SPEEDUP OF
DETERMINISTIC MACHINES
BY SYNCHRONOUS
PARALLEL MACHINES

3

F WATERL!
F WATERLOO

E WATERK

S &
YO

VER
VER
VERSIT

|

Patrick W. Dymond

Martin Tompa

CS-83-08

May, 1983

Speedup of Deterministic Machines
By Synchronous Parallel Machines'

Patrick Dymond'

Martin Tompa®

ABSTRACT

This paper presents the new speedups DTIME(T) C ATIME(T /logT) and
DTIME(T) C PRAM —Time(VT) . These improve the results of Hoperoft,
Paul, and Valiant that DTIME(T) C DSPACE(T/logT), and of Paul and
Reischuk that DTIME(T) C ATIME(T loglogT /logT) . The new approach uni-
fies not only these two previous results, but also the result of Paterson and Valiant
that Size(T) C Depth(O(T/logT)) .

Presented at the Fifteenth Annual ACM Symposium on Theory of Computing, Bos-

ton, Massachusetts, April 1983. Also to appear as University of Washington Com-
puter Science Technical Report 83-03-02.

This material is based upon research supported by the National Science Foundation under
Grants MCS-8111098 and MCS-8110089. Preparation of this Technical Report was
supported by Office of the Dean of Mathematics, University of Waterloo.

Department of Electrical Engincering and Computer Sciences, Mail Code C-014, University
of California at San Diego, La Jolla, California 92093, U.S.A. and Department of
Computer Science, University of Waterloo, Walerloo, Ontario N2L 3G1, Canada.
Department of Computer Scicnce, FR-35, University of Washington, Seattle, Washington
98195, U.S.A.

Speedup of Deterministic Machines
By Synchronous Parallel Machines

Patrick Dymond
Martin Tompa

ABSTRACT

This paper presents the new speedups DTIME(T) C ATIME(T/logT) and
DTIME(T) C PRAM —TIME(NVT) . These improve the results of Hoperoft,
Paul, and Valiant that DTIME(T) C DSPACE(T/logT), and of Paul and
Reischuk that DTIME(T) C ATIME(T loglogT/log T) . The new approach uni-
fics not only these two previous results, but also the result of Paterson and Valiant
that Size(T) C Depth(O(T/logT)) .

1. Synchronous Parallel Machines

This work is concerned with the amount of time that can be saved by using
synchronous parallel machines in place of sequential ones. Cook [3] has classified
the synchronous parallel models according to whether the interconnection among
processors during a computation is fixed or variable. The fixed structure models
include uniform Boolean circuits [1, 17], aggregates [5], conglomerates [7], and
alternating Turing machines [2]. The variable structure models include PRAMs
[6], SIMDAGs {7] and hardware modification machines [$]. Time complexities on
these models differ at most by a quadratic:

Fixed — Time(T) C DSPACE(T) C Variable —Time(T) C Fixed — Time{T?) ,

where Fixed —Time(T) can represent the class of languages accepted in time T
by any one of the fixed structure models cited, and similarly Variable — Time(T)
the class of languages accepted in time 7 by any one of the variable structure
meodels cited,

The best general speedup known of multitape deterministic Turing machines
by any of the fixed structure machines is due to Paul and Reischuk [11], namely
DTIME(T) C ATIME(T loglogT/logT). The best speedup by variable

2 Dymond and Tompa

structure machines is hardly better: from the result of Hopcroft, Paul, and Valiant
& that DTIME(T) € DSPACE(T [logT) it follows that
DTIME(T) C Variable — Time(T /log T) .

This paper presents two new speedups of deterministic Turing machines by
synchronous parallel machines. The {irst is a speedup by fixed structure machines,
namely DTIME(T) C ATIME(T /logT) . This improves not only the speedup of
Paul and Reischuk, but also the aforementioned result of Hoperoft, Paul, and Vali-
ant that DTIME(T) C DSPACE(T /logT) . Our method is similar to those used
in the two results it subsumes, but hinges on a new 2-person pebble game that
models alternating computations. As a consequence of studying this new game, we
also get an alternative proof of the result of Paterson and Valiant [10] that
Size(T) C Depth(O(T /logT)) for (nonuniform) Boolcan circuits.

