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ABSTRACT

A general approach to a class of nonsmooth constrained
optimization problems is presented. The functions in the problem
may be nondifferentiable and even noncontinuous; however, it must
be possible to partition the domain of each function into a collec-
tion of sets, called cells, which are the feasible regions of systems of
smooth constraints, such that the function is smooth over each cell.
In these cases, the nonsmooth problem can be decomposed into a
collection of smooth subproblems. In order to solve the nonsmooth
problem, one might propose to find a descent direction at each
iteration of a subgradient-type algorithm; we propose to examine a
sequence of descent subproblems. The main advantage in this, is
that established algorithms for smooth optimization can be applied
to the subproblems.
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1. Introduction
We want to solve problems of the type:
inf (=)
NCNLP { subject to f'(z)=0,iel,
a2 0,ie1,
where fi ¢ {O}UleqUI«‘n are a finite collection of functions R® — R that may
be nondifferentiable or even noncontinuous. However, we want to solve these

problems by decomposing them into a collection of smooth subproblems; hence,
we will consider functions of a piecewise smooth nature,

The constrained problem can be transformed into an unconstrained problem
by using an exact penalty function. The basic principles of the method can be
developed with reference to the unconstrained case. Because it is our purpose to
explore the fundamental ideas, we will address only the problem of finding an
unconstrained local infimum of a piecewise smooth function.

Throughout, we will use the Euclidean norm, along with the Euclidean dis-
tance function and Euclidean neighbourhoods;

For z ¢ R", the Euclidean norm of z is
lzll, = (z%z )%
For A C R", the distance function d, is defined for every z ¢ R" by
di(z)=inf{]ly-z|,|yeca}

d4(z) is the Euclidean distance from z to the closest point in A.

For A C R" and ¢ > 0, the set of all points y whose distance from A is
less than ¢is

* This research is supported in part by Natural Science and Engincering Research Council Grant No.
A8630
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N{A)= {y €R" | dy(y) < ¢}
In the special case when A consists of a single point z, this reduces to

Ndz)= {ycR™||ly 2|, < ¢}

For f:R" = R we define f(z) = lim inf f(z), where the ”lim inf is
P 2 ]
taken with respect to all sequences {z’} which converge to z. By definition,
S(2) is a local infimum of f if and only if £ (%) is a local minimum of I

The notation C7(@), i =1, .., 0o refers to the class of functions which
have continuous partial derivatives of order 1 over the set G, C%G) is the class
of functions which are continuous over G.

This paper is divided into six sections. In §2 we will discuss the conditions
which enable us to partition a function, in the neigbourhood of a point, into
smooth pieces. We will discuss the consequences of this partition property with
regard to finding the infimum of a function. In §3 we present a class of functions
which has the partition property at every point in an open set and give some
results for this class. In §4 we show that the class of functions defined in §3
contains all functions that have the partition property everywhere in a open set.
A conceplual algorithm for finding a local infimum of a function in this class is
given in §4. We prove that this algorithm converges under relatively weak
assumptions and we indicate how this eonceptual algorithm can be used to derive
a praclicable numerical algorithm. The final section contains a few brief
conclusions.

2. The Partition Property

Our fundamental approach is to decompose the problem of finding the
infimum of a nonsmooth function into a collection of smooth subproblems. We
want to set conditions that are as weak as possible such that the problem of
deciding if / has an infimum in the neighbourhood of a point z is equivalent to
deciding whether or not z is a local minimizer of a finite collection of smooth
constrained problems. For the moment, the only degree of smoothness we will
require in the subproblems is continuity.

In addition we will require that:

(i)  there exists £ > O such that N{z) can be partitioned into a finite collection
of subsets such that the closure of each subset is the feasible region of a
finite system of smooth constraints.

(i) for each subset, there exists a function which is smooth over its closure and
which has the same values as  for points in the subset.

This motivates the following definition.

2.1. Definition

Given, a function f defined over an open set G and a point z ¢ G, f is
said to have the partition property at z with respect to G if there exist disjoint
sets Fy, i € I(z) and functions f,, i € /(z) (where I(z) is a finite index set and
the functions f;, { € I(z) are not necessarily distinct) such that for some £ > 0
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(i) Nl=) € U F:

iei{z)

(il =z e F; forevery i € I(z)

({iiy Fi\Ne(z) =
{veN{2)] M) S0 lely; e {y)=0,ecE; S(y)>0,0¢G,)
where L, E'; and G; are finite index sets (which may be null and are
assumed without loss of generality to be disjoint) and ¢/ ¢ C°(F;(\Ny(z))
yforevery je L | JE;|JG; and all i I(z).

