(#) = 10N g(#) + 0.5-N,()
By (u) 0.5-Nyo(tr) + 1.0-Njzo(u)
Bjo(u) = 1.0-N,(u) .

The quadratic B-spline curve shown in Figure 127 provides a less trivial example.

ALY AN
'
el

A e Sl RS IR SIS
0 17
S A S S
SR 0 A AT R uCHE e B SR
0 17

Figure 127. A thirteen segment quadratic B-spline curve. The arrow points to @ = 5.5, where a knot has been
added, splitting the fourth segment from the left in half. That is, the fourth segment is regarded as two dis-
tinct quadratic polynomials that meet with first derivative continuity at u=5.5. It follows that this curve can
be represented using the lower set of B-splines, as shown.

Both sets of basis functions are shown scaled so that their sum, respectively, equals the curve shown. One
new basis function is added (drawn as a solid curve), and the shape of three B-splines is changed (drawn as
dashed curves). Notice also that since these are quadratic B-splines, each spans three intervals.

The curve in Figure 127 is a sum of the B-splines defined on the upper (uniform) knot sequence. The
knot added at # =5.5 causes a new basis function to be added below in Figure 127, and causes three basis
functions to change shape: namely the basis functions that go positive at 3, 4 and 5, these being the only
old basis functions defined by divided differences that now include the new knot at 5.5.
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Figure 128. Figure 130 shows the representation of the solidly drawn basis function in terms of the refined
knot sequence of Figure 127; Figure 131 similarly treats the basis function drawn dashed here.

Siggraph "85
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Figure 130. A detail from Figure 127. The sum of the lower two basis functions is exactly the upper.
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Figure 131. Another detail from Figure 127. Again, the sum of the lower two basis functions is exactly the
upper.

Each of the uniform (upper) B-splines in Figure 127 is, of course, itself a piecewise quadratic curve
and can therefore be represented as a scaled sum of the B-splines defined on the lower (refined) knot

sequence, as shown in Figures 129, 130 and 131. (Figure 128 locates these three basis functions among
those defined on the refined knot sequence in Figure 127.)

To be more general, suppose that we do this for each of the upper basis functions in Figure 127.
Each lower basis function is needed some (small) number of times; add up all its contributions, and the

result is the scale factor by which it is weighted in representing the curve of Figure 127. The following
theorem makes this process precise.

Theorem: Foreach j=0,... , m+n andi=0,...,m
m
W, o= Vi oqu(s)
i=0

for some collection of numbers a; 3(3)-

Argument: First observe that each of the “old” B-splines B; ,(&) can be expressed in terms of the
“new” ones N, (u). This follows because the sequences {Z;}7** and {w; mm+E are compatible.
That is, the breakpoint intervals of S(P",{Ej}g‘*"*") must all be subintervals of the breakpoint
intervals of S(P* {Z;}"™*). There is no crossing of boundaries or mismatch — each breakpoint of
S(P* {T;}"**) must be a breakpoint of S{P* ,{Ej}(’,”*””‘) (and, of course, S(P* ,{5_,-}5"*"'”‘) may
have some additional breakpoints falling strictly within the breakpoint intervals for S(P* {z;}r ™).

Now, consider B; {u) for any fixed ¢. This function is a member of sS(P* ,{Ej}{,”*"“): Tirstly, it is a
polynomial throughout each breakpoint interval of S(P* ,{E_,-}(’)""'""* ); secondly, if w; is a breakpoint
of S(P* {w;};™*), then B; (&) will be at least ¢* 7™ at that point. This second condition is
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an ordinary k-order polynomial at i@,, or because i; was introduced upon a breakpoint, u; of

S(P* {u#;}r**), and consequently v;=p; +1. In other words, the definition of S(P* ,{17:-}5""""“')

k==, — — - .
would only demand C B continuity at w;, and B, (&) has continuity at least one order higher
than that.

Since the functions N, (i) are a basis for S(P",{aj}aﬂ"‘"ﬂ), and each B;,k(E)GS(P*,{E_,-}(',""'““),
we can represent B; (i) as

mn
B p(@) = )] a;uls) Nju(a) (72)

i=0

This defines what the quantities o; 4{7) must be.

Now consider the original problem of writing the same curve Q(#) in terms of the B-splines of
S(P* {#;}"**) and in terms of the B-splines of S(P* {&;}7* ™ **) as given in (70) above. We have

m mn
Q&) = Vi Biu(w) = 3 W;N;u) ,
i=0 =0
which can be rewritten as

min _ m m*m . -
20 Wi N(a) = 3]V {37 a;uls) Nial®@)
=0 i=0 i=0

or, interchanging the order of summation,
mn m . _ mm _
27 4 X Viaiuld) }N,-_,,(u) = 3] W,N,, (@) .
=0 \i=0 i

Since the functions NV ,(u) are linearly independent, the above implies that the coefficients on each
side of the equality are identical. That is,

m
W, = V.o, .
im0

In the following chapter we will establish precise formulas, derived from the recurrence properties of
the B-splines B; ; (i) and N; (%), for computing the coefficients a; x(;). We will find that the o’s satisfy
a simple recurrence of their own,
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13. The Oslo Algorithm

This chapter will cover the technical details of the most general refinement algorithm known for
general B-splines. In the previous chapter we observed that a curve (or surface) Q() constructed

® {rom one set of control vertices, Vg, ...,V,,,

® weighted by one set of B-splines, B;,
® and defined on one set of knots, {u;}{ +e

can be represented in terms of

® 2 larger set of control vertices, Wy, ..., W_ .,

® weighted by a refined set of B-splines, N §r

® and defined on a finer mesh of knots, {w J-}(’]""'”'H‘.
The key idea is that the process of knot refinement produces a spline space S(Pk ,{t-Jj}['," ntk ) which
contains the original space S(P",{E,-}{,""'k . It is directly from these observations, and from B-spline
recurrence, that the detailed behaviour of the a; (s} can be determined, and it is the behaviour of the
a’s upon which the B-spline and control-vertex refinements are based.

13.1. Discrete B-spline Recurrence

We introduced the quantities a; ,(j) that provided a translation from the V; to the W via the
equation

m
wj = Eai,k(ﬂv; for 7=0,...,m+n ,
i=0 .
and from the B; to the N; via the equation
-— m.'-n * —
B () = X pls)N;,(@) . (73)
i=0

Our first task in this chapter will be to establish that these coefficients a‘-.k( 7) satisfy a recurrence very
much like the one satisfied by the B-splines:
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Theorem:
1 4= Ej <4
al’,l{j) =
0  otherwise
and
N e W . Uiy ~ Wiy )
“f,r(f) — — as,r-x(J) + — “;+1,r-1(3)
Uigr—p ~ % Uiy ~ Uiq
for r=2,3, ... ,k, where k is the order of the spline in question.

(74)

As usual, we interpret each ratio

Wity —1 ~8; Uy = Wigr =)
———-——-—-__J — and ——-————'_ J_
Uigr—1 7Y Uigr TUj4

to be zero if its denominator is zero.

This recurrence, as well as a related recurrence for obtaining the control vertices W from the con-
trol vertices V, were first established in {Cohen80J; they have recently been established by a much simpler

method in [Prautzsch84)], which is the source of the argument given here.

Argument:

the space S(Pk ,{5_,,-}5" otk ), and as such it is valid for all @ in the legal parameter range:

Upoy = Whey T U < Wpgng T Upyg -

We may apply the B-spline recurrence to B;’k(ﬁ} to obtain

_ u - F _ Uipp ~ u —
B; (i) = —————— B;;—(#) + ————=— Bis;(¥) -
Uigp— — Yy U 7 U4

On the other hand, we may apply the B-spline recurrence to N; ,(u) to obtain

— — f— —

- u - ‘UJJ _ w}'i'k u _
NJ k(u) = ___"'__—“——_ Nj,k _l(u) + — — Nj+1,k _l(u) .
Witk-1 = Wj Witk — Wik

Both (76) and (77) are valid for all values of %.

Combining (76) and (77) with (73) yields the following identity, which is valid for all ¥ in {(75):

....................................................................................
...........................................................................................

Consider the identity (73). This is a representation formula for B; (), regarded as an element of

(75)

(76)

(77)
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.................................................................................................................................................................................

i - i+k -
= — B p(¥) + = B; 41 k(%) (78)
Uik ~1 i Uigr — Ui
mn g —w w. a
7 — jtk -
= ) e { = N;plw) + — N p-1(¥)
= Witk—1 — W; J+k 41

Let us begin with the right-hand side of (78). The summation can be regrouped in terms of N ,(i);
that is:

m ) u - w; - Wigp — @ —
2 eipld) | = pom Njipltf) + ————— Njy (%) (79)
i=0 Witk=%¥ ~ 5 Witk — Wi+
m+n+l w, -0 T
jtk—1 . Fi ] -
= ) | T i)+ = a1 (5) { Njpa(®) -
70 | Wi TW; Wit~ ~ Wj

The second summation of (79) contains two spurious a’s: &; (—1) and «a; (m +n+1). However, the
terms N ; —1(%) and N, 4 41 £ (%), respectively, that multiply these a’s are zero on the parameter
range (75); consequently, we may regard o, ,(—1) and “i,k(m +n +1) to be zero.

Returning to (78), consider the left-hand side of the equation. The representation of B’s in terms of
a’s and N’s given by (73) for k'B-order splines can be equally well used for k—1%-order splines. This
can be seen from the fact that {Ej}{)" +ntk is still a refinement of {u;}g *£ 5o the spline space for
which the functions N, _(¥) form a basis still contains the space for which the functions B; ()
form a basis. The only peculiarity worth mention is the fact that the multiplicity some of the knots
in {u;}" +k and/or {w J-}g’"""”‘ may be higher than we have usually admitted for k—1%"-order spline
spaces. This is consistent with the nature of the B-spline recurrence, however; we merely accept
ratios with zero denominators to be zero, and we must accept the fact that some of the B-splines
that formally appear in our summations will be vacuous.

Applying the representation (73) to B; ;_{#) and B:‘+1,k—1(’7) separately transforms the left-hand
side of (78) into: '

E-El. m i + . — T._E‘,‘.k"l? m 4+l . _
— ) o () Njpmg (@) + ———— )} gy p=1(0) Njpa(®)
=0

Uigp " U4 50

Uitp—1" %

Since we are limited to the parameter range (75), we may consider the spurious quantities
@; p(m+n+1) and a;4; ;(m+n+1) to be zero, since they are multiplied by Ny 4n+1,,~1(#), which is
zero on the parameter range.

The two summations above may be combined to cbtain

..........................................................................................
......................................................................................
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.................................................................................................................................................................................

m+n U - U ) Uy — U , —
p —— o (0) + = o4 k-109) | Njg=(®) - (80)
3=0 Uip—1 ~ Y Uitk — Ui41
Combining (80} with (79) yields
m -+l tT"'tTi . tTi+k -u . _
= — o (0) + = @iy g —1(7) | Njg—1(¥) (81)
j=0 Uidp—1 ~ Y Uik ~ Y41
mn +l W -a i
Jtk=1 . j . e
= )] T (5-1) + = 0, () | N ()
=0 | Witp— T Wy Witk—1 ~ Wy

The identity (81) is valid for all values of « in the parameter range (75).

It is tempting to conclude that the corresponding expressions in brackets in the two summations of
(81) are equal for all &, that is:

u =y Ujap — U

= - ope-1(d) + = — 041 4-1(7) (82)
Yiggp—1 — i Yitr ~ Uil
Wigpog — U U - w;
Jtk—1 . K] .
=T —— (i) A (1)
Witk—1 =~ Wy Witk—1 — Wy

In fact this is true. We will sketch the reasoning for this in the simplest case, that in which there are
no multiple knots. A complete justification would require a limiting process to produce multiple
knots by the confluence of distinct knots, and that is outside the mathematical scope of this work.

An alternative argument for the recurrence, without an omission of this nature, will be given in
15.5.3.

Let us, therefore, assume that all of the refined knots, w0, are distinct. If we pick any segment inter-
val in the legal parameter range,

r

then only k—1 successive terms of the summations in (81) could be nonzero owing to the locality of
the support of the N’s. This means that equation (81) could be written in the form

5 6, (@-b)N, ,,(@) = 0 forall FE[,B;4) » (83)
r=—k+2

where we have put both summations on one side of the equal sign and abbreviated each of the result-
ing linear expressions in brackets by writing it as:

...............................................................
.................................................................................................................
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.................................................................................................................................................................................

— u -4 ik
ar(u +bf) = — O" k—l(r) + — — af‘-+1'k_1(r) (84)
itk~1 T ¥ Uigp — Ui4g
t?r-!-k“l -u u = ‘Tr
= — a; i (r=1) + — a; k(r)
Wrdp— ~ Yy Wrak—1 ~ Yr

It is worth noting that every « is represented in at least one of the segment intervals

[0 %) [, 801) - os [ B Pnnst)
Hence, all of the terms appearing in brackets in (81) will be covered in (84).

Since we are restricting our attention to a single segment interval in the legal parameter range, the
functions N, ,_4(¥) for r = j—k+2,...,j are simply polynomials. Moreover, they are linearly
independent and positive throughout the interval. As a result of this, the coefficients, a,, can all be
shown to be zero.

Suppose that some coefficient is nonzero; for example, ay, #0. Then, we can rewrite (83) as

— o J'_l — —
ay (T=b\ )Ny (@) = = 3 o (@=b, )N, j—(¥) .
r=f—k+2
rH

But N, ;—1(%) > 0, so we may divide:

— il Nr k-l(i)
ay(u=by) = = ' e (u-b)|———
rmmrz | Nag=a(@)

r A

But the expression on the left of this equality is linear, which demands that the ratios
N, k()
Ny g=1(#)

be constant, and this contradicts the linear independence of the N’s.

The consequence of this is that the expression in (84) is zero for all values of u, which means that
(82) is true for all values of . 1f we merely substitute the particular value

u = aj-!-k -1
into (82), the result given by {74) follows immediately.
To see that the starting values for the recurrence are correct; that is, the definitions for the quanti-
ties ai’l( 7), it is merely necessary to consider a picture. Since

m+n
Bl,k{a) = 2 ai,k{J)Nj,k(E) for J' =0, e ,m+n B
=0

this tells us what the contribution of a particular B-spline, N ((&) is to the B-spline B; (). For the

1%-order B-splines we see that B; () and N (&) must, in fact, be exactly equal if Eisi'u'j<(17f+1)
’ ! more...

..............................
...................................................................................................................................................
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................................................................................................................................................................................

for values of & within the interval [,;4,). This makes sense, as an example will illustrate: the

single 1%*-order B-spline shown in Figure 132 is replaced by the four 1*-order B-splines shown in Fig-
ure 133 when we insert the knots at 0.20, 0.50 and 0.75.

m

Figure 132. The single 1*-order B-spline B; (i) which has the value 1.0 on the interval |T;,T; ).

{a {a {a '
1 —= C @ C
....................................... T
{[i "-2; +1

Figure 133. The four constant B-splines that replace B, ;(¥) of Figure 132 when we insert knots at the

values 0.20, 0.50 and 0.75 in the interval [&,%; ).

An inspection of (74) suggests that «; ;(7) must have the character that the B-spline B; ;(i) would
have if it were defined, not on the continuum of ¥ values, but on the discrete collection {w, tn otk

instead. This observation is the justification for the name given to the «’s; they are known as the
discrete B-splines .

13.2. Discrete B-spline properties

We see by the above that the behaviour of the a’s parallels very closely the behaviour of the B-
splines. What do the a’s look like? Are they “hump-shaped” like the continuous B-splines? Are they
local? Are they nonnegative? Do they sum to one? On the following pages we will plot a few low-order
discrete B-splines to gain some feeling for them.

{The reader Thould be cautioned that the a;4(j) are not precisely the discrete B-splines defined in
Schumaker81).
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For k=1 we are at the bottom of the alpha recurrence. a; () is a function defined over the indices
of the w knots, and it is clear from the recurrence that the interval of indices on which this function is
nonzero is that corresponding to the @ values falling into the interval [u;,i;4;). A typical table of u, w,
and a; ; values would be

2
g
R

-3.0000 {u;—3) -3.0000
-2.0000 (%) -2.0000
-1.5000
-1.0000 (%; ) -1.0000
-0.5000
-0.2500
0.0000 (T;) 0.0000
0.2000
0.5000
0.7500
1.0000 (Z;4,)  1.0000
1.3333
1.6250
1.7500
2.0000 (T;45)  2.0000
2.5000
3.0000 (i;45)  3.0000
40000 (74,  4.0000

OO0 00 00O MMIMIMEROODOOORO

which produces the following graph.

99 99
o
11 I
1L
b
Lo
[
Lo
WMQ_%M—_‘F_
t;—g Ujmp . Uiy U U+ U 42 Ui4g Uiy

Figure 134. The first-order discrete B-spline. We have not explicitly labeled the @ values; they are visible
only as the locations of the values plotted for «; . Notice that the nonzero alphas all fall within one half-open
interval,

Since
m 0
Wj = Eai,k(J)Vs‘
i=0

such graphs and tables indicate precisely how many W’s depend in what way upon which V’s. In partic-
ular, the table above and Figure 134 show that W;, W4, W4, and Wy, are each 1XV;, where the
index j corresponds to w; = 0.0000 and the index i corresponds to u; = 0.0000.
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For k =2 there are several configurations, depending on multiplicities. We show three examples. A
table of #, w, and a;; values for simple ¢ knots would be

u w . a; 2
-3.0000 (i5;—g) -3.0000 0
-2.0000 (#;—) -2.0000 ©

-1.5000 o
-1.0000 (#;—) -1.0000 0
-0.5000 0
-0.2500 0
0.0000 (iz;) 0.0000 155
0.2000 12
0.5000 34
0.7500 1
1.0000 (if;4;) 10000 2/
13333 38
16250 144
1.7500 0
20000 (T;4;) 20000 O
2.5000 0
3.0000 (Z;45) 3.0000 0
4.0000 (Z; 4y 40000 O

which produces the graph
?
'
i
'
I
i
I
I
'
1

?
1
15

|

|
r 9
I 1
J i
1

|
U U Um u; U+ U4 U4z Uj 4y

Figure 135. Values of the second-order discrete B-spline with no multiplicities. Recall that these values graph
the contribution of V;, which is weighted by the B-spline B; (i), to various W's. This time the nonzero
alphas all fall within two successive half-cpen intervals.

Observe that this graph and table specify that
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W, = —;—V,- + other V's

wJ‘-H = %V‘ + other Vs

Wi = %V,- + other V’s ,

The Killer B's

where j is the index for which w; = 0.0000 and ¢ is the index for which u; = 0.0000.

Placing a double knot at u; produces the table

u

I._E 0;12

-3.0000 (i; )
-2.0000 (; )

-1.0000 (T; ;)

0.0000 ()
0.0000 (#;+,)

1.0000 (; +,)

2.0000 (i; 4)

3.0000 (u; 44}
4.0000 (i7; 45)

~3.0000 0
-2.0000 0
-1.5000 0
-1.0000 0
-0.5000 0
-0.2500 0

0.0000 1
0.0000
0.2000
0.5000
0.7500
1.0000
1.3333
1.6250
1.7500
2.0000
2.5000
3.0000
4.0000

1/4

(== = B < B v B o Y oo [ s B e B

and the corresponding graph is

e

U4 Ui 43

Figure 136, The second-order discrete B-spline with #; = #;4,. The introduction of a double knot means that
a; , will contribute to W, and W;4,. Since both of these weight refined B-splines that become positive at the
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same breakpoint, our graph shows two alpha values aligned over that breakpoint.

The message contained in Figure 136 and its accompanying table is that

W = IV,

J
Wiy = %V,- + other V’s
Wi = 2V, +other Vs
z Wi = Vi +other Vs

where j is the smallest index for which w,=0.0000, and ¢ is likewise the smallest index for which
u;=0.0000. A double knot at the next @ position to the right, on the other hand, gives the table

3.0000 (;4¢)  3.0000
4.0000 (i5;45)  4.0000

| u w Q’."g
! 130000 (7,) -3.0000 0O
' -2.0000 (F;—;) -2.0000 O
-1.5000 0
-1.0000 (F;) -1.0000 O
-0.5000 0
-0.2500 0
0.0000 (Z;) 00000 15
0.2000 1
0.5000 3/
. 0.7500 1
10000 (Z;4,) 1.0000 O
1.0000 (Z;4;) 1.0000 O
1.3333 0
1.6250 )
1.7500 0
20000 (;45) 20000 O
2.5000 0
0
0

for which the graph is
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'
@
Y
o1
'
at
|
T o | I | |
U;— Uiy u;—y u; U4 Ui4s Uy Ui 4s

U 4o

Figure 137. The second-order discrete B-spline with &4, = #;4,. This time the two aligned alpha values hap-
pen to both have the value zero.

Finally, we give a few representative configuations for cubic (k =4) discrete B-splines. The simple
set of & knots which we have been using in these examples yields the table

u w Q; 4
-3.0000 (&; ) -3.0000 0
-2.0000 (i;) -2.0000 18

-1.5000 7,16
-1.0000 (7;4;) -1.0000 54
-0.5000 4160
-0.2500  18/30
0.0000 (%;4;)  0.0000  119/240
0.2000 5.6
05000  5/32
0.7500 1/24
1.0000 (if;45)  1.0000 1,96
1.3333 0
1.6250 0
1.7500 0
2.0000 (@;4,)  2.0000 0
2.5000 0
3.0000 (#;45)  3.0000 0
40000 (&;4¢)  4.0000 0

and the corresponding graph is
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¢ Te
° 1 117
' | H :?
T Lo it
+ ‘ | l 4-9—99-4}—9—+——+———-
Ui U Ui Uj4g U4z Uidy U 4p TIY)

Figure 138. The discrete cubic {order 4) B-spline with no multiplicity. This time the nonzero alpha’s span
four successive intervals, namely (&, 4)-

Doubling the knot at u; 4, yields the table

u w oy

-3.0000 {&;—,) -3.0000 O
-2.0000 (u;) -2.0000 3/16

-1.5000 2132

-1.0000 (ir;4;) -1.0000 3/
05000 58
02500 25

0.0000 (;4,) 0.0000 155
0.0000 (i;45)  0.0000 1/20
0.2000
0.5000
0.7500
1.0000 (Z;44)  1.0000
1.3333
1.6250
1.7500
2.0000 (Z;45)  2.0000
2.5000
3.0000 (&5;4¢)  3.0000
4.0000 (Z;4;)  4.0000

[ooJ= BN~ T = B = i o B e B - i = B 2~

and the graph

?
? 4+ 9
1 | }
\ i ;9
I I Vol
Q ! 1 9
$ P IJ}LQG+999+ 9+_+___
| i 1
U u; U+ U 40 Uj 4y U 45 U; 46 47
Uj4s

Figure 139. The cubic discrete B-spline with & 4 = I 45.
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Tripling the knot at the same position results in the table

u w o 4
-3.0000 (#;—;) -3.0000 O
-2.0000 (1;) -2.0000 3.6

-1.5000 21/32

-1.0000 (i;4;) -1.0000 9,16

-0.5000 14

-0.2500 0
0.0000 (#;4,) 00000 O
0.0000 (#;45) 00000 0
0.0000 (&;4s) 0.0000 O
0.2000 0
0.5000 0
0.7500 0
1.0000 (#;45) 1.0000 0
1.3333 0
1.6250 0
1.7500 0
2.0000 (@;4¢)  2.0000 0
2.5000 0
3.0000 (Z;4;) 3.0000 0
4.0000 (T;45) 40000 0

for which the graph is

?

9

1 i

I 1

9 i 1 ?
) )
—-+——-l——‘———l———'—ew = + +
U;— U; Ui U 49 Ui 45 U; 44 U, 47 U; 48

U; 4
Uity

Figure 140. The cubic discrete B-spline with it 40 = U; 45 ™ ¥; 4y

In none of the above examples did we explore the effect of increasing the multiplicity of one or more
of the w knots. The effect of doing this, like the effect of increasing the multiplicity of the u knots, is to
“shorten” the interval on which one or more of the a’s is nonzero.

The above diagrams and tables have served, we hope, to convey a feeling for the behaviour of
o; 1(7) for fixed ¢ as a function of j. It is equally useful to observe how the a’s behave for fixed j and a
sequence of successive 7’s. Since
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m
WJ' = Zvia:',k(j) for j-O,..,,m'i'n ’
=0

187

this tells us how various V,’s are weighted in computing a particular W;. The following is an example for
k =4 using the ¥ and @ knots of Figure 138. Fixing our attention on w;=1.0000 we compute succesive
a’s from ;g {(10;) to 0;444(10;) to be

T, =1.0000
o;—.4(7) 0
a;—.4(7) 0
a;~14(9) 0

o; 4(7) 196

a;414(5)  261/576
a404(7)  19/36
o 4(7) 5102
& +4,4(7 ) Y

The graphs of these a’s in a neighbourhood of w; are shown below. The above table should be read as a
“vertical slice” through those plots at the position indicated by the label w;.

[ 7L WL

Ajep gy

Qi—1,4

Siggraph "85
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° %9
?: N,
9 i 1 Pl I ?
QL b )
] ]
@4 4 # _+_e ? 11!_14:! 1?9_+_°__+___+_
U~y u; U+ U;4o Ujag Uj 4y Ui4s Ui+g
w;
¢ ?
)
? ! 4
s 1 )
- ?l ! s: .
/ 1 ]
i ? ] l 1 1t
coms —p——p—op—oogt UL Ly o p
i
j Uiy U U4 U; 42 Uj+g Ujty Ui4g Ui 4g
w;
)
|
1
|
9 ]
by
L
|
@434 W@a—e—&g—u—}—a——H—
U U U4 U4 TR T U 45 Ui+g
w;
Q
]
]
]
]
]
]
|
e
Qi 4q 4 Wﬂ—e—o&—l———l—%—%—
U~ U; U 4 U; 42 U 43 Uj 4y U; 45 LTI,
tFj

Figure 141, A sequence of successive a's.

Figure 141 and its accompanying table, indicate that

5
—Vis -

1 251 19
W; = 5VitzVint o Viet 5

576 36

The value of ; being considered is w,; =i; 4. Consequently, it falls in the interval
Tso = Ty < Hiag

Letting §=i¢+3 be the index such that u;=<i;<uj4, we observe that
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0‘0,4(65) == 06-4.4(‘—",1‘) =0

s, a(Ws) = = oy (Ww;) =0
and

os54(W;) , s d(W)), @ (W), asw;) # 0
Remarkably, these nonzero values sum to one.

In the light of these preliminary remarks and demonstrations we state the following

Properties:

1. For any given 7 let §(5} = & be such that #; = w; < ;4.
Then o; 4(5) =0for ¢ € {6—k+1,...,6},for0 <1 =m.
2. a;u(7) =0foralli,j k. '

3. ;"jai.k(j) =1
=0

Property 1 establishes the locality of the refinement process by saying that at most k discrete B-splines
can be nonzero for any fixed value of 7, meaning that the refinement process will produce new control
vertices W, each of which depends on no more than k of the original control vertices V;. More specifi-
cally, W, will depend upon some subset of V4, ...,V these being the control vertices that are
weighted by the B-splines whose support includes the new knot. In particular, introducing a new knot
(and a therefore a new control vertex) changes at most & of the old vertices.

Properties 2 and 3 together establish a geometric containment property, namely that W, will be a
weighted average of the members of V4, ..., Vs That is, W, will lie in their convex hull. We will
establish these properties formally using the argument to be found in [Cohken8].

Argument:

We will establish properties 1 and 2 first, using an induction argument. Property 3 will follow from
the fact that the functions N;,(u) constitute a basis for S(P* {@w}r ™ **), that they sum to one,
and that the functions B; ,(#) are representable in terms of the N’s. We begin with property 1.

For first-order a’s (that is, for k =1), properties 1 and 2 may be taken as evident, by inspection,
from the consideration of pictures such as Figure 134. Alternatively, note from the recurrence that

a;4(7) = 0 for w;<w; and w; = ¥;4
and that
o;4(s) =1 for w; =z4; and w; < U4y .
In this context it follows directly from the recurrence that

® for fixed 7, o; ;(j) = 0 when we do not have #; = ; < @;4 (that is, property 1 holds);

.................................................................
...............................................................................................................
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.................................................................................................................................................................................

® o, ,(7) = 0; that is, property 2 holds.

We next establish inductively that properties 1 and 2 hold for higher-order o’s. Assume that they
hold for a; ,~(7) for all £ and 5 and for some k > 1.