Our second speedup is by variable structure machines, namely
DTIME(T) € PRAM — Time(VT) . (The same speedup holds for SIMDAGS,
which ar¢ at least as fast as PRAMs.) This improved speedup reflects the
presumed quadratic advantage of variable structure machines over fixed structure
machines. :

2. A Pebble Game that Models Alternating Computations

This scction presents the rules of a 2-person pebble game, which was devised
by Tompa [19]. Our main result in this section concerns an optimal strategy for
the game, and is applied in the next section to prove the promised speedup of deter-
ministic machines by alternating machines.

The ordinary pebble game is played by 1 person (see Pippenger {14] for a
survey). The 2-person pebble game used in this paper is 2 game played by 2 adver-
sarics, called the Pebbler and the Challenger. Like the [-person version, this game
is played on an acyclic directed graph G . At all times during the game there is
one vertex designated by the Challenger and called the “‘challenged” vertex. The
Challenger moves first by choosing any vertex to challenge. The Pebbler’s turn
consists of placing 1 pebble on each of any number of vertices, with no restriction
on which vertices may be pebbled. The Challenger’s turn consists of choosing a
new vertex to challenge which, from this point on, must be either the current chal-
lenged vertex or any vertex pebbled in the Pebbler’s most recent move. The
players alternate in this fashion until, at the beginning of the Pebbler’s move, all
immediate predecessors of the current challenged vertex w are already pebbled.!
The game ¢nds at this point, and we say that the Challenger loses in G at w.

If G is thought of as a circuit computing some function, then a play of this
2-person game corresponds to an alternating implementation of that circuit, in the
following sense. A pebble placed on vertex v by the Pebbler corresponds to

1 :
A vertex M is an immediate predecessor of a vertex Vv if (1,V) is an edge. The
predecessor relation is the transitive (but irreflexive) closure of the immediate predecessor
relation.

Speedups by Parallel Machines 3

existentially guessing the value of the subexpression computed at v . A move of
the Challenger corresponds to universally verifying each of those guesses, plus the
fact that those guesses lead to the correct value computed at the current challenged
vertex.

If, even against best defence by the Challenger, the Pebbler can always win
the game using at most ¢ pebble placcments, then we say that G can be 2-
person pebbled in time 1 .

The main lemma used by Hopcroft, Paul, and Valiant [9] to prove that
DTIME(T) C DSPACE(T/logT) is that any graph with » vertices and
bounded indegree can be (1-person) pebbled using O(n/logn) pebbles, The main
result of this section is the analogue for time in the 2-person game:

Lemma 1: Let G = (V,E) be an acyclic directed graph with r vertices and
bounded indegree. Then G can be 2-person pebbled in time Q(n/logn) .

Proof: The Pebbler’s strategy and its analysis are the alternating analogues of
the “best pebble” strategy of Paul, Tarjan, and Celoni [12, 13]. Let 4 be the
maximum indegree of any vertex in G, and m be the number of edges in G .
Suppose the Challenger’s first move is to challenge vertex v . The Pebbler’s stra-
tegy is described below as a recursive procedure that, given G and the challenged
vertex v as inpuis, pebbles G and returns the vertex in ¢ at which the Chal-
lenger lost,

L If m =k, where k is the constant specified in theorem 5 of [12], then the
Pebbler’s first (and only) move is to place a pebble on every vertex other than
v in the weakly connected component of G that contains v . The Chal-
lenger loses in G at the next vertex challenged.

1. If m > k , partition ¥ into blocks ¥, and ¥, such that

(i) there are no edges from any vertex in V, to any vertex in ¥, , and

(ii) the total indegree of all vertices in ¥, satisfies
m/2+ m/logam —d = |(VXV) NE| =m/2+ mflogym .

Let G, and G, be the subgraphs induced by ¥, and V,, respectively.

A. If v € ¥y, the Pebbler applies the strategy recursively to the sub-
graph G, and challenged vertex v . Suppose the Challenger loses
in G, at w . Then the Challenger also loses in G at w , since
all of w’s immediate predecessors are in G .

B. Otherwise assume v € V,. Let C be the subset of V| with
immediate successors in ¥, , that is

4 Dymond and Tompa

C = {u€vV,| forsome weEV,, (uw)€E} .

