THE DESIGN OF MAPLE:
A COMPACT, PORTABLE, AND POWERFUL
COMPUTER ALGEBRA SYSTEM

Bruce W. Char
Keith 0. Geddes
W. Morven Gentleman
Gaston H. Gonnet

Research Report CS-83-06
April, 1983

THE DESIGN OF MAPLE:
A COMPACT, PORTABLE, AND POWERFUL
COMPUTER ALGEBRA SYSTEM*

Bruce W. Char
Keith O. Geddes
W. Morven Gentleman
Gaston H. Gonnet

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

The Maple system has been under development at the University of Water-
loo since December 1980. The kernel of the system is written in a BCPL-like
language. A macro-processor is used to generate code for several implementation
languages in the BCPL family (in particular, C}. Maple provides interactive
usage through an interpreter for the user-oriented, higher-level, Maple program-
ming language.

This paper discusses Maple’s current solution to several design issues. Maple
attempts to provide a natural syntax and semantics for symbolic mathematical
computation in a calculator mode. The syntax of the Maple programming
language borrows heavily from the Algol family. Full “recursive evaluation’ is
uniformly applied to all expressions and to all parameters in function calls (with
exceptions for only four basic system funetions).

Internally, Maple supports many types of objects: integers, lists, sets, pro-
cedures, equations, and power series, among others. Each internal type has its
own tagged data structure. “Dynamic vectors” are used as the fundamental
memory allocation scheme. Maple maintains a unique copy of every expression
and subexpression computed, employing hashing for efficient access. Another
feature relying upon hashing is the “remembering” facility, which allows system
and user-defired functions to store results in internal tables to be quickly
accessed in later retrieval, thus avoiding expensive re-computation of functions.

The compiled kernel of the Maple system is relatively compact (about 100K
bytes on a VAX under Berkeley Unix). This kernel includes the interpreter for
the Maple language, basic arithmetie (including polynomial arithmetic), facilities
for tables and arrays, print routines (including two-dimensional display}, basic
simplification, and basic functions (such as coeff, degree, map, and divide). Some
functions (such as expand, diff (differentiation), and fayler } have a “core” in the
kernel, and automatically load external user-language library routines for

e
This work was supperted in part by grants from the Natural Sciences and Engineering Research Council of
Canada, and by the Academic Development Fund of the University of Waterloo.

-9.

extensions. The higher-level mathematical operations (such as ged, int
(integrate), and solve, are entirely in the user-language library and are loaded
only when called.

The approach to portability of the Maple system is also discussed. Maple
currently runs in C under Berkeley Vax/Unix, and B under a Honeywell GCOS
operating system. Maple is currently being ported to Motorola 68000 micropro-
cessor systems on ‘‘Unix-like’ operating systems.

1. Motivation for Designing a New System

Maple is a language and system for symbolic mathematical computation,
under development at the University of Waterloo since December, 1980. (The
name “‘Maple” is not an acronym but rather it is simply a name with a Canadian
identity.) The type of computation provided by Maple is known by various other
names such as “algebraic manipulation’ or “computer algebra”. The Maple sys-
tem can be used interactively as a mathematical calculator, and computational
procedures can be written using the high-level Maple programming language.

With so many languages and systems already developed and being
developed, the question arises: “Why develop yet another system?”. We will
explain our motivation for developing the Maple system and the goals we are try-
ing to achieve with Maple.

The primary motivation can be desecribed as user accessibility. This concept
has several aspects. The state of the art in 1980 was such that in order to have
access to a powerful system such as MACSYMA (or Vaxima)Mos74a, Fod81a] it
was necessary to have a large, relatively costly mainframe computer and then to
dedicate it to a small number of simultancous users. In the university setting,
this meant it was not feasible to offer symbolic computation to large classes for
student computing. In a broader context, this meant that a large community of
potential users of symbolic mathematical computation remained non-users. The
development of the MUMATH[Ric79a] and PICOMATH|[St080a] systems showed
that a significant symbolic computation capability could be provided on low-cost,
small-address-space microcomputers. It seemed clear that it should be possible to
design a symbolic system with a full range of capabilities for symbolic mathemat-
ical computation which was neither restricted by the small address space of the
early microcomputers nor “inaccessible to the masses’” because of unreasonable
demands on computing resources. In particular, it seemed possible to design a
modular system whose demands on memory would grow gracefully with the needs
of the application program.