(iv) For all 7 ¢ I(z), and every y € FiM\Ndz), fie CO(F.'HNE(Z)) and
fdgd=f(y). o

Note that:

(a) there may be many choices of sets F; and functions f; that satisly the
definition. The index set /{z) depends on the particular choices of F; and
fi- In some cases, it may be nontrivial to find sets and functions that
satisfy the definition. However, for many practical problems, the conditions

can be satisfied in a straightforward way.

(b) (iv) implies that discontinuities of f in Ng(z) may occur only on the
boundary relative to Ngz) of some F;, ic I{z). In other words, the
discontinuities of f occur at points {z|c'(z)=0,jeJ} for
J C E,UG.—UL,- where the functions ¢’, j ¢ J are continuous over
.P—’,-me(:r)A

(¢} the function f; in definition 2.1 is not the same as J(FiNdz)), The
domain of definition of f|(F,r]N€(x)) is F;N¢z) whereas the domain
of definition of f; is Fi(MN¢(z) .

(d)  the partition property is defined with respect to an open set G, at ¢ point
in ¢,

2.2. Example

Z-{0}={x1,+2 ---}.
figure 1.

Consider the function f represented in
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Fig. 1 f has the partition property w.r.t. R at each z ¢ R
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1 1 1
—$2+z'2 'T<x<(2k O ;keZ—{O}
1 1
T =TS Dk =100, ...
0
, 2 =10
e =1 ,
. o=t ck==+1...,4199
N N
T2k + Ux 2kx ck=%1,...,£9
2
z
,co<z< —L Las g ikeZ-{0}

One might propose to take the sets:

1 1 1 1 1 1 1 .
(0], (—co, =), (o) b7l (G ) (oo o Vi ke £ - {0}

as the F;. Then, definition 2.1 is satisfied at any point except = == 0. Using this
choice of F;, there are infinitely many sets in every neighbourhcod of z = 0.

Consider, however, the function g defined by:

zsin(%} ,z#0

0 , T =0

g{z) =

g is continuous over R, [1, p.77|. Furthermore,

(zla)=0) = U Ui}

{z10(2)> 0} = U (Gryor o) Ul -3) U5 )

k=1

{z!g(z)(O} = kLzJi(ﬁy (Zkil)w)
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Let

Fo={z]g(z) <0}, Fo= {z < 75— | g(z} = 0}

Fi={2> g=19(z) >0}, Fy= {z > —| g(z) = 0}

22

Fafa)= -2+ L fole) =0, fi(z) =% [ofz) =

z) = 9lz), Mz) = 5

Eis=E=0 E,=E= {0}
L,= {0}’ Ly= {1}: Ll=L2=0
Gu=Gy=49, G, = {01}, G,= {1}
Then, for any z € F_y, I(z) = {-1}; forany z ¢ Fy, I{z)= {1}; for any
reFy I(z)= {0,1}, if z=ﬁ,k =+ 200,... ,I{z) = {0}, otherwise;

for any z € Fp, I{2) = {-1,1,2}. Then, for some £ > 0 sufficiently small,
definition 2.1 is satisfied at every z € R.

Even though f has infinitely many discontinuities in any neigbourhood of
z == 0, f has the partition property at z = 0. This is because the sets F; of
definition 2.1 need not be connected.

2Note that f has a global infimum of 0 at any z ¢ Fy, and a local infimum

of%"-atanyzng.

2.3. Lemma

If f has the partition property at £ ¢ G, them f has the partition
property at each 2 ¢ Ne(2) for some £ > 0 sufficiently small. (f cannot have
the partition property at an isolated point.)

Proof: Follows from definition 2.1. @

2.4, Theorem

It f has the partition property at z ¢ G, (where F; and f;, i ¢ I(z) are
sets and functions, respectively, that satisfy definition 2.1.) then

f(x)= min, {fi(=)}.