. If |C| = 2m/logam , the Pebbler’s first move is pebble
each vertex in C .

a. If the Challenger next challenges a vertex u in C,
the Pebbler applies the strategy recursively to G, with
challenged vertex u . If the Challenger loses in G, at
w , the Challenger also loses in G at w .

b. If the Challenger rechallenges v , the Pebbler applics
the strategy recursively to G, with challenged vertex
v . Suppose the Challenger loses in G, at vertex w .
Then the Challenger also loses in G at w , since every
immediate predecessor of w in &, isin C, and is
hence already pebbled.

2. If |C| = 2m/logym , the Pebbler applies the strategy
recursively to G, with challenged vertex v, ignoring all
edges from G, to G,. Suppose the Challenger loses in
G, at vertex w . At the next move the Pebbler pebbles
those vertices in ¥, that are immediate predecessors of w .

a. If the Challenger persists in challenging w , the Chal-
lenger immediately loses in G at w .

b. If the Challenger challenges a vertex u in V;, the
Pebbler applies the strategy recursively to G, with
challenged vertex u . If the Challenger loses in &) at
w , the Challenger also loses in G at w .

Let g(m) be the maximum number of pebble placements used by this strategy on
any graph with m edges and in degree at most 4 . Then

mo, if m =k .
qim) = max {g(m/2+ m/logsm) + 2m/logam ,
2g{m/2—m/logom +d) +d} if m >k .

(The constant k satisfies the property that
mi2 — mflogam +d =m/2 + m/flogam , if m >k [12])

This recurrence is identical to the one that Paul, Tarjan, and Celoni solve [13],
except for the presence of the last +d term. Minor changes to their proof by
induction show that this recurrence has a solution that satisfies

Specdups by Parallel Machines 5
qg(m) = ((d +1)logyk)m /log,m —d .

The stated result follows from the fact that m < dn . O

Lemma 1 is optimal to within a constant factor, since

(1) there exist graphs with n vertices and indegree 2 whose (1-person) pebbling
requires €2(n/logn) pebbles {12], and

{2) any graph that cannot be l-person pebbled with p pebbles cannot be 2-
person pebbled in time p—1 [19].

3. The Speedup of Deterministic Machines by
Alternating Machines

‘This section employs Lemma 1 to prove the stated speedup of deterministic
machines by alternating machines. The key ideas are adapted from Hopcroft, Paul,
and Valiant [9] and Paul and Reischuk [11].

Theorem 2: DTIME(T(n)) C ATIME(T(n)/logT(n)) , for any T'(n) = n .

Construction

Let D be a deterministic Turing machine with & worktapes that accepts in

time 7'(r), and assume without loss of generality that D loops in an accepting
state if it ever reaches one. Let x be an input of length # . Consider the com-
putation of D on input x to be divided into B time intervals each of length
T(n)/B, and the k worktapes to be divided into B blocks each of length
T(n}/B , the value of B to be determined later. A block b on worktape j is
said to be accessible at time ¢ if worktape head j is either in » or in a block
adjacent to b at time ¢ . Thus, at most 3k blocks are accessible at any time.
Associate an acyclic directed graph Gp, = (V, E) with the computation as fol-
lows:

V =1{0,1,2,..,B} ; vertex i should be thought of as associated with
time i T(n)/B of the computation of D on x .

E = {(i,j)y | i<j, and some worktape block of D is accessible at
times { T(n)/B and j T(n)/B , but not at any time & T(n)/B ,
where A is an integer satisfying i < h < j }.

Gp, has B+1 vertices and indegree at most k-+1. (The edge (j—1, j)

6 Dymend and Tompa

accounts for at least 2& of the blocks accessible at time j T(n)/B .)

We now describe an alternating Turing machine A4 that simulates D . On
input x of length n, A4 puesses T(n) and B, and guesses and records the
positions of each of the k11 tape hecads of D at cach of the times
O ,T(n)/B ,2T(n)/B ..., T(n). From these 4 can construct and record the
graph Gp,, .

The main portion of the construction of 4 is a simulation of a 2-person peb-
bling of Gp, . Information about the game configuration is recorded using 3
additional tapes, one for each of the current challenged vertex, vertices pebbled in
the Pebbler’s most recent turn, and vertices pebbled in carlier turns. The informa-
tion associated with each challenged and pebbled vertex on these tapes consists of
the vertex number i , plus the (guessed) state and contents of all accessible work-
tape blocks at time i T(n)/B . Until the game begins these tapes are blank.