For property 1 we wish to show that, for fixed j and for 6 = () defined by u; = w; < iy, it is
true that a; 4(7) = 0 whenever i {6—k+1, ..., 8}

Recall the recurrence

Wigp—y =

Us 4 ~Wjg—
a: k—l(]) + -—
U gy Uir — Ui

o (7)) = o 4e-1(d) -

, By the induction hypothesis the factor a; 4—(7) is zero for all s €{6—(k—1)+1, . .., é8}; that is, for all
N i @{6—k+2,...,8. Similarly, the factor a;+ ;-i(7) is zero for all i+1&{s—k+2,...,8}; that is,

' for all § €{6—k+1,...,6—1}. Taking the union of these two index sets, we see that both terms in
the recurrence are zero when

fE{6—k+1,...,8 ,
which establishes property 1.

To establish property 2, it is instrumental to establish a stronger version of property 1; namely, we
show that

a;x(7) = 0 when @; <u; or Wjap = Uy -
The fact that a;i(7) =0 when w; < u; is immediate from property 1, since this implies that
t = §+1. For the other part of the desired result, we work by induction.
Note that by definition
a;i(s) = 0 when w; =4y .
But, when &k =1,
W, = Wigp— a0d Wy = Ui,
and again the desired result follows directly from the definition.

Suppose that a;;—(7) =0 when Witk~1)— = Ui +x—) for some k > 1. Assume, now, that
Wi4p—y = t;4;. Certain conclusions can be drawn from this assumption by the way in which the
knot refinement proceeds. Firstly,

Witp— T Witk— = Wikk-1)-1 -
since the @ knots are indexed in monotone order. Similarly,
Ui = Ujgp = Uiy(p—y)

Secondly,

...........................................................................................
......................................................................................
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Witks = Uitk ,
since the w knots contain all of the ¥ knots.

Now consider the expression for a; 4() from the recurrence:

; Wjgp—y = Uy o Ui —Wiap— .
o pls) = = — a; (7)) + e &)
Ui k- U Uik Ui 1

Since W;44—; = ;4 implies that @j4x—1)-1 = U;4(4-1), this causes a; g —(7) to be zero, by assumption.
Hence, the first term of the recurrence is zero. For the second term, notice that, if

;Ej'f'b_l = a-l""k y
then the numerator of the fraction in the second term is zero. On the other hand, if
Witk— > Uisg
then
Witk T Uisp ,
because the w and # knots are monotonically indexed, and the ®’s contain the u’s. But since
Wigg— = Wit —1)=1 20d Uj4p = Ui 41)4(x—1), this implies that ;4 ¢ —(s) =0.
This establishes the stronger version of property 1.

Property 2 is now easily established. We assume that the o's of order k—1 are nonnegative. Again,
we consider the recurrence. For the first term, if it is possible that a; ;- () is not zero, then we
must have 1 €{6—k+2, .. ., 6}, which means that

u = w;
by the definition of §; consequently

U < Wiy
This means that the numerator of the fraction in the first term is positive.

For the second term, if @4, = w; 4;, then we have shown that the value of @i 414=1(J) 1s zero. In
all other cases, the numerator of the fraction in the second term is positive. Further, by assumption,
the values of o 4—(j) and a;4;4-(j) are nonnegative. Consequently, the recurrence shows that
a; ¢(7) can be written as the sum of two nonnegative terms.

This establishes property 2.

Property 3 is immediately established for all k& by an observation about linear independence. We
know that

mn _
ZNJ"*(U) =1
=0

Furthermore, by the linear independence of the N’s the only linear combination of N;4(#) which can
sum to 1 is the combination shown here, i.e. the one having all coefficients equal to 1. But recall that

....................................................................................................................................................
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_ m+n
B h(@) = )] o s(5)N; (%)
J=0
for each i. Summing both sides of this equation on ¢ yields

1= %'Bi.k(‘f) = S:'"E'n&;,k(ﬂf\",k(i)

i=0 j=0

mtnm . _
= 2 Eas‘,k(J) Nj,k(u) .

=0 §i=0

By the uniqueness of the coefficients which will yield a linear combination of 1 with the N; (%), it
follows that

E:al',k(j) =1 ’
i=0

which establishes property 3.

13.3. Control-vertex Recurrence

The final theoretical remark which we have to make concerns the control vertices themselves.
Recall that

m
W; = 2 a9}V,
i=0

We now see that

5
W; = 3 eV,
i=6—k+
which means that the W, “depend locally” on the V; in the sense that adding knots in a certain region of
u will only change the control vertices being weighted by the B-splines whose nonzero intervals are
touched by these new knots. Moreover, since

5
D) eixls) =1
=6~k +1
and the alpha values are nonnegative, W, must be a weighted average of the vertices V;. Like the spline

curve which both the V’s and the W’s define, each W/ lies in the convex hull of k succesive vertices V;.

Finally, note that the recurrence for the o’s can be applied to produce

5
W; = 3 o)V : (85)
i =6k +1
d Wy -y~ w s Uik~ Wit .
= 2 _ﬁJ_—_‘ “i,k-l(.‘!} + “‘L:‘";_—‘ ‘1.'+1.k-1(3] v;
=k H | Uite— Y Ui Ui 4

This develops into a recurrence for the control vertices themselves. Property 3 of the previous section
guarantees that
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ask 1 k-1(7) = Cpp-fs) = 0,

which permits us to rearrange and collect terms in (85) to obtain

5
W; = P o ;=5 Vi
ik +2

where

=2 = [( F+k =1 -4;)V; "'( Yidp—1— ,+k—1)V —1]/ Ujtp—1 “t)

This may be repeated to yield

Control-Vertex Recurrence:

Let
Vii =V,

and

Vie = [({Ej'l-kwﬂ_ig‘)vi,r—l + (U tpr +t Witk = 1) Vimtp 1 ] /(U = 1~ ;)

for r =2, ...,k (interpreted as zero when the denominator is zero).

Then

W,

) = vﬁ,k »

where & = §(7) is the unique index for which ¥ < ; < 54y

This permits the direct computation of the W vertices from the V vertices using only the knots {u; o
and {wj}mi'n-Hr
13.4. Illustrations

We close with some examples of this process. For the first example consider the curve of Figure
142

Figure 142. A uniform B-spline curve with doubled initial and final control vertices.

The B-splines which weight the nine control vertices are defined on the uniform knots u; ={, and the
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beginning and ending control vertices are repeated once. The coordinates z;, y; of the V; and the knots
u; are given below:

z y
0.4568  1.3369
0.4568  1.3369
04122 02562 V,
1.3482 03788 'V,
14100 15153
B 32199  1.4930
2.8746  0.3565
i 1.9387  0.6685
1.9387  0.6685

We have flagged control vertices V, and V3 because, if we introduce a new knot at & =4.5, precisely these
vertices change. The new control vertices W, prove to be

; - v
0.4568  1.3369
0.4568  1.3369
04196 04363 W,
0.8802 03175 W,
1.3585 05682 W,
1.4100 15153
3.2199  1.4930
28746  0.3565
1.9387  0.6685
1.9387  0.6685

and the corresponding control polygon is shown in Figure 143.

W, W, I I e
! +&'=3 m
LW, W, L
| M s A Ty, ;-9\‘“"/+
W, g -

Figure 143. The curve of Figure 142 after the addition of a knot at ¥ =4.5.

In particular, notice that the three new control vertices W, , Wj, and W, lie closer to the curve than
did the two vertices V, and V; which they replace.

For a second illustration of subdivision, suppose we consider uniform knots #; and add a new knot
at the midpoint of each knot interval of the parameter range: [u;,#;4), f =3, ...,m. For example,
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when m =8

Wy wy Wa Wy Wy Wy Wg W7 Wg Wy Wy Wy Wyg Wig Wiy Wi Wig

1 1 1 1 i 1 1 1 1 1 1 1 1} ] 1 L] 3

T ! ¥ 1 L T ¥ T T 7 T T T L) T L] T

0 1 2 3 35 4 45 5 55 6 65 7 75 8 9 10 11

U U Uy Uy Uy ug Ug Uy ug tUp Uip Uy
= parameter range -

Figure 144, The special case of uniform knot spacing and refinement by midpoints.

é"-':r,i Then the V’s and W’s will be related as follows

Wolw [wolw, | w, | welwglw,|w|wolwglwy,lw,
;
vol-;—
i v N S N e
! 6 | 218
v 11311
2 2l 4128
v R R A T
3 g8 | 2| 4] 28
1 | 1] 81111
v |l =1} 1=
4 8 | 2{4 | 2] 8
1111311
Vs g 2] 4|2
1] 1] s
Ve g8l 218
1
V., —6"1

! Figure 145. The control-vertex chart for the refinement shown in Figure 144.

This chart indicates, for example, that W, is a weighted average of the V’s given by
W3 = 0’1‘4(3)"1 + 02’4(3)\/2 + 0’3’4(3)V3
1 3 1
==V, +SV, + =V, .
g T et gV
In Figure 146 we see the control graph introduced in Figure 36 of section 4.6, which has tripled vertices

! its perimeter.
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VO,O vl,O v2,0 - vb,O VG,D v7,0
VSO vi,()

1

Figure 146. The given, unrefined control graph. Only a sampling of the tripled boundary vertices, varying in
the first subscript alone, are labeled to keep the picture uncluttered.

If we halve the knot intervals in both parametric directions as illustrated in Figures 144 and 145, we
; obtain the control graph of Figure 147.

w0.0wl.Dw2,0 w10,0W11,0w12,0
WB,D w4,0 WE:,O WS,O w7,0 WS,O w9,0

Figure 147. Refinement achieved by halving the knot intervals.

The surface defined by this control graph, which is swept out by values of 3 =4 <8 and 3 = v <8, can
easily be partitioned into four subsurfaces whose parameter ranges are

Surfacel: 3 = ¢y < 55, 3 = v < 55

Surface2: 3 = u < 55, 55 = v < 8

Surface3: 55 = 4 <8, 3 = ¢ < 55

Surface 4: 55 = 4 < 8, 55 = ¢ < 8

whose control vertices are, respectively,
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Woo -+ Wy
Surface 1:

Wi - Wy,

Wos © Wys

Surface 2:

e Wso : w12,0
Surface 3:

W, : w12.7

W5,5 o Wyge

Surface 4:

Wi - Wi -

This observation lays the foundation for a process of “subdivided refinement.” Specifically, each of sur-
faces 1 through 4 can be regarded as totally separate from the other three and can be subjected indepen-
dently to further applications of the Oslo algorithm. It is in this manner that the Oslo refinement can be
brought into cooperation with the subdivision schemes introduced by Catmull [Catmull75, Catmull74].

Considering once more the complete surface, if we again halve the knot intervals then the control
graph of Figure 148 results.

Figure 148. A further halving of the knot intervals.
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Note that this particular sequence of refinements is creating control graphs which are quite clearly con-
verging to the spline surface which the graphs define (refer to Figure 38 in Section 4.7.1). In fact, any
sequence of refinements in which the spacing between the knots tends to zero throughout the parameter
range will show this pattern of convergence.
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14. Rendering and Evaluation

We will cover ways to obtain values of B-splines and their derivatives. This will provide the back-
ground with which to cover some of the methods that have been proposed in the literature to render B-
spline curves and surfaces graphically. Because we are concerned with interactive applications, we will
lay the main emphasis on evaluation techniques that are as rapid as possible. But one rendering tech-
nique, ray-tracing, which is by no stretch of the imagination suitable for interactive systems, has been
included because it offers an interesting use of the Oslo algorithm.

14.1. Derivatives of B-splines

Many of the evaluation and rendering processes used upon parametric curves and surfaces in com-
puter graphics require the knowledge of parametric derivatives, i.e.

d’ o'

du’ ov"
For parametric curves and surfaces generated by B-splines, these derivatives require the evaluation of the
derivatives of individual B-splines:

Dg)Bi,k(g) = Bz(rk)(&‘) .

@), X Qwd), Q.7 .
ou

When the segment polynomials of B; (i) are known explicitly, finding derivatives is no more than a sim-
ple exercise in calculus. For example, with uniform knot spacing, %;4; = #; +1, the cubic B-spline has the
first derivative

bgf(u) = %(3+6u —9u?)  for ;4 SU <4y and u =T~U;y,
Vi o
Bf}(@) () = L (-12049uY)  for Ty ST <Tpag and u =TTy
Lng(u) - %(—3+6u —3u?) for U4y =& <4y and v =U—Uyyy .

In general situations, however, the individual B-splines are available only through their definitions as
divided differences or as the results of a recurrence process. The segment polynomials are not tabulated;
hence they can’t be called upon to provide derivatives.

We shall show how the derivatives of a B-spline can be obtained from the B-spline recurrence.
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Indeed, it is through means of the derivatives, obtained from the recurrence, that the coefficients of the
segment polynomials can be tabulated. Since some rendering and evaluation schemes work more effi-
ciently in terms of segment polynomials, this will be an important result.

We remarked in the development of chapter 8 that differentiation with respect to 4 can pass
through differencing with respect to t. Consequently,

DB, (@) = D=1 (&4 =7) [T (k)] (F-1)57
= (1 (&4 =) [T (k)] DO @) 57
= (1) (g =) [ (k)] (k1) (@ -0)5 7
If we ignore the terms (—1)* and (k1) for a moment, what remains can be written as follows:
(@ T) [T ()t} (T-1) 52 (86)
[y (k=1)t] (F-)4 72 = [ (R —1):) (@ 1) 2

U g — U

= (U4 —0;)

This is true directly from the definition of the divided difference [u;(k):t], if #;4; > &; (as we generally
assume to be the case), but it is also true if %,4; and 4; have the same value. To see this, note that
U; 4, = u; will make the left side of (86) be equal to

- — - 1 —

(@4 =) (@ (K)t) (@) 52 = 0",;{D¢(k)(" )5 =0

14 =uy

For the right side of (86) we may consider ¥;4; =1u; to be the limiting case of 4, - 4. Since we
should have cancelled out the term (; 4 —%;), this will make the right side of (86) be equal to

(% 49 (k —1):2] (u _t)+_2 fig; (k=1):t) (@ —1)§ 7

= (k=) (7 —¢ _ - D(k—l) —$)k2

o P08, ~ o2 O E0E
which is zero, since both terms in the difference will be equal in the limit. The result is that both the
right and the left side of (86) are zero, hence the equality expressed by (86) is valid. (The case u;4, =u;
would be pertinent in fully understanding the validity of a recurrence for B-spline derivatives that will

appear below. However, we will not be setting up a formal argument for the derivative recurrence, so the

case in which @;4; = u; will rest here merely as an observation.)

Applying (86) to the differentiation result and then applying the divided difference definition of
k—1%'- order B-splines to the result gives the following:

D{MB, (7)) = (-1)(k—1)(-1)’=—1[a,.ﬂ(k—l);s](a-:)';‘? (87)
= (=D (k=1 (- (e =1)) (@ -t)§7

B, p(¥) By p—(¥)
- (k—l) —l,k 1 - -: l,k:
Uppp -1~ Y Ui ~ Ui+

For higher derivatives this result could be repeated recursively, but the expressions which result
rapidly become quite complicated. A more productive approach, to be found in [deBoor78] and
[Schumaker81}, involves looking at the derivatives of linear combinations of B-splines:
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m
JDei B y(u) -
150

Since the z, y, and z components of any B-spline curve or surface will be functions of this form, linear
combinations are frequently what we want to work with, rather than with the individual B-splines them-
selves. If the occasion should arise in which the derivatives of only a single B-spline B, ;(2} are wanted,

this can be handled by noting that, for any specific index, s,
m
B, 4 (@) = )e;B; () for cg=+"=c, g =cpyy =" =cy =0 and ¢, =1 .
i=0

Applying the derivative result, (87}, to a linear combination gives:

m o m B () By ()
Dg Y)e;B; (@) = 3 (k=1)e; | — — - =
=0 =0 Uidp—1 "YU Yikp T Uiy

By rearranging the summation to collect together terms which are common to each B-spline, we obtain

Ci 7 Ci~1

Dy Leibip@ = E (6 Bismi(@) -

Yitk—1 T Y
Notice that this sum calls for values of ¢ _; (for i =0) and ¢,, 4, (for £ =m +1). These fictitious coefficients

were introduced to unify the summation; we define them to have the value zero.

The gain in taking this approach is the following: we can define

¢;1 = ¢ for i=0,...,m

and

C'l-C'_
€2 = (k_l)—_f’*—'-l:'_l— for ¢t =0,...,m+1 ,

Uitk —1 " Y

and we have the start of a recurrence which can be carried on to higher derivatives.

Theorem:
(r) m _ mr -
DY) 3le;B; (@) = }]e; 1B s—(¥)
i=0 i=0

where

‘c.

; for ¢ =0,... m

€1

and foreach y =2, ... ,r+1,

. c., - —c._l,._l
oy = (kmih) L5 (&)

Uik —j+1 7 %

............................................................................................
................................................................................
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.................................................................................................................................................................................

The convention is adopted that values of zero are adjoined as necessary at both ends of the index
range ¢ to handle values of ¢ which might not otherwise be defined in (88); that is,

Cog1 =Copp = =ey, =0

Crn+1l T fm+22 " T T Cpry =0 .

The convention that ratios with zero denominators are taken equal to zero is, of course, also in force;
that is,

iy = 0l Uy =1

The above theorem is stated for general 4. In a computational setting. we will want the value of a
derivative at some specific % in the legal parameter range. At any specific value of ¥, however, many of
the terms in the linear combination will disappear, because the corresponding values of the B-splines will
be zero. Let us take this into account.

Suppose & is the unique index satisfying

U = u < Ugyy -

Then
B"]k(ﬁ.) = 0 for lg{&"k'{'l, . .,5}
Consequently,
m [
s(v.T) = Eci,lBi,k(U) = 2 ci,lB:',k(;I) ’
i=0 i=b—k+H
and
(1) - o+ _
Dyls(u) = )] ¢;oB;;4(H) .
i =b—k+1
But

Bl.,k-l({i'] = 0 for ie{é_k+2, . ..,6} y

so the summation for s(l)(tT ) reduces to
6 —
D) cioB; pl¥) .
o=k 42
This means that the linear combination which defines s(1)(i7) has one fewer term than that which defines
s{%). Furthermore, the coefficients
Comk+2,2 - Cg2

defining s()(if) will only depend upon
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cﬁ-k"'l,l ) 06.1 s

all of which are defined. That means that there is no longer any reason to deal with fictitious coeffi-
cients.

As a final observation, it should be noted that Dt({)s(ﬁ ) =0if r = k for any u.

The result of these considerations is that the theorem can be abbreviated to serve as a computa-
tional process.

Derivative-Value Recurrence:

Begin with the coefficients ¢; of the linear combination
- m —
s(@) = }Je;B; (u) .
i=0

Let # and & be given, with
Uy = u < wgy
and let r be given in the range 1 s r < k.,
Set
¢;p = ¢ for i =6-k+1,...,6 .

Foreach j=2,...,r+1, let

Cotq =Cry i
i = (k=) R (89)
Uidp—j4+1 %

for ¢ =é—k+5,...,6 .

Then the rt* derivative of s(%) at the specific value of ¥ in question is given by the linear combina-
tion
§

SO@) = 3 BT -
i=5=k+r 4|

The complaint might be raised, now, that this recurrence pushes one computational problem onto
another, since a summation must be evaluated in order to define the value of s")(&). We will consider
the evaluation of such summations in the next section.

14.2. B-Spline Evaluation

We have remarked in section 14.1 that linear combinations of B-splines are the objects of primary
concern in rendering and evaluation. This is because they constitute the z, y, and 2 coordinates of
curves and surfaces, for example,

X(@) = M'z;B; (@) ,

or
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X(u,p) = Edj('T)Bj,k(“’-) ,
i
where for each j and each fixed value of @ |
dju) = Exs,st,k(ﬁ—) ,

and similarly for Y and Z. In this section we will use the following general notation for any such linear
combination:

() = 20'0,-3,-’,{((7) . (90)

We have used capitol C’s for the coefficients, we have replaced # by U, and we are using a capitol K for
the order of the B-splines, all for reasons that will become clear in the next section.

For any given value of U, the corresponding value of (90) can be obtained from the B-spline
recurrence without dealing with the values of the individual B-splines. Consider the following:

U~ — U %
ZC B; x(U) ZC’ ———— B, y(U) + ———— By (V)
i=l YipK -1~ % UidK T %i41
U-1 . Uy U =
= ZC —_—__'—Bi,K-l )+ ZC _’—_"B;+1,K—1(U) .
Uitk 7Y Yiv TUin

The index in the second sum can be shifted, and the two sums can be recombined, to give

m+l U—-u.: Usap— —5 -
R i Wi Cimy | Bi k10)

——C; + = — Y
i=0 | Uipp—1T Y Uipr -1~ Y

where the values of C_, and C,, 4 are taken to be zero.
H we set

Ciy =C; for i =0,...,m

1,

and
U-a Ty U
C‘-’g = ‘_——L—_—Cil'i'—_:‘:j{—l—_-c‘-_l’l for 1t =0,...,m+l , (91)
Ui+K—17Y i+K -1 Y4
then we have
m+1

s(U) = 2)Ci2B; g (U)
=0
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on which we can repeat the above development. This clearly produces yet another recurrence.

Theorem:

Let U be a given fixed value in the legal parameter range. Let & be the unique index such that

B = U < gy
Then the value

— m —
s(U) = J)C;B; x(U)
i=0

is given by

s(U) = Cyx
where

Ciy = C; for i =0,...,m

and
L_I_‘i‘_' E'+ _'+ —.ﬁ
Cij = = o+ T Oy for =0, ms]
Uik —j417 Y YidK —j+1 7Y%
for j=2,...,K, As in the theorem (88) for derivatives, the convention is adopted that values of

zero are adjoined as necessary at both ends of the index range ¢ to handle values of C; ., and
C;— ;-1 which might not otherwise be defined; that is,

0_1,1 = 0_1,2 = e o= O“‘I,K—l =0
C'm+1,1 = Cm-{-".’,? = =Chig1 k-1 =0 .

The convention that ratios with zero denominators are taken equal to zero is, of course, also in force;
that is,

Cij =00 Uyp iy =%

The formal result of the recurrence is actually

m+K~-1

s@) = 3] CixBiy(0)
i=0

but all of the values B,-,l([-j) are zero on the interval &; = U < gy, except for B&l(ﬁ), which has the
value 1.

The observations which were made in the previous section about computational economies which
arise when the specific value of U is taken into account may be echoed here to yield another computa-
tional recurrence.
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Spline-Value Recurrence:

Let U be given, and take 6 to be the index satisfying
;= U <ugy .

Let
Cip = C; for i =6=K+1,...,6 .

For eachfor j =2, ... K, let
U-g, Uipgo—ip =U
i 1K =5+1
Cis = = —— Cijmt = Ciq,1 (92)
Ui b —j41 Yy Uipg -1 Y

for 1 =6-K+j,...,6 .

Then

s(U) = Coi -

14.3. Conversion to Segment Polynomials

Now we will revert to our previous notation:
- m
s{@) = })e;B; \(u) . (93)
i=0

Given a fixed value of ¢, consider the breakpoint interval
Uy S 4 < Uy .

Within such an interval, any linear combination (93) becomes simply a polynomial; hence, it could be
expressed as

o(@) = 3o ()@, (04)
r=G
= Do, @)u
r=0

for some collection of coefficients a,(6), where u = & —it; We will present a computational scheme for
making the conversion from the B-spline representation of &(@), (93), which is valid for all
Te [t~y U, +;), to the power representation, (94), whose coefficients a,(5) are only valid on the specific
breakpoint interval #; = % < %;,;. The reason for wishing to make this conversion will become more
evident in the next section, but it derives from the observation that representation (94} can be evaluated
more efficiently than (93). The conversion is costly, however, so it will only be interesting when we are
faced with the task of evaluating s(%) several times in succession on a breakpoint interval. In
[Schumaker81] it is observed that two or more values of s(#) on a breakpoint interval would already
make the conversion worthwhile for cubic splines.

Note that
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(s(@) = DO Ta (6)(F—)
DPs(@) = DY) Ta(o)(a-a)
=0

k-1 )
= é’a,-(ﬁ)(j)"'(r—r+1)(1T~t75)"’ ,
and
DEe(@) |gug, = a,(6)rt -

The consequence of this is that it is merely necessary to “dovetail” recurrences (89) and (91) to produce

agl6) ;.- ap(6) .

Segment-Polynomial Conversion Recurrence:
Let a breakpoint interval [#;u,,,) be given. Let
e;1 = ¢ for @ =f+k-1,...,6 .
Foreachr =1, ...,k—1in turn:
(1) LetC; = ¢; fori =§+k—r,... 6
Use recurrence (92) with U =« & K =k—r+1, and coefficients C; to obtain a value C; .

(@) Seta,4(6) = IO

(8)  Use one step of recurrence (89) to produce ¢, 4 for ¢ =é+k—r+1,...,8

14.4. Rendering Curves: Horner ’s Rule & Forward Differencing

Our problem is to evaluate piecewise cubic polynomials so that we can display the curve they
define. Let us consider the polynomial

pe) = a +bu +cu®+du® . (85)

If p(u) is to be approximated by N line segments then we will need to evaluate p(u) at N+1 values of .
Direct application of equation (95) requires 6(N+1) multiplications and 3(N+1) additions. However, we
can rearrange equation (95) to obtain

p(u) = a +u(b +u(c+du)) . (96)

Evaluating p(u) at N+1 values of u using (96), which is called Horner’s rule or nested multiplication,
requires 3(N+1) multiplications and 3(N+1) additions — an improvement. Indeed, Horner’s rule is

optimal with respect to the number of arithmetic operations if we are evaluating p(u) at a single u value
[Aho74].

We can do even better if we are evaluating p(u) at a sequence of equally spaced u’s. Suppose that
we wish to evaluate p(u) at the N+1 positions

u=th for ¢t=0I1,.,N,

where h is the step size. If we were dealing with a linear polynomial, say
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g(u}) = a +bu
we would simply observe that
gluth) —q(u) = a + b{uth) —a —bu = bh

so that we could efficiently generate the desired N+1 points q; = (u;,y;} by computing

uy =0

Yo =a

fori «1stepl,..., Ndo
u, = u;, +h
y; = Y- tbh

endfor

Of course, to avoid redundant computation of b2 we would precompute it outside the loop:

ug =0

Yyp=a

A, =bh

fori«~1stepl,..., Ndo
u, = u; 4 +h

Yi = Vi t4

endfor

This technique can be generalized to polynomials of higher order. Suppose that r(u} is a quadratic poly-
nomial, say

r(u) = a +bu +cu? .

Then
A(u) = r(uth) = r(u)
= a +b{u+h) +c(u?+2hu+h?®) —a —bu —cu?
= (bh +ch?) + (2ch )u
so that
r(uth) = r(u) + A(u)
where

Siggraph "85 14. Rendering and Evaluation San Francisco



An Introduction to the Use of Splines in Computer Graphics 209

Ayu) = (bh +ch2) + (2ch)u .

However, the technique used to evaluate ¢fx +h) can’t be applied immediately because A,(u) is a function
of u, and therefore changes value at exch iteration of the loop. We could, of course, simply evaluate
Ay(u) at u=0,k,2h 3h,..Nh and use the results to compute r(u) at each of these points. Notice, how-
ever, that A;(u) is a linear polynomial. We already know how to evaluate a linear polynomial efficiently
for such a sequence — we simply compute A,(0) = bk +ch? and then add

Agfu) = Aj(u+h) = Afu) = 2ch?

to A,(ih} to obtain Aj(ih+h). Altogether, then, our computation now looks like this:

ug =0
Yo = a
A, = bh +ch?
4y = 2ch?
fori«1lstepl,..., Ndo
u, = u_th
Yi = ¥ 4
A = A+ A
endfor
Let us recapitulate. When r(u) is a qudratic, the value A;(u)=r(u+h)—r(u) that must be added to
r(u) to obtain r(u+h) is not a constant — it changes value as we move from u to u+h. Fortuitously,
though, A;(u) itself is easy to update after we have reached u+h so as to obtain the increment that will

be needed to compute u+2h from u+h;we simply need to increment A; by Ay, which is the constant
2ch?.

We may extend this approach to our cubje polynomial p(z) in much the same way. In this case

Afu) = plu+h) ~ p(u) = {th +ch?+dh®) + (2ch +3dh%)u + (3dh)u?
Ag(u) = Afu+h)—A4,(u) = (2ch?+6dh%) + (6dh%)u
Ag(u) = Ag(uth)—Ayu) =6dh® .

Suppose that we know A(u), Ay(u) and 4(u). Then these equations tell us that
p(uth) = plu) + Afu)
Aj(uth) = Aj(u) + Ajfu)
Agfu+h) = Agfu) + Afu)
Ay(u+h) = 6dh3 .