Portability was another of our earliest concerns, partly because we found
ourselves users of a computing environment in transition, and partly beeause it
was clear that a wide variety of computer systems would be coming onto the
market in the decade of the 1980’s. It was also recognized that ‘“‘user accessibil-
ity” is greatly affected by the quality of user interface which a system provides.

Thus the primary design goals of the Maple system are: compaciness, a
powerful set of facilities for symbolic mathematical computation, portabsility, and

-3-

a good user interface. These issues are discussed in more detail in the following
sections. ’

2. Syntax and Semantics

Part of our attempt to provide a good user interface has been to try to
design a syntax which is mathematically natural. This goal is conditioned by our
current assumption that most users will be accessing Maple from “ordinary’ ter-
minals using one-dimensional ASCII input. (An interesting direction for the
future would be to address the design of a good user interface based upon more
sophisticated peripherals, building upon previous work such as [Hof79a].) Under
the current assumption, many mathematical operations are specified by the tradi-
tional function-call syntax common to many programming languages. However,
Maple’s syntax is enriched with mathematical constructs such as equations, and
ranges (e.g. 1.3).

2.1. Sample Maple Statements

The following sample statements serve to illustrate some of Maple’s syntax.
(Note that the double-quote operator ” is used as a ‘‘ditto” symbol to specify the
latest expression.)

taylor(exp(3*x*x2 + x), x=0,4);

45

14+ 74+ 7/22% + 19/6° + 24

+ 0(=")
sum((5+i-3)%(2+i+9),i=1..n);
10/3 (n+ 1)® + 29/2 (n+ 1) - 269/6n — 107/6

expand(”);
10/3 73 + 49/20% - 35/6n

eqnl == 3*x + 5%y = 13; eqn2:= 43x — Ty = 30; solve({eqn.(1..2)}, {x, ¥});
egnl: =3 x4+ 5y =13
em2: =42 -7y =30
38 241
r=- 5, -,

y &
41 41

limit((tan(x)—x)/x**3, x=0);
1/3

fibonacei == proc (n)
option remember;
if not type(n,integer) or n<<0 then
ERROR(‘invalid argument to procedure fibonacci'}

else
if n<2 then n else fibonacci(n-1) + fibonaecci(n-2}) fi
fi
end;
fibonacei(101);

573147844013817084101

2.2. Control Structures

Many of the control structures in the Maple language have been borrowed
from other languages. Specifically, from Algol 68 we borrowed the repetition
statement:

for <name> from <expr> by <expr> to <expr> while <expr>
do <statement sequence> od

and the selection statement:

if <expr> then <statement sequence>
elif <expr> then <statement sequence>>

else <statement sequence>

fi

From C we borrowed the break statement for breaking out of a loop, and
RETURN(expr) for returning from a procedure. The ERROR(string} construct,
similar to a feature in MACSYMA, is a special function which causes an immedi-
ate return to the top level of Maple with “ERROR: string’’ printed out as a mes-
sage. However, a procedure may be given the “errortrap” option to allow it to
“catch” an ERROR condition in it or in one of the subprocedures it calls -- this
is useful for error-checking in library funetions, for example.

2.3. Some Semantic Features

An important semantic feature is that Maple applies full, recursive evalua-
tion of expressions as the standard evaluation rule. For example, the sequence of
statements

8 = X;
X =3
a;

vields the value 3, not x. The quoting facility for preventing the evaluation of an
expression is to surround the expression with single-quotes, as in *a+ b,

-5-

Another semantic feature in Maple is the general rule that all parameters to
all functions (system-supplied or user-defined) are fully evaluated from left to
right before being passed. (Again, the quoting facility can be used to explicitly
prevent evaluation). We have allowed precisely four exceptions to this general
rule, for four specific system functions: assigned (which returns true or false
depending on whether the name passed as its argument is assigned or not), evaln
(which evaluates its argument to a rame), evalb (which evaluates its argument as
a Boolean expression), and remember (which is a function used to place the result
of a computation in an internal table for later retrieval). Amnother important
feature of Maple is the set of powerful primitive functions that are available
when writing procedures in the user-level Maple language. Some examples of
such primitive functions are degree, coeff, lcoeff (to extract the leading
coefficient), op (to pick operands from an expression), and map (to apply a pro-
cedure onto each of the operands of an expression, separately).