Proof:
J (2) = bim inf f(27)
FIR ]
— inf lim  f(z)
i I(2) 2~z
{#/} e (FNG)
= inf lim o file)
iel(z) ) — g
{al} e (FNG)
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= {1i(z)}

161[3)

tirg’i(rg) {/i{=)} o

2.5. Corollary

Suppose [ has the partition property at % e (. Then for some
£>0, f (z) = min{ fi(z), i ¢ I(2)}, forevery z ¢ Nf(:f:)

Proof: From lemma 2.3, if / has the partition property at %, then for

some £ > 0, f has the partition property for every r ¢ NE(J:) and for an
appropriate partition at #, I{z) C I(%).

From theorem 2.4, [ (z)=min{fi(z), i cI(z)}, forevery z ¢ N¢(2).
But since 1(2) C [(2), min{/i(e), i € 1(z)) > min{fi(e). € 1z)], for
every z € Ne(2). O

2.6. Definition
For f with the partition property at z € G, define
Y= {i| fi(z) =1 (s). i e I(z)}

where I(z) satisfies definition 2.1. Note, as a result of theorem 2.4, I{z) is never
empty.

2.7. Lemma

Let f have the partition property at z and y e G. Let F; and
foie I{z) satisfy definition 2.1 at z for some £ > 0 sufficiently small. If
y € F; and f(y) < fi(z) forsome i € I(z) ther f (y) < [ ().

Proof: [ (y) < fily) < felz) =1 (z). D

2.8. Theorem

If f has the partition property at # ¢ ¢, then £ is a local infimum of f
if and only if # is a constrained local minimum for each of the problems

{ min fi{z)

subject to 7 ¢ ;' €102 2.8(a)

Proof: ( <= ) Let # be a constrained local minimum for each of the
continuous nonlinear programming problems 2.8(a).
(i) Consider icI(2)-I(2). Since f; e C°(Nd2)\F;) we have that
filz) > [ () forevery z € N (2))F; for some £ > 0.

(i) Consider ¢ e f{#). Since % is a constrained local minimum of
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{minimize f,(z) subject toze F\},icl(t) we have fi(z)> f(2) for
every z € Ne (#)F; for & > 0.
(iii) We have that f,(z) > f (2), i € I{z), for every z ¢ Ne(2)Fi and all

iel(z) = Ji(z) = £ (%) for  every z € Nez)  where
§=min{§, iei{2)}. By corollary 2.5, [ (z) > f (2) for every z ¢ N,(#)

for some v > 0 sufficiently small.
( => ) Assume [ (%) is local infimum of /. Then, f () < [ (z) for every z

in N¢(2) for some £ > 0. Hence, f (2) < f (z) for every = in Nd#)NF; and

for every i ¢ I(Z) when € > 0 is sufficiently small.  f,(), ¢ € I(2) gives the
infimum of f; over N{£){F; and thus # is a constrained local minimum for the
problems 2.8(a). n

In special cases, theorem 2.8 can be used to derive more specific optimality
conditions. The conditions in [2] and [4] are examples.

Theorem 2.8 implies that the partition property at a point  means that,
conceptually at least, we can use principles of continuous nonlinear programming
to decide if 2 is a local minimum of f. Lemma 2.7 implies that if the problems
2.8(a) are sufficiently well-behaved, we can use a nonlinear programming
algorithm to decrease f when z is not a local minimum. This suggests that if f
has the partition property at every point in its domain of definition, then
sequential algorithms for finding a local infimum of f will be possible.

3. A Class of Noncontinuous Functions

In order to investigate the possibility of sequential algorithms for locating a
local infimum of a noncontinuous function, we wish to identify a class of
functions that have the partition property at each point in the domain of
definition. The following definition gives such a class. # and * represent
properties of continuous functions. If I is an arbitrary subset of R", the
notation C°N #(H) refers to the class of continuous functions which posses the
property # over H. For example, it could represent the class of functions which
are linear over H, or the functions which are continuous and convex over H.