Having obtained p(u+h), A;(u+h), Afuth) and Ay(u+h), the same equations tell us how to compute
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p(u+2h), A(u+2h), Axu+2h) and Az(u+2h), and so on since they are valid for any u, and in particu-
lar are valid for u'=u +h:

p(u'+h) = p(u') + 4)(u")
Au'+h) = Ayu) + Au)
Agfu'+h) = Au') + Ayu)
Ag(u'+h) = 6dh® |
Thus we may use the following algorithm to compute the desired N+1 points on p(u), beginning from
p(0), 4,(0), 25(0) and 45(0):
ug =0
Yo = @
A; = bh +ch? + di?
Ay = 2ch® + 6dn®
A, = 6dn®
for? ~1stepl,..., Ndo
u; - u;; +h

Y =yt 4

4; = 4;+ 4,
endfor

Aside from initialization, this method of computing the y; requires no multiplications and only 3N addi-

tions (plus N additions to compute the u;). This is a substantial improvement, especially when multipli-
cations are expensive.

Of course, we are actually interested in parametric polynomials. Thus a 2D curve is represented by
Qu) = (X{u), Y{u))

where X(u) and Y{u) are each cubic polynomials of the parameter u. Typically u varies between 0 and
some maximum value u, : for the time being we shall assume that u_ ., =1, as is the case for each seg-

ment of a uniform cubic B-spline curve. Evaluation of the curve is then performed by forward differenc-
ing the equations

X(u) = a, +bu +c, u’+du’
= 2 3
Y(u) = a, +bju +c u® +dyu

simultaneously, using the same step size h:
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a:o = az
Az, = bh +c,h? + d h°
Az, = 2¢,h? +6d_h®
Az, = 6d,h°
Yo = gy
Ay, = byh +c h? +d k3
Ay, = 2cyh2 + fidyh3
Ayg = 6dh®
fori«~1stepl,..., Ndo
z; = z; + Az,
Az, = Az, + Ag,
Azy = Az, + Az,
Y = ¥ + 4y,
Ay; = Ay, + Ay,
Ay, = Ay, + Ay,

endfor

A 3D cubic curve
Qu) = { X(u), Y(u), Z(u))

would be computed analogously.

We should note that forward differencing is not a universal panacea, owing to the cumulative error
that arises from the finiteness of our arithmetic. This is particularly a problem on machines that lack
floating point hardware, as is usually true of the microprocessors one finds integrated with displays. To
see why this is so, suppose that each of z, 4,, A, and A; is at most one unit in error. After ¢ iterations,
Ag is still correct within one unit because it is a constant. '

The possible error in A,, however, is larger. At each iteration of the loop its error may increase by
one unit because we are adding A, to it, so that at the end of j iterations it may be in error by as much
as 1+7.

The maximum error in A, after k steps is its initial error, plus the sum of the amounts by which 4,

may be in error at each step of the iteration. Hence the maximum possible error in 4, is given by
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k
14 J(1+)) -=1+k+-ﬂk?+ll .
=1

Finally, the maximum error in z or y after N steps is its initial error plus the error that may have been
contributed at each iteration by A;. This amounts to

N 2 3
l+21+k+ﬂk2+1)] _ 1IN +6N*+ N

k= 6

If we are working on a 512>512 raster display, the coefficients a, b, ¢ and d require at least 9 bits of
accuracy, and since they can differ in sign, will require more. Two to three additional bits of subpixel
accuracy are desirable for antialiasing. If N =25 then the total error might be as much as 216 requiring
that we maintain at least 16 bits of extra fractional precision to avoid an error or more than one pixel, for
a total of about 28 bits. Il N = 2% then the total error might be as much as 222 and we cannot be sure of
preserving the 12 or more bits of accuracy we desire, even on a 32 bit machine.

There are two obvious ways of dealing with this problem: one may use multiple precision arithmetic,
or one may scale 4; and A, so as to provide “guard” bits, and shift them away before adding them to y;
and A,;, respectively. In this way the error that is added to y; does not, practically speaking, grow as the
computation proceeds.

Suppose that we maintain A; and A, scaled up by N=2" =1/h and shift them right by n (written
>>n) before adding them to y; and A, respectively, so that (roughly speaking) errors will be restricted
to the bits that are discarded. Notice that there is no reason to scale up 4, since it is a constant.

Yo T ¢

4, = b +e>>n +d>%

Ay = 2¢>>n +6d>>2n
fori «1stepl,..., Ndo

Y = Y;—q t 4, 5>n
Ay = dyt 4y

endfor

Now the maximum possible error in y; is approximately 2". If we assume that we will never want n >8,
and maintain y; with 10-12 fractional bits of precision our computation will be satisfactorily accurate
using 32 bit integer arithmetic. If n =6 then we can even squeeze the computation into 16 bits.

Of course, a machine with floating point hardware performs this scaling for us automatically, and if
N =28 we are unlikely to have problems with cubic polynomials. Nevertheless, it is apparent that cumu-
lative error could become a problem, even on machines with floating point hardware, if we were to try
differencing significantly higher degree polynomials. '
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14.5. Partial Derivatives and Normals

To perform solid area shading and hidden surface processing on raster devices, the simplest
approach to take is to obtain a “wire frame” approximation to a spline surface. One way this may be
done is by using the points Q{u;,v ;) generated from the grid of values

T =Gy +iAT and U = G, +iATV .

These are the positions in space at which the lines of constant parameter on the surface intersect, and
these positions may be taken as the vertices of polygons used to approximate the surface. We have ren-
dered most of the spline surfaces in our figures by this method.

Another way of obtaining a wire frame approximation is to use the vertices W; ; of a suitably
refined control graph as the polygonal mesh.

After a wire frame approximation has been obtained, by whatever means, standard polygonal tech-
niques can be used to determine visibility, compute shading (if desired), and render the polygons. With
respect to shading, however, a word of caution is in order. Since the surface Q) is not planar, the rec-
tangles formed in the obvious way from the points Q(u;,U;) or W, ; are not necessarily planar. It is

sometimes advisable to render shaded, spline-generated polyhedral surfaces by dividing each rectangle
into two triangles along one of the diagonals.

For smooth shading computations one may, of course, simply average the polygon normals for each
of the polygons sharing a vertex. However, it is straightforward to compute the cross-product of the par-
tial derivatives with respect to u and v, so as to obtain an accurate normal vector at each polygon. The
example of uniform cubic B-splines is instructive to bring out some of the computational issues in doing
this.

From equation (31) we can see that to compute

2

'5; Q{Jj(u )U)

we simply evaluate a point on each of four uniform cubic B-spline curves to obtain what we called W,
W;, W, and W in equation (31), and then we use these to scale b(_lg(v), b{_lg(v), b.{_lf(v), and b(_ld(v}. To
compute

Tga_u_ Q:',j(u»v)

we factor out b(_l(}(u), b(_ll)(u), b(_l,g(u), and b(_li(u) instead and proceed analogously.

It is worth pointing out that there are a variety of ways to give the user effective cues about the

shape of a surface, and “realistic” shading is only one of them. Robin Forrest compares a number of oth-
ers in [Forrest79].

14.6. Locality
The locality evidenced by uniform cubic B-splines has two advantages.

® It allows the designer of a complex curve to alter its shape in one region without affecting the shape
of remote portions of the curve that have already been satisfactorily defined; the same is, of course,
true of surfaces.

® Because only a part of the curve changes when a control vertex is moved, only a part of the curve
must be recomputed. This facilitates real-time interaction.

Recall that the uniform cubic B-splines are translates of one another; that is, they are identically shaped.
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If we choose to approximate each curve segment by s consecutive chords whose end points are equally
spaced h =1/8 apart in u, then it is sufficient to compute values of the four basis segments at

u =0,h2h - - (s—-1}h,8h =1
and store them in arrays b_,[k], b _,[k], b_,[k] and b_g[k] before beginning to draw the curve and simply
look up these values as we compute and draw each segment using

Qi(kh) = f‘ Vigrbplk] = V,gb_glk] + V50 _o[k] + V; b [k] + V;b_g[k] .

These precomputed values can also be used when we alter the position of some control vertex V; and
need to recompute the four segments Q;(u), Q;41(t), Q;4o(u) and Q, 45(u). Since we usually need to
recompute these four segments several times as we move V,, it is advantageous to add together the terms
not involving V; so that we need only perform a single multiplication and addition in order to obtain each
new coordinate. For example, on the 1 segment we would precompute

Clk] = Vigb_glk] + V;pb ,fk] + V3 [k]
as soon as the user had selected V; for alteration, and then compute
Q,(kh) = Clk] +V b_yk]

each time we wanted to redraw this segment.

ViaVioViyg Vi Vi VipViag

/

. \"/

U; Ui Uiz Ui Uity

Figure 149. It is occasionally helpful to recall our indexing conventions. The i** interval is [T;,8;4;). It is
determined by V,—, V, 5, V;_ and V,. On the other hand, V; contributes to Q;, Q;+4,, Q4o 2nd Q; 45

These observations extend to surfaces in the obvious way.

14.7. Scan-line Methods

One would prefer to work directly with the curved boundaries of these spline surfaces, rather than
approximating them with straight line segments as one does by reducing them to polygons. There are
two sources of complication in this approach, both resulting from the way in which scan-line algorithms
are organized.

Firstly, because patch boundaries are parametric curves, altering 4 or v by a fixed amount does not
everywhere result in movement of the same distance along the surface, or even in the same direction.
Hence there is no simple incremental way to compute the intersection of an edge with scan-line n from its
intersection with scan-line n—1. Instead one has to use iterative numerical techniques. A typical
approach is to solve for a zero of Y(0,0)—n =0, Y{1,5) ~n =0, Y{%,0)—n =0, or Y(u,1)—n =0 (depending
on which boundary is involved) by performing Newton iteration, using the known intersection of Y{u)
with scan-line n—1 as the initial guess. Given that we know the values (if,1;) and (i,7,) at which the
left and right edges of a patch intersect the current scan-line, an analogous technique must be used to
compute the values of (Z,0) corresponding to each interior pixel on that scan-line.
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A more serious problem, arising because the patches are themselves curved, is that the apparent
visible boundary of a patch on the display screen need not be an actual boundary of the patch. These are
called silhouette edges, and to perform the sort of scan conversion described above one must first identify
the silhouette edges. A given boundary also need not be monotonic; it may intersect a scan-line more
than once. Moreover, il we are generating a picture in top to bottom order, the highest point on a curved
patch need not occur at a vertex, as it does for a polygon. Completely acceptable methods for dealing

with these problems have yet to be developed. The state of the art is ably discussed in [Blinn80,
Schweitzer82].

14.8. Ray-Tracing Cubic B-spline Surfaces

In this section we outline a method for intersecting rays with B-spline surfaces, based on the
recurrence properties of B-splines [Cohen80] and on the fractal intersection algorithm of Kajiya
[Kajiya83). '

The material presented here is a brief account of that in [Sweeney84]. The method given there
requires the aid of two preprocessing steps. The first step employs control-vertex refinement to produce
local information about the surface suitable for use in starting Newton’s iteration. The second step builds

a tree of nested bounding boxes to be used for a version of hierarchical intersection testing that derives
from Kajiya’s work on ray-tracing fractals

14.8.1. Refinement Preprocessing

The first step in preprocessing a spline surface involves using the Oslo algorithm to replace the
representation of the surface in terms of given control vertices by a refined representation in terms of
more control vertices. The easiest version of this refinement process, which is the one presented in [Swee-
ney84], restricts the surfaces to those generated by uniform cubic B-splines and carries out Oslo refine-
ment only by the introduction of d equally-spaced knots within each interval of the legal parameter
range. For example, Figures 144, 145, 146, and 147 give an instance of d = 2, and Figures 146 and 148
give an instance of d =4. General B-splines could be used, of course, and more general refinements are
possible. Moreover, the “subdivided refinements” mentioned in connection with figures 146, 147, and 148
appearing in section 13.4 could be employed. That is, an entire surface can be regarded as the union of
two or more smaller surfaces, with separate control graphs derived from the single graph of the entire
surface, and each of the smaller surfaces can be independently refined. Subdivided refinements provide
the flexibility of dynamically adjusting a control graph to account for surface areas of local high or low
variation.

The control vertices must be refined in advance of the ray tracing process sufficiently so that:
® the projection of each refined facet
Weetr Winen
P A (97)
covers no more than a few hundred pixels on the screen;

® the refined knots @, 4, (for parameter i) and t, 4, (for parameter ) associated with a control vertex
‘W, , resulting from the refinement constitute acceptably good starting guesses for the Newton
iteration, which is used to locate a ray’s intersection with the spline surface.
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14.8.2. Tree Construction

The refinement process described above constitutes a first step in the preprocessing of each spline
surface. The second step in preprocessing involves building a tree of nested rectilinear bounding boxes
containing the refined vertices. (Rectilinear bounding boxes; that is, boxes whose sides are aligned with
the coordinate planes, are advocated in [Sweeney84] because intersections of rays with such boxes are
easy to compute [Weghorst84]. contains further discussions on building nested structures of bounding
volumes for the purposes of ray tracing.) The smallest bounding boxes in the tree, the leaf bounding
boxes, must satisfy two containment requirements:

® each leaf of the tree should represent a small bounding box that is cented on one particular refined
vertex or facet and is large enough to guarantee the inclusion of a piece of the underlying surface.

® the union of the leaf boxes should include the entire surface.

Each other bounding box in the tree; that is, any one associated with a non-leal node, must provide
nested containment of all boxes associated with its children nodes.

A rectilinear bounding box is defined by two points (zmin,ymin,zmin) and (zmaz,ymaz,zmaz).
An secure way of meeting the requirements just stated is to build the bounding box at each leaf around
one of the facets (97) with zmaz, zmin, ymax, ymin, zmaz, and zmin set just large enough to contain
the convex hull of the 16 vertices associated with this facet:
wr—1,5+2 wr,8+2 wr+1,a+2 wr+2.c+‘2

Wr-l.c'i'l wr,s'ﬂ Wr+z,s+1 Wr'i‘213+1

wr —1,8 wr,a wr +1,8 Wr +2e

wr ~i,6~1 wr &1 Wr +1,2~1 W,. +2,8—1

An alternative to this is the construction advocated in [Sweeney84], where a box is built around a single

vertex W, ,, and zmaz, ..., zmaz are set large enough to include the 4 surrounding vertices
Wr,c +1
wr-],n Wr.c wr+1,c - (98)
wr,e-“l
A predefined overlap is included in the setting of zmin , ..., zmaz to include volume beyond that con-

taining the vertices (98). For a sufficiently large overlap, the requirements concerning containment set
out above will hold well enough to serve the purposes of ray tracing.

Finally, a pair of values for #,U is associated with each leaf box. This pair of parameter values
should give a point on the surface cented within the box. For example (recalling that the knots w, are
those which result in refining along the & parameter axis and the knots t, are those which result in refin-
ing along the ¥ axis), the pair of values

u = %(Er*l + 0, 45) (99)
- 1, - -
v = ?(ts'& + ts+3)

are reasonable ones to store for a bounding box defined on the 16 vertices around the facet (97), while the
pair of values
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u = Wy 4o (100)
v o= Lo

is reasonable for the scheme which uses 4 vertices about (98) plus overlap. Such a (i,v) pair will serve as
the starting values of a Newton process to be described below.

Finally, each internal node of the tree should represent a bounding box that is just large enough to
contain the bounding boxes of its four children.

The leaves can be organized into a tree by a procedure that recursively subdivides the 4,4 parame-
ter rectangle. At each level of recursion, the procedure allocates a node of the tree (the current node)
and connects to it the four nodes to be allocated at the next level. The current node is associated with a
rectangular section of the 4,v range (in particular the root node is associated with the entire u,v rectan-
gle), and the current node’s rectangular section is quartered by halving its sides to produce the subrectan-
gles given to the current node’s children.

The recursion terminates when the current node’s rectangular section of the #,v plane contains
only the pair of values (99), in case the 16-vertex leaf box is used, or the pair of values (100) in the other
case. The current node is tagged as a leaf node, and a leaf bounding box is calculated as described above.

As the procedure returns through the recursion, the parent nodes are tagged as internal nodes, and
ever larger bounding boxes are calculated to contain the bounding boxes of the children.

The memory requirements for a spline surface are determined largely by the size of the tree of

bounding boxes, and this is dictated, in turn, by the number of given control vertices and the level of
refinement.

14.8.3. Intersection Processing

Kajiya [Kajiya83] has reported on a method for finding the intersection of rays with fractals and
other surfaces he calls height fields. His algorithm has the property that it correctly handles surfaces

that intersect rays at more than one spot. The algorithm is not limited to height fields but can be applied
to any three dimensional surface.

Recall that the leaf nodes of the tree of bounding boxes contain starting values for a Newton itera-
tion. Kajiya’s algorithm, as applied to the subdivision trees described above, selects candidate leaf nodes
for further processing by Newton’s iteration, or else it rejects the ray as having no intersection with the
surface if the ray fails to intersect any bounding box at some level of depth in the tree.

Briefly, for each ray one may maintain a linked list of active nodes. Attached to those nodes are
various subtrees of the tree of bounding boxes described above. With each node is associated a distance
from the ray origin to the closest intersection with the bounding box of the root of the attached subtree.
One may maintain the list of active nodes sorted by increasing distance. The algorithm would proceed as
follows:

® Choose the first (closest) node on the active node list, and remove it.
@ If the root of the attached subtree is interior to the tree consider in turn each of its four children.

® If the ray hits the bounding box of a child, then attach the child to an active node, and sort the
node into the the active node list.

® If the root of the attached subtree is a leaf, use the contained (,v) parameter values to initiate a
Newton process.

This algorithm will terminate when the active node list is empty (failure), or the distance to the surface,
as returned by the Newton iteration routine, is less than the distance to the first (closest) node on the
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active node list (success).

14.8.4. The Newton Iteration

The goal of an intersection computation is that of finding a pair of parameter values u,¥ such that
a point Q{u,v) on the surface is also a point contained in a given ray. The two unknowns, ¥ and v, can
be expressed as the roots of a pair of polynomial equations by the trick of formulating the desired inter-
sections as the locus of all points on the surface that lie simultaneously in two planes containing the ray.
This formulation was borrowed from [Kajiya82] although the rest of intersection process to be described is
entirely different from the one he presented. We have

Plane 1: (A4,,B,,C,}(z,y,2) =D,
Plane 2: {(Ay,B,,Cy)(z,y,2) =D, ,

where
(z,y,2) = (X(up),Y(u,p),2(u,0)) = Q=) .
In particular, for a ray given parametrically as

{xarya:zc) +t (:cb)ybyzb) 3

we have
(A1L,B1,C1) = (24, ¥e,2)X(20,4,% )
(A2,B,,C2) = (A,,B,,C1)X(z4,5,%)
Dy = (A1,B1,C1)(24,Ya24)
Dy = (A2,B2,Co)(2¢,9s,2) -
Using

Qlu,v) = i‘ )E_:VE,J'B:'A(E)BJ'A{E} ’

i=0j=0
this gives two equations in two unknowns to be solved:
m n
E@d) = 33 [(ABiC)Vis |Bi@Biu®) ~ D = 0 (101)
£=05=0
for k =1,2.

Let 17{01,17[0} stand for the values stored in a leaf node. Newton’s method starts with these values as
4 an approximation to the solution of {101) and refines them

P R ) B 0 B

DN NP L S

by taking each gl ,5“] and solving the 2 X2 system
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oE, OE,
o a5 |[at¥ Ey(&,at)
6E2 6E2 Eli.ﬂl = Ez(g[‘l’g[‘l)
su  9v

to produce the (usually) more accurate solution of (101} given by ' 5" The partial derivatives
OE;

u

for £ =1,2 are given by

aEk m = 1), — -
= = L[ ABc Vi | BV @ B,@)

. L
and similarly for ——
v

set V; ; in order to reduce computation.

. Note that control vertices used in the iteration should be the original, unrefined

The Newton iteration can be terminated, and tT“ﬂ],J“ * can be taken as defining an intersection, if

!Ex("‘_‘zﬂ]:d‘ﬂ]]l + |E2(17“+1],6[l+1])| < tolerance

Failures should be registered (that is, a ray strike should be regarded as not occurring) if the New-
ton iterates @' ™V ,5{1 *1 wander outside the bounds of the parametric intervals; 1.e.

< g O gl > Uy 4 OF gl < Ug— OF > Vp 41
or if

I > allowance
and the value of

IEl(a.{'+1!y17{t+ll)l +|E2(E(t+1]’6(1+1))|

has increased over that of the preceding iteration step.
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15. A Retrospective and Selected Applications

Before proceeding to the discussion of Beta-splines, we will pause to recall and emphasize a few
results concerning the representation of splines. QOur theme will be “alternative representations;” we will

present several somewhat peripheral topics, some with practical application and some of purely intellec-
tual interest.

Splines are assembled from polynomial pieces, all of a common order and joined with a degree of
continuity specified at each joint individually. That continuity has been specified implicitly, by the knot
multiplicity underlying each joint.

One obvious way of specifying a spline, in fact the first method we discussed, is by listing the indivi-
dual coefficients of individual segment polynomials on the individual breakpoint intervals. The price to
be paid for this method of representation is vigilance. Only some lists of coefficients are acceptable, for
not all lists define segment polynomials that meet with the requisite continuity. Indeed, continuity is

enforced by the linear equations that we have often imposed upon the coefficients of adjacent segment
polynomials.

We have given some evidence that segment-polynomial representation may be useful, despite its
awkwardness. We have used it to construct splines that interpolate control vertices, for example, and we
have suggested that splines can be evaluated efficiently using segment-polynomial representation.

We have not made much comment about the use of different basis polynomials for representing the
segment polynomials, but it is worth mentioning here. We have generally represented segment polynomi-

als as a sum of coefficients times powers of u, which means that we have implicitly used a different
powers basis

u = (T-m)

in each breakpoint interval [&',-,Eiﬂ). Other choices exist. In section 15.1, for example, we will introduce
a basis for describing cubic segment polynomials that automatically enforces C! continuity at the joints
and facilitates the interpolation of control vertices. This basis also makes it trivial to impose any desired
tangent vector upon a parametric spline curve at each joint, and the application chosen to illustrate this
will be the use of cubic C! splines as a method of key-frame inbetweening for computer animation.

Another method of representing splines was given by the one-sided power functions. Since these
functions were themselves splines, and since they formed a basis for the spline space we were considering,
it sufficed to simply supply a list of coefficients for the one-sided power functions. The continuity at
joints was automatically enforced by the continuity inherent in the one-sided power functions themselves.
However, this does not produce something for nothing. The one-sided power functions were, in effect, a
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mathematical mechanism for “hiding” the segments from view, but the inherent piecewise nature of a
spline appears when values of a spline are needed. The evaluation of a spline at any fixed % requires an
“if-then-else” test on each power to determine whether it is or is not zero at that u-value, and the spline’s
value is given by a summation of the remaining powers times their respective coefficients.

The most computationally useful collection of splines that we presented, which like the one-sided
power functions constitutes a basis for the splines of a given space, was the B-splines. In terms of these
special splines, any spline had a representation involving a single list of coefficients, and the satisfaction of
the continuity conditions on general splines in the space was a consequence of the continuity properties of
the individual B-splines. The segmentwise nature of a spline, hidden by the notation of B-spline represen-
tation, arises here as well when one attempts the evaluation of a given spline, for one must ultimately
decide (e.g. at the bottom level of a recurrence) in which interval the point of evaluation lies.

This chapter’s guiding theme — alternative representations — prompts us to recall that there are
many different ways of representing any particular spline. A spline may be given, for example, by its
segment-polynomial representation, or in terms of one-sided power functions, or in terms of the B-splines.
There are algorithms to transform a spline from one representation to another. We have not discussed
transformations between segment polynomials and one-sided power functions; they have little interest for
us either practically or pedagogically. But the divided-difference material covered in chapters 8 and 9

_provides the description of a basis-change process that transforms a one-sided representation into a B-

spline representation. Material in chapter 14 went in another direction, establishing an algorithm to
transform the B-spline representation of a spline into its segment-polynomial representation. Because it is
an important topic that appears in most mathematical books on splines, we develop “Marsden’s Lemma”
in section 15.5. This result gives, in somewhat disguised form, a transformation that reverses the

divided-difference process and transforms B-spline representations of splines into one-sided power
representations.

The bases given above are not the only possible ones to use in representing splines. A special class
of splines that make the solution of interpolating problems trivial to solve, borrowing the tricks embodied
in the basis to be discussed in section 15.1, is the class of the “cardinal-spline” bases. An example of
these will be presented briefly in section 15.2.

Extensions of the control-vertex construction process that we have been using-will also be explored:
if the control vertices are replaced by certain vector functions, the result is a constructive process whose
products are called “Catmull-Rom” splines. These will be presented in section 15.4.

Section 15.2 will have the secondary purpose of illustrating how problems solved using one represen-
tation of a spline can be solved in a different way using another representation. The cardinal-spline
representation provides a solution to the interpolation problem, which was solved in the initial chapters
using a segment-polynomial representation. Section 15.3 will solve the interpolation problem again, this
time using B-splines. A sample application in picture processing will be given.

Finally, section 15.6 will illustrate the use of B-splines in another form of control-vertex approxima-
tion: least-squares fitting. We will present an application of this form of approximation to the job of cap-
turing gestures made with a tablet or mouse, for use in graphical free-hand-drawing software.

We close this introduction with a reminder that the Oslo algorithm presents yet another example of
alternative representations. If S(P¥ {#,}7" **) is one spline space and S( pP* ,{Ej}g"’””‘ ) is another, hav-
ing polynomial segments of the same order and for the same legal parameter range, and if the knot
sequence {Ej}g""’”" contains the knot sequence {17,-}5"'””, then S(Pk AN '”‘) is a subspace of
S(Pk,{fﬁj}g‘ﬁﬁ). This means that any spline in S{P* ,{tT‘-}g‘*'k) can be represented by any of the
descriptive mechanisms for S(Pk,{ﬁj}{)"”*’k}. The Oslo algorithm rested, of course, on the idea of

Siggraph 85 San Francisco



222 The Killer B’s

representing the splines of S(Pk AT +k) (more specifically, of representing the B-splines of
S(P* {&;}***}) in terms of the B-splines of S(P* ’{‘-"-j}(;nﬁﬂ)'

Another observation of this sort was made in chapter 11 (on Bezier techniques). For the uniform-

- knot case we showed that any B-spline curve could be represented as a Bezier curve, and alluded to the

fact that this was true in general. The argument is something like the following: Suppose that
S(P* Aulg’ *%) is an arbitrary spline space. Then each knot in {}" *k may have multiplicity 1 up to
k—1. Suppose that S(P" ,{ﬁj}g‘*'"'”‘) is formed by adding knots to {#;}7" *k to bring each of the knots
@ymy, - - 84y Up to multiplicity k—1. Then the B-spline basis for S(P* ,{t?j}é"'h“‘"‘) will constitute
the k*"-order Bernstein polynomials; i.e. the basis polynomials for k*h_order Bezier curves. From this we
may conclude that any spline curve has a BeZzier representation. Because BeZzier subdivision is efficient
and simple to implement, Barsky has used this observation (jointly with DeRose and Dippe) to construct a

subdivision-based rendering algorithm [Barsky85), and (jointly with Thomas) in designing an interactive
design system [Barsky81].

Since there are a number of options for the representation of splines, questions of choice have to be
resolved by convenience, efficiency, numerical accuracy, or compactness of storage. Sometimes there is no
single solution. In large computer-aided design systems, for example, rendering might best be done using
segment polynomials or using Bezier-based subdivision. Shaping interactions might best be done using the
Beta-spline techniques, to be discussed in the final chapters, backed up by Oslo-based refinement to make
adjustments to the locality over which the shaping takes effect. And the description of a resulting surface
might best be recorded — for the subsequent process of engineering analysis or fabrication — using B-
splines. Only the specifics of an application, and a software and hardware environment, will tell.

For a graphical illustration of the points we have been making above, the reader is referred to the
cover of the January 1985 issue of Computer Graphics, where the outline of a flamingo is defined in three
equivalent ways [Stone85]: one (designated “interpolating”) is essentially an illustration of the segment-
polynomial representation; one (labeled “B-spline”’) shows the B-spline control polygon defining the same
piecewise curve; and the third {labeled “Bezier”) shows the equivalent BeZier polygon for the curve.

15.1. The Hermite Basis and C' Key-Frame Inbetweening
Material in this section derives from [Kochanek84].

One of the oldest techniques used in computer animation is the automatic generation of inbetweens
(intermediate frames) based on a set of key frames supplied by the animator. This same method is fre-
quently used in computer-assisted special effects where camera and positions of objects are defined only
at key points in the action, leaving the calculation of intermediate positions to the computer. Linear
interpolation has been used in many such systems, but it produces undesirable side effects that give the
animation a mechanical look, often referred to as the “‘computer signature.” The most objectionable
characteristic of this type of animation is a lack of smoothness in the motion. The key frames may be
clearly visible in the animation because of sudden changes in the direction of motion (Figure 150).
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key O key 2

key 1

Figure 150. Discontinuity in direction with linear interpolation.

