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ABSTRACT

Recently the computation of the rectilinear convex hull of a
collection of rectilinear polygons has been studied by a number
of authors. From these studies three distinct definitions of rec-
tilinear convex hulls have emerged. We examine these three
definitions for point sets in general, pointing out some of their
consequences, and we give optimal algorithms to compute the
corresponding rectilinear convex hulls of a finite set of points in
the plane.

Keywords:  Convex hull; rectilinear convex hull; geometry; computational
geometry; maximal elements; rectilinear polygons.

1. INTRODUCTION

‘The computation of the convex hull of a point set has been an early and
central topic in computational geometry, see [Sh] for example. Hence it is
not too surprising, with the interest shown in rectilinear figures, that the
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computation of the rectilinear convex hull should eventually be studied, see
[MF], [NLLW], and [OSW]. Indeed the notion of rectilinear convexity
appeared quite early in the literature, see [U]. However, untike the classical
convex hull, the definition of the rectilinear convex hull is fraught with diffi-
culties, Three different definitions have appeared in the literature. The
first, which we term the classical definition was introduced in [OSW]. The
second, which we term the connected definition was introduced in [MF] and
[NLLW], while the third which we term the maximal definition is based on
the work of [KLP].

In this note we examine these three approaches, demonstrating that each
have their defects. The classical and maximal approaches allow the resulting
rectilinear convex hull to be a disconnected set, while the conmected approach
yields, in many cases, not only a non-unique rectilinear convex hull, but also
infinitely many.

In Section 2 we give the three definitions and the various examples. In
Section 3 we give algorithms for the computation of the rectilinear convex
hull of n points according to the three definitions. Finally in Section 4 we
discuss the implications of the three alternative definitions and state our
preference.

Recently, see [KS1, KS2, KS3], it has been shown that the time bound
for the computation of the mr-convex hull can be improved to Q(n log h) ,
where & is the number of points on the hull. Moreover this has been
proved to be optimal [KS2], and the same time bound has been shown to be
attainable for the 3-dimensional case [KS3].

Before entering upon our discussion we need to define some basic termi-
nology. Recall that a point set in the plane is an arbitrary subset of RZ. A
point set is said to be connected if every two points in the set can be con-
nected by a line (not necessarily straight) within the set. A rectilinear
(straight) line is a straight line oriented parallel to either the x-axis or y-axis,
and a rectilinear line segment i3 a line segment oriented parallel to either the
x-axis or y-axis. Finally, a rectilinear curve is a (finite) line consisting of rec-
tilinear line segments.

2. THE TWO DEFINITIONS AND THEIR DIFFICULTIES

In [G] and [HDK] a point set in the plane is said to be convex if for
every pair of points in the set, the line segment they determine lies entirely in
the given set. In the rectilinear case, see [MF], [NLLW], and {OSW], we
have:

Definition 2.1 A point set is called rectilinear convex or r-convex if for any
two of its points which determine a rectilinear line segment, the line segment
lies entirely in the given set.
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In Figure 2.1 we display three r-convex sets

. ®
T o
x L,
(@) (b) (C)
Figure 2.1

Observe that an r-convex set may be disconnected as in Figures 2.1 (a)
and (b). For convex sets this is not the case. However we remark that an
alternative definition of convex sets carries over to r-convex sets when suit-
ably modified, viz:

A point set is r-convex if its intersection with every rectilinear
(straight) line is either empty or a connected set.

We now give three possible approaches to the definition of a rectilinear
convex hull of a point set. We begin with the classical definition introduced
by the present authors in [OSW].

Definition 2.2 Classical

Given a point set, its r-convex hull is the smallest r-convex set contain-
ing the given set.

In Figure 2.1 the “crosses” indicate the original points sets, whose r-
convex hulls are the figures.

Observe that this definition of r-convex hull is equivalent to:

The r-convex hull of a point set is the intersection of all r-convex sets
that contain the given set.

This, the first definition of the r-convex hull of a set gives rise to a
unique r-convex hull. Unfortunately the resulting r-convex hull may be a
disconnected set, whereas the usual convex hull is always connected.
Presumably both [MF] and [NLLW] had this in mind when they required the
r-convex hull to be connected, giving rise to the second definition of r-convex
hull, namely:




4 Ottmann, Soisalon-Soininen, and Wood

Definitlon 2.3 Connected

Given a point set, its connected r-convex hull, or cr-convex hull, is a
smallest connected r-convex set containing the given set.

Observe that cr-convex hulls are not necessarily unique, a fact which
[NLLW] initially overlooked. In Figure 2.2 three different cr-convex hulls
of a three point set are given. There are indeed an infinite number of distinct
cr-convex hulls in this case, which fact seems to have eluded [MF], who
appear to believe that there are finitely many distinct er-convex hulls of a
point set.