Corresponding to the Challenger’s first move, 4 records the vertex number
B on the “challenged vertex” tape. It guesses and records on this same tape an
accepting state of 2 and the contents of the accessible blocks of D at time
T(n) . The simulation of the pebble game then proceeds as follows, If it is the
Pebbler’s turn, 4 guesses whether or not the Challenger has just lost. If so, A4
accepts if and only if

(1) all immediate predecessors of the challenged vertex j are pebbled, and

(2) the head positions, state, and contents of the accessible blocks associated with
vertex j are comsistent with the input and with the head positions, state, and
contents of the accessible blocks associated with vertex j—1, and

(3) the contents of those accessible blocks associated with vertex j that are not
accessible blocks associated with vertex j—1 are consistent with the block
contents associated with vertex j’s other immediate predecessors.

Part (2) is verified by direct simulation of D for T(n)/B steps. Part (3)
requires no simulation at all, since any block that is accessible at time j 7'(n)/B
but not at time (j —1)7(n)/B could not have been altered since the last time
i T(n)/B that it was accessible. (If it was never before accessible, it must be
blank.)

If, on the other hand, it is the Pebbler’s turn but A4 guessed that the Chal-
lenger has not yet lost, 4 guesses how many vertices the Pebbler will pebble on
this turn, and guesses and records on the “most recently pebbled” tape the vertex
number, state, and contenis of the accessible blocks for each of these vertices. If it
is the Challenger’s turn and the Pebbler has pebbled p vertices in the most recent
turn, A uses universal statcs to try each of these p vertices plus the current
challenged vertex as the new challenged vertex. It does this by overwriting the
“challenged vertex” tape with the information corresponding to the new challenged
vertex, appending all the information from the “most recently pebbled” tape onto
the “previously pebbled” tape, and erasing the “most recently pebbled” tape.

Speedups by Parallel Machines 7

Correctness

It is easy to see that if D accepts an input x , 4 does as well. For the
converse, the following stronger claim will be established:

Suppose that, at the beginning of the Pebbler’s turn, 4 is in a confi-
guration that leads to acceptance. Then if the guessed head positions,
state, and contents of the accessible blocks are correct for every pebbled
predecessor of the challenged vertex, they are also correct for the chal-
lenged vertex.

(Note that the term “predecessor” in this claim does not necessarily mean
“immediate predecessor”.) The correctness of A’s construction follows from this
claim, since if A4 accepts x, the accepting state of D guessed at the
Challenger’s first turn is in fact the state D is in at time T(n) given input x .
The claim itself is established by induction on the number of alternations required
to end the game, starting from the hypothesized Pebbler’s turn.

Basis (h = 0): Then A accepts if and only if the information associated with
the challenged vertex is consistent with the information associated with each of its
immediate predecessors, which are all pebbled. Since, by hypothesis, the latter
pieces of information are all correct, so are the former.

Induction (h > 0): Suppose it is the beginning of the Pebbler’s turn, A4 is in
a configuration that leads to acceptance in at most % alternations, v is the chal-
lenged vertex, P is the set of pebbled vertices, and the information associated
with each predecessor of v in P is correct. Then there is some set R of ver-
tices that 4 puesses 1o pebble this move such that, no matter which vertex in
R U {v} is next challenged, 4 will be in a configuration that leads to accep-
tance in at most A —2 alternations. Without loss of generality, assume that every
vertex in R is a predecessor of v . By the induction hypothesis, for any
v/ € R U {v}, il the information associated with each predecessor of v’ in
P U R is correct, the information associated with v’ is also correct. By consid-
ering the vertices of R U {v} one at a time in topological order, this statement
implies that the information associated with each vertex in R U {v} is correct.
In particular, the information associated with v is correct.

Analysis

All that remains is to show that A4 runs in the stated time. O(BlogT(n))
time suffices for the tasks done by A before the pebbling, namely guessing
(k+1)B+1) head positions of D, and constructing Gp , , using a fixed number
of alternations to guess and verify the edges. O(logn + T(n)/B) time suffices for
the task done after the pebbling, namely simulating D for T{(n)/B steps to ver-
ify that the information associated with the vertex at which the Challenger loses is
consistent with the information associated with each of its immediate predecessors.
(A’s index tape can be used to copy onto a worktape that portion of the input
within radius 7'(n)/B of D’s input head, after which the worktape is used in
place of the input tape in the direct simulation.)