2.4. Types in Maple

Maple provides a type function for run-time type-checking. I'or example, if
a procedure f has a parameter x then a common construet in the procedure body
is a statement such as:

if not type(x, algebraic) then
ERROR('invalid argument to procedure *) fi

The Maple language has been designed to avoid obligatory type declarations, a
principle that we think is important if we are to have a convenient interactive
system., Furthermore, we think that the syntax and semantics which applies
when writing Maple procedures should be identical with the syntax and seman-
tics of Maple's interactive mode. Consequently, no type declarations are required
in Maple and writing type-independent Maple code comes naturally.

On the other hand the Maple language is not type-less. Every object has a
precise type and the type information is coded in the data strueture. Our con-
cept of “‘objects” and '‘types” applies not only to the conventional objects such
as integers and lists, but also to mathematical objects such as sums and products,
and to objects such as procedures and tables (arrays). As an iltustration of the
concept of a procedure as an object, a definition of the {unction abs in Maple
could take the form:

abs := proc (x)
if not type(x,rational) and not type(x,real) then
ERROR(invalid argument to procedure abs")
else
if x<{0 then —x else x fi
fi

end;

This is an ordinary assignment statement, where the procedure definition (the
proc...end construct) on the right-hand-side is a valid Maple expression (i.e., an
object with its own data structure of type procedure). The name abs could later

-6 -

be re-assigned any other value (of any type). It is also possible to have a pro-
cedure definition which has not been assigned to any name, as in the following
expression to reverse the left and right hand sides of a list of equations:

map(proc (x) op(2,x)=op(1,x) end, [a=b, c=d, e=f]).

3. Data Structures

Maple has a rich set of data structures designed into it, currently about 36
different structures. Approximately one-quarter of these data structures
correspond to programming language statements: assignment, if, read, etc. The
remaining data structures correspond to the various types of expressions, includ-
ing expressions formed using standard arithmetic and logical operators, and
structures for numbers, lists, sets, tables, (unevaluated) functions, procedure
definitions, equations, ranges, and series. All of these structures are represented
internally as dynamic arrays (vectors), similar to the approach taken by{Nor&2a.

3.1. Advantages of Dynamic Vectors

This approach using dynamic vectors at the machine level and a rich set of
data structures at the abstract level has significant advantages in improved com-
pactness and efficiency of the resulting system code. Firstly, in Maple there is
only one level of abstraction above the system-level objects. It is clear that in
symbolic mathematics there are many data types. The fewer and more direct the
mappings between the abstract objects and the system-level objects, the simpler
and more efficient will be the code that manipulates these objects. Secondly, we
believe that the design of data structures should be related, if possible, to the
language that describes the data objects. In our case we have a simple BNF
language with the LALR(1) property, and it is natural to relate the data struc-
tures to the productions in the language. This immediately suggests the need for
many data structures since there are many productions in the language. Thirdly,
dynamic vectors allow us, in many cases, to have direct access to each of the
components of the structure at about the same cost. This is highly desirable in
some circumstances over the sequential access required when all objects are
represented as lists. Fourthly, dynamic vectors are more compact than structures
linked by pointers. In summary, an important part of the compactness and
efficiency of Maple is due to the use of proper data structures.

3.2. Examples of Maple’s Data Representation
All of the internal data structures in Maple have the same general format:

| Header | data 1 I data 2 | I data n I

The header field encodes the length (n+ 1) of the structure, the type, one bit to
indicate simplification status, and two bits to indicate garbage collection status.
Every data structure is created with its own length and this length will not
change during its entire existence. Data structures are typically not changed
after creation since it is not predictable how many other data structures are

.

pointing to a given structure. The normal procedure to modify structures is to
create a copy and modify the copy, hence returning a new data structure.

The following are some specific examples of data structures in Maple. The
notation f<xxx> will be used to indicate a pointer to a structure of type xxx.

Negative integer

| INTNEG | integer | integer | ...}

Here the INTNEG header includes both the tag for INTNEG and the length of
the data structure, which depends upon the size of the negative number being
represented. Each integer field of an INTNEG contains one base BASE digit.
BASE=10000 for 32-bit machines and BASE=100000 for 36-bit machines; that
is, BASE is the largest power of 10 that will fit into a half word on the host
machine.