S

Figure 2.2

Although the non-uniqueness of cr-convex hulls is a major difficulty,
there are others however. Observe that an alternative definition in terms of
the intersection of all cr-convex sets which contain the given point set gives
rise to neither the r-convex hull, nor a cr-convex hull, in general. For exam-
ple the three point set of Figure 2.2 gives Figure 2.3. This leads to a third
possible definition, namely:

Definition 2.4 Maximal

Given a point set, its maximal r-convex hull, or mr-convex hull, is the
intersection of all closed rectilinear half-planes that contain it. In Figure 2.4
the four possible rectilinear half-planes are illustrated, while Figure 2.3
displays the mr-convex hull of the three point set in Figure 2.2.

In the following, we relate cr-convex hulls and their intersection.

Let A be a regicn in the plane, We define x(lefi(A)) to be the x-
coordinate of the leftmost points of A. Similarly we define
x(right(A)),y(top(A)) and y(bottom(A)) with the obvious meanings. The
proof of the following proposition is straightforward.

Propasition 2.4 Given a point set, the intersection of its cr-convex hulls is
the mr-convex hull and is composed of p connected regions p = 1, which can
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be ordered as Al,...,Ap suchthatforall i, i=2,...,p . either

(1) x(right(A;-1)) = x(lefi(A))) and y(top(A;_))) = y(bottom(A)))
or

() x(right(A;_1)) = x(lefi(A;)) and y(bottom(A;_,)) = y(top(4,)) .

(see Figure 2.5). Moreover if (1) holds for Ayg,... ,Ap , then the rightmost of
the topmost points of each A;, i=1,...,p=1, is also a rightmost point of
A; ., and the leftmost of the bottommost points of each A;, i=2,...,p, is
also a lefrmost point of A; (Figure 2.5(a)). Correspondingly, if for
Afs....Ay (2) holds, then the rightmost of the bottommost points of each A, ,
i=1,...,p—1 is also a rightmost point of A;, and the leftmost of the top-
most points of each A;, i=2,...,p, is also a leftmost point of A; (Figure
2.5(b)).

Moreover, each cr-convex hull of the given set is obtained by joining
Ay, ...,A, with rectilinear curves (Figure 2.6).
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(a) (b}

Two forms for the intersection of all cr-convex hulls.

Figure 2.5
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(a) (b)

The intersection of all cr-convex hulls (a) and
its extension to a hull by adding rectilinear
line segments (b).

Figure 2.6
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A well known theorem on convex hulls, see [HDK] for example, is:

A point is in the convex hull of a set if, and only if, it is already in the
convex hull of three or fewer points.

The theorem continues to hold for r-convex hulls and mr-convex hulls,
but not for cr-convex hulls, for example Figure 2.7 gives a counter-example,

w

Figure 2.7

Observe, on the one hand, that p need not be in the cr-convex hull of
{1,2,3}, cf. Figure 2.2 (c). On the other hand, if a point is in the cr-convex
hull of {1,2,3} it need not be in the cr-convex hull of {1,2,3,4}. It is difficult
to sec how this “theorem’ statement can be modified to enable it to hold.

Up until now we have only considered the definition of (rectilinear) con-
vex hulls, but whatever definition is chosen, we are then faced with its com-
putation. In this note we only consider the computation of convex hulls for
finite point sets, other cases are discussed in [MF], [NLLW], and [OSW].
Even so there are two distinct computational problems, the static and
dynamic problems.

The static problem can be stated as:

Given n points in the plane, n = 1, compute their rectilinear con-
vex hull.

The dynamic problem is:
Given an initial finite set of points, consider sequences of insertions of

points, deletions of points, and rectilinear-convex-hull queries (what is
the rectilinear convex hull of the current set of points).

We provide a solution to the static problem in Section 3, while in the
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remainder of this section we discuss briefly the dynamic problem.

It turns out, that in a dynamic environment, the cr-convex hull and the
mr-convex hull fare better than the r-convex hull, since they are more stable.
Indeed, as we show in the next section the mr-convex hull can be decomposed
into 4 “staircases” or rectilinear curves. To maintain the mr-convex hull it
suffices to maintain the four staircases separately. This decomposition can
then be maintained as in {Ov] and [OvL] for the usual convex hull.

Now consider the r-convex hull of a point set in which no two points are
co-rectilinear, see Figure 2.8 for example. Then its r-convex hull is the point
set itself, that is it is completely disconnected, while its cr-convex hull is, of
course, connected and perhaps also unique, A cr-convex hull corresponding
to Figure 2.8 is shown in Figure 2.9, while in Figure 2.10 is displayed its
mr-convex hull.