3.1. Definition

Let f be a function defined over an open set G'. f is said to be
#-PIECEWISE* over G if there exists a collection of sets F, acA and
functions f,, @ ¢ A (not necessarily distinct) such that for some £ > 0:

(i) each z ¢ G belongs to exactly one Fp, @ ¢ A
(ii) for each z € G, N{z)MG contains points of only a finite number of the

Fopac A
(iii) for every ac A, F",,r]G =

{zeG|c(2) S0 lely c*(2)=0,¢eEy c*(z) 20, 9€ Gy}

where L,, E, and G, are disjoint finite index sets (which may be null)

and ¢’ € On# {(FaG), forevery i c Lol JEot JGo
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(iv) for every ace A, f.,,ECon*(F_aﬂG) and f,(z) = f(z), for every

e F,MG. D

Note that:

(a) for some ®c A we may have E,=L,= G, =0 in which case
FaNG = G.

(b} the property # applies to the functions ¢'; le Lol JCal JEa € A
whereas the property # applies to the functions f,, @« ¢ A. This means,
that at any zr ¢ G the nonlinear programming problems defined by
equation 2.8(a) will have a # objective function and # constraints. There
is a two-fold purpose in this :

(1) the numerical algorithm proposed in [3] applies an unspecified
algorithm for smooth optimization to subproblems of the type defined
by equation 2.8(a). In order to use a particular smooth algorithm, we
will require additional assumptions on the constraints andfor the
objective function of the problems given in equation 2.8(a).

(2) in certain cases, the problems 2.8(a) will have some special structure
or some simplifying features that can be exploited by a sequential
algorithm.

In each case, the unspecified properties # and + allow us to anticipate such

circumstances.

The sets F,, a € A will be called cells of f. Because the boundary
relative to G of each F,, acA is determined by the functions
dite Lo JGol JEw we will refer to these functions as
cell boundary functions. The functions [, acA will  be called
component functions of f.

# piecewise * will be abbreviated # -PW#. If f:G — R is #-PW#
over G, we will write f ¢ #-PW*{( ().

3.2. Example

The function f of example 2.2 is C%-PWC™ over R. The sets F_y, Iy, F,,
and £, given in example 2.2 suffice as cells, having c%r)= g(z) and
clz) = Soor 28 continuous cell boundary functions. The functions f_;, fo, /1

and f, of example 2.2 suffice as C™ component functions. @

3.3. Lemma

It seems both natural and desirable that functions in the class C°N#(G)
should be considered piccewise #* over G. It is easy to show that, indeed,
functions which are continuous and * over an open set G are #-PW#* over G,
for any #, i.e., ’

fecln*ag) = f € #-PW#(G), for any #

Proof: Let A = {1}, F; = R", f, = f. Then definition 3.1 is satisfied
forany #. O
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3.4. Lemma

The class C°-PWC® is the most general class of #-PW# functions in
that all other classes are a subclass of C*-PWC°. i.e.,

[ e #-PW*(G) = [ e C-PWCG)

Proof: Trivial. 0

Because the class C'-PWC® subsumes all other classes of #-PW#
functions, we will use the expression "piecewise continuous”, to mean C-PWC° .

3.5. Theorem

It f is C°-PWC® over an open set G, then f has the partition property
at each z ¢ G.

Proof: Let / be #i—PW#¥ over an open set G. Since each z ¢ G belongs
to exactly one F,, ac A, then the F,,ac A are disjoint. For £ >0
sufficiently small, N{z) contains points of only a finite number of the
F, e A and thus, I(z) is a finite set. We now prove (i) - (iv) of definition
2.1. Consider any z ¢ G and let I(z) = {ac A |z e F,}.

() () I A-I{z}=9, and if £ is sufficiently small that Nfz) C G, it
follows that Ne(z) C | ] Fa
acl(s)
(b)) A - I(z)5£ 9, let o= inf!(){d,.-m(z}}.
ac -z
Clearly, ¢ > 0. Let 7 > 0 be sufficiently small that N(z) C G and let
£ = min (1, %), then Ng(z) C | Fa.
acl{z)
(i) =z e F, forevery ac I(z), hencesz e FaNG.
(iii) and (iv)
If £> 0 is sufficiently small that Ngz) C G, then because I(z) C A,
(iii) and (iv) of definition 3.1 follow from (iii) and (iv) of definition 2.1. 11

3.8. Definition

Let f in #-PW* over an open set ¢, with cells F,, ac A and
component functions f,, « ¢ A. Foreach z € G,

I(2) = {acA|zeF,}
define
I{z) = {ael(z}] Jale) = { (=)}
For H C G define
IH)= {acA| HOF, #9}
Thus, A = I{G).
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3.7. Lemma
() «e(z) if and only if dp (z} = 0.
(i) I(H)= U I(z)
teH
Proof: Trivial. 0O

3.8. Theorem
For f € #-PW#(G), the collection of sets F,, « € A, the collection of

functions F,acA and the collection of functions
¢!, l € By JGu|Jla» @ € A are each countable.