Rational number

[RATIONAL | 1<INTPOS or INTNEG> | {<INTPOS> |

The second integer is always positive and different from 0 or 1. The two integers
are relatively prime.

Sum of several terms

{suM | 1<exp-1> | 1<tactor-1> [..]..]

This structure should be interpreted as pairs of expressions and their constant
factors. The simplifier lifts all explicit constant factors from each expression and
places them in the <{actor>> entries. A term consisting only of a rational con-
stant is represented with factor 1.

Product/ quotient/ power

IPROD I [<exp-1> I | <expon-1> I 1 <Lexp-2> l { <expon-2> I I I

This structure should be interpreted as a product of <exp-i> <®*Pomi> Ratjon-
al number or integer expressions to an integer power are expanded. If there is a
rational constant in the product, this constant will be moved to the first entry by
the simplifier.

Series

I SERIES | 1<exp> | t<exp-1> [integer-1 [.. ...]

The first expression is the “taylor’ variable of the series, the variable used to do
the series expansion. The remaining entries have to be interpreted as pairs of
coeflicient and exponent. The exponents are integers {nrot pointers to integers)
and appear in increasing order. A coefficient O(1) (function call to the function
“O" with parameter 1) is interpreted specially by Maple as an “order’” term.

4. The Use of Hashing in Maple

Maple handles all table searching in a uniform way. All of the searching is
done by an algorithm which is a slight modification of direct-chaining hashing.
Although it is not obvious, the internal tables play a erucial role; they are used
for: locating variable names, keeping track of simplified expressions, keeping
track of partial computations, mapping expression trees into sequential files for
internal input/output, and for storing arrays and tables. It is immediately obvi-
ous that the searching in these tables has to be fast enough to guarantee overall
efficiency.

The algorithm used for these tables can be understood as an implementation
of direct-chaining where instead of storing a linked list for each table entry, we
store a variable-length array. This requires a versatile and eflicient storage
manager, but without one, symbolic computation would not be feasible regard-
less.

The two data structures used to implement tables are:

Table entry
frasuTaB | 1<nasn> | j<HASHS [.. | 1<HASH> |

Each entry points to a HASH entry or it is 0 if no entry was created. The size of
HASHTAB is constant for the implementation. For best efficiency, the number
of entries should be prime.

Hash-chain entry

IHASH | key l value I]

Each entry in the table consists of a consecutive pair, the first one being the
hashing key and the second the stored value. A key cannot have the value 0 as
this is the indicator for the end of a chain. For efficiency reasons, the HASH en-
tries are incremented by 5 entries at a time and consequently some entries may
not be filled. Keys may be any integer or pointer which is representable in one
word. In many cases the key is itself a hashing value (two step hashing).

4.1. The Simplification Table

All simplified expressions and subexpressions are stored in the simplification
table. The main purpose of this table is to ensure that expressions appear inter-
nally only once. Every expression which is entered into Maple or which is inter-
nally generated is checked against this table, and if found, the new expression is
discarded and the old one is used. This task is done by the simplifier which
recursively simplifies (applies all the basic simplification rules) and checks against
the table.

The task of checking for equivalent expressions within thousands ol subex-
pressions would not be possible if it was not done with the aid of a “hashing”
concept. Every expression is entered in the simplification table using its signe-
ture as a key. The signature of an expression is a hashing function itself, with

-g.

one very important attribute: it is order independent. For example, the signa-
tures of the expressions a+ b+ ¢ and ¢+ a+ b are identical; the signatures of a*sb
and b#xa are also identical. Searching for an expression in the simplification
table is done by:

- Simplifying recursively all of its components;

- Applying the basic simplification rules.

- Computing its signature and searching this signature in the table. If the
signature is found then we perform a full comparison (taking into account that
additions and products are commutative, ete.) to verify that it is the same
expression. If the expression is found, the one in the table is used and the
searched one is discarded.

The number of times that we have to do a full comparison on expressions is
minimal; it is only when we have a “collision” of signatures. Some experiments
have indicated that signatures coincide once every 50000 comparisons for 32-bit
signatures. (Notice thai the signatures are still far from uniform random
numbers). The resulting expected time spent doing full comparisons is negligible.
Of course, if the signatures disagree then the expressions cannot be equal at the
basie level of simplification.