Figure 2.8

1

Figure 2.9

Now add one point p , to Figure 2.8, such that it is co-rectilinear with some
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L.

Figure 2.10

other point ¢ , in the set. For example see Figure 2.11. In Figure 2.12 the
r-convex hull of this new point set is displayed; it is now a connected set!
Hence it is also the cr-convex hull and the mr-convex hull, and we see little
change from Figures 2.9 and 2.10.

These examples show that the r-convex hull can vary tremendously after
the insertion or deletion of a point. It doesn’t grow and shrink smoothly as
one usually expects of a convex hull, see [OvL]. Because of this instability it
is to be expected that the maintenance of r-convex hulls is more time consum-
ing than the maintenance of cr-convex hulls and mr-convex hulls. This topic
is, however, beyond the scope of the present note, and is left for future
investigation.

We now turn to the static problem, the computation of the (rectilinear)
convex hull of n given points.

p'

2q

Figure 2.11
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Figure 2,12

3. COMPUTING THE RECTILINEAR CONVEX HULL

In this section we provide algorithms for computing the r-convex hull,
the mr-convex hull, and a cr-convex hull of a given set of n points, n= 1.
We begin with the cr-convex hull, which is the more difficult of the two,
because of its non-uniqueness.

To ease the non-uniqueness problem somewhat, we add the following
condition to the definition of the cr-convex hull:

(3.1)  The cr-convex hull contains only minimal arms.

An arm in a cr-convex hull is a rectilinear curve joining two points in
the hull but which is not included in the mr-convex hull, see Figure 2.2 (b),
and a minimal arm is an arm consisting of either one or two line segments,
see Figures 2.2 (a) and ().

Condition (3.1) does not guarantee uniqueness, it serves only to ensure
that there are a finite number of alternative cr-convex hulls of a given finite
point set. This follows from the observation that between any two points
there are at most two distinct minimal arms.

But we may remove this finite ambiguity, by insisting that of the two
possible minimal arms, one is always preferred.

Wesay | and _l are lower minimal arms, and [~ and
—1 are upper minimal arms. We now have:

(3.2)  Whenever a choice of minimal arms is possible between two points in
the cr-convex hull, the lower minimal arms are chosen.
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These two conditions lead to the following proposition which follows
immediately from Proposition 2.4.

Proposition 3.1 Let S be a set of n points in the plane, n = 1. Then
there is one and only one cr-convex hull of S satisfying both conditions (3.1)
and (3.2).

Although Proposition 3.1 provides a basis for computing a unique cr-
convex hull, it is still of interest to know when the cr-convex hull isn’t unique
under the original definition. To this end we provide a characterization of
these situations, by way of the following definitions.

Definition 3.2 Let § be asetof n pointsinthe plane, n = 1, and R
be the minimal rectilinear rectangle containing S . Then § can be classified
according to one of the following four types:

Type I: R is degenerate, that is a rectilinear line segment. In the remain-
ing three types R is non-degenerate.

Type 2:  There are exactly two points of § on the contour of R . These
two points must be opposite corner points of R .

Type 3:  There are at least three points of § on the contour of R, one of
which is a corner point, and § is not Type 4.

Type 4 There are at least four points of § on the contour of R , one on
each side of R .

In Figure 3.1 we display examples of the four types of § . This classif-
ication of § provides us with a means to characterize the uniqueness of the
cr-convex hull of §. Clearly if § is of Type 1 then its ¢r-convex hull is
unique. Moreover if S is of Type 2 its cr-convex hull is, just as clearly,
non-unique, since one of the corner points needs an arm to connect it to the
cr-convex hull of the remaining points, see Figure 2.2 once more.

When § is of Type 3 there are two subtypes to consider. Type 3(a) is
two points of § are adjacent corner points of R, see Figure 3.2(a), and
Type 3(b) captures the remaining situations, see Figure 3.1(c). The cr-
convex hull of § is unique when it is of Type 3(a), by Lemma 3.3 below,
and is non-unique otherwise, since it is similar to Type 2.