Discontinuities in the speed of motion may also be visible with linear interpolation, for example when the
animator requests a different number of frames between successive keys (Figure 151).

B ” 8 & = » L e . = @ B [ ] . . . L] E
key 0 key 1 key 2

Figure 151. Discontinuity in speed with linear interpolation.

A third common problem is distortion, which may oecur whenever the movement has a rotational com-
ponent (Figure 152).

key O
0]

&

/

= £ key1l

Figure 152. Distortion in length when rotation is simulated linearly.

Inbetweening systems usually begin with the assumption that each of the objects in the i*® key
frame in a sequence can be described by a collection of key points (e.g., the two designated endpoints of
the line segment in key O shown in Figure 152 completely define the segment) and that to each point in
one key frame there will be a corresponding point in all the other key frames of a motion sequence (e.g.,
the same two endpoints reappear in key 1 of Figure 152 to specify a later position of the line segment.) If .
we choose one such point at the .i** key frame,

P, = (2;,y:,%) ,

called the ¢*! key position, then the corresponding points in all of the key frames constitute a sequence of
key positions
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that we want to interpolate using a sinpl smooth curve to ameliorate the above problems. In Figure
152, for example, the top endpoint of the line segment in key 0 could be the chosen key position, Pg;
hence, the key position, P, would be the right-hand endpoint of the line segment in key 1, and the
sequence we must interpolate is merely

P,,P; .
The result of the interpolation should be a parametric curve Q(#) with segments
Qi) = (Xi(u),Yi(u),40) for 0sus1

where
Q:(0) = (X:(0),Y:(0),Z0) = {5;,:,%) = P

and
Q:(1) = (X:(1),Y:(1),Z{1) = (fia e sin) = Pier -

The positions in the inbetween frames on each such segment will be given by Q;(u) for some sequence of
u-values between O and 1. The entire curve Q[f) defines the ¢rajectory followed by the point whose key
positions we have interpolated. The motion dynamics of the the point’s transit over this trajectory will
be determined by the sequence of w-vales chosen. The discussion to be given here covers only the tra-

jectory aspects of inbetweening; there is much work left to be done on the the aspects of motion dynam-
ics.

If we decide to use cubic splines with C' continuity at each joint, and we consider each of the seg-
ments in turn, we recall from chapter 3 that each of the component polynomials X;(u), ¥;(¢), and Z;(u)
can be defined uniquely by Hermite interpolation. Two constraints are given directly by the interpolation
conditions and the other two constrainis are given by specifying derivatives at u =0 and v =1. Thus,
Q;(u) is completely determined by

P; and D; = [———dX‘(O] ,ﬂ@,@]
du " dv du

and

dX;oll) dVall) dZ;4(1
P,y and Dyy =[ d:“’ d:()' d:()]

This is shown in Figure 153.
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D, D4

Qi(u)

Figure 163, The trajectory between two key positions.

An automatic inbetweening system may choose D; and D; 4, by some geometric information derived
from the surrounding keys, or by human input, or by some combination of both.

The specification of X;(u), Y;(u), and Z;(u) is most conveniently made in terms of the Hermite
tnterpolation basis functions, which are shown in Figure 154:

1 1

1 1
ho(u) =2u®~3uZ+1 hyu) = ~2u®+3¢?
1 1

1 Co— 1
ho(u) = u®—2u?+u hafu) = u®—u?

Figure 154. Basis polynomials for Hermite interpolation.

These functions have the following properties.

ho | hy | Ao | ks
function value at u =0 | 1 0 0 0
function valueatu =1 | O 1 0 0
derivative at u© =0 0 0 1 0
derivative at u =1 0 0 0 1

Consider any expression of the form
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p(u) = ahglu) +bh(u) +chyu) + dhyfu) ,

where a, b, ¢, and d are arbitrary coefficients. Note that hy(u) alone determines the function value of
p(u) at the start of the interval; that is, p(0) = a. Similarly, h;(u) determines p(u) at the end of the
interval; that is, p(1) =b. The derivatives of p(u) at the beginning and end of the interval are deter-

mined by hy{u) and hy(u), respectively; that is, p/(0) = ¢ and p'(1) =d. These observations lead to the
representation

Qi(u) - (Xi(u)iy:'(u)’zi(u))
= ho(u)P; + hy(u)P;4y + ho(u)D; + hy(u)D;yy .

In matrix form this expression reduces to

Q,—(u) - U'h'C (102)
2 -2 1 1] ¥
- [3 . ] -3 3 =2 —-1] |Piwn
veuwllrl g o 1 of D,
1 0 0 0} |D,y,

Note that the vector u changes only from one frame in the animation to the next. Within a given
frame it applies to the =, y, and 2z components of all key positions which are being interpolated. The
matrix h contains the coefficients of the Hermite interpolation basis functions and is therefore constant
for all frames and all key positions. In practice, u-h need only be calculated once per frame for each col-
lection of key positions that are moving as a unit. By contrast, each C, which is a 4>3 matrix,
corresponds to a single key position and is independent of the C associated with any of the other key
positions being interpolated. It does not change from one frame to another (except at a key frame), and
the independence implies that all key positions can be interpolated “in parallel.”

To give an example, the product u-h would be the same for both the top (key 0), respectively right
{key 1), and the bottom (key 0), respectively left (key 1), endpoint of the line segment in Figure 152.
However, there would be one version of C for the top/right endpoint and another for the bottom/left
endpoint. If the animation sequence included a circle whose motion differed from that of the line seg-
ment, h would remain the same, but a different version of u and C would be needed.

Using this formulation as a framework, we offer some suggestions about finding values for the com-
ponents of D; and D;4, (the tangent vectors at the key positions) purely from local geometric informa-
tion. The tangent vector at P; may be calculated as

1 1 '
D; = '2‘(P.'+1“Pe—1) - '2_[(Pi+1_Pi) + (Pi—Pi'-l)) : (103)

which is simply the average of the source chord P; —P;_, and the destination chord P;4;—P;. We will
refer to this average as the default (Figure 155). (This method of derivative generates what are com-
monly called the “Catmull-Rom splines,” although we shall see in section 15.4 that this method is actually
just a particular instance of the family of splines defined by Catmull and Rom.)
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] 0

P;

Figure 155. An example of the default interpolation.

At the beginning of a motion sequence, i.e. at Py, some arbitrary choice for the source chord must
be made. Similarly, the destination chord must be specified arbitrarily at the end of the sequence. Alter-

natively a specification of the beginning and ending tangent vectors can be made without regard to any
chords.

A standard smooth motion through a given set of keys does not always produce the effect desired
by the animator. In certain cases a wider, more exaggerated curve may be desired, while in other cases
the desired path may be much tighter. This suggests that some sort of “tension” in the trajectory as it
passes through a key position, such as that shown in Figure 156, would be desirable.

Pl' P,‘

Figure 156. Two interpolations; the one on the right being more tense at P, than the one at the left.

The animator may wish to have a trajectory anticipate or overshoot a key position by a certain amount.
This suggests that the sort of “bias” illustrated in Figure 157 would be useful.

P,
Figure 157. A biased interpolation at P.

Even continuity in the direction and speed of motion is not always desirable. Animating a bouncing ball,
for example, actually requires the introduction of a discontinuity in the motion at the point of impact.
Variation of “continuity” is illustrated in Figure 158.
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Figure 158. Two interpolations; the one on the right being more discontinuous than the one on the left at P,

We can introduce tension, continuity, and bias parameters by separating each tangent at the i*®

_key position into an incoming and an outgoing part, respectively the source derivative DS; and the des-
tination derivative DD; as indicated in Figure 159.

DS; 4

DD; DD; 4
P; Piy

DS;

Figure 159. Incoming and outgoing tangents of two key positions.

These replace the single tangent vector in the default spline at each P. Furthermore, the default average
(103) is relaxed in favour of a more selective average of the source and destination chord.

A tension parameter ¢; to control how sharply the curve bends may be implemented as a scale fac-
tor which changes the length of both the incoming and outgoing parts of the tangent vector equally at P;:

DS; = DD; = (l‘ti)‘;' ((Peﬂ‘Pi)"’(Pi“Pi-x)) : (104)

Setting f; =0 produces the default; the tangent vector is the average of the two adjacent chords.

Increasing the tension to t; = 1 (Figure 160) reduces the length of the tangent vector to zero and tightens
the curve to a corner.

= | 0

P;

Figure 160. An interpolation at P, with ¢; = 1. The value of ¢ is zero at all other points P.

Reducing the tension to t; = =1 increases the tangent vector to twice its default length and produces
more slack in the curve (Figure 161).
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O D

P;

Figure 161. An interpolation at P; with t; = =1. The value of £ is 2ero at all other points P.

The value of t; can be set at other values for more pronounced effects. For example, t; > 1 will produce
loops (Figure 162):

0 O

P;

Figure 162. An interpolation at P, with t; =4, which results in a loop. The value of ¢ is zero at all other
points P,

The principal reason for using splines in key frame animation is to avoid discontinuities in the direc-
tion and speed of motion which are produced by linear interpolation. However, in animation discontinui-
ties are sometimes necessary to create realistic effects such as punching, bouncing, etc. A common tech-
nique to introduce such a discontinuity into an otherwise continuous spline is to repeat a key position or

to simply terminate the spline at a key and start an entirely independent spline to interpolate the next
sequence of key frames.

Neither of these approaches is very satisfactory because the discontinuity cannot be controlled.
While it is true that, mathematically speaking, a spline’s derivative is either continuous or discontinuous,
the artist’s view is quite different. He or she would like to have more control over continuity than a sim-
ple on/off switch. In fact, from the animator’s point of view two curve segments which have very dif-

ferent tangent vectors at their joint appear “more discontinuous” than two curve segments which have
fairly similar tangent vectors.

Using ¢; to denote a continuity parameter, we may allow the source and destination components of
the tangent vector to differ from each other according to:

1=¢; 1+¢; |

D§; = [T(Pi‘l’.'—]) + —2'—(1’;-‘-1"1’;)] (105)
1+C£ 1- ‘-

DD; = [’T{Pi‘Ps-1)+"'2_c‘(P£+1'P;)] . (106)

Note that with ¢; =0 we obtain DS; = DD;, which produces a spline with tangent vector continuity at
the keys. (In fact, this choice reproduces the default interpolation.) As the magnitude le;| of ¢
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increases, the two tangent vectors become increasingly distinct. When ¢; = —1 (Figure 163), the source
tangent vector DS; reduces to the source chord, and the destination tangent vector DD; reduces to the
destination chord, producing a pronounced corner in the curve, if the two chords are not colinear and of
equal length. In fact, Figure 160 is exactly reproduced with this setting. As ¢; is made more negative,
the corner becomes more acute, and the curve buckles inward (Figure 163).

O a

P;

Figure 163. An interpolation at P; with ¢; = =2. The value of ¢ is zero at all other points P.

For positive values of ¢; corners pointing in the opposite direction are produced (Figure 164).

O 0

P;

Figure 164. An interpolation at P; with ¢; = 2. The value of ¢ is zero at all other points P.

Finally, we can introduce a bias parameter b; to control the direction of the path as it passes
through P;. Both incoming and outgoing parts of the tangent are formed as an average of the incoming
and outgoing chords, but the bias assigns different weights to the two chords when forming the average.

l—b,'
2
Note that with b; =0 the two chords are weighted equally, and the default interpolation is produced.
When b; = —1, the tangent vector is completely determined by the destination chord, and when b; =1,

the tangent vector is completely determined by the source chord. The more negative b; is made, the
more the trajectory “bends” to one side of P; (Figure 165).

1+b;
DS; = DD; = ——(P;-P;) + Pis—P;) . (107)
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D D

P;

Figure 165. An interpolation at P, with b; = —~2. The value of & is zero at all other points P.

The more positive b; is made, the more the trajectory bends to the other side of P, (Figure 166):

0 O

P;

Figure 166. An interpolation at P; with b; =2. The value of b is zero at all other points P.

The bias parameter easily simulates the traditional animation effect of following through after an action
by “overshooting” the key position or exaggerating a movement by “undershooting” a key position.

Combining the tension, continuity, and bias control parameters we obtain the following general
equations for the source and destination tangent vectors at the key position P;.

- (1= ){(1=c; }{1+b;)

DS; 5 (P;-P;-) (108)
P U0

DD, = (1—:,-)(1»:,.)(1%,.) (P;—P;_)) (109)
L] ) L

2

This composite formula provides considerable flexibility in the construction of trajectories (Figure 167).
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P;

Figure 167. An interpolation at P, with b, =2, b; =1, b;4; =0, ¢;—; ™2, ¢; =0, ;4 =2, t{ =0, ¢; =1,
and ti =0

15.2. A Cardinal-Spline Basis for Interpolation

The functions ho(u), hy(u), hy{u), and hs(u) which we used in section 15.1 to achieve cubic C'
spline interpolation are not, themselves, cubic C? splines. That is, while they may constitute basis func-
tions for the segment polynomials of the spline curves we constructed, they are not basis splines. The
most profound name that we could give to them, since they “blend” together any collection of given data
values and derivative values into a cubic C! spline, is blending functions.

The term ‘“blending functions” is generally used to denote a linearly independent collection of func-
tions which, like the Hermite basis polynomials of 15.1, serve to create piecewise functions that have at
their joints given values and a number of given consecutive derivatives (first, second, third, etc.). Such
functions are used frequently in graphics. The simplest are the linear blending functions

Lou) = 1-u and Lj(u) = u forO0sus1],

which constituted the segment polynomials for the uniform linear B-splines (the hat functions of chapter
4).

The linear B-splines are an example of the fact that blending functions can also be basis splines.
The hat functions clearly “blend” given data values together into an interpolating linear C° spline. Such
splines (those which act simultaneously as blending functions and basis functions) are individually called
cardinal splines, and are collectively called a cardinal-spline basis. Once the idea is presented, the con-
struction of cardinal bases is a straightforward exercise. For example, taking the hint from the fact that
the hat functions are merely the linear blending functions “placed back-to-back,” it is easy to see that

translates of the two cubic C! functions shown in Figure 168 could be used to form a cardinal basis for
cubic C! Hermite interpolation.
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- 1
1 hy hy +

Figure 168. The two distinet members of the cubic, C', cardinal spline basis, suitable for use in piecewise
cubic Hermite interpolation.

In closing we present two members of a cardinal cubic C? basis that are suited for the interpolation
of data values. These basis elements produce interpolating splines satisfying the end conditions used by

[Forsythe77] and discussed in chapter 3 (see Figure 8). They are generated by interpolating the data
values

1,0,0,...,,0,0,0
0,1,0,...,,0,0,0
0,0,1,...,,0,0,0

and so on, finishing with
0,0,0,...,,0,1,0
0,0,0,...,,0,0,1 .

That is, the first basis function is the spline satisfying the Forsythe, Malcolm and Moler end conditions
that interpolates

1,0,0,...,,0,0,0 ,

the second basis function is the spline satisfying the Forsythe, Malcolm and Moler end conditions that
interpolates

0’110;'--;r0s010 H

and so on. It is easy to see that if each is multiplied by a control vertex then their sum interpolates all
the control vertices. '
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C
{

Figure 169. The cardinal, cubic, C? basis spline, with Forsythe, Malcolm and Moler end conditions, suitable
for interpolating a data value at #,.

[,

B
.
S+
K
.
~
2y

Figure 170. The cardinal, cubic, C? basis spline, with Forsythe, Malcolm and Moler end conditions, suitable
for interpolating a data value at

15.3. Interpolation Using B-Splines

We will present the material of this section primarily in terms of curves. Some of the material in

[Wu77] amplifies what we will present, and a more complete treatment of surface interpolation may be
found in [Barsky80].

The problem to be solved is the following: given some points P, find control vertices V; such that

at each knot #; in the range (U} i, +,] the curve attains a specified point. That is, we want to compute
V; such that

Q) = éviBi.k(a,) -p, | | (110)

forall j =k-1,...,m+1.

If V; = (z;,9:,%) and P; = (r;,8,,t;), then (110) can be written in terms of individual components as
follows (using the y components for illustration):

Y(u;) = ) uiBin(u;) = s; for j=k~1,...,m+l
iz

This constitutes a system of m —k +3 equations in m +1 unknowns:
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Bo(t-1) = Bpa(@p=) | {vo 8p—y

=1 -]. ' (111}

hBO,k('Tm +) " Bpalm+) Y 8m + |

We are short k—2 equations. For cubic splines k is 4, and we are short 2 equations, just as we were in
sections 3.1 and 3.2; we might use any of the end conditions of sections 3.1 and 3.2 may be considered
here. For example, the two extra equations

EyiB:‘?}(i‘_k-l) =0
i=0

and
m —
3 4B (Gpnsy) = 0
i=0

may be added to provide a system of equations defining the B-spline representation of the natural cubic
interpolating spline.

In the B-spline formulation of the interpolation problem, however, an alternative selection of extra
conditions becomes evident. We may choose auxiliary data values associated with knots in the range
[0 Wk — and in the range (i, 4,8, 44 to form the extra equations needed to fill out system (111). For
example, in the cubic case, we could select values ;- and s,, 49 as “boundary values” to produce the full,
nonsingular system of equations. (This amounts to selecting two additional points P;— and Py, 4, to be
interpolated on extensions of the curve at Q(u,—) and at QiU +2)-)

[ _ _ '| L .
Bor(tr—a)  Bma(@=) ||y, s,‘.gw
Boa(u—1) B, i(ui—) 8k -1
- . . (112)
Bop(tm+1)  Boslitm+) Sm+1
Boslinsa) ** Bualime) |m]  1°m ]

These auxiliary data values can be chosen at will, though the shape of the resulting curve will depend,
ponlocally, upon the specific values chosen.

An interesting candidate for auxiliary values are those which approximate the standard first-
derivative and second-derivative end conditions. Considering only the cubic case for illustration, suppose
we wished to approximate the natural end condition:

D wiBA(@) =0 .
i=0

We can use the fact that, by Taylor expansion,
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B; (@) = B;p(Tymy) + (W me=y ) BN (W)
1, - -
+ ‘2‘(“&-2_“15-1)23;(,22(“&-1) .

Setting B,I?)(E,_l) to zero yields

BiM(Wi-g) = Bix(fsy) + (Tae—T) BE(@-) -
If this approximate equality is multiplied by y; and the result is summed up for ¢ =0, ... ,m, we obtain
the approximate equality:

m - m - m _ _ Ny=

D uiBir(@=) = 3 4B s(@rm) + ) i (@ame— =) BIUTA)

i=0 §i=0 i=0
Observe that the first summation on the right is equal to 8, from (111), so we may take

sk = 8pmy ¥ ) yi(Wh—g=ie—) BI (W)
i=0

as an auxiliary value that defines an approximately natural cubic interpolating spline — for surfaces, this
observation is essentially what underlies the material in [Barsky80]|.

Note that system (112) will have zero entries in the matrix except in a band k=1 entries wide along

the main diagonal. The follows from the locality of the B-splines. For the uniform cubic B-splines, the
matrix of (112) reduces to

4 1
141

which is familiar from 3.1 and 3.2.

The same discussion may be carried out for surfaces. In this case the problem to be solved is that
of finding control vertices V; ; such that

m n
Q(ﬁ'f,t')',) = 2 Zvi,jBi,k(;‘-!)Bj.l(Gn) = Pj,g

i=0 j=0 _
for given points P, ,. (Note that the orders of the B-splines could be different in each parametric direc-
tion.) There are many fewer equations than unknowns, and extra equations can be selected to specify
derivatives (tangents, curvature, etc.) around the periphery of the surface. As in the case of curves we
may also fill in extra equations by specifying auxiliary data corresponding to knot-value pairs with 4 com-
ponents in the range g, . . . ,¥4— and #p4g, - - - ,Upm+x, and with U components in the range vg, . . . ,¥—
and T, 40, . - - ,Up4- For the bicubic case, the number of points P, , that must be given is {(m—1)X(n -1),
and the number of equations needed to make a complete system is 2n +2m, which just happens to be the
number of knots bordering the lattice of knot pairs, (&;,7,), in the legal parameter range. '

To illustrate the use of the material outlined in this section we display the following three pictures.
The first, Figure 171, shows a milk drop striking a surface. The data for this picture was obtained as a
256256 raster of 256 grey levels. The grey levels were then imagined to be one-dimensional points P,
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for f =0,...,256 ¢ =0, ...,255 floating in the range
00 = P;, = 2550

and associated with the knots

The totality of knots in u and v was taken to be
{0,1,2,3, . ..,257,258,259,260} ,

the grey levels corresponding to the bordering raster points; i.e. those along the horizontal and vertical
pixel lines corresponding to 4 = 2, ¢ = 258, ¥ =2, and ¢ = 258, were taken to be the auxiliary data
values, and the points P, were interpolated. In effect, a one-pixel “frame” around the raster image was

taken for use a interpolational “boundary’ values, and the remaining 254254 pixels were taken as inter-
polational “central-data’ values.

Figure 171.

Figure 172 shows a selected portion of the interpolating “surface” that results. This represents a
quarter-section of the original raster image, and it has been evaluated over 256 X256 equally-spaced points
in ¥ and ¥ to achieve the effect of magnifying the original photograph. (The effect of compression or of
distortions can be obtained, likewise, by the density with which the surface is evaluated.)

Figure 172.

To provide a comparison between interpolation and control-graph approximation, Figure 173 displays the
same portion of the bicubic spline produced by taking the grey levels as control vertices and merely con-
structing the “surface”
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T L PBT)B.T) .

As in the interpolating case uniform cubic B-splines were used. Furthermore, in evaluating the both sur-
faces, any values that fell outside of the interval [0,255] were cut down (or up) to size.

Figure 173.

15.4. Catmull-Rom Splines
The material in this section derives from [DeRose84).

It has usually been our practice to define a curve in the form

m
Q@) = LViBiu(#) , (113)
i=0
but Catmull and Rom have noted in {Catmull74] that a more general formulation would be
2 P(@W,(a)
- i=0
Qw) = — ; (114)
2/ Wi(@)
i=0

where the W, are a set of basis splines and the P; are vector-valued functions. The summation in the
denominator was included in the formulation to provide a pormalization in case the W; did not sum to
one, which is necessary for translation invariance. While

Wy@), ..., Wp(¥)

can be chosen as any basis splines, it is most reasonable to select them to have local support. The reason
for this, which will become clearer as we proceed, is that the flexibility of the class of Catmull-Rom
splines is kept under control by specifying the functions P; to have ‘“‘useful” values on the support W;.
We may ignore the values of P, outside of this support, which makes the task of specifying them to
achieve some useful effect manageable. These remarks imply that the B-splines and the Hermite
cardinal-spline basis are reasonable choices for the basis splines, since they have local support, while the
interplating cardinal-splines are a less reasonable choice. The following assumptions will be made:

® The functions W,{¥) are nonzero over the parametric interval from #; to u;+4 {excluding #; 4, but
possibly including ;).

® The functions P; satisly P;(i,) =V, forg =1i,i+1,...,i%r.

Our usual construction of curves is of the form (114), if we choose
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Wi(¥) = B; (%)
(for which d =k}, and if we choose
P,(u) =V, forall @
(for which r = 0).

In general it is the interaction of the widih of the support, d, of the basis functions, W;, and the -
pumber of control vertices, r, interpolated by the vector-valued functions, P;, which dictates the charac-
ter of the resulting curve. The example W = B and P =V that was given above demonstrates that the
curves we have usually been studying, which have the character of approximating the control vertices V;,
are a special case of the Catmull-Rom splines. We now show that, if r is increased, any curve of the form
(114) can be made to interpolate the control vertices. Observe that the only functions W that are
nonzero over the interval [&,,i,4,) are

Wymg(@), - . ., W(T) .

Hence, for

"csu(uqﬂs

(114) reduces to

5 ra@wi@

isg=d+l

L wa

i=g=d+]

Q) =

and at & =,

IR XCAVACH

£ g —d+]

j:l Wi(gq)

=g —d+i

QE,) = (115)
Now, if r =2 d~1, then
P:’(a‘q) = vq ’
and (115) reduces to
v, 3 owia)

Q(tT,) - i=g=d+] -V, .
3 w@)

i=g=~d+l

Any vector-valued functioné P, satisfying the condition that
P;(i,) =V,

for ¢ =¢,i+1,...,i+r will serve to define a Catmull-Rom spline. Catmull and Rom themselves chose
to use
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P;(u) = gVHjLJ'('T) '

where L, is the classical Lagrange polynomial:

LJ(“) - H - _P »
p=0  ¥;7Y,
¥

but one might choose to replace the Lagrange polynomials with the interpolating cardinal-spline basis,
with step functions, or with other convenient functions. In [DeRose84] the Lagrange polynomials are

replaced with functions specially chosen to introduce shape parameters of the sort already mentioned in
* section 15.1 and to be discussed more fully in the chapters on geometric continuity.

15.5. Representing Powers and One-Sided Powers by B-Splines
We will be concerned here with two important items in the material of the foregoing chapters:

® We have created a basis (the B-splines) from the one-sided power functions, which themselves
formed a basis for S(P* {z;}5**). The “basis-change transformation” consisted of the divided-
difference operation, as we used it to achieve cancellation.

® The k*-order polynomials form a subspace of S(P* {&;}" **); consequently, any k**-order polyno-
mial must have a representation in terms of B-splines.

This chapter will be used to close up a circle of representational identities by establishing the following:

® The one-sided power functions have a representation in terms of the B-splines (vector-space theory
assures us must be the case), and this representation will be explicitly given.

® The members of the power basis (u—i;)! for 0 s k=1 for k**-order polynomials have a
representation in terms of B-splines, and this representation will be explicitly given.

This material is included for a couple of reasons: it provides an overview for a number of important topics
usually found in the mathematical treatment of splines, and it provided the background from which the
authors of [Cohen80] first established Oslo subdivision. In connection with this latter reason, we will end
the section by establishing an alternative, but equivalent, formula for the discrete B-splines, one which
uses the divided-difference operator. Briefly, the material in this section will be presented in three stages:

1. We begin by determining that (& —t)*™ can be represented in terms of the B-splines as
_ k=1 mn _
(Tt} = T a(t)N;u(E)
=0
for the coefficient functions
k=1

Yirlt) = T[4 t) .
r=1

(This result is called Marsden’s Lemma. See Figure 174.)
2. We pext show that

mm
(T-t)}? = g $;.4(t) N, 4() (116)

for
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tE{Tq, - .., T} = {TIPH
and

Uy "= W) SU Wy, 4y 4 ™ Uy 41
where

¢ia(t) = (Wite;—t)3v,.()

for (small) values of ¢; to be specified. (See Figure 175.) The term (ib;+¢,~t)$ is introduced simply
to force y;,(t) to zero left of ¢.

£ 3. Since
B (@) = (1MW~ & ) [ (K):t ) (W=t )5

1 l by substituting (116) we have
Birl@) = (-0 =) (@ ()] 33 654(0) Nyu(@)
370

and then rearranging yields
m

Biuu) = ) {(~1)*(:T,-+*—17‘)[E¢(k):t]q&,;,,(t) }Na‘.k(g) . (117)

=0
Comparing equation (117) with equation (72), we see that the a; 4(J) are given by
i a(7) = (DN (o =) [ (k):2] 854(2) (118)

and this result will end the section.

Now for the details.

(W;4h-t) e————>

(Wj40-1) <
(!Ijﬂ—t) < - =

v

: Figure 174. Marsden’s Lemma for the cubic case. The coefficient function ¥t} is & product of the three
" terms (Wy—t), (Wj4ot), and (045~ ) shown here.
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v

&

&
~
L

Figure 175. The extension of Marsden's Lemma to the onesided cubic. Notice that the B-splines which go
positive to the left of @} in Figure 174 have disappeared — the term (t'tTj+ej—1)°+ (think of ¢; as being zero for

the time being) is responsible for this since it is zero to the left of t.

15.5.1. Marsden’s Lemma
We will try to establish some insight into the way in which (¥—t)4™ can be represented by the

“refined” B-splines, /V; ;(Z). Since multiple knots add complexity to the issues we wish to motivate, we

will ignore them for the time being.
For the case k =1, S(P* ,{Ej}{,"""""‘) can be represented by the basis shown in Figure 176.

UWntn YWpama™Um+

Figure 176, The B-spline basis of S(PL{T}*™*).

Consider (& —t)°, which is shown in Figure 177,

(@-t)°
R A S T IR R
w, T W; Wiy Wndn Wypanm+1TUm+l

Figure 177. The power function (& —t)°.

The representation of (#—t)° using the basis of Figure 176 is represented in Figure 178
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Noi(#) + ... + Ny i 1(1)

Figure 178. The representation of (¥ —t)° using the first-order B-splines N, ,(i).

We can write the representation in Figure 178 in the form
_ 0 m-n
(w=t)° = )y (t)N;, ()
i=0
where (rather trivially)

Y;(t) =1 forall t, j=0,...,m+n

Now, consider the one-sided power function
(F-1)%

where t =u;.