4.2. The Partial Computation Table

The partial computation table is responsible for handling the option
remember in function definitions in its explicit and implicit forms. Basically, the
table stores function calls as keys and their results as values. Since both these
objects are data structures already created, the only cost (in terms of storage) to
place them in the table is a pair of entries (pointers). Searching these hashing
tables is extremely efficient and even for simple functions it is orders of magni-
tude faster than the actual computation of the function.

The change in efficiency due to the use of the remembering facility may be
dramatic. For example, the Fibonacei numbers computed with

f := proe(n)
if n<2 then n else f(n-1)+ f(n-2) fi end;

take exponential time to compute, while

f := proc(n) option remember;
if n<2 then n else f(n-1)+ f(n-2) fi end;

requires linear time.

Besides the facility provided to users, the internal system uses the partial
computation table for diff, taylor, expand, and evalr. The internal handling of
expand is straightforward. There are some exceptions with the others, namely:

- diff will store not only its result but also its inverse; in other words, if
you integrate the result of a differentiation the result will be ‘‘table-looked up”
rather than computed. In this sense, integration ““learns’ from differentiation.

- taylor and evalr need to store some additional, environment, information
(Degree for taylor and Digits for evalr). Consequently the entries in these cases
are extended with the precision information. If a result is requested with less

- 10 -

precision than what is stored in the table, it is retrieved anyway and “rounded’.
If a result is produced with more precision than what is stored, the table entry is
replaced by the new result.

- evalr only remembers function ealls; it does not remember the results of
arithmetic operations.

Arrays are implemented using internal tables, with the address of the
(simplified) expression sequence of indices used as the hashing key. (Note that
since simplified expressions appear only once, we can use their addresses as keys.)
Since arrays are treated just like tables at the internal level, dense and sparse
arrays are handled equally efficiently.

5. Compact Size as a Design Goal

The kernel of the Maple system (i.e., the part of the system which is written
in the systems implementation language) is kept intentionally small -- for exam-
ple, it occupies about 100K bytes on a VAX. The kernel system includes only
the most basic facilities: the user programming language interpreter, numerical,
polynomial and series arithmetie, basic simplification, facilities for handling tables
and arrays, print routines, and some fundamental functions such as coeff, degree,
subs (substitute), map, iged (integer ged computation), leoeff (leading coefficient of
an expression), op, divide, imodp/imods (integer modular operations using
positive/symmetric representation), and a few others. Some of the fundamental
functions have a small “core” coded in the kernel and an interface to the Maple
library for extensions. The interface is general enough so that additional power,
such as the ability to deal with new mathematical funetions of interest to a par-
ticular user, can be obtained by user-defined Maple code. Some examples of
functions which have such a “core” and a user interface are diff, ezpand, taylor,
type, and evalr (for evaluation to a real number). Other functions supplied with
the system are entirely in the Maple library, including ged, factor, normal (for
normalization of rational expressions), inf, and sclve.

The compactness of a system is affected by many different design decisions.
The following points outline some of the design decisions which have contributed
to the compactness of the Maple system.

1. The use of eppropriate data structures. As we have pointed out in section 3,
an important factor in compactness is the design of a rich set of data struc-
tures appropriate to the mathematical objects being manipulated, with a
direct mapping between these abstract structures and the machine-level
“dynamic arrays”. This data structure design avoids the introduction of an
intermediate “artificial’” level of structure such as lists. One level of com-
pactness is thus achieved because the number of pointers is reduced com-
pared with a linked-list representation. Significantly, another level of com-
pactness is achieved because the code required to manipulate these data
structures is generally shorter than the code which must deal with a list
representation. ‘

2.

- 11 -

The use of a wiable file system. By having an efficient interpreter and by
placing much of the code for system functions into the user-level library,
Maple has the property that ‘‘you only pay for what you use”. Writing
functions in the user-level Maple language has the additional advantages of
readability, maintainability, and portability. This necessarily depends upon
having a file system that (at least through efficient simulation) has some
desirable properties such as a tree-structured directory system and variable-
length records. It may have been unreasonable a decade ago to make such
assumptions about the file system, but these assumptions are (or will be)
satisfied by many current and future mainframe and micro computer sys-
tems.