8 Dymond and Tompa

By Lemma 1, the Pebbler needs only O(B/logB) pebble placements on
Gp 5 , no matter how the Challenger plays. For cach such placement, 4 requires
time O(logB -+ T'(n)/B) to guess the vertex number, state, and contents of the
accessible blocks, and later to copy that information onto the “challenged vertex”
and “previously pebbled” tapes. Finally, the time to retrieve the infermation
required to set up the direct simulation of T(n)/B steps of D is proportional to
the length of the “previously pebbled” tape.

Therefore, the total amount of time used by 4 is

OB logT(n) + (logn + T(n)/B) + (B/log B)log B + T(n)/B))
= O(BlogT(n)+ T'(n)/logB) .

This time bound is O(T(n)/log 7'(n)) if B ischosentobe VI(r). 0O

It is interesting to note that the number of alternations in this simulation is
O(B/logB) . Hence, any deterministic Turing machine running in time 7(n)
can be simulated by an alternating Turing machine using O(7(n)/logB(n)) time
and only O(B{n)) alternations, for any B(n). In particular, O((T(n))*) alter-
nations suffice to achieve the log7(n) speedup of Theorem 2, for any fixed
e>0.

4. The Speedup of Size by Depth

Paterson and Valiant [10] showed that circuits of size 7 could be simulated
by circuits of depth OQ(7/logT) . This section demonstrates that their result, like
Theorem 2, is a consequence of Lemma 1,

Define Depth{(T)(Size(T)) to be the set of languages that can be recog-
nized by Boolean circuit families with maximum path length (respectively, number
of gates) T{(n). (A boolean circuit family {a,} contains on¢ boolean circuit w,
for each input size n.)

Theorem 3: Let {a,} be a Boolean circuit family that recognizes a language
L . If «, can be 2-person pebbled in time f(n), then L € Depth(2t(n)+1) .

Construction

The construction is motivated by Ruzzo’s simulation of alternating time by
circuit depth [17]. The idea behind the construction is very much like that of
Theorem 2, namely, the simulating circuit uses V -gates to “guess” the values com-
puted at pebbled gates of G, and A -gates to “verify” those guesses.

The Boolean circuit of depth 2¢f+1 is a tree T , which will be described
recursively. Suppose that v is the challenged vertex and P the set of pebbled

Speedups by Parallel Machines 9

vertices in G at the beginning of a Pebbler’s turn. Associated with this point in
the game are subtrees T(P,v,J), one for every possible interpretation
I:P U {v} - {0,1} . If all immediate predecessors of v are in P, then
T(P,v) is cither a constant gate, an input gate, or th¢ negation of an input gate,
as follows:

x; , if v is the input x; ,and J(v) = 1.

—x; , if v is the input x; ,and I(v) = 0.
1,if visa o gate with inputs a, b and I(v) = I{a) o I(b) .
0,ifvisa o gate with inputs a, b and 7{v) # I{a) o I(b).

T(Pv.I) =

(In this definition, o can represent any Boolean operator that occurs in the circuit
G)

Otherwise suppose the Pebbler pebbles a set R of vertices in this turn.
Then T(P.,v,I) is a complete binary tree of VV -gates having 2181 Jeaves, one
for every possible cxtension [’ of the interpretation [to domain
P U R U {v}. Each of these leaves is, in turn, the root of a complete binary
trec of A\ -gates having | R U {v} | leaves, one for every possible vertex v’
cligible for the Challenger’s next challenge. The leaf so reached is the root of
T(P U R,v’.1"), which is constructed recursively. Finally, 7T itself is simply
T(@,r,I), where r is the output gate of G and I(r) = 1.

Correctness

Fix some arbitrary input x . For a particular distinguished subtree
T(P,v,I) of T, I issaid to be correct on some u € P U {v} if and only if
the gate # in G evaluates to J(u) on the fixed input x . Henceforth, let r
denote the output gate of G . To demonstrate correctness of the construction of
T , it must be shown that, on input x , r evaluates to 1 if and only if the root of
T evaluates to 1.