(-1
S a
] N T } u
Ug=wy U=t W 1™ Uy 41

Figure 179. The one-sided power function (¥ —¢)%

By inspection, for any # in the parameter range, i.e. 4™ Wy S ¥ < Wy, 4y, +1 = Upp +1;
-— 0 — — f— —
(T-t)3 = (W-&)] = Ny,(@) + - + Npyum (@)

where n=n(i} is the unique index such that &; =w,(;). (Also note the ;<i;4,.) This is shown in Figure
180.
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Ny@ + ...+ No @)

¢ <
B Lo.ou
1 \J - | U
U Wy wq-ui-t Wy, 4™ U gy 41

Figure 180. The representation of (Z =t )% using the first-order B-splines Ny (8).

Recall that t =i; =i,. Hence the representation for (¥—t)3 is merely a “truncated version” of the
representation for (@—¢)° in which the first 5 terms in the N;,(u)-representation of (& —t)° have been

suppressed with a zero coefficient. This means that we could consider the representation of (#~t)$ to be
(T=t)d = (w-5)3 = J]¢;.(t) Njy(@)
i=0

where the coefficient functions ¢ ,(¢) satisfy
0 for j<n
$iat) = {1 for j=pn -

An easy way to generate these coefficients ¢ is to notice that “to the left” of t=u, =i, (that is, for
J<n),

(w;=t)3 = 0 = 0-y;,(t) .
Similarly, “directly at” u; (that is, for j=n)

(W;-t)F = (T,—5,)% = (L-%)F = 03 =1 = 1-¢;(t) .
Finally, “to the right” of u; (that is, for 5>n),

(@=t)3 = 1 = Lgy(t) -

So we may consider the following way of arranging to suppress terms in the representation of (u—t )Y to

get the representation of (w—t)3 for t =i, =,

(@03 = " @t)% wyult) M@
i=0
In fact, it should be pointed out that (t'i)'j—t)f).. has the same ‘“0-1 properties” as
(T;+e;~)%
has for any set of values c,-EO,' provided only that
w; +¢ < W4 forall j<m+n+l .

Figure 181 gives an example of each of the relevant cases.
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; —
!-z’.J T N E,, - 17‘- - {
- T
!7,'.,,, - iT,' - { T
EJ"*-GJ'
u

wnnui-t " e = w,

57 —— =T

w;te;

Figure 181. The 0-1 properties of (@, +¢;~t 3%

Consequently,
(T=t)r = ) (W+e;~t)% v;4(t) N;u(¥)
=0
for each t&{uy, . . . , Uy, 41}, and we let
$ia(t) = (wite;—t)3 o;,(t) .

The reason for adding the complication of the €’s is that it permits us to differentiate this equation with
respect to t in the appropriate (left-handed) fashion; i.e.

(W+e;—1)% = (W,~[t~¢))}
and therefore
G o e

e-0 =€
€>0

will exist. Since we plan to take divided differences of our representation for (#—t)4™ to obtain the
quantities o that were mentioned at the close of the last subsection, and since divided differences become
derivatives at multiple knots, this is necessary.

We will give a further illustration. Consider the case k =2. Suppose that we have found a represen-
tation for (#—t)! when t =i; =4, as

mn
(g-t) = 4‘::%',2(1)1‘/}.2(*7)

and we wish to convert this into a representation for (#—t)} by “truncating on the left.” If this is
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feasible, then it is obvious from inspection how the chopping would have to proceed. The following pic-
ture indicates that the representation for (Z—t)} will not contain a contribution from N,(¥) for any
J<n, and it will include a contribution from N () for all j=n.

(@)%

i<m zm

Figure 182. The one-sided power function (¥ —t)% and two representative second-order B-splines on the knot
sequence {W,}S""‘

The method of arranging 0 and 1 coefficients used for the k =1 can surely be used here:
mm

(=t)d = 3] (;+e;~t)3 9,5(t) N, o)

i=0
mn

= 3 6ialt) Nyg@D) .
=0

Whether this will work, of course, is 2 question to be settled formally later. However, this hints at
the approach we would like to take. We propose to express (#—t)*! as a linear combination of the
N; 4(i). This is always possible since (% —t)*™ is simply a polynomial of order k in the variable ¥ (a
member of P*) and therefore must be a member of S(P* ,{1'171-}3""‘"*). Consequently,

( ) 2 "k(!)N'k(l)
2y 2
jo

for some coefficients 1, ;(¢) depending upon ¢. Then we expect to find a representation for (& —t)5™ by
truncating the representation for (7 —t)* ™, as was indicated above for the cases k =1 and k =2. Only one
further insight is required. We need to discover a formula for these coefficients ;4(t). The case k=1 is
too simple to give us any clues, so we will explore the cases k =2 and k =3.

Consider Figure 183.
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: (Z-t)
-— /% -~ ) -—
Npaol@ 775 e Nyold)
- ’ ’ o . -
- b
L ’ ! S N ."._‘ m
1 T T
Wit Witz

Wi Wy

Figure 183. The power function (¥ —t) viewed over the interval |, @;4,) in S(P’,{ﬁj}g‘h*).

By inspection, if W;S# <i;4;, then we must have
(F=t)' = AN;L (%) + BN;,{7)

for some coefficients AandB since N, (%) and B N, (%) are the only nonzero B-splines on this interval

But N;—; 5 and N;, can be produced from N;—y;, N;, and N;4;, by recurrence. In particular,

(U —w;—) —

'__'.—'L_Nj-l.l(u) .

(wﬁl'a) -
————N,,(u
@+ (w;—w;)

N‘-—,2(E) - —
dh (wjﬂ_wj) o

But for w;Su <w,4,
NJ"I,I(E.) - 0 and Nj,l(ﬁ-) - I

Hence
Wig— U
- I+
Nj-l,?(u ) == —
wj+1 -wJ'
Similarly,
Njofu) = —=
wJ'+1 UJ’J

for ;=% <w;4;. This means that

U—t = AN;o i) + BN;4u) (119)

Wig — U U -,

- A _J+1 — +B - :1—
Wit Wy Wi+ =Wy

If we expand the right-hand side of (119) in powers of U and equate coefficients on the left and right, we

get the equations
B-A

1] =
Wi+ =Wy

and
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—f - wj.,.,A—iFjB
Wi+~ Wy
This means that
l_.b'.j-'.lA - EJB - "(t?j.{,l_a}-j)t
—A + B = @y~
Eliminating A gives

B = w;y—t

- and eliminating B gives

A = @;—t

For € [t ~1, U +1) ™ [Wg =1, Wy, 4m +1) in general, then, we would expect to have
mm

(@=t)' = X (@ —t) N;£F) .

J=0

Figure 184 shows a typical configuration when k =3.

3—2.8(“ . ,—13(_) N; s(“

-—— esten,

/\

4
| —
|

Figure 184. The power function (&=t )? viewed over the interval {@;,Wj4) in S(P’,{E}}{,""""*)‘

We expect that, if w;Su <w,4,, then
(E_t )2 - ANJ_2_3(!T) + BNj—].a(tT) + CNJ's(E) .

But each of the functions N in this equation is derivable from the recurrence; i.e.

- Wiy— _ U —w; _
N;o(#) = —>—=—— Ny &) + —— N;¥)
Wi4s ™ Wi+, Wita ™ Wy

and similarly for N;—, 3 and N;5,. But, if w€[W;,W;4;), then
Njs (i) = 0

and
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u-w;

Njol#) = ——1- |
W4 ~ Wy
Similarly,
o
Ni"l.?(i‘-) - _—_,_.,1__:_
Wy =Wy
and
NJ"‘Q,?(E) =0 )

and these terms appear in the recurrences for N;—; 3 and N;—35. We find that, for ;s u <w;4,,
(Wjh =T )

( ‘Fj-ﬂ - Ej-l 1 aj-ﬂ - ‘Tj )

Nj-2.3('7) -

(E-Ej)(mjﬂ-i) {‘7"‘-‘7:‘-1)(5:'4-1"7)

(Wjn =~ W) (W= ;) Wy =8} D4 — ;)

Njma(@) =

and
(E -Eu-j)z

(W41 =10, ) 10;42— ;)

N. j.3(tT) =

If (120) is now written out, we obtain

(T-t)® = @° ~20t + 12

- (Ej'ﬂ _17)2
(Ej'ﬂ -Ej—i)(aiﬂ -;E.f)
+B (4 —w;) (W4, 1) (& —w; ) (W4 —4)
(Wi =0} (Wy42= ;) (W0 =01 )(Wya, —W))
+0 (¥ ~w,)’

(wjﬂ ‘wj)(@ﬂ - ‘_'Jj}

If we expand in powers of ¥ and equate coefficients, we obtain the following for the t2 term:

¢ o= Bl Sl
Wy =T (Wiap=W;)  (@js = ;) (W0 ~05)
+C wjz E:"Hz
(Wy41 =0, (@40 —5) (Wy41 = 8= ) (W41 —wy)
the following for the t! term:
Tww a;

-2t = B]

(@1 =By = ) (D1 =0, (D42~ 105)
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W4y Wit

]

— — — vl + — - brrd 11
(D41 =0 )Wy =10;) (B0 =01 ( W00 — )

2wy 254

~-A
(

()41 = ;)(B4, =) Wity = ;) (W41 = ;)

and the following for the ¢° term:

| = B[- — 1 _ 1 ]
(Wy4 ‘Ej)(ij‘wj) (w4 =W )( Wy —Wy)
1
(W) = 0;)(W0; 40— ;)

1

A
(W41 =W ) (40 = ;)

Solving these equations for A, B, and C yields the simple expressions
A = (wj——t)(w;~t)
B = (w;=t)(W;s~t)
C = (wjn—t)(Wsn~t) ,

which leads us to conclude that

(@t = ﬂg(@ﬂ‘t) (Bpra=t) Nyol@) -

In general we now have cause to believe that
(@=t)*™ = 3] g,(t) N;u(@)
7=
where
Yia(t) = (Wjm =t (Wup—t) - (Wima=t) = [[(W;0—t) .
r=

This is true, and our method of arriving at this insight suggests the way in which it is most easily esta-
blished; that is, by induction using the recurrence. We will try the first couple of steps to set the stage.

First consider the case k=1, On the one hand
(=t = (4~t)° = 1,

and on the other hand
m+n -
Z N"'l(u) - ]
=0

for each value of & € [ig,tp +1) ™ [Wy, Wy, 4v +1). So need simply set
via(t) = 1

for all 5 and ¢ in order that
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-— o m b -
(F=t)° = 2T (t)N;u(@) .
i=n
Next consider the case k=2, We must study the summation
m+n _
2 ¥idt)N; @)
§=0

and we must find some expression for 1, ,(t) which makes this sum equal to {u ~t ). The recurrence rela-
tion for the B-splines gives the clue. Briefly, we can rewrite the above sum as

"5 yult) 4 (T (i)t (121)
J=0 ( ...1—w,-) (wj-vz"wjﬂ)

where the convention applies that each of the ratios is to be interpreted as zero if its denominator is zero.

Observe that N ,(#) is nonzero only when wysu <w,. Hence,
NoiT) = O for 523, .

But the parameter range for k =2 is {i,,W, +;), and so this restriction is in force. This means that we can
ignore the left-hand ratio in (121) when j=0. For j=m+n, it should be noted that a term containing

Ny 4m+11(%) is nominally present. But Ny, 4y +;1(%) is nonzero only when Wy, 4, 4154 <Wp, 4y 42, Which is
also outside of the parameter range. Hence

Npamta(€) = 0 for U<Wpan+ -

This means that we can ignore the term in the summation in which this function appears. So the summa-
tion expands as follows for any 4 in the parameter range:

0 + vy 2(1)(w2—u)£“—(j)—
wz"wl)
o Nusl®) o Na@
+ Y oft) (U 1)(w2-’w1) Yot ) {(ws— )( T—0,)
+ gy @)Dy 0y,
Wy=Wj) (w,—ws)

- Npp 4w 1(#)
+ -+ 'pmh,?(t](u-wmh) — b 1_
(wm‘h\'ﬂ—wm‘l-n)

+ Yt ot WDy oy 42— ) _N,,.+,.+1—,1(u) ‘o .

(wm 42~ WU 4m +1)

Grouping terms in common indices for N together, our summation becomes

mdn —_ - PP — ,1 l(i—)
2 ¢'j-l,2(t) (wj'l-l_'u) + 'l)j,2(t) (“ _wj)

7= Wy~ W;

If only we can find an expression for the quantities ¢ which makes
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Vim2lt) (Wi =F) + 9{t) (F-w;) = (T=t)(Wja ;) , (122)
then our summation would become

N; ()

m-m _ _ _
2 (&=t ) (W~ ;) —
i= Wi+~ Wy

mn
= (w=t) )] N;u(@) = (@-t)1
i=

for any €y - =Wy — SU <Wy, 4, 4; =4,y 41, Which is exactly what we want. But if we let
Yima(t) = (w;—t) and ¢;5(t) = (@4 —t)
it is easily verified that (122) holds.

Theorem: For any ¢ and any & € [Wy—y, W 4n+1) ™ [Fk~1,%m +1)
- k-1 m oy -
(F=t) 7 = 3] ¢a(t) Nyu(iD)
i=0
where

Yiu(t) =1 if k=1

and
Vinl(t) = (Win=t)(@Wyae—t) ~ (Wjan—1—t)

k=1
r=1

This theorem is known as Marsden’s Lemma. It establishes precisely the formula by which a power func-
tion can be represented in terms of B-splines.

Argument: The preliminary discussion gives the outline of an inductive proof. We have already
seen that the result is true when &k =1 and k =2.

For general k>1 the induction assumption is made that
m+n _
D ina(ONjem = (F=t)3D = (TP
=0
for all t€{17. SH* and all 4 € [Jk"hﬁm'hzﬂ) - [Ek_l,&'m +1).
We take
mm -
2. Yia(t) Nju(E)
=0

and use the recurrence result to obtain

.................................................................
................................................................................................................
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.................................................................................................................................................................................

" oy Nip(@) o Ninae(E)
5 $iat) 1 (F-0) =2 + (@ —0) ==
J=0 Wygp g — Wy Witk T Wi

With @ restricted t0 ¥ € [Wy—), W 4w +1) ™ [Ug—1,Um+1), the terms with Ng,(¥) and Ny, 44 4-4(¥)
can be ignored, and the summation can be regrouped to yield

mn N (i
o) {'l'j-l.»(t) (Wpapmy =) + ¥54(t) (7 —17;) } ik :(ul
= wj+k—1_wJ"
But
'/)j_x,k(t) - (Ej—t)({u‘jﬂ-t)...(Ejﬂ_a_t)
and

Vi(t) = (Wi —t)(Wjap o=t (W= —t) .

Both of these have the common factor

(Wia —t) - (Wpmo—t) = ¥;=(t) .

Consequently
Vi b (1) (Wi =T ) + 4,5 (¢) (7 — ;)
- [(wj-rk-l_'?)(wj_t) + (U =0 )Wy —t) ] Yiaa(t) -
And if the expression in brackets is multiplied out, terms cancel to give
Vi, () (W~ 0 )+, 4 () (0 ~ ;)
= (Wi = w;) (T =1 )90 (t) -
This converts the summation
mn _
2 ¢j,k(t)Nj.k(u)
=0 .
into the summation
(w-t) }; Vi=(t) Njeo(¥) -
i=
We may add the =0 term to obtain
(w=t) 3] ¥j=s(t)N;p(2)
=0
on the parameter range, since Ny, (4 ) is zero on that range.

Finally, by the induction hypothesis this equals

....................................................................
............................................................................................................
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(F—t)(F=e)™?

for any % € [W =), Wy 4y +1)-

15.5.2. Discrete B-splines

We now return to the process of truncating the coefficients ¢.

Definition: Let

dixlt) = (w;+e;~t)3  if k=1
and

dia(t) = (Wi+e;—t)30;.(t)

= (‘.‘-’i'"fi-t)g-(ﬁjﬂ—t)(Ejﬂ—t)'"(afﬂ'l—t) if #>1,

where the numbers ¢; satisfy

w; < w; +e; < w,(j) for j<ntk
and

v = 0.

{Recall that v4{;) is the smallest index such that @; < w, ().)

With the aid of the ¢ ,(t), the one-sided functions can be represented in terms of the N; ()

Theorem: For any t € {EO: e :'Tm-i'k} -{El'}g'** and 4 € [Ek—lst'h;'H) = [a—k"l”‘Tm"'l)’

(@087 =53 ) Nuld) -
=0

Argument:

(k=1)
We have already established that

(F~1)% = mg{a+e,-—z)izvj,l(a) .

........................................................................................................................................................
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................................................................................................................................................................................

We divide this case into two parts.

..................

T

I

Figure 185. The first subcase of the induction step, in which case ¥ <'¢.

(@ <tefmh™)
Notice that
(@j+€;=t)3 = 0 forall j such that @;<t
and
(w;+e;=t)3 =1 forall j such that w; =t
Consequently

mn m+n
gd’j,k(t)Nj,k(‘T) = 3 6;(t)N;(H) .

fet. ﬁjzg
But
N (@) = 0 for all u<iv; .
And, since
<t and w; 21 ,

the sum is zero.
On the other hand

(v=t)57' =0

for the values of & in question.

Since (#—£)5™ and the summation expression are consistent, this part of the k>1 case is
complete.

................................................................................................................................................................................
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................................................................................................................................................................................ 3
N
I
t
) u
Figure 186. The second subcase of the induction step, in which case & 2 ¢.
(T = te{@}p™)
As in the argument for Marsden’s Lemma just before,
mn _
2 $5x(t)N;(E)
=0
m WU _ o —w;
= 2 bia(t) == Njnp~(&) + == N;,~(¥)
=0 Wigp W43 Widg =~ Wy
m i - - - - N. j,k-l(’-‘-)
- 2 ¢j-1,lc(t)(wj+k-1-u) + ¢,‘,k(t)(" -wj) p -
= ) Wigg— --wj
Further, just as in the argument for Marsden’s Lemma,
$5=14(t) (a1 —T) + 6,(t) (¥ —iz;) (123)
- [(E,-_l +ejoy~t)H W~ (W;~t) + (w;+e;~t) (T —5;) (W) 441 —t) ] ia-t) -
The following are the only configurations possible.
t (W +ej4—t)3 =0
(1] I | :
Ej—l !-171- (t-t{,'i'ej-t)g. =
t (E‘}_f"’f,‘..f"t)g. =0
2] I L
G,-_l (17,"'61_‘)2 =0
w;
(more...)

.................................................................................................................................................................................
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................................................................................................................................................................................

t (‘IT)'J'_I“'C,'—I—t)g. -

|

B I ,
Ej.} (3.’ (E’-j"'f,‘-t )2. -]
1 (Wi tejm—t)3 =1

» |

w;
t (W +ej=t)3 =1

1

[5] I ,

TG (Ty+es=t)} =1

t (B tejm—t)i =1
)
3 :
Wy (W+e;—t)i =1
w;
¢ (B e —t)i =1
|
g ) l

A complete case analysis is tedious and repetitive. By way of example, however, for confi-
guration (3] it is easily checked that (123) becomes

(T =t {(Wyamy — ;) (W H e, —1)5 + (1)
where we have used the identities
(Gj—t) = y (1?_11—?:) - {!T‘t) , and (ajq.k_]-t) -(Gj...k_l-ﬁj] .

For the other configurations, using the same algebra as was used in the argument for
Marsden’s Lemma, (123) becomes

(F =) (Fpnm — ;) (B +e;—1)3 + iama(t) -

Hence by the same inductive reasoning as was used in Marsden’s Lemma, the summation
becomes

.....................................
............................................................................................................................................
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mn
(F=t) ) bjp=tNjpmy = (uw—t)(w—t)§7 .
J=1

This completes the argument.

We have almost reached our goal. We know that

mm -

B (@) = ) aiulf)N;ul¥)
3=0

Biu(@) = (—1)* (T =) [ (k):t) (T 1) 5

and
(F=t)3™ = ) 6;4(t) N;u(¥)
i

for any t € {&;}3'** and & € [Ty, B 4m+1) ™ [Te-1,8m+1)- We put these together in the obvious way to

obtain equation (118), an expression for the a’s.

Definition:

o k(7)) = (1) (U =) [ (k)2 ] 854(2) -

Theorem:

m+n
B; y(u) = E C'.',t(J')Nj,k('T) .
=

Notice that the functions
k-1 ‘
$ialt) = (Wy+e; =) (W4, —t) (¢;=0)
r=1
look very much like the functions
k=~
(@=t)3[T(E-t) = (F-t)47
r=1
would look if the variable & were restricted to the discrete values in the sequence of knots {iﬁj}‘ This

presents another justification for regarding, a; 4(s) to be a “discretized” version of B;,(u); that is, a
“revision” of the continuous B-splines for ¥ restricted to a sequence of values.
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15.5.3. The Discrete B-Spline Recurrence Again

Having established the connection between the discrete B-splines and divided differences, we close

the material on discrete B-splines by establishing their recurrence properties strictly from the properties
of the divided difference.

Theorem:
1 &-‘- = "-Ej < ‘IT,' +1
a;4(s) =
0 otherwise
and
Wigymy ~ U; Ui gy =W, gy =
. F4r =1 i . thad itr=i .
Qv (.7) == oy ai,r-l(]) + T T Qi -I(J)
Ugdr—1 ~Y; Uidr T U 4
for r=2,3,...,k, where k is the order of the spline in question.
Argument:

To establish the result for k=1, it helps to keep a picture of ¢;,(t) *(E,-ﬂ,-—t)g. in mind (where
€; = 0, and is to be regarded as ‘““vanishingly small” if positive). This function is of interest only for

t values in the set of knots {&5;}{* **. Its values in a neighbourhood of w; would typically look as fol-
lows:

@ Q e 9

i ] | 1

1 1 1 ]

I i ' ]

3 1 ] 1

¥ ] 1 ¥

[} ] 1 [TTR

i A 1 y Wi

| | L1 ——4—4 4—
] i | |
LTI TN o Y U4 Uip Uiag Uiay

Figure 187. A graph of ¢;,(t) for values of t E{TIT* near ;.
This picture is not changed materially if w; falls upon u; or if #; =u;4;. The essential feature of
#;,(t}) is that
¢;1(t) = 1 for t =y, =y;

and

............................................................................................................................................................................
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$ia(t) = 0 for t =4 >w;
We split the case k =1 into three mutually exclusive possibilities.
k=1, Case a:

(; <t@;4; and u; Sw; <i;4)

Then

o; (7)) = (144 = ;)[4 (1):t]8;,,(t)
¢ ia(Ti 1) = &;4(8)
= &;1(u:) = ;1% 4)

= (0;=%)% — (T;-Tn)3

= (D{wn-)

k =1, Case b:

(w;<u; or w;=u;y,, and 4;<u;4)
In the manner of case a,

a;a(5) = ('@"'E‘)%"(Ej“'—;ﬁﬂ)?ﬁ =0
because both of the terms of the difference have the same value. (Both are equal to 1 or else both
are equal to 0, depending on whether or not w; lies to the left of }.)
k=1, Case c:

(#; =t;4) for arbitrary w;
Strictly from the definition we have

aiald) = (“D)(ows =) [T (1):t)5(0)

= (—1)'0.Dt¢j,l(t)|g=§'j

(i +e,;=,)3 —~ (0;—0;)%

= (-1)-0- lim
é,»*O "‘Ej

‘j>°

..............................................................
...................................................................................................................
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................................................................................................................................................................................

(It is for precisely this case of multiple u knots that the definition of ¢, ,(t) includes ¢; — it makes
the differentiation with respect to t legal.)

- Since the “otherwise” part of the recurrence also specifies a;,(7) to be zero, and since we have
covered all cases, we see that the formula given by the definition

a;1(7) = (=D(in =i )[4 (1):t];,(2)
and the alternative formula proposed for the recurrence
1 QT‘SEJ<!T’+J and QT.'<!T.~.H

o;q(5) =
0 otherwise

are consistent with each other. This establishes the validity of the recurrence for k =1.

k>1:
Consider first the case in which u; <4 4.

Notice that

2, (3) = (~1) (G =) U (r):2]6,,(2)

But
$ir(t) = (0~ t){W;4—t) (Wi~ —1)
= (Tjarm1= )85, (2)
that is, ¢,,(t) can be viewed as a product. Consequently,
[ (r):t]65,(2)
- g[a..(s):tl(w,-ﬁ-l—t)-[ah(r—s):tw,.,,-l(r) ,

using the Leibniz rule.

But we discover that

............................................................................
..................................................................................................
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(5 (0):t ) (Wjarmy —t) = (B —1;)
[ (1):t)(Wiap—t) = -1

and
(@ ()t [(Wj4pq—t) = O

for s >1.

This produces
[Uz (T) i ] ¢j,r(t)

= (e =) [T (r):t ] 6, —i(t) = [Eaa(r—1):t]d;,(t)

Now we invoke the recursive definition of the divided difference on the term
[;(r):t]8;,~(t)
and this will allow us to write
@e(d) = (1) (s, =) [T (r) ]85, (2)
= (-1 {(@)4 - =%)[A -B]~(i;4, ~%;)C}
where
A = [ua(r=1):t]d;,(t)
B = (@ (r=1):t]6;,(t)
and

C = [n(r—1):t]g;,~(t) .

These terms may be multiplied out and collected to yield
(@4r = =) (1) 7T (r ~1) 2t ], o0(8)
+ (;It'ﬁ' -;‘7,1"""-1)("-1)'-l [’Tiﬂ(r—l):t]d’jm-l(t) ’

which yields the relationship to be shown.

In the case where #; =u;4,, notice that
;. (7) = (1) (G —ii;) (5 (r):t] 4, (t) = O

according to the definition and the properties of the divided difference, whereas the recurrence for-
mula becomes

...............................................................................................................................................
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.................................................................................................................................................................................

. Wy -~ oy it =Wy .
ai,r(J) = ...‘ a;,.~(7) + __‘-___.2;_._ ac"ﬂ,r—l(J) )
Uy =Y, Uigy TUi 4

and both terms on the right are zero by convention, since &; =u; 4 ™ = 4y = =U; 4y .

(We have presented this argument somewhat tersely, since it is a very close parallel to the one which esta-
blished the recurrence for the B; ,(u).)

15.8. B-Splines and Least-Squares Fitting

Often it is most natural to begin constructing a curve by simply sketching a rough approximation of
it, perhaps with tablet and stylus or puck. The tablet is periodically sampled to obtain tens or hundreds
of data points representing the curve. (See Figure 188 for an example.) This data is generally a bit noisy,
both because of electronic glitches in the puck and because the user’s hand motions are jittery. Hence we
would like to approximate the data by a piecewise polynomial curve having a relatively small number of
segments, the exact number depending on the complexity of the curve.

Figure 188. The data for a simple Benesh movement line, generated by a tablet and puck. This is actually fil-
tered data; sample points were thrown away if they were less than three pixels in £ or y from the previously
accepted data point.

What we shall do is perform a least squares fit of the data by a B-spline curve, which can then be
manipulated in the usual way to fine-tune its shape. Our treatment follows that of [Forsythe77]; our
examples are movement lines generated by an interactive editor for Benesh Dance Notation [Dransch85].
A more general treatment of least squares approximations by parametric cubic splines is given by
[Plass83].

Suppose that we are given p+1 points P; =(z;,5;). We want to find a set of n+1 control vertices
V; that minimize the distance between the cubic B-spline curve they define and the data points. If we
use enough control vertices (namely p+1) we can arrange to actually interpolate the data points; instead
we select a smaller value of n, yielding n—2 segments which “adequately” represent the curve. We
assume that n is given.

For the sake of efficiency we will make some simplifying assumptions whose legitimacy is discussed
later. Recall that

Q) = (X(u), Y(u))

Siggraph "85 15.6. B-Splines and Least-Squares Fitting San Francisco



264 The Killer B’s

- Dv;8,m)
=0

= 5 (XB,@), Y;B;®)) ,
=0

where the position of the /® control vertex is represented by (X ;,Y;) so as to distinguish them from the
data points (z;,y;) we are fitting. What we shall actually minimize is the expression

| Z;OIQ(m) -Pif* = _2";0[(X(m)-z.-)* + (V@) -u)f) = R, (124)

. where u; is a parameter value associated with the i** data point. Since equation {124) is quadratic its
minimum occurs for those values of X; and Y; such that

P
B =0
)
R =0

where k ranges between 0 and n. As usual we will consider just the Y}, the X; being treated analogously.
If we compute a typical such partial derivative we obtain
a i - - -
2 r = D @) @) vy = SuB@)
k = li=0 i=0

(Note that terms involving X; and z; disappear.} If we do this for each Y}, we have a set of n+1 simul-
taneous linear equations in n+1 unknowns, which can be solved by the usual techniques. (Although [For-
sythe77] warn that in general this system of equations is prone to numerical error, in fact our particular
formulation is safe because we are using B-splines rather than the power functions ')

We have still to indicate how the u; are associated with the data points. We let
S = EIP‘ ~P;
i=l

(S is thus the total length of the line segments connecting the data points), and then set
Ug ™ 3 '

1P+ _Pil

— -

As a result the spacing between the #; is proportional to the Euclidean distance between their associated
data points. This does not, of course, ensure that Q(%;) is the point at which the curve is closest to the
i'* data point, but in practise it produces better results than uniform spacing.