Avotding e large run-time support system. Providing an “integrated pro-
gramming environment” or a large run-time support system can lead to
non-trivial memory requirements. For example, Franz Lisp on Berkeley
Unix starts off at almost 500K bytes. We view Maple as just one of many
software tools that a user may employ to solve problems, regardless of which
system it may be used on. We see no need to provide all of these tools
within Maple itself, not only because they greatly increase the problems of
porting without providing any greater algebraic computation power, but also
because many computing environments will allow their native software tools
to be easily connected to Maple (say, as communicating processes) once
Maple has been ported to that environment. For example, Unix
EMACS|[Gos81a] can invoke Maple as a subprocess on Berkeley Unix, pro-
viding some screen managing and editing facilities for Maple. Thus we do
not view the basic Maple system, which provides minimal programming sup-
port (e.g., only a simple trace package and no editor), as lacking a program-
ming environment. Rather, we see Maple as being easy to integrate into an
environment chosen by the user. We certainly think that having a good
user/programming interface to Maple is important. Indeed, we look forward
toward developing a ‘‘personal algebra machine” in the near future. How-
ever, we envision this kind of work as building upon the basic Maple system
rather than building more into it.

A policy of treating main memory as ¢ searce resource. We believe that this
point of view is important if we are to achieve the goal of providing a sym-
bolic computation system to ““the masses”. Because we have adopted such a
point of view, we are constantly concerned about which functions belong in
the Maple kernel and which functions can be supplied as user-level code in
the Maple library. Since we have an efficient mechanism to retrieve Maple
functions from the library, and an efficient interpreter, we are not forced to
abandon computational power for the sake of compactness.

The choice of the BCPL famtly of systems implementation languages. Imple-
menting Maple in systems languages from the BCPL family has helped us to
achieve the compactness goals outlined in the above points. These languages
typically produce relatively compact and efficient object code, thus contri-
buting directly to the goal of treating main memory as a scarce resource.
The support of “dynamic arrays” in the implementation language allows the

-12-

creation of compact data structures for the higher-level objects. Further-
more, an implementation language in the BCPL family typically has a run-
time library that is small, selectively included, and yet provides the desired
functionality.

Although the availability of inexpensive memory and hardware support for
large address spaces makes it possible to design a programming system which has
all of its routines contained within a large {virtual) main memory, we consider
such a design to be ineflicient both on mainframe timesharing systems and on the
arriving generation of inexpensive but powerful microprocessor systems. It will
continue to be true, in our view, that a more eflicient design can be achieved by
treating main memory as a scarce resource. Maple's design with a relatively
small kernel interfacing to an external library takes the latter point of view.

6. Computational Power through Libraries of Functions

Another goal of the Maple system is to provide a powerful set of facilities for
symbolic mathematical computation. In other words, we are not willing to
achieve compactness by sacrificing the computational power of the system. Thus
while the number of functions provided in the kernel system is kept to a
minimum, many more functions for symbolic mathematics are provided in the
system library, to be loaded as required. The functions in the system library are
written in the high-level Maple programming language and are therefore readily
accessible to all users of the Maple system. A load module for each library pro-
cedure is stored in “Maple internal format” which is a quick-loading expression-
tree representation of the procedure definition. When a library function is
invoked, its load module is read into the Maple environment (if not already
loaded} and the expression tree is interpreted by the Maple interpreter.

Since run-time loading of compiled code is not (yet) a portable feature for
BCPL-family languages on most systems, the execution speed of the system is
seen 1o depend on the interpreter for the Maple language. Maple’s interpreter is
relatively efficient; for example, an experiment performed by running the tak
function[Gri82a] shows Maple's interpreter to be about four times faster than
Vaxima’s interpreter on that particular benchmark. Consequently, the tradeoff
between “‘user-level” and “system-level” code is not as great in Maple as in other
systems. When a critical function has been identified as causing a serious degra-
dation in execution time, it has been moved into the compiled kernel system*.
Undoubtedly, there would be some gain in execution speed if all of the Maple
functions were coded entirely in the compiled kernel but the resulting loss of
compactness, and hence of user accessibility, outweighs such gains in execution
speed.