“Only if ”* clause:
For this direction, the following stronger claim will be established:

If I is correct on every vertex in P U {v}, then the root of T(P,v,1)
evaluates to 1.

The desired conclusion follows from this claim by considering 7(&,r,/) , where
I(r) =1, for if r e¢valuates to 1, then [is correct on r, so the root of
T = T(&,r,1) evaluates to 1. The claim itself is established by induction on the
height A of T(Pwy,I).

10 Dymond and Tompa

Basis (h = 1): If 7(Pw,0) is an input x; and I(v) = 1 is correct, then
x; =1, If T(PyJ) is = x and I(v) =10 is correct, then —x; = | .
Finally, it T(P,v,I) is a constant, and v is a o b ,and I is correct on a, b,
and v, then I(v) = I{a) o I(h), so the constant is 1.

Induction (h > 1): Consider the subtree T(P,v,7), and assume that [is
correct on every vertex in P U {v}. Let R be the set of vertices pebbled by
the Pebbler in this twrn. Let [’ be the extension of [to domain
P UR U {v} that is correct on every vertex in R . By the induction
hypothesis, the root of T(P U R, v", I’) evaluates to 1 for every possible vertex
v € R U {v}. Hence the root of T{P,v,I) evaluates to 1, by its construction,

“if ” clause:

This direction is similar to the correctness proof of Theorem 2. The following
claim will be established;

If the root of T(P,v,I) evaluates to | and is correct on every predeces-
sorof v in P ,then I iscorrecton v .

(Note that the term “predecessor” in this claim does not necessarily mean
“immediate predecessor”.) The desired conclusion follows from this claim by again
considering T = T(@,r,I), where I(r) = 1, for if the root of T evaluates to
1, then I{r} =1 is correct (I being vacuously correct on every predecessor of
roin @), and so r evaluates to 1. The claim itself is proved by induction on
the height & of T'(P,v,I).

Basis (h = 1): It T(P,v,I) isaninput x; and x; = 1, then f(v) =1 is
correct. If T(P,v,I} is —x; and —x; = 1, then I(v) = 0 is correct. Finally,
it T(P,v,I) is the constant 1,and v is @ « b ,and I is correcton a and b ,
then I{v) = I{a) - I{b) is also correct.

Induction (h > 1) Suppose the root of T(P,v,I) evaluates to | and [is
correct on every predecessor of v in P . Let R be the set of vertices pebbled
by the Pebbler in this turn, and assume without loss of generality that every vertex
in R is a predecessor of v . By the construction of T'(P,v,I), there must be
some extension /' of I to domain P U R U {v} such that for every
v ER U {v}, the root of T(P U R,v’ I’) evaluates to 1. Notice that any
predecessor of v’ in P U R s either in R, or is a predecessor of v in P,
I', and hence I’ is correct on the latter by hypothesis. By considering the ver-
tices of R U {v} one at a time in topological order, | R U fv} | applications
of the induction hypothesis show that i’ is correct on every vertex in R U {v}.
But I’ agrees with 7 on v ,so I iscorrecton v .

Speedups by Parallel Machines 11

Analysis

The subtrees arising in the basis of the construction have height either 0 or 1.
The height added to the tree corresponding to a move in which p vertices are peb-
bled is p + Tloga(p+1)1 which, for p = 1, is at most 2p . Hence, if ¢ ver-
tices are pebbled in total, the height of 7 isat most 2r+1. O

Corollary 4: {Paterson and Valiant {10])
Size(T(n)) € Depth(O(T(n)/logT(n))) , forall T(n) =n .

Proof: This follows directly from Lemma 1 and Theorem 3. O

5. The Speedup of Deterministic Machines by PRAMs
Theorem 5: DTIME(T(n)) € PRAM —Time(NVT(n)) , for any T(n) = n .

Construction

We use a parallel implementation of the technique used by Hoperoft, Paul,
and Valiant to speedup deterministic Turing machines by (ordinary) RAMs [8, Sec-
tion 4]. Let M bea T(n) time-bounded deterministic Turing machine with &
tapes, and consider M’s computation to be divided into blocks of size
t = VT(n), as in Theorem 2. Given the value of ¢ , the simulating PRAM P
will use its first kf registers as an array corresponding to the kt blocks of M’s
tapes. The contents of each block can be represented by an integers of O(¢) bits,
which P stores in the register corresponding to that block. Initially all the regis-
ters contain the integer representing a block of blank tape, except for the registers
corresponding to the blocks of M’s input tape, which must be initialized appropri-
ately to represent the symbols of the input. A local configuration C for M isa
tuple of integers consisting of an integer representing the current state, and for
each of the k tapes, an integer representing the contents of that block containing
the tape head, an integer representing the position of the tape head within that
block, and integers representing the contents of the two neighboring blocks.