The only remaining type is Type 4, and again this splits into subtypes.
Type 4(a) is when three or four corner points of R are in §, see Figure
3.2(b). By Lemma 3.3 the cr-convex hull of § is unique. Type 4(b) and
4(c) capture the remaining possibilities. Let the four points p,, p,, pp,
and p, be on the left, right, bottom, and top sides of R, respectively. If
(yy=y, and x, =x,) or(y; Sy, and x, = x; ), or there is a point p of
S different from py, p,, py, p, in the set
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Figure 3.1

{(x,y):(xszb'x, and y=2y, >y) or x=x<x, and y sy, <y)

or x=x,<x and y=y >y) or (x=x>x andySy,<y,)}

then § is of Type 4(b) and the cr-convex hull of § is unique, see Figure
3.1(d) for one example. If S is neither Type 4(a) nor Type 4(b) then it is
Type 4(c). Again Type 4(c) defines a non-unique convex hull, see Figure
3.2(c). The rectilinear dashed curves given in Figure 3.2(c) are always in the
cr-convex hull but the turning points of these curves can be connected in an
arbitrary manner.

Types 3(=), 4(a) and 4(c) provide for unique cr-convex hulls by means
of the following:

Lemma 3.3: Let S be a set of points, and R be its minimal enclosing rec-
tilinear rectangle. If three corner points of R are in 8, then the cr-convex
hull of S is unique, and equals the mr-convex hull of § .

Proof: Since three corner points of R are in §, then two adjacent
edges of R must be in the cr-convex hull of § . Consider an arbitrary point
p in § which is not on these two edges (if there are no such points the two
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Figure 3.2

edges form the unique cr-convex hull of §). The two rectilinear line seg-
ments joining p to the two edges must be in the cr-convex hull of § .
Furthermore all the points within the rectangle formed by these two edges
and two line segments must also be in the cr-convex hull of § . Now con-
sider the union of the two edges and the rectangles formed by all points p in
§ which are not on the two edges. This is clearly r-convex, connected,
unique, and the minimal such set containing S, and, hence, is the unique
cr-convex hull of §. The equality with the mr-convex hull follows from
Proposition 2.4. O

If § is of Type 3(a), then the cr-convex hull of $ is the union of two
cr-convex hulls of the kind specified in the lemma, see Figure 3.2(a). For
Type 4(b) a similar, but more complex, decomposition is possible, see Figure
3.1(d).

Given a set of points the determination of its type can be obtained
straightforwardly, resulting in:

Proposition 3.4 Given a set of n points in the plane, n =1, it can be
classified in O(n) time and space, that is in optimal time and space. Hence it
is decidable in O(n) time and space, whether or not its cr-convex hull is
unique.
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Propositions 3.1 and 3.4 lead to two different methods of dealing with
cr-convex hulls. The first is to compute the unique restricted cr-convex hull,
and the second is to compute the ¢r-convex hull only if it is unique, However
rather than giving an algorithm specific to the unique case, we consider com-
puting the cr-convex hull in general, that is under conditions (3.1) and (3.2).

The key observation is that we can always decompose the computation
of the cr-convex hull into at most four similar computations, cf. the computa-
tion of maximal elements in {B], [KLP], [Ov] and [OvL]. The decomposition
gives at most four Type 2 situations, for each of which we need to compute
either the lower or upper er-convex hull, Since the lower and upper cr-
convex hull algorithms are almost identical we only give the one for the upper
hull in detail. After presenting the algorithm we discuss how the various
decompositions are obtained.

Given a Type 2 set of points it follows that any upper (and lower) cr-
convex hull is a non-decreasing rectilinear curve (or “staircase”). The fol-
lowing algorithm makes essential use of this fact, see [MF] for a similar algo-
rithm.

Algorithm UPPER CR-CONVEX HULL

Input: # points in the plane, n = 1, such that the corner points (x,38)
and (x,,y,) of R are also points of § .

Output:  The vertices of an upper cr-convex hull of § .

begin

Step 1: Sort the n points in non-descending order by their x-
coordinates, and for two or more points with equal x-coordinates
they are sorted in decreasing y-coordinate order. This requires
O(nlogn) time and O(n) space.

Step 2: Scan the sorted points keeping only those points which form a
maximal monotonic increasing sequence with respect to their y-
coordinates. This can be carried out in a single scan of the sorted
sequence in O(n) time and space.

Step 3: Extend this sequence of points to include the additional points
which are necessary to specify the endpoints of the rectilinear line
segments. This is done so that each added point has the same y-
coordinate as the previous point in the sequence. This sequence is
the upper cr-convex hull, and this step requires O(n) time and
space also,

end UPPER CR-CONVEX HULL.

To compute a cr-convex hull of an arbitrary set of # points in plane,
we consider each type in turn:
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Type 1:  The lower cr-convex hull is simply the reverse of the upper hull.

Type 2:  The lower cr-convex hull is computed in a similar manner to the
upper hull, except points with equal x-coordinates are sorted in
increasing order of y-coordinate. Also the new points introduced
in Step 3 are added to the set of input points.