Ty = U4 + (n-2)

For the application discussed in {Dransch85] it was important that the first and last data points be
interpolated, and that the user have explicit control over the endpoints of the curve when manipulating
control vertices. Hence the initial and final knots (3 and n +1) were given multiplicity 4, Y; was given the
value y,, and Y, was given the value Y, This leaves n—1 equations
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n=i P - _
2 B; ;) Bu(“-’)] Y;
= Li=o

- );y.-B,,,.(a) - _5380,.@) Bi(@) Yo - gsn,.(a,-)s,..4(=7.-} Y,

- )2:3/.'34,4('7;) - 23'30.4('7;) By (ui) yo — i’Bm(‘T-‘) B, (%) yn
i=0 i=0 i=0
in the n —1 unknowns Y) through Y, .

Figures 189, 190 and 191 show one, three and five segment cubic B-spline curves fit to the data of
Figure 188 using this technique.

[ ST,
-
-
-
-

\ -

Figure 189. A one segment cubic B-spline curve, {it to the 34 data points shown with dots. Multiplicity 4
knots are used at either end to force interpolation of the ending data points; otherwise the parametric spacing

is proportional to the Euclidean spacing between data points. The control polygon is shown with a dashed line
to avoid confusion with the data points.

Figure 100. A three segment cubic B-spline curve, fit to the data of Figure 188. Compare the resulting curve
to that of Figure 189.

Siggraph "85 15.6. B-Splines and Least-Squares Fitting San Francisco



266

The Killer B's

Figure 191. A five segment cubic B-spline curve, fit to the data of Figure 188. Compare the resulting curve to
those of Figures 189 and 190.

The curves of Figures 193-195 show the results of fitting the more complicated data shown in Figure 192.

s

Figure 192. The data for a more complex Benesh movement line. This is also filtered data. Even so thereisa

marked change in the spacing between data points as the user’s hand changes speed at the ends of the curve.
There are 60 data points.

Siggraph "85

Figure 193. A three segment cubic B-spline curve, fit to the data of Figure 192.
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o

Figure 194. A seven segment cubic B-spline curve, fit to the data of Figure 192. The control polygon has been
omitted to avoid clutter,

Figure 195. A 12 segment cubic B-spline curve, fit to the data of Figure 192. We are well past the point of
needing more segments, since we have begun to mimic jitter in the user’s band. A curve of fewer segments
should be used and reshaped slightly by moving 2 few of the control vertices.

The quality of the fit, as measured by the sum-square of the residuals R, can generally be improved
by intelligently selecting where the joints between successive segments occur, and by adjusting the knot
values u; associated with each data point P;. Techniques for doing so are discussed in [Plass83]. Doing
s0 is, of course, more expensive. In an interactive environment it may well be preferable to rapidly com-
pute a somewhat inferior fit and adjust it by manipulating control vertices.

There are a variety of means other than the use of multiple knots for obtaining interpolation of the
endpoints, as discussed in 4.5. Also, the initial fit by an open curve will generally be quite close to the
data points at either end, and for some applications that may be sufficient.
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16. Interlude

Our next objective is to explore an alternative generalization of the uniform cubic B-splines called
the Beta-splines. They are motivated by the fact that parametrizing curves can result in various non-
intuitive effects; we give some examples in the next section. If we focus on the physical notions of deriva-
tive continuity in which we are really interested, namely continuity of direction and curvature, instead of

continuity of first and second parametric derivatives, then a class of curves results which is expressed in
terms of two shape parameters 8, and f,.

A particularly novel and useful aspect of these shape parameters is that they can be used to locally
control tension in a piecewise polynomial curve. That is, they can be manipulated so as to pull a curve
flat against the control polygon without altering distant portions of the curve in any way.

Our initial development of the Beta-splines will be based on the presentation of uniform cubic B-
splines given in Section . In particular, they will be expressed in terms of a uniform knot sequence. Fol-
lowing this we will see that there is a simple way of associating distinct values of the shape parameters
with each knot, and interpolating between them as we move along the curve in such a way as to achieve
local control of the shape parameters. These are the continuously-shaped Beta-splines. Finally, we will
present a different generalization of the Beta-splines analogous to the divided difference definition of the
general B-splines. For these discretely-shaped Beta-splines the shape parameters can be thought of as an

intuitive and useful way of controlling the parametric discontinuities which result from multiple knots in
cubic B-spline curves.
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17. Parametric vs. Geometric Continuity

Our objective in this section is to show that the relationship between the continuity of parametric
derivatives and the physically meaningful notions of “unit tangent vector continuity” and “curvature vec-
tor continuity” is subtle. This will motivate a generalization of the uniform cubic B-splines, called the

uniformly-shaped cubic Beta-splines, which we shall introduce in the next section. Most of what follows
may be found in {Barsky81, Barsky85).

17.1. Geometric Continuity

Intuitively a first derivative vector tells wus the direction in which a curve is headed and, by virtue of
its length, the speed with which we are moving in that direction. Geometrically, two curves are joined
smoothly with respect to their first derivatives if their respective derivative vectors at the joint point in
the same direction. Hence we extract the direction from a parametric first derivative by normalizing its
length: the unit tangent vector of a curve Q(w) is

. Q(l)(,}')
T(u) = )
) ||

As we have discussed in Section 4.5.1, the curvature vector is

(125)

O
K(i )—T(T)LEL
1T (@)
where () is the curvature of Q(u) at u and N(#) is the unit vector pointing from Q(u) towards the
centre of the osculating circle at Q(«). K(&) records the extent to which the curve is “bent” away from

a straight line; its direction tells us how that bending is oriented with respect to the direction in which the
curve is headed.

It is shown in [Barsky81, Barsky85, Barsky85a] that
K(@) = QW) xQ¥w) x@Wa)
| lQM@)!*

We shall say that a curve whose unit tangent vector and curvature vector are everywhere continuous has
G? or second degree geometric continuity.

K(%) = s(@)N(TT) =

(126)

Next we shall see that we can rig the way in which curve segments are parametrized so as to cause
the parametric first and second derivative vectors to incorrectly represent our intuition as to the physical
continuity of a curve. Many curves are G 2 ¢ ontinuous but not C? continuous, and C? continuous curves
can fail to appear geometrically continuous. A more rigorous and general discussion of this material can
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be found in [Barsky84].

17.2. First Derivative Continuity

First let us see that a first derivative may be continuous even though the curve itself has a discon-
tinuous tangent. We have already seen an illustration of this in Figure 32, but we can give an even
simpler example. The idea is to arrange for the first derivative vector to be (0,0) at the point in question,
so that the unit tangent vector is discontinuous even though the first derivative is continuous. In such a
case we may easily arrange that for ¢ >0, the limit from the left

and the limit from the right
. (g +e
lim —
eo* QW +e)|
be distinct.
Consider the two line segments Q,{u) and Q,(u) defined by
Q (u) = (2u-—u2,2u-u2) O0su=<l

Qo(u) = (1+u? 1-u?) O0su=<1 .

Qy(u) Qy(v)

(0,0)

T
(2,0)
Figure 196. A continuous first derivative with a discontinuous unit tangent vector.

These line segments are positionally continuous since Q;(1)=Q4(0)=(1,1). Their first derivative vectors
are

QVu) = (2-2u,2-2u) = (2-2u)(1,1)
Q) = (2u,~2u) = 2u(1,-1) .

Since Qil)(l)-=Q£I)(0) =(0,0), the first derivative vectors are continuous at the joint (as well as being con-
tinuous elsewhere), even though the unit tangent vectors for Q,(u) and Qg(u), given by

) = gz

Siggraph ‘85 17. Parametric vs. Geometric Continuity San Francisco



An Introduction to the Use of Splines in Computer Graphics 271

y0) = o511,

clearly point in different directions are therefore not continuous.

It is also quite possible for the first derivative vector to be discontinuous even though the curve
possesses a physically continuous unit tangent vector throughout its length. Consider

Q (u) = (12v,9u) 0=sus=sl
Qou) = (4(u+3),3(u+3)) Osus=1
whose first derivative vectors are
Q) = (12,9)
Qi) = (4,3) .

(16,12)

(12,9) 7 Qalv)

Qy(u)

(0,0)

Figure 197. A discontinuous first derivative with a continuous urit tangent vector.

. . . . 4
These line segments are collinear, and have a continuous unit tangent vector (namely (-5-—2-)) even though

there is a jump in the first derivative vector at the joint.

17.3. Second Derivative Continuity

We can find instances of the same sort of phenomena for the second parametric derivative as well.
First we show that the existence of a continuous second derivative vector need not ensure that the curva-
ture vector is continuous. Consider

Qi(u) = { cos(%(l-u)a) , sin(%(l—u)z] ] 0=su=x]
Qy(u) = [ 3-2:08(—72r-u3) , —2sin(-§u3) ] 0=us=l

which define two circles of radius one and two centred at (0,0) and at (3,0), respectively, which meet at
(1,0). Because they have different radii, there is a change in the curvature where they meet, and conse-
quently a jump in the curvature vector.

Siggraph "85 17.3. Second Derivative Continuity ' San Francisco



B

272 The Killer B’s

y

(0,1) o\Ql(“)

Qalv)
(3.-2)

Figure 198. A continucus second derivative with a discontinuous curvature vector.

On the other hand, their first derivative vectors are

Q{l)(u) - % [ 31rsin(ﬂ-l%f-)(1—u)2, —3ﬂcos(ﬁ1;—uf~)(l—u)2 ]

Q&l)(u) - [31ru26£n(ﬂ 3}, —'31ru2cos(m2‘3) }

u
2
and their second derivative vectors are

Q@(u) - -i— [ '-911'2co:s(ﬂl-;i)i)[l--u)4 - IQRsin(ﬂ}%‘-ﬁ)(l—u) ,

121rcos(-ﬁl-;—u)i)(l—u) - 91r2sin(ﬂ-l2;1‘-)1)(1-:1)4 ]

Q?)(u) - —;— [ l21rusin(?r;3) +91r2u4cos(1r;3) ,

9fr2u4sin(—”-2“i) — 1274 cos( ";‘3) ] .
In particular,
Q1) = (0,0)
Q{™0) = (0,0)

so that the second derivative vectors for the two curve segments are continuous at their common joint,
even though the curvature vector has a jump there both in direction and in magnitude since

K,(0) = (+05,0) .
It is also possible for the curvature vector to be continuous even if the second derivative vector is

not. Consider the following two curve segments, which define successive portions of a circle of radius 1
centered at the origin (so that the curvature vector must be continuous}.

Q(u) = ( ain(—;—u2} . cos(-g-uz) ] 0=sus=l
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Qy(u) = [ cos(-g-uﬁ) , = ain(-;iuz) ] 0sus]l .

y
(0.1) | Ql(“)
(1,0)
(0,~1) g Qafu)

Figure 199. Discontinuous second derivatives with a continuous curvature vector.

The first derivative vectors are

QM (u) = [ﬂ'ucos( W;Z), -rrusin(-zr%‘z-) ]

le)(u) = [ —mtsin(ﬂuz), —nucos(ﬂ;lz) ]

and the second derivative vectors are

Q{z)(u) - [ﬂ'co.s(m‘2

2 2
Qg")(u) - [ - 7r.<>~z'fz(7r;l ) = mu?cos( ﬂ; ),

2 2
ﬂzuzsin(—”;—) —ﬂcas(ﬁ; } ] .

In particular, the second derivative vectors at the joint between the two segments are
QP1) = (=%, ~r)
Q{0) = (0,~x)

although the curvature vector is clearly continuous since the two curves together are simply a half circle
of radius one centred at the origin. Indeed, the reader may care to verify that the less exotic parametric

representation of such a semicircle as
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Q(u) = [sin(%u), cos(%u) ]

Qy(u) = [cos(%u), —sin(%'u) ]

is C? continuous since

K (1) = Ky0) = (~1,0) .
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18. Uniformly-Shaped Beta-splines

We have seen that 'i‘(t'f ) and K(&) capture the physically meaningful notions of direction and curva-
ture. The parametric first and second derivative vectors, on the other hand, may be changed by
reparametrization without altering the curve, and moreover their continuity may not reflect the actual
“physical continuity” of the curve. Hence it is reasonable to ask if one can define curves in which
geometric rather than parametric continuity is required. We will do so in this chapter, drawing upon
material which appears in [Barsky81, Barsky85, Barsky85a]. We shall see that in doing so we can gain
additional control over the shape of the cubic piecewise polynomial curves in which we are interested.

Of course, Q(u), 'i‘(u} and K(u) are easily seen to be continuous away from the joints of a piece-
wise polynomial; what we want is to develop a means of enforcing positional, unit tangent and curvature
vector continuity at the joint between two successive curve segments as well. Our approach is very much
anajogous to the way in which we previously derived the uniform cubic B-splines.

Obtaining positional continuity is easy. We have simply to require that
Q1) =Q,(0) . (127)

Next we observe that two curves will have the same unit tangent vector at their common joint if their
first derivative vectors are collinear and have the same sense, which is to say if one is a positive multiple
of the other. The following equation captures this notion easily.

pellm=efo)  m>o0 (128)
There is an instantaneous change in velocity at the joint, but not a change in direction.

QL _~Q-p0",

-
-

w

Figure 200, The basic idea behind the notion of G! continuity is that the tangent vectors at the joint between

two successive segments need only be collinear; their magnitudes may differ by a positive factor which we are
calling A1

Obtaining continuity of the curvature vector is somewhat more involved. Equation {126) gives us a way
of computing the curvature vector at an arbitrary point. Let us use it to obtain the curvature of two
consecutive segments Q;—,(u) and Q;(u) at their common joint and equate the two expressions.
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QL (1) xQfA (1) xqfl,(1) _ Qo) xQ{?0) xQ{(0)
1Q{L(1)[* Qo)
If we substitute for Q(0) using equation (128) this becomes
QL) xQ(1)xQi1) _ AQI(1)*xQP(0)xs1 QM)
1Q{(1)]* tﬂlq,ﬂ_),(z)r
( )

;(l-ll(l)x xQ{l(1)

IQ,(‘-’x(l)I‘

- Clearly equality is ensured if $12Q[2,(1) = Q/?(0). However, since the cross product of a vector with

itself is zero, Q,IQ)(O) may have an additional component along Qm,(l) Hence equality still results if, for
any real numbers $1 and g2,

APQMA (1) + p2Qll (1) =Qf0)  Ai>0 . (129)

Equation (129) has a natural physical interpretation: Q{?(0) may have an additional component directed
along the tangent since acceleration along the tangent does not “deflect” a point traveling along the
curve, and so does not affect the curvature there.

(1) H) {1)
AT ~Q, =80,

-
-

Figure 201. The left and right second parametric derivatives at the joint between two segments may differ by

an arbitrary component along their common unit tangent since applying force along the direction of motion
does not deflect a moving point.

Geometric continuity results, then, if equations (127}, (128) and (129) hold at every knot u;, for any posi-
tive A1 and for any §2. These equations are, by definition, less restrictive than simple continuity of posi-

tion and parametric derivatives, which is the special case in which #1=1 and S2=0, yielding the uniform
cubic B-spline curves.

If Q(%) is defined using cubic splines then these equations must hold for the basis functions as well
since

Q) = XV;Bi(4)
QW) = YV:Bw)

+

and any of the control vertices may be 0. Conversely, if the basis functions satisfly these equations, as for
example

Aral(E) = sU)(&)

then so will the curves they define. We shall now arrange that this be so.
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Let us again consider a basis function composed of four cubic polynomial basis segments, so that
Qi) = ViaBiy(¥0) + V;B; (¥} + V1B, () + VB, (i)

{just as for the uniform cubic B-splines in Chapter 4), but this time ask that they aatisfjr the geometric
constraints (127), (128) and (129) instead of the parametric constraints (6), (7) and (8). The equations
which result are

0 = bo0) o = b3(0)
bo(1) = b4(0) gro8(1) = 88)(0)
by(1) = 50) Ar8i(1) = 89(0) (130)
bo(1) = b4(0) pro(1) = 80
bg(l) =0 p1ol(1) =0
0 = 680

B 53(1) + g2 84(1) = bY(0)
A 63(1) + g2 8U)(1) = (o)
AP (1) + g2 b1Y(1) = b8)(0)
A2 bl(1) + p28l(1) = 0
To obtain sixteen equations we again require, in order (we hope) to obtain the convex hull property, that
0
2 Biaei) = b4(0) + by(0) + 55(0) + b4(0)
r=3
= boy(0) + b4{0) +b4(0) = 1 ,
yielding a total of sixteen equations in sixteen unknowns. For any particular values of 81 and §2 these
equations can be solved numerically (as in the B-spline case} to obtain explicit formulae for the polynomi-
als comprising the basis segments. This is not very practical, however, since we do not want to solve a
new system every time we wish to alter one of the § parameters. Instead we can solve this system sym-

bolically, using a symbolic manipulation system such as Vaxima [Bogen77, Fateman82), to obtain the fol-
lowing symbolic representation of the basis segments for all values of 81 and S2.

bg(u) = % (2u3 ] ‘ (131)

boy(u) = -‘15— [ 2 +(681)u + (38246 f12)u® — (202 +2 87 +2/1+2)u’ ]
L
8

by(u) = [ (B2+4812+481) + (6 81°~61)u

— (382+6 A3 +6/1%)u? + (282 +2 A3 42817 +2 81 )’ ]
bg(u) = -16- [ (26:%) - (681%)u + (681%)u? ~ (281%)u° )
where

§ = f+2+4m% +401+2 #0 .

Notice that if we substitute A1 =1 and B2 =0 into the Beta-spline constraint equations (130) we obtain
the B-spline constraint equations (9), and that substituting these values into the Beta-spline basis

San Francisco
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segments (131) we obtain the B-spline basis segments (11). For other values of A1 and f2 the Beta-spline

basis segments fail to be C? continuous at knots, although they do satisfy equations (130) and are there-
fore G2 continuous.

Equations {131) can, of course, be evaluated more rapidly if they are factored. For any particular
values of A1 and B2 they are cubic polynomials in u, so forward differencing can also be used where
appropriate. The efficient evaluation of these equations is discussed in [Barsky81, Barsky85, Barsky85b].

We will refer to the basis functions whose segments are defined by equations (131) as uni formly-

shaped Beta-splines in order to distinguish them from the more general Beta-splines which will be defined
subsequently.

Increasing B1 increases the “velocity’” with which we traverse a curve immediately after a joint,
with respect to the “velocity” just previous to the joint, thus serving to btas the curve; values in excess of
one cause the unit tangent vector at the joint (which is, of course, continuous) to have greater influence
to the right than to the left, in that the curve will “continue in the direction of the tangent” longer in the
rightmost segment. Values of 81 ranging from one down to zero have the reciprocal effect, causing the
curve to lie close to the tangent longer to the left of a joint than to the right.

Figure 202. This sequence of curves illustrates the effect of increasing A1 on a uniformly-shaped Beta-spline
curve.

It is instructive to examine the basis functions uséd to define these curves:
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1.0 1.0
T 4—/;:. l\l'.‘. — ~ e .‘..: - -r ‘-..‘ i
=1 By =0 pr=2 p2 =0
1.0 1.0
B =4 By=0 B =8 By =0

Figure 203. These are the basis functions corresponding to the curves of Figure 202,

279

Each is computed for a distinct value of 81, which determines the ratio of the slopes to the left and right
of each joint. Notice that since the same basis function is used for each of X(i) and Y{&), any continu-
: ous basis function whose first derivative is continuous except for a positive jump of some arbitrary value
g (81) at the knots suffices to define a curve with unit tangent continuity.

The A2 parameter serves to control tension in the curve: altering the value of #2 moves the joint
between Q;—,(u) and Q;(u) along a vector that passes through the (i —2)*? control vertex, and this hap-
pens simultaneously for all the joints in a uniformly-shaped curve. For example, increasingly positive
values move each joint towards its corresponding control vertex and flatten the curve against the control

polygon.

Vl v2 V5 Vl VQ V5
oot L e t
L A=1 % g=0 - | =1 i B=5
+ + - .\'-"./. .i. + + SNc~—— .i,.
VD V3 V4 VO Vs V4
v, Vv, Vs | Vi V, Vs
+ e+ + +— a+- +
f S ; :
. A=1 : Bg =25 ’ ' pr =1 : By =100
v V3 v4 VD v3 V4

Figure 204. This sequence of curves illustrates the effect of increasing f2 on a uniformly-shaped Beta-spline

curve.

! The corresponding basis functions are:
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10 1.0
i "X IJ. 1\1‘ T L] L
‘ By =1 B =0
1.0
=1 By = 25 B =1 B = 100

Figure 205. These are the basis functions corresponding to the curves of Figure 204,

Notice that as J2 increases the peak of the basis function approaches one and the “tails” of the basis
function, lying in the leftmost and rightmost intervals of its support, approach zero. Since our indexing
convention is that the #'® basis function is scaled by V; and has support (u;,U;44), this peak is at @ 4.
. Again by convention this is the joint between Q;4y(u) and Q,4(u).

More generally, the curve itself converges to the control polygon as 82 goes to infinity, the joints

between segments converging to the control vertices. This behaviour is predictable from equations (131).
As /2 is increased, the basis segments converge to

bofu) =0

boy(u) = (8u?~24?)
bg{u) = 1 = (3u?-24%
bg(u) = 0

for any value of 81. If we let ¢t =(3u? ~ 2u®), it is easy to see that in the limit we obtain a curve that
varies linearly between each successive pair of control vertices.

! B1 also serves, to some extent, as an ‘“‘asymmetric tension parameter.” If for any value of g2 we
allow B1 to become arbitrarily large then the basis segments converge to

begfu) = 0
bo(u) = 0

bo(u) = (3u —3u? + ud)
bg(u) = 1 —(8u —3u? +u%) .

If these are scaled by V;, Vi, V;_, and V; s, respectively, to define the i** segment Q,(u) then this seg-
ment of the curve converges to a straight line between V; 3 and V; .
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vl v2 VE vl v2 Vs
+.........!. + B ) +
o A=1 i B=10 - B, = 1000 Bo=10 -
-+ +.\$s—=-'./.i. ....... ..i.
V, Vs V| ¥, Vs v,

Figure 206. The effect of making 51 very large for any value of 2.

H B2 has the value zero and we allow f1 to approach zero then we obtain symmetrical behaviour:
bofu) = u
boy(u) =1 -u®
bou) = 0
bg(u) =0 .

In this case Q;(u) is, in the limit, a straight line running from V;_; to V;.

v, \E ViV, Ve Vs
+ ....... + + s - - e e e

. /q\‘. . 1.-

L A=l L fp=0 8, =0.001 By =0

+ +- \7-/ + + S,

Vo Vs Vil Vo Vs Vv,

Figure 207. Decreasing 1 to zero does draw the curve flat against the control polygon when f2is zero.

Curiously enough, however, if 82 is nonzero then as 51 approaches zero the basis segments converge to

b..o(u) = ﬁ2+2 2113
by(u) = ﬁ21+2 [2+3ﬂ2u2-(2,82+2)u3 }

b_{u) = ﬂ21+2 [52 - 3f2u? + 28248 ]
b_ﬁ(u) =0

- Thus as 81 approaches zero Q;{u) does not, in general, approach a straight line unless B2 is zero.
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v, V, V.l Vv, Vo Vs
+ "—-—N + + + +
Z i . ; :
© A =001 ! By =10 B; =00000001; P, =10 -
+ + + |+ +- +
Vo V, V.|V, Vs v,

Figure 208. I B2is not zero the curve does not converge to the control polygon as #1 approaches zero.

B1 and F2 may be altered, independent of the control vertices, to change the shape of the curve. In
the curves we have been discussing a single value of 81 is used for the entire curve, and similarly for f2.
We would prefer, if possible, to specify distinct values of A1 and f2 at each joint. Before discussing how

this can be done, we indicate briefly how uniformly-shaped Beta-spline surfaces can be constructed from
uniformly-shaped Beta-spline curves.

18.1, Uniformly-shaped Beta-spline Surfaces

The formation of uniformly-shaped Beta-spline surfaces is completely analogous to our earlier con-
struction of uniform cubic B-spline surfaces. Once again our surface is a scaled sum of basis functions in
which X, Y and Z are functions of two independent variables:

@) = LV (132)
= Z ( 2i5Bi {u0), vi;Bi{49), z,;B;{w?p) ) .

For coefficients we again use the z-, y- and z-coordinates of a two-dimensional array of control vertices
that we have called the control mesh or control graph. To obtain locality we want the new basis func-
tions B; ;{(i,0) to be nonzero only for a small range of & and v. One way of arranging this is to let
B, j(#,0)=B;(u)B,(v), where B;(u) and B{(t) are simply the univariate basis functions (131) that we
developed for the Beta-spline curves. Since each is nonzero only over four successive intervals, if
#; SUSiu; 4 and U;SUS U4 we can rewrite (132) as

QAT = 5 3 Vier yuuBin(@)B(®) - (133)
r=3 ¢=3

If we rewrite this in terms of basis segments instead of basis functions and recall our convention that the
portion of Q(u,v) defined by this set of values for u and v is denoted by Q; j{u,v), then we can write

IJ u v) - E Z v:+r,_1+u r u)b (v) (134)
r=3 g=3

so that Q; j{(u,v), the 1,5* " patch, is completely determined by sixteen control vertices. As before, the
separability of B; ;(&,v) into B;(u) and B,(7) can be used to establish that the resulting surfaces are G?
continuous across patch boundaries. For example, we can expand (134) as
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Q.,(uv) = (135)
[Vios, b-s(u) + Voo, bogu) + Vi, boy(u) + V0 b_glu)]b-olv) +
[v:—s.,—lb-a(u) + v--z,,—xb—2(u) + vt-l,;-lb—l(u) + vs.;-lb-—o(")]b-l(”) +
[Vies,-oboslu) + Vi ob_o(u) + V5 _ob_y(u) + V, _ob_ofu)]b_o(v) +
[Vies,-sbos(u) + V,_p,_sb_o(u) + V,_y _sb_y(u) + V, _sb_o(u)] b_s(v) .
From this it is clear that if we fix u at some arbitrary value between 0 and 1 then we can write (135) as
Q. . (v) = Wob_4(v) + W b_o(v) + Wob_ (v) + Wyb_y(v)
where
W, = V,_,, b—a(_u) + Vg, bogu) + Vi, boy(u) + V,, b_ofu)
W, = V,_g,-1b_s(u) + Viogy-boolu} + vt—l,;-lb-l(u) + V,,aboolu)
W, = Vi_gy-oboslu) + Vo _oboolu) + Vo _ob_y(u) + V,;_ob_olu)
Wy = Vg, sbos(u) + Vg, sboofu) + V,oy _sb_y(u) + V, _sb_u) .

Thus Q,,M(v) is simply the uniformly-shaped Beta-spline curve segment defined by the ‘““control vertices”
Wi, W, W, and Wy, 1t is not hard to see that Q, ,,,.(v), in the next patch “up”, is given by

Qi +14(v) = Wib_g(v) + Wob_y(v) + Wib_y(v) + Wob_fv)
where
W, = Vig,abg{u)+ Vg b g{u)+ Vioip+aibogfu) + V., +1b-ofu) -

This is simply the second segment in a uniformly-shaped Beta-spline curve defined by the ‘“‘control ver-
tices” W,, W, W, W, and W,. 1t follows immediately that this curve is G? continvous. Since a com-
pletely analogous argument can be made with respect to u by factoring the b, (u) out of (134) instead of
the b (v), the uniformly-shaped Beta-spline surface we have defined is G° continuous along lines of con-
stant v and v.

\
=y

VALY

IRNENN
X

Figure 208. Uniformly shaped Beta-spline surfaces: 52 is 0 on the left and 25 on the right.
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19. Continuously-Shaped Beta-splines

Now we want to see how to generalize the uniformly-shaped Beta-splines so as to obtain local con-
trol of the shape parameters 81 and 2. The material in this chapter is taken from [Barsky82, Barsky83)].

Let £1; and B2; be the values of A1 and B2, respectively, to be associated with the joint between
Q;—1{u) and Q,{u). We would like to use the basis segments given by equations (131), making 81 and 82
functions of u in such a way as to interpolate between the 81,’s and #2;’s at each end of a segment while
preserving G? continuity of the curve.

Let us consider the following derivative with respect to u of a representative term of (131),‘31

e [B(u)P u?