Proof: For f ¢ # -PW#(G) let £ > 0 be sufficiently small to satisfy
definition 3.1.

R"™ can be covered be covered by closed hypercubes of side % It is clear

that the hypercubes in this grid are countable. Therefore, because G C R", G is
covered by a countable collection of hypercubes.

Let z', z%,... be the centers of the hypercubes which cover G. By definition
3.1, Nf(zi), i=1,2,... contains points of only a finite number of the F,, hence
each hypercube contains points of only a finite number of the F,. Furthermore,
each F, intersects at least one hypercube. So, the cardinality of the entire
collection of F, is at most the cardinality of a countable number of finite sub-
collections of the F,. Hence, the F, are countable, [1, p.36]. O

Because there is only one f, for each F,, a € A and a finite number of
elc Eo|JGaJLa for each F,, it follows that the F, acA and the
ele Eo|JGa| JL o are also countable.

3.8. Corollary

IF G is bounded, the collection of sets Fg, ac A, the collection of
functions /*,, « ¢ A and the collection of functions e e E.J GGULC, are
each finite.

Proof: Trivial. 0

It is clear that if H and G are open sets and H C G then
fe#-PWHG) = fc# PW*(H). I G,,acA is a collection of open
sets such that f e #-PW*(G,) for every acA is it true that
Je#-PW*{|J G,} ? This question is examined in theorem 3.10 and its

ac A
corollaries 3.11 to 3.13. The main result of this study, is a complete
characterization of all functions that have the partition property at each point in
an open set. The characterization will be given in section 4.1.

3.10. Theorem

Given, two open neighbourhoods N,l(z‘) and N,z(zz) where oy, 0, > 0,
and an  open st G, if fe COPWHGMN, (") and
f € C"PWHGN,,(z%) then [ € C-PW#(GM(Ny (2" ) Nay(2?))-
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Proof: Let G, = GﬂN,,‘(rl) and Gy = Gr]N,z(:zz). Let £ >0 be
sufficiently small to satisfy definition 3.1 for f over both G, and Gj.

To prove the theorem, we will use cells and component functions for f over
G, and Gy to construct cells for f over Ga| JGs. A set of cells for f over G,
may have a nonempty intersection with a set of cells for f over Gy, even if
GGy # @. By using the function d_ (z), we can modify the boundaries of
any set of cells for f over G, and any set of cells for f over G} to obtain cells
for [ that are disjoint in G,UG,,.

When G,(M Gy # @, it can be covered by modified cells of G, or modified
cells of Gy, (but not both). By adding the constraint d, (z) < oy to the cell
boundary constraints of each cell of f over G,, we obtain modified cells for G,
that cover G,(M}Gj; by adding the constraint d, (z) > o, to the cell boundary
constraints of each cell of f over G, we obtain modified cells for
Gy — (G,,nG, ). The additional inequality constraint in each case ensures that
the modified cells of &; do not intersect the modified cells of G} in G,UG,.

The component functions of f over G‘,UG, can be taken as the component
functions for the unmodified cells, Using the modified cells, £ sufficiently small,
and the original component functions, it is straightforward to verify that (i) - (iv)
of definition 3.1 are satisfied. n

3.11. Corollary
Given, a finite number of open neighbourhoods N,l(z"), 1=12..k,
where ¢; > 0, { = 1,2,...,k and an open set G, if f ¢ C“—PW*(GnN,‘(z‘))
k

forevery i € {12, ... ,k} then f € C*PW+{GM( |J N, (2'))).
i=1

Proof: By induction.

The case j = 2 is theorem 3.10.