Given the array data structure described above, and using k& base registers
to record the number of the block where each tape head resides, P can obtain the
current local configuration in a constant number of steps. In ¢ steps by M , only
those tape squares in blocks in the local configuration ¢an be read or altered, so to
update the array data structure to reflect the tape contents after ¢ more steps of
M , P need only compute res(C), the result of ¢ steps beginning from the
local configuration C . (res(C) consists of integers representing the new state,
revised block contents and head positions, as well as information about which heads
have moved out of their blocks and, if so, in which direction.) To compute res(C)

12 Dymond and Tompa

would require time O(z) by a direct simulation, but can be done in constant time
if res(C) is available in a multidimensional table indexed by the components of
C . Thus, prior to the start of the simulation phase described above, P creates
the table by initializing a separate processor for cvery possible value of C . (There
are exp(O(r)) possible values for C ; this many processors can be initialized by a
PRAM in time O(z) in such a way that each gets a distinct value of C [6].)
Each processor then computes res(C) by direct simulation of ¢ steps of M ,
and stores the result in the table in global memory.

Following initialization of the table and the array described above, P per-
forms ¢ updates of the array, each update revising the array to reflect ¢ more
steps of M , and each update requiring constant time to perform. We have
assumed that the value of ¢ is known to P at the beginning of the algorithm, but
if it is not P can try successively larger powers of 2 as the value of ¢ until 2 suc-
cessful value is found. 0O

It is worthwhile to consider using the techniques of Theorem 5 for the simula-
tion of machines other than multitape Turing machines. In ¢ steps of a Turing
machine, only tape squares at distance ¢ or less from the initial positions of the
heads can be modified. The technique used in the proof of the theorem is applica-
ble whenever the simulated machine satisfies such a “locality of reference” pro-
perty. Based on an earlier version of Theorem 5, Reif [16] has shown that a similar
result can be obtained for the simulation of log cost RAMs. Variations in the simu-
lating parallel machine are also possible: Ruzzo [personal communication] has
shown that the simulation can be carried out by a vector machine [15]. However, a
fan-in argument makes it clear that a circuit of constant depth could not perform
the update step of the simulation above, which requires selecting one of the
exp(O(1)) table entries.

6. Nondeterministic Specdups

We have thus far examined speedups only for deterministic machines, and so
we now briefly consider the situation with respect to nondeterminism, The tech-
niques of Theorem 2 do not suffice for simulating nondeterministic sequential
machines by parallel machines, since concurrent processes in the simulating
machine may choose differing sequences of guesses when performing the direct
simulation of the nondeterministic machine starting from a particular configuration.
If the simylated machine used its nondeterminism in such a restricted way that a
**choice history” could be recorded in alternating space T/log 7' (for example, by
only making a nondeterministic move every logT steps), then the simulation could
be carried through.

In the case of nondeterministic parallel machines, existing results can be clas-
sified into two categories: in the first, using nondeterminism affects the power of
the machine by at most a polynomial factor; in the second the nondeterministic
parallel machine is apparently exponentially faster. Results of the first type were

Speedups by Parallel Machines 13

obtained by Pratt and Stockmeyer [15], where it was shown that time on both non-
deterministic and deterministic vector machines is polynomially related to sequen-
tial space. Fortune and Wyllie [6] and Savitch [18] first obtained results of the
second type by showing that time T on a nondeterministic PRAM is ¢quivalent to
time O(T) on a nondeterministic Turing machine. This difference in the effect of
adding nondeterminism to parallel machines can be traced to the amount of non-
determinism available at each step of the computation. In [4], for example, a non-
deterministic version of hardware modification machines [5] in which only one pro-
cessor may make nondeterministic choices is considered. Such machines are shown
to be capable of speeding up deterministic hardware modification machines by only
a constant factor in time. (In fact even alternation doesn’t help by more than a
constant factor.) So this kind of nondeterminism is of no help in obtaining specdups
(although it could reduce the amount of hardware used). The second type of result
offers an cxponential speedup of nondeterministic Turing machines by a version of
nondeterministic hardware modification machine in which all the processors may
make independent nondeterministic choices. Such an exponential speedup seems
unlikely in the case in which the simulating parallel machine is deterministic.