This was done, for example, with the function for polynomial division which was first placed in the system li-
brary and then later moved into the kernel. On the other hand, some functions such as solve and int have been
moved from the kernel out to the system library without causing a significant degradation in performance.

- 13-

7. Portability

As part of the general goal of ‘‘user accessibility”, the Maple system is not
tied to one operating system, nor to one programming language. Maple is
intended to be portable across several languages, descendants of BCPL. To
achieve this level of portability and to have a single source code (multiple copies
are viewed as a disastrous scenario) we use a general purpose macro-processor
called Margay. Our current Margay macros define a language very similar to B
or C except for the places where the languages differ, where we do one of the fol-
lowing:

(i} Write a new macro which can be easily mapped onto every language. (Most
of the time the macro will have some additional information which may be
redundant for some languages but used by others). This is possible since the
whole internal maple is relatively small (5500 lines) and we are willing to
modify the code to improve portability.

(ii) Avoid using a particular feature if it is too peculiar to a single language.

(i) Avoid, whenever possible, constructs that may be ambiguous across different
languages.

The macro-processor is used not only as a way of providing a higher level of rea-
dability of the source code, as M6 was used with Altran [Hal71a], but also as a
way to make Maple portable across several languages.

Maple is currently running under the GCOS operating system on a
Honeywell 66/80 (110K words maximum address space) and under Berkeley Unix
on VAX 11/780's. We have begun experiments porting to C on various operating
systerns on MC68000-based microcomputers, such as Xenix, Unisoft Unix, and
the WICAT operating system. We have plans to port Maple into other BCPL-
derivative languages in the near future, such as the locally-developed languages
WSL[Bos80a] and PORT[Mal82a].

8. Notes on Software Development

Maple development started on a Honeywell system in B when the project
began in 1980. When Waterloo acquired a VAX in 1981, we ported Maple to C.
At that time, we were forced to demonstrate portability between languages and
operating systems out of necessity, since Maple had to continue to work on the
Honeywell for student use.

8.1. Choice of BCPL-derivatives as implementation language

While Maple’s behaviour is based as much on our coding of algorithms and
data structures as on our choice of implementation language, it seems clear to us
that a general-purpose system based on a BCPL-family language can be compact,
yet have reasonable performance on interesting problems. The software tools
available (parser-generators, execution profilers, ete.) have made the implementa-
tion process proceed in a timely fashion with a small staff. While we don’t think
any final conclusions should or can yet be drawn about the relative merits of Lisp
or BCPL-family languages as vehicles for symbolic systems, we do suggest that
the choice of system implementation languages now seems less limited than in the

- 14 -

early '70s when the last generation of algebraic systems were being designed.
Our approach towards portability is of course tied to the health and propagation
of BCPL-family languages, but we feel this is assured, at least for the next few
vears, given the interest of the larger computer science community in such
languages. We feel that our approach frees us to concentrate on providing alge-
braic computation power, as opposed to worrying about machine code generators,
portable subsets, or porting programming environments.

8.2. Breadboarding

Our mode of operation up to this point is akin to *breadboarding’ an electr-
ical design, in that we can observe real, not merely theoretical, performance over
a long period of time, and yet be in a position to make possibly incompatible
changes in a timely fashion. The compactness of the Maple kernel is what makes
breadboarding feasible for us, in that someone modifying the kernel must deal
with only 5500 lines of code. As a consequence of this approach, version 1 of the
Maple system is almost unrecognizable as a predecessor of version 2, although
version 3 {currently under development) is characterized mainly by added facili-
ties rather than by fundamental design changes compared with version 2.

We do not claim to have worked out all of the design and implementation
issues facing us. Maple has changed since the inception of the project, not only
through the introduction of additional features, but also through incompatible
changes made because we changed our minds. Nevertheless, we have willingly
subjected the system to significant usage at every stage of its development. The
first version of the Maple system was running within a week of the first discus-
sions on its design, with significant “real-world” problems solved using it within a
month. Hundreds of students at Waterloo have already used Maple in undergra-
duate and graduate classes *. We are continuing to operate in a mode where
there is a short time period between ideas and their implementation, with the
result that the practical, real, applications of “great ideas™ are soon found, and
the *‘great ideas that are not-so-great’” are modified or discarded. In this, we are
grateful for the flexibility of our academic environment (and students!), and for
the vigour of workers in algebraic manipulation of the past decade who have pro-
vided us with a wealth of implemented algorithms and applications problems that
are obvious tests for Maple.