136
§u) (136)
where ¢ is a constant. Its first parametric derivative with respect to u is

cqBu)lPut™ o cpBu)lP ANt _ c[B(u))P M u)u?
5(u) 5u) 8(u)? ’

(137)

where
§u) = B2(u) + 2[f(w)]® + 4[fi(u)]® + 4P1(u) + 2 .
§u) = g2(u) + 6[i(u)2a () + 881(u}B1 () + 481 u) (138)

Examination of (137) and (138) reveals that the second and third terms of (137) involve products with
A1) y) or 32(1}(1:), while the first term of {137) would constitute the complete parametric derivative if g1
and A2 were not functions of u. If we were to compute S1(u) and f2(u) by interpolating between the
A1,’s and B2;'s in such a way as to cause S1(1u) and B2{1)(u) to be zero at each joint then equations
(128) would hold and G! continuity would be preserved.

Similarly, the second parametric derivative of {136) is

c(g=1)q[Bu)Pu?™
6{u)

(139)

13 We will use 8(u) rather than f1{u) or f2{u) when the argument applies to both. No confusion can occur because products of £
and 2 do not arise. Similarly, §; will be used to represent both A1, and f2;
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¢ [B{u)P 5(2)(u)uq + 2¢ [B(u)? 6(1)(11)2119
8(u)? b(u)? .
2¢p ()P 1AV ) 6 u)u?  _ 2egqBlu)lP 6 u)u?™
5(u)? 5(u)? ,
cpBu)PT BB uut | e(p=1)p [Bu)IP AN () u
) B(u)

+ 2epglA(u)P 7 A(u)uI !
6(u) ’

+

where
§%u) = ) + 8[A(u)2A)(u) + 8Bi(u)BiBNu)
+ 4410u) + 1281(x)A1()? + 841 (u)? .
Again, only the first term of (139) lacks a product with at least one of ﬁlm(u), ,62(1)(11), A1®(u) or
B2(2(u), and the first term would constitute the complete second parametric derivative if 81 and 2 were

not functions of 4. Thus arranging that all four derivatives have the value zero at joints should be suffi-
cient to preserve G 2 continuity of the curve. This is easily accomplished in the following manner.

Suppose that we use a polynomial H(8;_;,8;;u) to interpolate between 8;_, and ;.

H(0) =8,  HQ1)=§
HY0)y=0  HYQ) =0

H®{0) =0 H%(1) =0
] I 1 |

Ty =il T =i

Figure 210. The idea is to interpolate the §; in such a way as to cause the first and second derivatives at the
knots to be zero.

We have six constraints, since we would like
H(B;-1,8::0) = Bi
H(B;-1,8:;1) = B;
HYY(B;-1,8;0) = 0
HO(8;-,,:51) = 0
HP(B;1,8;:0) = 0
'H“”(ﬁ.--l,ﬂf;x) =0.
This suggests the use of a fifth degree polynomial (which has, of course, six coefficients). If
H(B;—,Biu) = a +bu ¥cu? +dud +eut + fub

then the above equations take the form
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H(Bi<,8i0) = Biey = a
H(Biw,Bi1) = =ma+b+c+d+e+ |
H(l)(ﬂi-nﬁi;o) =0 =}
HY(B;11.8;;1) = 0 = b +2¢c +3d +4e¢ +5f
HB;,8,0) =0 = 2¢
HO(B,,8i51) = 0 = 2¢ +6d +12¢ +20f
It is straightforward to obtain the polynomial
Bi(u) = H(Bi-1Bisu) = Bimy + 10(B;=F;—)u® = 15(8;—f;)u* + 6(8;—f;—)u’
= B + (B;=B:-)[10u® — 15u* + 6uf) (140)

which satisfies these equations; this is, in fact, a special case of quintic Hermite interpolation. By the

argument given above, the use of (140) to interpolate §1 and B2 in (131) preserves G? continuity of the
curve.

H(1) =18
H(0) =05
T T
U =i-1 Uigy =3

H(ab,u) =a + (b=a)[10u®—15u*+6u°)

Figure 211. An application of the formula for interpolating 8 values between joints.

It is, of course, possible that the derivative terms appearing in (136} and (139) might sum in such a
way as to yield G? continuous curves even though the derivatives were nonzero; we have not ruled this
out for all other interpolation schemes. However, using Vaxima [Bogen77, Fateman82] it is not hard to
produce examples that demonstrate that neither linear interpolation nor cubic Hermite interpolation
work. Moreover, geometric continuity is not necessarily preserved if we use general quintic Hermite inter-
polation, even if the same two nonzero values are used for the first and second derivatives of S1{u) at the
joints (and similarly for #2(u)). Thus C? continuity of S1(u) and B2(u) is not sufficient to ensure G2 con-
tinuity. (See {Barsky82] for an example.) \ :

We shall refer to the curves whose segments are defined by equations (13) and {131), where S1(u)
and F2(u) are interpolated by equation {140), as continuously-shaped Beta-spline curves.

19.1. Loecality

Just as for the uniformly-shaped Beta-splines, each basis function is nonzero only over four succes-
sive intervals. Since each basis function is used to weight a particular control vertex, moving a control
vertex will alter only the four corresponding curve segments. These are, of course, consecutive.

The effect of altering a 8; is more localized still. The §; at a particular joint determines how # is
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interpolated over the segments that meet at that joint, so that only two curve segments are changed.

19.2. Bias

The following figure illustrates a few of the effects that can be obtained by altering A1s.

An Introduction to the Use of Splines in Computer Graphics

Vv, V, V| V), Ve Vs
R + A o+
/"‘\-. . + . —~ ﬂl.-.é"" T
By=1 A=t Ba =0 b1 Yy P2 =0 .
8= By=1 B,=1 By=1
+ +- .\.—':/_ -+ + +- .\..—./.. -+
Vo Vs V| Vo Vs \L
vl V2 v5 vl Vﬂ V6
+o e - -+ R s +
Hr=t " B=0 ' By=1 . Bo =0 '
. £,=38 ; ¢ . B, =3 '
' .L/ﬂl‘l . ' I £=1'
+ + 7 -4 |4 + T -}
Vo Vs V| Vo Vs v,

Figure 212. For these curves f2is held constant at zero while 81 interpolates the 1 values shown.

287

Although the resulting curves are often visually satisfying, their extreme locality with respect to changes
in the shape parameters can result in “kinks” if there are large differences in the 8 values for consecutive
contro] vertices. A modest reduction in the size of the jumps ameliorates the effect.

Figure 213. Less abrupt variation of 51 can be used to smooth out the kink visible in the lower right frame of

A\ vV, Vs
+ - s -
: Pz =0 .
ﬂ;=2 £,=8 | .

N ﬂ!:l
+ o T +
Vo V, Vv,

Vl v2 V5
'!" ﬁ::.é—““.."‘+ +
‘/: ﬂ]-%‘ ﬂg‘o '
B=2 '
[l Iel=1I
+ o~
VO Va v!

Figure 212, if that is desirable.

19.3. Tension

Since this scheme interpolates the 3;, the discussion of tension in [Barsky81, Barsky85, Barsky85a] is
equally applicable here. We already know that the effect of increasing g2 is to draw the curve towards
the control polygon. Let us examine the path followed by a particular joint, say the joint between the
(§-1)* and +'® segments.
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é P Y"'l Yi

l""""'. I----"'"‘ lnu-""‘ ..k.'.’-'c'-'.':.-l """"""" 1 RECTI } ..""-.."
Uig Uiz Yo Y, U; Uiy Uiep U4y Uiy Uids

Figure 214. This illustration may help in keeping track of the indices. The §*2 interval runs from &; to &;4,.
The i*® control vertex {actually the i*" y coordinate here) scales the basis function whose support begins at ;.
The i*® uniform cubic B-spline peaks at T; +; the peak of i*® Beta-spline B;(i¥) may be displaced left or right of
;4o by decreasing or increasing Au.

- The difference
- - (C—cVz)
Qi(0) = Vi = Q:(1) -V, (c +52)

is the vector from the (i —2)™ control vertex to this joint, where
4 C = 2ﬂl?v,'..2+4ﬁ1;(ﬂl,-+l)v‘-_l +2V;
c = 283 +4MF + 48, +2 .

Altering f82; merely changes the length of this vector: values approaching —¢ “push” the joint arbitrarily
far away from V;; large positive or negative values draw the joint arbitrarily close to V., pulling the
two segments meeting at that joint flat against the control polygon. Hence §2; serves as a tension param-
eter, just as for uniformly-shaped Beta-spline curves.

AL vV, Vil V) Vo Vs
Fooe e - + oo e e +
, /“\ . + . /—\ . T
192'9 ﬂgm '.'.." , .ﬂQq] ﬂg% ',.'.- .
N T T R I Y
+ +- ~— + |+ +- ~ +
V, V3 Vit Vo Vs Vv,
A& \L Vsl V) VY Vs
+- - <t L R +
* ﬂ2=25 .‘:. . M 52-100 : .
*B=0 : . 8,70 ! .
b ’ H . : ! .
: ' : : . - !'
‘ L A= LB =0, . A= O T
+ +- ~— + + +- \-/ +
Vo Vs V| Vo V3 v,

Figure 215. The value of 82 at the joint nearest to V, is increased from O to 100 in three steps, pulling the
joint towards V. In the limit this joint converges to V.

Again, wildly disparate values of @2 for adjacent control vertices can produce kinks. These can be
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removed, if that is desirable, by smaller adjustments in neighbouring £ values, as shown below.

Vi Va Vs
+ - . +
. B,=100 : .
B0 ) ,
. ! .
. -1 H .
. ﬂl 3. pgq ﬂgq) .
+ + .___\-_./_ .;.
Vo Vs v4

Figure 216. Altering the value of $2 at a joint affects only the two curve segments that meet there. Making
one such B2 very large in comparison with its neighbors, as in Figure 215, causes these two segments to be

abruptly pulled close to the control polygon. The value of #2 at-adjacent joints can be adjusted to smooth out
the curve. ‘

For comparison with Figures 203 and 205 we give some examples of continuously-shaped basis func-
tions.

10 1.0
,~'/-‘\'.
_/." '."'L _/...'
L T ¥ T L I T T v L]
B1=1,1,2,4,1 £, =0 By=1 o, ™0,5,25,100,0

Figure 217. Here we illustrate the effect of interpolating B values on the basis functions. On the left p1
changes value from joint to joint, while on the right 2 changes value.

Notice that each point on a continuously-shaped Beta-spline curve Q(u) also lies on the uniformly-
shaped curve R(u) defined by the same control vertices and the values of f1 and B2 at that point on
Q(u). The behaviour of Q(u) as A2 is varied can therefore be inferred from the behaviour of the
corresponding uniformly-shaped curves. Thus B2 values can be used to locally force a curve to converge
to the control polygon if they are increased arbitrarily.

19.4. Convex Hull

Like the uniformly-shaped Beta-spline curves, continuously-shaped Beta-spline curves possess a con-
vex hull property in that the i*® segment lies within the convex hull of control vertices V;.3, Vo, Vi
and V;, so long as both A1 and @2 are nonnegative. The argument, as we shall see, is straightforward.
Recall that because each basis function is nonzero over four intervals, we have

Qi(u) = Vigbglu) + Vipbg(u) + Vi byu) + Vibo(u) . (141)

Now for any given value of u, 81(u) and #2(u) yield some particular value of 81 and 82. By simply sum-
ming equations (131) we see that for every such 81, f2 and u

boo(u) +by(u) +bg(u) +byu) =1

Next we must verify that these basis segments are nonnegative for all u in the interval [0,1]. I we
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rewrite equations (131} in the form

(2

[2,512112(3—11) + 2f1u(3~-u?) + Beu?(3-2u) + 2(1~-uf) )

o
E
14
s
1

o,|'- °"""

bfu) = ‘;‘ [2ﬂ13u((1—u)(2—u)+1) + 281°(u*-3u?+2)

+ 281( ud—3u+2) + F2( 2u®-3u+1) )

1
bg(u) = 3 [2/913(1—11)3 )
where
b= B2 +28°+482 +4P1+2 # 0

for f120, 220, and 4 €[0,1], it is easy to see by inspection that b_o(u), b_(u), and b_s(u) are nonnega-
tive. For b_o(u), elementary consideration of the zeros of the derivatives 3u(u—2), 3(u=1)(u—1) and
6u(u—1) of u®~3u?+2, u3~3u+2, and 2u3~3u2+1 yields the same conclusion. Since 81 and B2 are actu-
ally interpolated by (140), it is necessary to show that

Bi(u) = Bi— +(Bi=B;-)[10u® — 15u* +6u’] = ©
if B;—1=0, B, =0, and u€[0,1]. Consider

B (u) = 30(8; =B )u?(1~u)® .
Clearly the slope changes sign only at u =0 and u =1. Since

48,
pi(0.5) = 'ﬂ_'_é'ﬂ;tl‘ =0 if g4, 8 =0,

B;(u) must be nonnegative on [0,1] so long as the §; are nonnegative.

Hence so long as 81, =0 and #2; 20, Q,(u) lies within the convex hull of V;, V;, V,., and V;.

19.5. End Conditions

Just as for the uniform cubic B-splines, a properly defined continuously-shaped Beta-spline curve
segment is the linear combination of four basis functions, as in equation (141). Thus m +1 control vertices
Vo -+ +,V,, can be used to define m —2 segments, which we index as Qa(u), - - - ,Q,,(u). The Beta-spline
curve then begins'!l (see [Barsky81] and [Barsky85)) at

Q0 = 5o (28370 + (B0 -2mi-2) Vi 2V, ) .

4 The terminal point of the curve is analyzed in an exactly analogous manner, and we therefore omit explicit treatment of it.
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vs vm4
\f (Qa(“) Q'”(")> A
+ +
Vo + + v,

Figure 218. It is hard to say more than that & typical Beta-spline curve begins and ends “in the vicinity” of
the first and Jast control vertices. For example it does not, in genersl, interpolate any of them.

Thus the curve does not, in general, begin at a control vertex, or even at a point along the line segment
from V, to V,. In order to obtain better control of the beginning of the curve, one therefore often treats
the ends of the curve specially.

Let Q) be a continuously-shaped Beta-spline curve with f1=81; and B2=p2; at the joint between
the i*® and {+1" segments. Let R{u) be a uniformly-shaped Beta-spline curve defined by the same con-
trol vertices, but with f1=p81, and B2=p82; throughout. By the definition of Q{%) we must. have
Q&) =R(%), QM) =R&) and Q@(#)=R®@(i) at the joint in question. Hence the analysis of end con-
ditions in [Barsky81j applies immediately to continuously-shaped Beta-spline curves. In fact these tech-
niques for controlling Beta-spline end conditions turn out to be identical to the techniques discussed ear-
Lier for uniform cubic B-splines (which are a special case of the Beta-splines), although the analysis is
more complicated. For convenience we summarize them here, but do not give a detailed development.

® A Double First Vertex. We define an additional segment at the beginning of the curve by
Qolu) = Vol[bglu)+b(u)} + Viby(u) + Vobgu) .

Q(u) begins at a point lying along the line segment from V, to V, at which point it is tangent to
that line and has zero curvature.

® A Triple First Vertez. We define two additional segments at the beginning of the curve by
Qi{u) = Volbglu}+b(u)}+b_(u)] + Vobfu)
Qu(u) = Vylbg(u)+b(u)] + Vib(u) + Vobo(u) .

The curve then begins at Q,(0)=V, and the first segment of the curve is a short straight line. The
behaviour of the second segment Qu(u ), which has a double first vertex, is described above.

The analysis of double and triple vertices is equally applicable on the interior of a curve. Triple interior
vertices are particularly interesting since they can result in a cusp:

Siggraph ‘85 19.5. End Conditions ) San Francisco



292 The Killer B’s

a single vertex a double vertex a triple vertex
+ . : ~
+ /- + + / \ + + / 4
+ + + + + +

Figure 219. f1 is one and S2 is zero at all joints; these are in fact simply uniform cubic B-spline curves,
although a cusp results at a triple vertex for any values of f1 and B2 unless the control vertices immediately

preceding and following the vertex are both collinear with it. The double control vertex is not interpolated,
while the triple vertex is.

This cusp is not a violation of G2 continuity because, or at least in the sense that, the first parametric
derivative vector has the value (0,0) at the joint that coincides with the interpolated control vertex where
the cusp occurs, so that the unit tangent vector is not defined. Multiple vertices give a tension-like effect,
and it is instructive to compare the effect of repeating a vertex with the effect of altering 52 there:

a single vertex, fo=5 a single vertex, B,=25 a single vertex, B,=-3
+ +
+ / Lot + + + /— +
+ + + + + +

Figure 220. Here f1 is one at all joints and B2 is zero except as indicated.

An alternative way of controlling the beginning of a curve is to automatically define a phantom
vertez V_, and a corresponding initial segment
Qa(u) = Vo bo(u) + Voby{u) + Vib_j(u) + Vb ofu)

in such a way as to satisfy some requirement. We may ask that:

® Q.(0) interpolate some furnished point (generally resulting in nonzero curvature);

® Q(0) interpolate V; (at which point the curvature is then zero);

® Q$Y(0) have some specified value (generally resulting in nonzero curvature);

® Q!J(0) have some specified value (generally resulting in nonzero curvature);

® Q/Y(0) be zero, resulting in zero curvature at Q{0).

All these techniques involve extending the curve by one or two segments at either end. This implies the
existence of additional joints and associated 8 values. Hence the sequence of control vertices is extended
in order to specify behaviour at the ends of the curve, and additional 81 and A2 values must be specified
as well. These may take any value without affecting the behaviour described above. In practice it is
probably easiest simply to replicate g values as well as vertices.

The curves we have discussed so far are open curves, which is to say that the two endpoints do not,
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in general, coincide. A G continuous closed curve whose endpoints do meet and which is G%continuous
is obtained if the first three control vertices are identical to the last three and the same values of §1 and
B2 are used at the joint between the beginning and the ending of the curve.

Vo[Bo=25] + V,[B,=25] Vo[Bo=25] + V,[B,=0]

Vs, Vo 4 Vio, Vao[By=10] Vg, Vo 4
+ V3 V7+

Vi, Vz[ﬂz'm]

¥
V5 v5

Figure 221. On the left is a continuously-shaped Beta-spline curve in which the first three and the last three
control vertices are identical and the values of 1 and f2 at the second and penultimate control vertices are
also identical; a closed G2 continuous curve results. The right hand curve is defined identically except that the

second and penultimate control vertices, whose positions coincide, have distinct values of S2; a discontinuity
results.

Although it may appear in this figure that the joint near V, in the left-hand curve is a cusp, by zooming
in on the joint we can see that in fact curvature continuity is maintained.

Figure 222. On the right is a magnified image of the indicated portion of the curve shown on the left.

Again, the arguments establishing these results appear in [Barsky81] and the details have therefore
been omitted.

19.8. Evaluation

Using factorizations given in [Barsky81] and [Barsky85b], the Beta-spline basis segments (131) can
be evaluated in 28 multiplication/divisions and 21 addition/subtractions. If a single point on Q(u) is to
be determined, the evaluation of the right hand side of (13) in d dimensions then requires 4d multiplica-
tions and 3d additions. The total cost for evaluating a point on a uniformly-shaped 2D Beta-spline curve
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is therefore 36 multiplication/divisions and 27 addition/subtractions; a 3D uniformly-shaped Beta-spline
curve requires 40 multiplication/divisions and 30 addition/subtractions.

For a continuously-shaped Beta-spline curve, equation {140} can be evaluated in 6 multiplications
and 4 addition/subtractions if it is factored into the form

H{(Bi=,B:8) = fiey +(8;~8;-)[10+(6u =15)u]u® .

Since both F1(¥) and B2(%) must be computed, both H(81,-,,81;,u) and H(82;-,,82;,4) must be evaluated.
However, since [10+(6u —15)uu® need only be evaluated once, the total cost of interpolation is 7 multipli-
cations and 6 addition/subtractions. The additional cost for a single evaluation by this technique of a

continuously-shaped Beta-spline curve, beyond that required to evaluate a uniformly-shaped curve, is
therefore about 20%.

More often we wish to evaluate a sequence of points along each segment in order to render a curve.
If we compute these points by repeatedly evaluating the basis functions as described above, then a
uniformly-shaped 2D Beta-spline segment can be evaluated at r values of u in 16+20r
multiplication/divisions and 14+13r addition/subtractions while its 3D counterpart requires 16+24r
multiplication/divisions and 14+16r addition/subtractions. The corresponding cost to evaluate a 2D
continuously-shaped Beta-spline curve is 36r multiplication/divisions and 2+31r addition/subtractions,
while in 3D the cost is 41r multiplication/divisions and 2+34r addition/subtractions. The difference
between the evaluation of uniformly- and continuously-shaped Beta-spline curves results from the need to
re-evaluate the coefficients of the polynomials forming the basis segments, owing to the fact that 81 and

B2 are no longer constant, as well as from the cost of actually performing the interpolation [Barsky81,
Barsky85b].

If instead we first sum the terms in equations (14) so as to compute the coefficients of X(u) and
Y(%), and then use Horner’s rule (nested multiplication), then the evaluation of a 2D uniformly-shaped
Beta-spline segment at r points requires 49+6r multiplication/divisions and 38+6r addition/subtractions
while the 3D curve requires 65+9r multiplication/divisions and 50+9r addition/subtractions. A modified
version of this algorithm which computes continuously-shaped Beta-spline curves requires 55r
multiplication/divisions and 2+48r addition/subtractions in 2D and 75r multiplication/divisions and
2+63r addition/subtractions in 3D.

A third alternative is to use forward differencing techniques. For large values of r the evaluation of
a 2D uniformly-shaped curve in this way is almost a factor of 17 faster than the evaluation of a
continuously-shaped curve using Horner’s rule, although it is subject to cumulative roundoff error. While
in principle forward differencing is applicable to the continuously-shaped Beta-splines as well, in fact it is
impractical since each coordinate is the quotient of an 18" and a 15'® degree polynomial. Where cost is a
crucial factor it may be desirable to fix A1 at one and manipulate 2 alone. Doing so significantly reduces
the expense of evaluating equations (131) after interpolating 42; each coordinate is then the quotient of an
8't and a 5 degree polynomial.

There are other possibilities. Uniformly-shaped Beta-splines are translates of one another, and need
only be evaluated for the first segment drawn if they are saved and reused. In the case of continuously-
shaped Beta-splines, each joint is associated with distinct values of A1 and F2, so that in general each
basis function has a different shape and must be individually evaluated. (The rendering of curves by
“subdivision” will be discussed in Chapter 11.)

An existing curve can be altered much more efficiently than a new curve can be drawn. If a control
vertex is moved then only four segments of the curve must be recomputed, since the basis function that
the vertex weights is nonzero on only four successive intervals. Because the vertex is usually moved
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several times in succession, it is advantageous to save the basis segments as they are first evaluated to
avoid recomputing them. Moreover, the portions of the computation for each segment that are actually
dependent on the vertex being moved may be segregated from those portions of the computation that are
not, and which therefore need not be recomputed.

Altering a 8 parameter necessitates recomputing only two intervals, although all the basis segments
in each must be re-evaluated.

19.7. Continuously-Shaped Beta-spline Surfaces

, Continuously-shaped Beta-spline curves can be elegantly generalized to define surfaces that preserve
G? continuity at the boundaries between adjacent patches. The generalization we shall present allows the
user to specify a bias and tension parameter at each corner of a patch; of course, patches that share a
corner make use of the same § values at that corner. The technique is to generalize the univariate inter-
polation formula (140) to a bivariate formula in such a way that:

® the § values at the four corners of a patch are interpolated;
® two patches which share an edge will have the same g values along that edge;
® the first and second partial derivatives of 81(u,v) and 82(u,v) across a patch boundary will be zero.

This last property will allow us to ignore {at boundaries) all but one of the terms which arise in comput-
ing the partial derivatives of a Beta-spline surface in which B1{u,v) and f2(u v} are allowed to vary, so

that the properties of a uniformly-shaped Beta-spline surface will be inherited by our continuously-shaped
surface.

Thus our first consideration is to develop a bivariate interpolation formula. It is at least plausible
that we would like lines of constant u or of constant v on a continuously-shaped surface to be
continuously-shaped curves. Along such curves we would then expect 81 and 2 to vary as they do along
continuously-shaped Beta-spline curves. For convenience let us write equation (140) in two pieces as

s = 10u® — 15u* + 645
H(Bi—,Bi58) = (1-8)B;~ + 856
and along the top and bottom boundaries of the patch interpolate the a values

—_— o P i
ﬂl'.j‘H Bs 1,541

— T ——— ﬂ"ﬂ, ]
ﬂs‘.j i

with our customary formula to obtain
ﬂtop - H(Bl'-l.j:ﬂs',j;u] - (1 _s)ﬁl‘-l,j + 8ﬂt’,j
Biot ™= H{ﬂ:‘-l.;'—uﬁ-".j-l;u) - (1"8)ﬂ£—1.j—1 + 881 -

This yields values of 8 at parametric distance u from the left edge along the top and bottom of the patch.
To interpolate in the v direction across the interior of the patch it is natural to again use the formula

H(ﬁbahﬂtop;v) = (l-t)ﬂbot + t'@!op

with
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t = 10v® — 150 + 615
Substituting, we obtain the desired bivariate interpolation formula

Bifluw) = (1=8)(1=t)B;ojm + s(1-t)B; ;- + (1=8)thin; + eotfi; - (142)
with

s = 10u® ~ 15u* + 6ub

t = 100° = 15v* + 645 .

(We emphasize that s and ¢ are used here for notational convenience.) f; j(u,v) has some rather attrac-
tive properties:

® it interpolates f;-y j-1, B; j~1, Bi-1,; and B; ;;

® along any of the four borders of a patch it reduces to the univariate interpolating formula (140);

® the first and second partial derivatives of §; ;(u,v) with respect to v for v=0 and v=1 (i.e. across a

vertical patch boundary) are zero, as are the first and second partial derivatives with respect to u
for v =0 and u =1.

Now let us define a continuously-shaped Beta-spline surface patch Q; ; by equation (134) except
that we let S1 and S2 be functions of u and v, using equation (142) to interpolate between § values associ-
ated with the corners of each patch. To simplify the notation we shall actually discuss Q 33 and Q 34,
which are defined by the control vertex mesh

(The generalization for an arbitrary patch is straightforward.) Since the b,(u) and b,{v) are now functions
of Ai(u,v) and f2(u,v), we write equation (135) for Q 54 as

Qa,a(“»”) - : (143)
(Voub-s(Bbsn) + Vi b8 85%) + Vi iboy(Buige) + Vasbo(Brfisu) | boBrfsr)  +
[ Vosbs(BuBain) + Vygbo(Br.Bsu) + Vosb(B85u) + VasbolBrbn) | bo(Brfsv) +
| Vaoba(B1Bzu) + VyoboBr.85u) + Vaoby(B1.85u) + Vasb By fu) | bofBrfsv) +
| Vorba{BuB5u) + Vi 16 f8185u) + Vo b(BiByv) + Vard—olBrban) | b-o(Brfzv) -
Q 33 is similarly defined by
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Qagluv) = (144)
[ Voab-s(BuB5u) + VB, hin) + VopboBi80) + VgabolBp.st) ) boglBrBsv)  +
| Vioob—g(BrBoin) +Viip fun) + Vyoh (8, B5u) + Vaob (B Bau} | b(ArBsv) +
[ Vorb-alBrB850) + Vi hff fin) + Vo b(BByu) + Vo bofBrBun) b o(B1B5v) +
| Voob—sBufat) +Vighalfubsu) + Vagho(8 fsu) + Vaob o By.Bu) |boglBrB5v) -

We shall discuss the behaviou of these patches at their common (“horizontal”) boundary, which is

Q 54(1,0) and Q 34(u,1}. {The argument for common “vertical” boundaries is analogous, and is therefore
omitted.)

First, of course, we must verify that the curves Q g ((u,0) and Q g(u,1) are actually identical. For
any fixed 4 we may rewrite (143)and (144) as

Quor(v) = Wobogft)t Wibv) + Wyby(v) + Wb o(v) (145)
and

Quop(t) = Wybogloht Wb o) + Wyby(v) + Wb ofv) (146)
where

Wy = Vobogfu) +V,bfu) + Vyb(u) + Vj b(u) (147)

W, = V(,‘sb.e(u) +V]’3b_2(u) + V2|36_l(u) + V3'3b —o(u)

Wy = Voabo(u) +Vighofu) + Vogb(u) + Vb o(u)
WI - VO'lb-s(u) +V1'1b_5,{u) +V2!1b_1(u} + V3’lb_0(u)
Wo = Voobgu) +V,sbfu) + Vygby(u) + Vgobofu) .