7. Conclusion

We have improved the known speedups of deterministic multitape Turing
machines by both fixed and variable structure parallel machines. In these results
we have not restricted the number of processors used, which is unfortunately
exponential in the time bound. (Because of the re¢lationship between alternating
Turing machines and uniform Boolean circuits, it is appropriate to take the proces-
sor bound of an alternating Turing machine to be the total number of configura-
tions {17].) It would be interesting to know that speedups can be achieved using a
number of processors that is only polynomial in the time bound.

It is worthwhile to note that even the most powerful variable structure model,
the SIMDAG [7], can be simulated with only a square loss in time by alternating
Turing machines. Thus, any improvement to Theorem 5 by a factor of
w(Vlog T(n)) in the simulating time, even if the simulating parallel machine
were a SIMDAG, would improve Theorem 2 and its corollaries.

Acknowledgement

We thank Larry Ruzzo and Walter Savitch for enlightening discussions.

14

Dymond and Tompa

References

(1]

(2}

(6]

{71

{8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

(16]

Borodin, A., On Relating Time and Space to Size and Depth, SIAM
Journal on Computing 6, 4 (December 1977), 733-744,

Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., Alternation, Journal
of the ACM 28, 1 (January 1981), 114-133.

Cook, 5.A., Towards a Complexity Theory of Synchronous Paral-
lel Computation, Technical Report 141/80, University of Toronto, 1980.

Dymond, P.W., Nondeterminism in Parallel Machines, in preparation.

Dymond, P.W. and Cook, S.A., Hardware Complexity and Parallel Com-
putation, 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York (October 1980), 360-372.

Fortune, S. and Wyllie, J, Parallelism in Random Access
Machines, Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing, San Diego, California (May 1978), 114-118.

Goldschlager, L.M., A Unified Approach to Models of Synchronous
Parallel Machines, Proceedings of the Tenth Annual ACM Symposium on
Theory of Computing, San Diego, California (May 1978), 89-94.
Hopcroft, J., Paul, W.J., and Valiant, L.J., On Time Versus Space
and Related Problems, I6th 4nnual Symposium on Foundations of Com-
puter Science (October 1975), 57-64,

Hopcroft, J., Paul, W.I., and Valiant, L.J., On Time Versus Space, Jour-
nal of the ACM 24 (1977), 332-337.

Paterson, M.S. and Valiant, 1..G., Circuit Size is Nonlinear in Depth,
Theoretical Computer Science 2 (1976), 397-400.

Paul, W. and Reischuk, R., On Alternation I, Acta Informatica 14
(1980), 391-403.

Paul, W.J., Tarjan, R.E, and Celeni, J.R,, Space Bounds for a Game
on Graphs, Mathematical Systems Theory 10 (1977), 239-251.

Paul, W.J., Tarjan, R.E,, and Celoni, J.R., Correction to “Space Bounds
for a Game on Graphs®“, Mathematical Systems Theory 11 (1977), 85.

Pippenger, N., Pebbling, Proceedings of the Fifth IBM Symposium on
Mathematical Foundations of Computer Science, IBM Japan (May
1980).

Pratt, V.R. and Stockmeyer, L..J., A Characterization of the Power of
Vector Machines, Journal of Computer and System Sciences 12 (1976),
198-221.

Reif, J.H,, On the Power of Probabilistic Choice in Synchronous Parallel
Computations, In Automata, Languages, and Programming, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1982, 442-450,

Speedups by Parallel Machines 15

un Ruzzo, W.L., On Uniform Circuit Complexity, Journal of Computer and
System Sciences 22, 3 (June 1981), 365-383.

[18} Savitch, W.J., Parallel and Nondeterministic Complexity Classes, In
Automata, Languages, and Programming, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1978, 411-424.

[19] Tompa, M., A Pebble Game that Models Alternation, in preparation.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