To some extent, the breadboarding approach means that we have had to
proceed slowly on the design of ‘large features” such as user-directed
simplification, but we think that by tying the design of Maple closely to its
implementation and usage we have gained invaluable experience and feedback.
Furthermore, we think that doing so has kept us from designing beyond our
immediate capacity to remain faithful to maintaining efficiency and portability.

¥ . > . .
Maple is used in an undergraduate data base class {its support of sets and tuples was used for a relational

data base package), as well as courses in algebraic manipulation. It has also been used for “real” formula mani-

pulation by some of our departmental colleagues, and as an algebraic calculator by students cn a casual basis.

- 15 -

9. Conclusions

We expect several more cycles of building, using, and learning for Maple.
Nevertheless, we believe that our accomplishments so far affirm the validity of
our approach towards data representation and manipulation, towards portability,
and towards making algebraic manipulation generally available. David
Stoutemyer once said that one way to make computer symbolic math economi-
cally feasible for the masses would be to encourage the University of Waterloo to
develop a compact “WATALG” system [Sto79a]. With the Maple system, we
have taken up the spirit of that challenge.

Acknowledgments

We wish to acknowledge the assistance of: Robert Bell, Greg Fee, Brian
Finch, Marta Gonnet, Barry Joe, Howard Johnson, Patrick McGeer, Michael
Monagan, Mark Mutrie, Sophie Quigley, Carolyn Smith, and Stephen Watt for
their various contributions to the Maple project.

- 16 -

References

a.

Bos80a. F. David Boswell, A Secure Implementation of the Programming
Language Pascal, Dept. of Computer Science, University of Waterloo (1920).
{M.Math thesis)

Fod8ta. John Foderaro and Richard Fateman, ‘Characterization of VAX
Macsyma,” Proceedings of the 1981 ACM Symposium on Symbolic and Alge-
brasc Computation, pp. 14-19 Association for Computing Machinery, (1981).

Gos8la. James Gosling, Uniz Emacs Reference Manual. 1981.

Gri82a. Martin Griss, Eric Benson, and Gerald Maguire, Jr, “PSL: A Portable
LISP System,” Proceedings of the 1982 ACM Symposium on Lisp and Func-
tional Programming, pp. 88-97 (1982).

Hal7la. Andrew D. Hall, Jr., “The ALTRAN System for Rational Funetion
Manipulation - A Survey,” in Proceedings of the Second Symposium on Sym-
bolic and Algebraic Manipulation, ed. S.R. Petrick, Special Interest Group on
Symbolic and Algebraic Manipulation, Association for Computing Machinery
(1971}

Hof79a. Carl Hoffman and Richard Zippel, “An Interactive Display Editor for
MACSYMA,” Proceedings of the 1979 MACSYMA User’s Conference, p.
344 (1979).

Mal82a. Michael Malcolm, Bert Bonkowski, Gary Stafford, and Phyllis Didur,
The Waterloo Port Programming System, Dept. of Computer Seience,
University of Waterloo (1982).

Mos74a. Joel Moses, “MACSYMA - The Fifth Year,” in Proceedings of the Euro-
sam 74 Conference, , Stockholm (August 1974).

Nor82a. Arthur Norman, “The Development of a Vector-based Algebra System,”
Proceedings EUROCAM '82, pp. 237-248 Springer-Verlag, (1982). Lecture
Notes in Computer Science #144.

Ric79a. Art Rich and David Stoutemyer, “‘Capabilities of the muMATH-79 Com-
puter Algebra System for the INTEL-8080 Microprocessor,” EUROSAM
1979, pp. 241-248 Springer-Verlag, (1979).

Sto79a. David Stoutemyer, “Computer Symbolic Math and Education: a Radi-
cal Proposal,” Proceedings of the 1979 Macsyma User’s Conference, pp.
142-158 MIT Laboratory for Computer Science, (1979).

Sto80a. David Stoutemyer, “PICOMATH-80, an Even Smaller Computer Algebra
Package,” SIGSAM Bulletin 14(3) pp. 5-7 (1980).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