As we have seen, along the comnon berder fy4u0) and Bpg(u,1) both reduce to H(By;,029;u). Hence
the §1 and A2 which appear in (143) and (144) are identical, so that (145) and (146) are simply two suc-
cessive segments on a uniformlyshaped Beta-spline curve. Hence Q,,¢(1) =Qy0p(0), Wwhich is to say that
Q 33(u,1)=Q 5 4(u,0), as desired.

Tangent and curvature contivuity between patches follow similarly if we apply the argument used
earlier. Recall that the partial deivatives of f1(u,v) and B2(u,v) with respect to v for v=0 and v =1 are
zero. If we fully expand equations (143) or (144), a typical term has the form

¢ [Bi(u " [Bofu )" u®o*
[B2(u v)] + 2(Ba(u o]l +4[Bi(u v)} + 4[Br(w v)] + 2
If we then compute the first partial derivative of this term with respect to v we find, after repeated appli-

cation of the product, quotient and chain rules, that the only resulting term that does not contain a pro-
duct with at least one of

-d d
E}-ﬂl(u,v) and -(Eﬂﬂ(fn,v],

both of which are known to be e by construction, is
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Hence our surface has tangent continuity along its “horizontal’” boundaries. The same argument works.
mutatts mufandis, for the ‘‘vertical” boundaries as well, and generahzes to arbitrary patch boundarie <
that our surface is everywhere G! continuous.

An analogous argument suffices to establish curvatyre vector continuity.

Alternatively, G* continuity can be directly verified using Vaxima by evaluating the Beta-spline con-
straint equations if {142) is used to compute the values of f1 and f2. The algebra involved is, however,
rather extensive...

B =125

v

(55 NS T e
(< i \“\%

/]

T

YANY
WY
[ 1/

T L LIS

Figure 223. On the left is a Beta-spline surface in which f1™1 and S2=0 — a uniform bicubic B-spline sur-
face. On the right the B2 value at the joint corresponding to the indicated control vertex has been increazed to
25. The twelve boundary vertices in the control graph have been “doubled” so as to define a total of 9 patches;
otherwise the sixteen control vertices shown would define only a single patch lying close to the four centrai con-
trol vertices.
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20. Discretely-Shaped Beta-splines

The continuously-shaped Beta-splines provide very local control of shape, but at significant cost.
An obvious question is whether we can obtain local control of the shape parameters in strictly cubic
splines. In this section we will see that this can be accomplished by suitably generalizing the one-sided
functions from which we obtained the B-splines. In the “discretely-shaped Beta-splines” that result,
alteration of A1 or f2 at a joint causes a change in the shape of four segments, as compared to the two
segments of a continuously-shaped Beta-spline that are affected. In most other respects the uniformly-
shaped, continuously-shaped and discretely-shaped Beta-splines display the same general behaviour.

We seek a simple and computationally efficient means: (a) to attach distinct values of 1 and §2 to
each joint in a piecewise cubic polynomial curve, in such a way that changing a single 8 parameter will
alter only a local portion of the curve being defined; and (b) to generalize the uniformly-shaped Beta-

splines to non-uniform knot sequences. Our approach is analogous to the development of cubic B-splines
sketched earlier.

20.1. A Truncated Power Basis for the Beta-splines

Our first task is to define an analog of the one-sided function. The function (u —t )3 itself will not
do, because its first and second derivatives are continuous across all knots. What we want is a function
that undergoes a jump in its first and second derivatives as it crosses each knot, sufficient to satisfy the
geometric continuity constraints (127), (128) and (129). Consider a function of the form

= - _ = —= 12
p(u) + a.‘,.‘+1(“‘“s+1)-1|- + b.',;'+1(“ ~Ui4)% -

(See Figure 224.) Its first and second derivatives from the left at u;4, are simply p!(i;) and p'¥(&;).
(We assume that these exist.) Its first and second derivatives from the right at @4, are

PN ) + a; 44y
P(z)(ai +) +2biie .

Thus there is 2 jump of a; ;4; in the first derivative and of 2b; ;4 in the second derivative. If we want to
satisfy (128) then we must have

51,.‘+1!’m(‘7:'+1) = Pm(aﬁl) ta s

or
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Figure 224. Adding ¢ (¥ —i;)! and b(T—F;)? to pleft create a new function with discontinuities in the first
and second derivative.

ain = (Bran—1) pWE4) - (148)
To satisfy (129) we must have

ﬂf.iﬂp(z)(‘:iﬂ) + B pN(Zar) = pOTGa) + 265

or

1 - —
biivs = ?[(512,;-1-1"1)?(2)("“1) + /92,;+1P“)(“.'+1) ] . (149)

These equations tell us how to modify an arbitrary function so that it will satisfy our G? continuity condi-
tions as it crosses a knot. To construct a one-sided basis for the Beta-splines, we begin with the one-sided
function (4 ~u; )%, since it introduces the necessary third derivative discontinuity at i;, and modify it as
above each time we cross a knot. Consider the function

g:(¥) = (T-%)t +a (T -Ta)t + 4 aGimaa(T—Tnaa)d
; b (T=Ta)d+ 0 F b U T a)}
Since (127), {128) and (129) will necessarily be satisfied by any linear combination of functions individu-

ally satisfying (127), (128) and (129), it is sufficient to ensure that the functions g;(#) each do so.

The function (& —; )3 itself has zero value, as well as zero first and second derivatives, at 4; and at
all knots left of u;, and so trivially satisfies our G constraints for all = u;. It is therefore sufficient to
define the a; ; and b; ; from left to right, for i <j=m+3, using equations (148) and (149). Thus when
computing a; ;4 and b; ;4;, p(%) is simply (¥ —%;)% The values a; ;4; and b; ;4 are given by (148) and
(149). More generally, when computing a; ; and b; ;, ¥ is at the knot ¥; and p() has the value

i il
(F-m )P+ 3 e (d-u ) + Y bau(u-%) ,
k=4 =i+

the preceding a;'s and b;’s having already been computed. Consequently the first derivative p},’}, of p(%)
at 4, is
3
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Figure 225. The function g,{ir).
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and the second derivative P{f}t is

i=t
6(T; =) +2 ) b,

k=i+]

301

Equations (148) and (149), with a suitable change of indices, then yield a; ; and b; ;. The following algo-

rithm computes the a; ; and b, ;.
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Algorithm 1

for i = 0 step 1 until m+2 do

Sa -0

Sb~0

for j = i +1 step 1 until m +3 do

7=l
Pl = 3(T,— T 2 + Sa +2 X buli;—)
k=iH

i) - 6(T;— ;) + Sb
a;j = (Br;—1)pkk
bij ~ ‘;‘[ (B2;=1)plZ + By ol ]
Sa ~ Sa +a; ;
Sb - Sb + 2b; ;

endfor

endfor

The outer loop steps through the g;(#) in turn. For each g/(¥) the inner loop computes the g; ;'s and
b;,;’s; Sa and Sb keep a running total of the a; ;'s and b; ;’s that have been computed thus far.

It is not hard to see that the functions g;(if) form a basis for the G? splines over some particular
knot sequence and associated shape parameters 3,; and f,; — the argument is very much analogous to
that given in the case of C? splines for the one-sided cubics, and is therefore omitted.

20.2. A Local Basis for the Beta-splines

The g;(#) have the same deficiencies — namely rapid growth and non-locality — that the one-sided
basis for the C? splines suffers from. The obvious next step, then, is to see whether some form of dif-
ferencing can be applied to the g;(¥) so as to obtain a local basis.

Just as when constructing the B-splines, the cubic term in each g;(i)} is easily cancelled for u suffi-
ciently far to the right. We need only compute -

ginl¥) = glu) , : {150)
gi+®) — gini) (151)

and so on. In order to cancel the quadratic terms in (150) and (151) by computing a further difference we
need to arrange for the coefficient of &° in (150) and (151) to have the same value. Unfortunately, these
coefficients depend not only on the knot spacing (as was true for the B-splines), but also on the particular
knot interval containing & since we pick up an additional a; ; and b; ; each time we move rightwards
across a knot. In particular, if &;S#% <u;4 and 1 <j then

g() = & + tT2[(".’,&1"’ < by ;)3 ]
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Figure 226. The basis functions shown can be combined to form a G? function which replaces g:(%0).

tu [(ai,iﬂ"' ety )
= 2b; sl - o Hb; ;) + 3T ]
+ [(bi.s+117i2+1 + oo by ST
= (G imiimt - bag i) = @ ] ;
while the one-sided basis used for the B-splines is simply
@-mp =@ +@[-a

+u +3E,?]

+ |-

for all #>u;. Thus for (# —ir; )% the coefficient of @ is a constant: if we divide (& —&;4, )3 —(Z — ;)3 by
—3{u; 4, u;) then the coefficient of the quadratic term is simply 1, no matter what the value of . For
g:(¥) the coefficient of & alters each time we move rightwards across a knot. Hence we cannot divide
g; +1(¥) —g;(¥) by any single constant and expect that the coefficient will be constant — in general it will
change each time we cross a knot.

This difficulty can be overcome, however. For the B-splines we needed to take a fourth difference
in order to obtain a local function, and the B;(#) became zero for #Z ;4. At each step we arranged for
the leading coefficients to be identical for & =u;4, so that they would cancel when performing the next
difference.

For the Beta-splines, then, we will normalize the leading coefficients after each difference so that for
U, 445U <i; 45 these coefficients will be identical. In particular, for the fourth difference they will be
identically zero on this interval. From the equation for g;(&) above it is apparent that we will need the
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constants
Ay = (Biimr Hbisan + biiaa + b 50)
- 3,
B;; = (Giinr a4 05500+ a5 54)
= 2( biiwmttiay + by saotian 0 caatlian F b ity )
+3u)
—2 —2 —2 -2
Cii ™ (Biinition + b;saotiiag + b saaltian + by aliing )
= (iU + 0 i a0tian G jaalliag F Gl )
- ;“._3 ‘
Aiin ™ (Bidrise + biariea F biaring)
= 814y
Bijyg = (Gitiae + divii48 + Qarieg )
= 2( by iitiag F iy galtieg + byt i aailie )
+ 3y
C.py = ( by iantiies + bygctallies F by s 4all
i+l ittt v b atiias F by athi )
= (Gl F G404 F il )

-3
T Uiy

At = = 3U 4y
Biip = + 3y
Ciivs ™ —Uiny
Then we may write
gJ(;I) - 1.73 + A."I-‘EQ + Bi‘,'lT + Oi,:' fOI' IT‘.H = tT < 17‘-4-5 .

Similarly we have

Gin(T) = &+ A T+ By gl + Cigyy for Ty ST < T4
GitdT) = T+ A ag@® + By agli + Cijuy for F4y S T < 4
Gis() = T+ A 0% + B ;wgtt + Ci;4s  for iy = 4 < ;45
GitT) = &+ Ay + Byl + Gy for iy S <45 .

From these we form the four functions Alg;(&), Alg; (%), A}g;42() and Alg; 44(¥) defined by

Siggraph 85 20, Discretely-Shaped Beta-splines San Francisco



An Introduction to the Use of Splines in Computer Graphics 305

(@) ~— gl
Alg,(u) = i) - 045) ]_g’(u) for all 7 and j =1, i+1, 142,43
Aijh — Asy

= o Bigh ~ Bj; _ ., Cijn—0Ciy

Ai,j'l-s - Ai,j A-i,;‘-ﬂ - Ai.j

fOPiT;ﬂSE(tT‘“

=& +D,;u+E;; ,

thus implicitly defining the D; ; and E; ;. The index ¢ with which we subscript 4 reminds us that we are
eventually going to replace g;(&) with an appropriate linear combination G;(%) of g;(%), g:+1(¥), g 4o(%0),
¢9;+2(¥) and g, (%), computed in such a way as to ensure that G;(¥) will be zero on ;=% <u,45.

We can now cancel the quadratic term by forming the three functions Afg;(#), A?g; (%) and
Afg; @) as ’
— Alg.n(W) — Alg{u
Algiw) = 9t = Ag, (%) forall @ and j = ¢, i+1, i +2
Dn‘,j+1 - Ds‘,j
E; 41 — E;
= g o —t—— forg;py S u < u;
Ds',j-!-l - D{,j T ¥
=u+F; for Uy S U < W45

and then cancel the linear term by forming the two functions Afg;(¥) and Afg; 4 (%) as
| Algyn(@) = Alali)
Fijm —Fi;

=1 for Gay = T < W45 -

for alliéndj-i,i+l

Finally we compute the function
Algi(w) = - [Algiw(¥) — Afe(T)] for u;4y S ¥ < U4 ,
with which we replace g;(#). The pattern of this computation is shown in the following diagram.,

g:(%) gini(¥) gi4o{) gi+a(%) gi+(8)
Algi(¥) Alg;w(¥) Alg;4{T) Alg; (W)
Afgi(a) Alg; (W) Algi4lT)
Abgi(w) Adg; (W)

Algi(u)
Now Alg; (&) is defined for any value of &, but we have only ensured that it is zero when u lies between
;4 and 45, OF is less than &;. To arrange for locality we simply define our discretely-shaped Beta-

aplines G;{(u) to be
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Gi(u) =

Alg(f) @, ST <4y -

Since by construction A/g;(¥) is zero on [&,,us), the rightwards extension by zero leaves us with a func-
tion satisfying the G* continuity constraints.

We have still to argue that the G;(&) can be used as a basis for G* polynomial splines. Since each
of the G;(¥) is a linear combination of G2 functions, each of the G;(&) is 3 G* function, and there are as
many G,(%#) in [Wp,i,) as there are ¢;(%). If we consider the G;(&) in turn from left to right, each is
nonzero on an interval for which all the G;(¥) to the left are zero, and it is therefore plausible that no
single G;(#) can be written as a linear combination of basis functions lying to the left, so that the G,(%)
are linearly independent. This argument breaks down omly as we approach the end of the curve; a
rigourous proof of linear independence may be found in [Bartels84].

Drscretely-shaped Beta-spline curves are now defined by
Q@) = J)ViGi(¥) = )} (x:Gilh) wG:il@)) - (152)
i i
The £** curve segment is

[+ .
Q = Zvi'h-Gs'-h—(‘T)

r=3

= VisgGinl®) + ViaGigT) + Vi Giny() + ViGi(T) .

20.3. Evaluation

For the C? splines we defined basis functions B; 4(if) of arbitrary order k, and developed a recursive
definition of B; (%) in terms of B; , (%) and B, 4, 4—(%). This provided both an efficient means of com-
puting the value of a basis function, and of computing its derivatives. Given the latter one can then
develop an efficient algorithm for converting from a “control vertex” representation such as (152) to a
power representation

co + e(U =) + e T + oo T-5)

from which one can efficiently compute points along a curve segment by using forward differences.
Unfortunately we have not been able to develop such a recursive definition of the Beta-splines, and indeed
we rather doubt that a natural such definition exists. This is not, however, a fatal obstacle. One can
simply pre-compute the coefficients a; ;, b; ;, A; ;, Bij» Cij» Dijs Eijr F3; and then compute the differ-
ence Alg;(i) directly whenever a point on the curve is required. Doing so does not require an q; ; or b; ;
for any value of j other than i+1, 1 +2, 1 +3 or i +4. Hence Algorithm I can be made somewhat more
efficient by replacing the expression m +3 in line 4 by min(i +4,m +3).

Moreover, since differencing and differentiation commute, we may compute derivatives of the G;()
by differencing derivatives of the g;(iZ), and so obtain a power representation of the basis segments that
can be evaluated by using Horner’s rule or forward differences.
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20.4. Properties

Practically speaking the most important properties of spline basis functions are summation to one
(because this ensures translation invariance) and positivity (because together with summation to one this
provides a convex hull property). From a theoretical point of view it is necessary to show that the basis
functions we have constructed are, in fact, linearly independent. Positivity and linear independence are
established in [Bartels84]. The arguments are somewhat involved as yet, and we shall not repeat them
here.

Summation to one is both easier and harder. Because the constant polynomial 1 is trivially a G*
spline for every knot sequence, no matter what values of 81 and #2 are required at the joints, it is clear
that scale factors ¢; exist such that J '¢,G;(i) = 1./ We are certain from computational experience,
although we do not yet have a proof, that in fact ¢; = 1 for all ¢.

20.5. Locality

Consider a £ value at the joint corresponding to the knot u#; (See Figure 227). By construction it is
clear that no basis function prior to G;—(t) or subsequent to G;(%) could possibly be affected by a
change in 8, ; or f,; because no use is made of them in the one-sided functions from which the G (%) are
formed. Hence we know immediately that the effect of changing § values at u; must be restricted at least
to the eight intervals comprising {#; —,u; 44)-

Uiy Uiy Upp Uiy U Uiy Ugp Uies Uiy
0 0 0 1 1 1 0 ) 1
Bris Bria Brio Pria B Buiv Puive Privs Brits
Bois Boia Boiz Pain Poi Poiv Boivs Poivs Poiwe

Figure 227. The basis segments that are affected by a change in 1 or f2at ;.

We can show substantially greater locality if we assume that
G; () + G;o(w) + G;(¥) + G(w) = 1
on [u;,;4,) without the need of further scale factors, as is almost certainly the case. We make this
assumption throughout the remainder of this subsection.

It is clear from our construction that no use is made of f,; or By; in constructing G;(ir) and G;()
must therefore be independent of §;; and B,;. With somewhat more effort we can also show that
G, () is independent of B;; and B,;.

® We are assuming that
Gt =) + Gig(l; ) + Gig(ili ) + GimylUli=g) = 1

® We already know that G; (i), G;—(¥#) and G;—(¥) are independent of §;; and Bs;.

l6} We are indebted to Tony DeRose for pointing this out.
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Hence G; —(U;~5) has some fixed value K, regardless of the value assigned to §,; or f;.
But G;-() is composed of the four segment polynomials 8;., —o{u), 8;—,~1(¥), & —(¥) and
8;— —o(t) (having sixteen coefficients) which are the necessarily unique solution to the fifteen
equations obtained by applying the constraints (127), (128) and (129) at @;, 4;—, U;—, ¥, and
u; together with the (scaling) constraint that 8;  — (%, —g) =K.

® Hence G;—(u) cannot change for any value of # if §,; or B, is altered.

Since neither G; (%) not G;(&) is dependent on the shape parameters at i;, we may conclude that the
effect of changing these values at #; must be restricted at least to the six intervals comprising [&; —4,u; 43)-

By a similar argument we can easily show that G; () is independent of 8,; and f,; on {&; 5,u; ),
and that G; () is independent of 8,; and B;; on [if; 45,U;45). Finally, then, we conclude that the affect
of changing 3 values at u; is restricted to the four intervals comprising (U;—,u; 4;), under the assumption
that the G;(«) sum to one without further scaling.

Thus the amount of re-computation required by the change of a shape parameter is independent of
the number of control vertices defining the curve, and the change in shape is local.

20.8. Uniform Cubic Discretely-Shaped Beta-splines

Analyzing the properties of the discretely-shaped Beta-splines, and the rendering of discretely-
shaped Beta-spline curves, would be facilitated if we could obtain a compact symbolic representation of
their segments. Unfortunately we have not, as yet, been able to do so for non-uniform knot sequences,
and it seems likely that any such representation will prove to be quite complicated. However, we have
been able to directly analyze the discretely-shaped Beta-splines over a uniform knot sequence.

Figure 228. The four basis functions G;(%), G;#{¥), G;+(¥) and G;44(¥) that are nonzero on the particular
interval |#;4q,; 44). The knots are equally spaced, but a variety of different S1and Bz values have been used.

Assume that the underlying knot sequence is uniform, so that u; —t;— =1 for all 1. If, for an arbi-
trary set of positive 8;;’s and f,;’s, we compute the four segments that are non-zero on the interval
[G; 40:; 44) (see Figure 228) and sum them using Vaxima, we find that they sum to one. We can show
directly that they are non-negative. Two of the basis segments are trivial. We find that

- 1
siva-ol¥) =~ G [2(ﬂ2.i+s+2ﬁf.i+s+2ﬂl.iﬁ)"3]
where

61 = BoiwiBai+s + 28 iwBPoiws t 4B i+Poivs + 2Poi4s
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+ 288 ca6Boim F 487 45Poits + 2BrivePoivs ¥ 4BLisBrivs
+ 48 4uBliws + 8BLiaaPlive + 1281 wuBlins + 4BLius
+ 487 uBrivs + 8B iwBrive + 48146

and

8; 45, —(U) = —617 [2ﬂ13,i+3(ﬂ2,i+2 + 2840 + 28154)(1—u)® ]
where

64 = BoisoBoien + 2BLinoBoias + 4B 4282045 + 2Pi4a
+ 283 4aPoine + 4BLiveBoian + 2B1iwaBuive + 4BLiaBlins
+ 4B, 40Bhiss + 881 i42Bli0s + 128154085040 + 48154
+ 48 2Brivs + 8B1iwBrivs + 4B1i4a -

It is easy to see that these two basis segments will be positive since all the f’s are positive and 0=u <1.
The denominators 61 and 64 can be factored further, but we have left them in this form for simplicity.

The remaining two segments require more effort. The segment 8; 45 —1(%) may be written as
sinaaln) = (et e +en) — (o). (153)

The following argument establishes that s;4; ~;(u) is positive on (0,1):
® ¢y, ¢y €3 8+3-1(0)=cy and s;45 (1) =cotc;Hco—cym™dy are all sums of products of positive

values, like 81 and &4, and are therefore themselves positive;

hence we may represent ¢ as cptc, +eg—ds;

® since 0<u <1, we have 1>u>u?>u®

therefore
Cp > cou3
cu > eu
CQUQ > cr_)u3
3,
0 > _d3u )

® therefore

ot eu teu?+0 > [c0+c!+cz-d3 ]us = cyu® ;

® therefore 8;44 ~ (1) is positive on (0,1), as desired.

An exactly analogous argument suffices for the right middle segment if it is written in the form
 8i4g,—{u) = [co +oi{i-u) + 52(1"“)2] - [53(1‘“)3 ] .

A variety of important properties follow from the fact that the discretely-shaped cubic Beta-splines
are non-negative and sum to one:

® the 1'" segment Q; lies within the convex hull of V5, V,, V,, and V;;

® if V;;=V;_,=V,_ then this point will be interpolated, and the curve segment defined by these
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three points and V; will be a straight line;

® if V,_g=V,_, then the {irst point on the curve segment defined by these two points, together with

V;- and V; must lie on the line segment joining V;_, and V; -, and the curvature there will be
gero.

(If one assumes that the G;{#) do not need further scaling in order to sum to one, or failing that if one
computes the scale factors that produce a partition of unity, then these results apply also to discretely-
shaped Beta-splines over a non-uniform knot sequence.)

It is possible to verify, with the aid of Vaxima, that as 8,4, is made arbitrarily large Q(u;4,) con-
verges to V,;. This behaviour, which the uniformly-shaped and continuously-shaped Beta-splines display
as well, naturally associates the joint at u;4, with the control vertex V;, and so we sometimes speak
loosely of the g2 value associated with V;”” when referring to £+, (and similarly for 81).

If B, =81 and B,; =P2 for all ¢, we then obtain the uniformly-shaped Beta-spline for S1 and g2.

In many applications the ability to manipulate 2 may be sufficient [Barsky83], and we therefore list
the basis segments on the interval [u;,U;4;) for the special case in which the knots are spaced one unit
apart and the f1 values all have the value one. (These are the four segments drawn as solid curves in
Figure 228.)

2(Byi 40 +4)u®

8.‘%,-—1(“) - o1

2(Byi e t4)
8i4p,o(u) = — ——— - BoiBoi+1Boi+ot882; B +3B0i1Poivot8PaiBoita
61 62

A48y, 424 By 428y 144 | 2

(Boi+ T4
+ -—2—;?1—2-[3(,82,;+2)u2 +6u +2 ]

2(8,, +4
8;41,—a(u) = '"%Kl [52,{—152,;ﬂ2,.‘+1+ 88o;—1Poi +8P2; Poit1+8P2i=1Poi4
+28ﬂ2,"_1+24ﬂ2',' +44ﬂ2’|.ﬂ+144 ] (1—u)3
Boi t4
+ '(_1‘63——)‘[3(ﬁ2,"+1 +2)(l—u)2 + G(I—u) + 2 ]

2(fy; 1 +4)(1~u)?
3

8 ~fu) =
where

61 = (Boi+1Boi+at8Pz; 41 +8P0; 4 148)

62 = (ByiBoint 832,:‘ "'8_52,.' + 148}

63 = (ﬁQ.i-lﬂZ.’ +8B2,.'—1+8ﬂ2’;+48) .

By inspection it is clear that so long as 4,; and f;; are non-negative the above representation for
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discretely-shaped Beta-splines over a uniform knot sequence are necessarily well-defined — the denomina-

tors cannot vanish, even though the differencing representation of the discretely-shaped Beta-splines
admits of this possibility.

~ 20.7. Examples

Generally speaking the discretely-shaped Beta-splines behave much as the uniformly- and
continuously-shaped Beta-splines do. Figures 229-238 illustrate this. It is illuminating to see how changes
in the discretely-shaped basis functions shown in Figures 230, 232 and 236 produce the curves shown in
Figures 229, 231, 233 and 235.
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Figure 229. The solid/dashed line is a uniform cubic B-spline curve {1 and $2 have the values 1 and 0 at
every joint). The dotted curves result when the value of fz at the joint nearest V, is set to 2, 10 and 100,
respectively. Increasing values of A2 draw the joint in question towards V,. For clarity the control polygon is
shown, but not the control vertices.

Figure 230. The discretely-shaped Beta-splines corresponding to the four curves of Figure 229. fi and f2 have
the values 1 and 0 at all knots except the one explicitly labeled.
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Figure 231. Starting from the same uniform tubic B-spline curve as appears in Figure 220, we successively
increase S1 at the joint betwen the wlid and dotted portions of the curve, so that it has the values 1, 4, 16
and 256. As B1is dncreasd the joint is pulled towards V,,

Figure 232. The discretelysipd Butasplines corresponding to the four curves of Figure 231. f1and 52 have
the values 1 and O zt all knots except the one explicitly labeled.
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P T T

. Figure 233. Symmetric behaviour occurs if we set fi to the values 1, 1/4, 1/16 and 1/256, respectively, with
e P2=0. This time the joint is pulled towards V.

Figure 234. The discretely-shaped Beta-splines corresponding to the four curves of Figure 233. £ and p2 have
the values 1 and 0 at all knots except the one explicitly labeled.
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F:igure 235: The B1 values here zre the same as in figure 231 except that the value of £2 at the joint in ques-
tion is 10 in each case instead of 0. Again the joint is pulled towards V. Recall that increasing f2 at that
joint has the effect of pulling the curve towards V.

Figure 236. The discretely-shaped Beta-splines corresponding to the four curves of Figure 235, 1 and B2 have
the values 1 and O at all knots except the one explicitly labeled.
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Figure 237. The f1 values here are the same as in figure 233 except that the value of f2 at the joint in ques-
tion is 10 in each case instead of 0. Note that in this case the joint does not converge to V. Tensing the
curve toward V, by setting a high value on £2 at the joint has inhibited the convergence.

B, =0.0625
B, =10

Figure 238. The discretely-shaped Beta-splines corresponding to the four curves of Figure 237. i1 and 2 have
the values 1 and O at all knots except the one explicitly labeled.

; One sees also how the curves lie within the convex hull of their corresponding control vertices; Figures
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239 and 240 illustrate the failure of a curve to lie within the convex hull of its control points when a g2
value is negative.

« o e .

Bp=-51

Figure 239. For negative values of #2 the curve may pass outside the convex hull. A1 has the value 1 and f2
the value O at every joint except the one explicitly indicated.

Figure 240. These are the (unscaled) Beta-splines with which the curve of Figure 239 is defined. Notice the
negative basis function centered over the knot at which f2=—5.1, This is not a violation of the convex hull
property established in the text, which holds only for positive values of §1 and f2.

Figure 241 demonstrates the similar, though not identical, tension-like effects produced by manipu-
lating B1 and B2. Figure 242 is produced by varying several shape parameters simultaneously.

Figure 241. A uniform discretely-shaped Beta-spline curve. Actually this is a C*? spline curve since f1 and fe
have the values 1 and O throughout the curve, which should be compared with the curves in Figure 242.

Siggraph "85 20.7. Examples San Francisco



318 The Killer B’s

Figure 242. The solid curve here is obtained from the curve of Figure 241 by increasing f1 at Vg from I to
10,000. The dotted curve is obtained from Figure 241 by instead increasing f2 at Vj from 0 to 10,000, In
both cases a further increase in the shape parameter produces no observable change in the figure.

Figures 243 and 244 illustrate the locality provided by the discretely-shaped Beta-splines.

() o oo

e O

v

Figure 243. Here we see the effect produced by moving one of the control vertices defining & curve. Notice

that only four curve segments are altered. (The control polygon has been omitted here to enhance visibility of
the curves.)

Figure 244. In this case we have changed the knot spacing for the third segment.
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