Type 3:  In this case there can be two upper portions, however the second
can be computed by scanning from right to left rather than left to
right. The lower hull can be computed as in Type 2, see Figure
3.1(c).

Type 4:  In this case there can be two upper portions as in Type 3, and two
lower portions, for which the Type 2 technique can be adapted,
see Figure 3.1(d).

Since the computation of the mr-convex hull is analogous we have:

Theorem 3.5 A cr-convex hull and the mr-convex hull of an n point set in
the plane, n =1, can be computed in O(nlogn) time and O(n) space.
Moreover for reasonable models of computation this is optimal.

Optimality follows by observing that the usual lower bound proof for
convex hull computation can be adapted to the rectilinear case, see [OvL] for
example.

Having dealt with the cr-convex hull, we now turn to the computation
of the r-convex hull. If no two points, in the given set § , are co-rectilinear,
then the r-convex hull is § itself, hence we consider what happens when two
points in § are co-rectilinear. Immediately the line segment joining them
must be in the r-convex hull. For example if the two points p and ¢ , say,
have the same x-coordinate, then [p,q] is a vertical line segment. Consider
the swath cut by this linear segment when sweeping it horizontally through
§ . I this swath contains no new points from §, and there are no other
co-rectilinear points in § , then the r-convex hull has been found, see Figure
3.3. However, if there is at lcast one new point r say, in the swath, then it
together with {p, ¢] defines a horizontal line segment which must be in the r-
convex hull, and this cuts a vertical swath, and so on.

Apart from simplifications of detail, the process described above deter-
mines a subset of S which gives rise to a cr-convex subset of the r-convex
hull of §. Thus our algorithm first finds the r-convex hull partitioning of
§ , and then secondly finds the er-convex hull of each element of the parti-
tion.

Algorithm R-CONVEX HULL;

Input: A set of n points in the plane, n = 1.
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Figure 3.3

Output:  The r-convex hull of the set.

begin
Step 1: Sort the points by x-coordinate;
Sort the points by y-coordinate.
If both sorted lists have unique values, then the input set is the r-
convex hull, hence cutput its n cr-convex hulls immediately.

Step 2: Consider all repeated x-values in the x-sorted list. These form a
number of disjoint intervals or swaths in their projection on the y-
axis. Choose one of them, initializing the connected set C to con-
sist solely of their corresponding points. Remove their entries from
the two lists.

Step 3: Find all points in the y-list which fall within the y-swath of the
chosen y-interval. If there are none then C has been completed,
goto Step 5, otherwise add them to C , removing their entries from
the lists. The leftmost and rightmost points in C define an x-
swath.

Step 4: Find all points in the x-list which fall within the x-swath of Step
3. Again if no such points exist, then ¢ has been completed, goto
Step 5, otherwise add the points to C , removing their entries from
the lists. The bottommost and topmost points in C define a y-
swath, goto Step 3.

Step 5: On completion C is a subset of § which has a cr-convex hull in
the r-convex hull of §. Compute and output the ¢r-convex hull of

C . If the two lists are not empty, then return to Step 2, unless no
repeated values remain, when the remaining points are their own
er-convex hulls in the r-convex hull of §, and they should be out-
put individually.
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end R-CONVEX HULL.

That the above algorithm correctly computes the r-convex hull of a fin-
ite point set is straightforward to ascertain from the basic definitions. That it
computes the r-convex hull in O(nlogn) time can be seen by observing that
finding points in a swath is simply a range search query. Using any balanced
search tree scheme each such query can be implemented in Oflogn-+k)
time, where k is the number of reported points, moreover deletions can be
carried out in O(logn) time. Since each point is reported only once, there
can be overall at most n reports, hence we obtain:

Theorem 3.6 The r-convex hull of an n point set in the plane, n=1,
can be computed in O(nlogn) time and O(n) space, and these bounds are
optimal.

4. CONCLUSIONS

We have considered three possible definitions of the rectilinear convex
hull of a point set each of which has its advantages and disadvantages. The
following table summarizes their properties:

r-convex hull

er-convex hull

mr-convex hull

connected | not necessarily yes not necessarily
unique yes not necessarily yes
consistent yes no yes
stable no yes yes

where ‘‘consistent” means consistent with alternative definitions.

We have shown that, by adding two restrictions, the cr-convex hull of a
finite point set can be uniquely defined. We have also given simple (in the
complexity sense) necessary and sufficient conditions for the er-convex hull to
be unique. Finally we have given time- and space-optimal algorithms to com-
pute the r-convex hull, a cr-convex hull, and the mr-convex hull of a finite
point set.
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