For j €3, ...,k let £ be sufficiently small to satisfy definition 3.1 for each
neighbourhood, N,l(zl], R N’;(I])' Modify the cells of G N,l(:’) by adding
the comstraints d(z) 2 oy, ...,d,;.,(z) > a;., to the cell boundary
c_onlstraints of GnN,](zJ). Use these cells together with the unmodified cells of
U eV ). n

=1

3.12. Corollary

Given, an open set G, a set H of isolated points, and ¢ > 0, if f is
C-PW+* over N(2) G, for every zeH, then
[ e CPWE(G( Y Nif2))).

e H

Proof: Because H is a set of isolated points, for any
zeH, N(z)\Noy)7#® for only a finite number of y ¢ H. Thus, we can
give a set of cells and component functions for f over the entire set
GM (Y Noz)) by using a construction similar to that of corollary 3.11. The

e H
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cells and component functions satisfy definition 3.1 with # == ¢° and ¢ == ¢

for the entire set G/ ( | J No(z)). Hence, f is C*-PW# over this set. @
el

Corollary 3.12 includes the special case & C | J N,{z). If the collection
1c H :
Ng(z), z € H satisies the hypothesis of corollary 3.12 , we can assert that

[ e #-PWHG) since GMY( | Nolz)) = @, in this case.

re

3.13. Corollary

It f ¢ C-PWHG) for  some open  set G, then
f 4 CD—PW*(N,(:Z')”G) for any o > 0 arbitrarily small and some % ¢ G.
(It f ¢ C"-PW#*(G), definition 3.1 cannot be satisfied for f over G because of
the behaviour of f at a point in G).

Proof: We will prove that [ ¢ G“—PW*(N,(:)QG) for every z ¢ G and
fixedo >0 => fc COPWHG).

Let H be a set of isolated points in & such that G C g N,z). By

zel
corollary  3.12, f ¢ CO—PW*(N,(:c)n G) for every zcH ==

[ e C-PWHG).

4. A Complete Characterization of Piecewise Continuous Functions

By theorem 3.7, functions which are C°-PWC® over an open set ¢ have
the partition property at each z ¢ G. We now show that the converse statement
is true. That is, we will show that the only functions with the partition property
at each point in an open set G is the class C°-PWC(G).

4.1. Theorem

H f, defined over an open set G, has the partition property at each
z ¢ G then [ e C-PWCYG).

Proof: We will prove that f ¢ C°-PWCYG) =>  the partition
property does not hold at each z € G,

We have shown, in corollary 3.13, that f ¢ C-PWOYG) => there
exists ¢ ¢ G such that f ¢ C™PWCN,(z)G) for any &> 0 arbitrarily
small. We now prove that such an z is a point at which the partition property
does not hold.

Let f ¢ Co—PWCO(N,,(z)r]G) for any ¢ > 0. Assume that the partition
property holds at z, with £ > 0 satisfying definition 2.1. We now show that
J € C*-PWCN{z)MG) by using (i} - (iv) of definition 2.1 to show that (i) -
(iv) of definition 3.1 hold over Ng(z)(MG with # and * = C°:

(i) Because the Fy, icl(z) are disjoint and Ngz) C U Fi each

ici(z)
y € Ndz) belongs to exactly one Fy, i € I(z).
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(i) Ne(z) C |J Fi, where I{z) is a finite index set => Ndz)N ¢
i¢i(z)
contains points of only a finite number of the I, i ¢ I(z).
(iii} and (iv)
are immediate from (jii) and (iv) of definition 2.1 when G = N(z) and

# = C°.
Thus, the assumption that the partition property holds at z such that
/& C*-PWCNJ2)NG) for arbitrary c>0 =

J € C*-PWCNz)\G) for some £ > 0. n

4.2. Corollary

Let G, ac A be an arbitrary collection of open sets such that
J € C-PW¥(G,) forevery a € A. Then [ € CO-PW#( ] G,).

ac A
Proof: Let ¢ = |J Go Because f has the partition property with respect
ac A
to G, at every z e G, for all a¢ A then f has the partition property with
respect to G for all z ¢ G. Thus, by theorem 4.1 f € C*-PWCY(@).

Let Fy, i ¢l and f;, i € I be cells and component functions respectively,
that satisfy definition 3.1 for f over G. Since each z ¢ G belongs to some
Goyac A such that [ ¢ C°-PW=#(G,), there exists £ > 0 such that
Ji e CN¥(Nf2)NFiMG), diel{z) for evey =z in  G. Thus,
lie C°nx(F;MG)foralli e I(z).

5. Finding the Infium of a Piecewlse Continuous Function

This section concerns a conceptual algorithm for finding an unconstrained
infimum of a #-PW#* function. Lemma 2.7 and theorem 2.8 are the main
underlying ideas,

Let f e #-PWx(R") , with cells I, i ¢ [ and component functions
Jiy 7€l . We define a collection of continous nonlinear programming problems:

5.1. Definition
For each ¢ € I define

min f:(z)
ANLP; = subject to 7 ¢ F

5.2. A Conceptual Algorithm

From theorem 2.8 we have that # i3 a local infimum of f if and only if  is
a constrained local minimum for each NLP;, i € I(%).

Lemma 2.7 states that if given £, another feasible point y can be found for
NLP;, j e I(%) such that f;(y) < f,(2), then Fw<rf(3).
This suggests a conceptual way of minimizing f:
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—_—
(=)

Choose a starting point z° and let k be such that z° ¢ Fy. Set j « 1.

—
—

Find a local minimizer 2’ for NLP} and set b « f,(z/).
Scan I{z7) for a diflerent subproblem NLP, with f,(z/) < b and such
that z7 is not a local minimum for NLP, .

(3)  If no such subproblem exists STOP ; otherwise set k «— {, 7 + j + 1
and go to step (1). 0O

—
(=)

5.3. Example

Suppose we were to apply the conceptual algorithm to f of example 2.2,
starting at z° = 10 where I(z°) = {1}.
i i i 1 i ,1 , 1 4,1 b
Step(1) will bring us either to z' e {4 i el i e SNPE e
where b« (2!)? and I(z}) = {-1,1, 2}, or to 2! € Fy where b « 0 and
I(z") = {0} or {0, -1}.
No suitable descent subproblem will be found at step(2). Hence, the
algorithm will terminate with z'. The infimum of f is f(z') which is 0, if

142
T )
2l e Fyor _('TL’ otherwise.

5.4. Assumptions
In what follows, we assume that:

(i) {2’} j = 0,1,.. is generated by the conceptual algorithm, and {:cj} e s
where 5 (C { is a compact set.

(ii) for each subproblem, NLF;, i € I , such that F;[}S #% @, and for some
finite integer {, there is a finite set of objective function values in the range
{ — oo, f(2'}) for which constrained local minima exist. 0O

5.5. Theorem: Convergence of the Conceptual Algorithm

For an open set G C R" and a function f ¢ C®PWC®(G), the conceptual
algorithm converges to a local infimum of f given an arbitrary starting point in
(i provided the assumptions 5.4 are satisfied.

Proof: /(z7) is finite for each z7. The result follows from the observation
that if z/ is not optimal for NLPy then at step(l) we will find z7*! with
f(z7 1Y) < f(2?) . Thus, b is always reduced at step(1). Since there are a finite
number of subproblems NLP; such that F[}$ £ # (by Corollary 3.9) and since
cach of these subproblems has only a finite set of optimal function values, step{1)
can be executed only a finite number of times. Therefore, for some j sufficiently
large, no suitable subproblem will be found at step(2) and thus the algorithm will
terminate at step(3). When termination occurs, theorem 2.8 ensures that 7/ is a
local minimizer of / . 0

5.6. Deriving a Practicable Algorithm

Step(1) of the conceptual algorithm will, in general, require an algorithm
that generates an infinite sequence of points; hence the title concepiual.
Intuitively, it seems that in some cases it should be possible to find a local
infimum for f by solving subproblems at step (1) to within, possibly very loosely,
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relaxed tolerances. Furthermore, at sfep(2), rather than choosing the next
subproblem from among only those problems NLP, [ e I(z'), | # k such that
fi(a’) < b, we could consider problems NLP such that I € I(z’), | 5 k, and
Ji(z7) < b + & The relaxed tolerances could be tightened whenever an
approximate stationary point is found, until, after a finite number of steps, a
subproblem giving the lowest bound on f could be solved to convergence. If the
final subproblem were chosen carefully emough among all subproblems with
feasible sets "near” z/ , and if the other subproblems in that neighbourhood were
sufficiently well-behaved, it is not unreasonable to expect that by solving the
chosen subproblem to convergence, we will locate a local infimum of f.

We remark that the numerical stability of a practicable algorithm based on
these considerations would depend only on the numerical stability of the
algorithm applied to the subproblems.

For a practicable algorithm, therefore, we will need a set of approximate
optimality conditions and an algorithm for the subproblems that can find a point
which satisfies these conditions after a finite number of steps. In the conceptual
case, z/ is a feasible solution for all subproblems indexed by I(z’); in the
practicable case, it will be necessary to consider all subproblems whose feasible
sets intersect a neighbourhood of zf . The numerical algorithm proposed in [3]
follows this approach.

5.7. Example

We will illustrate how in principle, the practicable approach is applied to
the function f in example 2.2. An actual realization of this approach is
considerably more sophisticated.

A point # satisfies the relazed feasibility criterion for subproblem NLP;,
iel if
zeﬁ—{ﬂc f)Lelcly @)L eck; f(z)> —c,0eG,;)
where ¢ > 0 is a given tolerance.

Cell boundary constraint j is active at % if |c/(3)| < ¢, j € E,JL.Ys.
icl.

If the j-th cell boundary constraint is active at %, then # satisfies the
relazed optimality criterion for NLP,, i € I if # satisfies the relaxed feasibility
criterion for NLP; and v/,(#) = Ayc/(2) where A > —7if ¢f ¢ G NS it
¢’ el;, and v > 0 is a given tolerance. If # is feasible for NLP;, i € I, and no
cell boundary constraints are active at %, then # satisfies the relazed optimality
criterion for NLP; if {9f;(2}] < e

For the purpose of illustration, we will use the following bisection method
to find an approximate local minimum for NLP;, i € /.

(0) Input starting point z! and initial stepsize . Set @ «— .

(1)  Set d «— sign(fi{z))-

If fi(z* + o d) satisfies the relaxed feasibility criterion for NLP;
and fi(z? + ad) < f{z’) go to step (3).
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(2) Set @ — a/2 and go to step (1).

(3) Setz'*lezit a je—j+ 1
It z/ satifies the relaxed optimality criterion for NLP;, stop;
otherwise go to step (1}. n

The following is a statement of a first-order-type practicable algorithm that
one could apply to f in this particular case. LIST is a list of subproblems that
remain to be considered. m is the index of the subproblem which gives the best
bound on the infimum of /. N is the maximum number of times the tolerances
are allowed to be be reduced before subproblem m is solved to convergence.

(0) Input N, ¢, 6, v, a, 2°
Set j +—0,b +— o0
(1) LIST « {i|s/cFficl}
(2) I LIST = 9 go to step (7)
Select k € LIST.
It fi(z7) > b + 6goto step (5)
If fi(z7) < b set b « fy(z’) and m « k.
(3) Use the bisection algorithm to find z’*' that satisfies the relaxed
optimality criterion for NLP;.
(4) I fu{2f*1) < b go to step (6).
(5) Delete k from LIST and go to step (2}
(6) Set b+ fy(z*1), m — &, j+— j+ 1and go to step (2).
(7) Seti«— i+ LIf i> N gotostep (8)
Set € «— €f4, 6 — b[4, 7 — /4.
It »¥ ¢ F¥, use bisection algorithm to find z7+1 ¢ F¢,
then set z/+! «— 27,
Go to step (1)
(8) Solve NLP,, to convergence. 1
Using z° =10, ¢ == 7= 4, § = .04 and N = 4, the above naive method
was carried out with o = 7, 1, %, -
In the case @y = 1, 2! = 0.; no reduction is made in the tolerances. For
wy = %, z' = 0; again, no reduction was made in the tolerances. When ap = f

the tolerances are reduced at z' = .375; 2= 0. In the case oy =7, the
tolerances are reduced at z! = 331, 22 = -.0139, z* = .0023 and z* = -.0056.
z®e F§. Thus, since fo(z)=0, m « 0 and NLP, will be solved to
convergence. The method will converge to some z ¢ Fy, In all four cases, the
global infimum, f(z) = 0, is found.
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8. Conclusions

We have given an approach to nondifferentiable and noncontinuous
optimization that is based on the principle of decompositionr into smooth.
subproblems. Furthermore, we have characterized the functions to which this
approach applies. A conceptual algorithm that converges to a local infimum
under weak assumptions motivates the basic strategy underlying the numerical
method in [3].
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