EPARTMENT
EPARTMENT

EPARTMENT

Y G WATEELDS COUBHE
ITY OF WATERL MPUTE
IVERSITY OF WATERLOO COMPUTE

e

R
R

IVER
IVER

o\
i

File Organization:
Implementation of a method
guaranteeing retrieval

in one access

Per-Ake Larson
Ajay Kajla

CS-834

April, 1983

File organization: implementation of a method
guaranteeing retrieval in one access.

Per-Ake Larson and Ajoy Kajla
Data Structuring Group

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

ABSTRACT

A new file organization guaranteeing retrieval of any record in one access
was recently introduced by Gonnet and Larson. This paper gives a detailed
description of a test implementation of the new method, including the algorithms
used for implementing the hashing and signature functions required by the
method. The design has been tested on two existing files and the empirical
results agree closely with the theoretical predictions. The method makes use of a
small in-core table. As predicted and confirmed by the test results the table can
be kept very small: one or less than one bit per record stored in the file is
sufficient. A load factor of B0 percent in the file itself can be achieved without
difficulty.

Categorles and Subject Descriptions:
D.4.3 [Operating Systems|: File Systems Management - Access Methods
H.2.2. |Database Management|: Physical Design - Access Methods

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Hashing, searching, file organization.

File organization: implementation of 2 method

guaranteeing retrieval in one access.

Per-Ake Larson and Ajay Kajia

Data Structuring Group

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

N2L 3G1

1. Introduction

In a recent paper Gonnet and Larson [1] introduced a new file organization that guarantees
retrieval of any record in one access. The new method is based on hashing, and makes use of a
small in-core table to direct the search. The table contains enough information to uniquely deter-
mine on which page a record is stored. The table is of fixed size and typically very small: one or

less than one bit per record stored in the file,

This paper is intended as an introduction to the new method and its implementation. The
emphasis is on implementation; theoretical results have been reported elsewhere [1,3]. The basic
ideas and algorithms for insertion, retrieval and deletion are given in section two. The next two
sections contain a detailed description of a test implementation. The hashing and signature func-
tions used are described in section three. The design has been tested on two existing files. In sec-
tion four the results from these tesis are reported and compared with the corresponding theoreti-

cal results. In section five the problem of selecting the target load factor is discussed.

2. Basic ideas and algorithms

The new method can briefly be characterized as a modification of hashing (with open
addressing), where a small, fixed amount of internal storage is used for directing the search, so
that any record can be retrieved in one disk access. A more detailed description of the method is

given in this section.

Assume that we have n records that are to be stored in an external file consisting of m
pages (buckets), where each page has a capacity of b records. The load factor is denoted by «
and defined as a = n/(mb). In addition to the external storage space, an internally stored
separator table is required. This table stores m separators, each of length % bits. Separator i,
0< i< m-1, in the table corresponds to page 7 in the external file. The use of this table will be

explained further below.

The method is based on hashing where overflow records are handled by open addressing (no
links or pointers are used). The two most well-known open addressing schemes are Iin‘ear probing
and double hashing [2]. We assume that given a record with key K, we can compute its probe
sequence H(K) = (b, (K), h; (K), ..., ks {K)). The probe sequence of a record defines the order
in which the pages will be checked when inserting or retrieving the record. It is uniquely deter-
mined by the key, and every probe sequence is a permufation of the set of page addresses
{0,1, ..., m-1}.

For each record we will also need a signature sequence, S(K) = (s,(K), s5(K),...,5,(K)).
Each signature s; (K) is a k - bit integer. The signature sequence is also uniquely determined by
the key of the record. When the record with key K probes page #; (K) the signature s; (K) is

used, i = 1,2, ..., m. Implementation of H(K) and S{K) will be discussed in section three.

The separator table is used in the following way. Consider a page to which r, r > b,
records hash. Because the page can store only & records, at least r — b of them must become
overflow records, each one trying the next page in its probe sequence. The r records are sorted
of: their current signatures, and records with low signatures are stored on the page, while records

with high signatures become overflow records. A signature value that uniquely separates the two

.3.

groups is stored in the separator table. The value stored is the lowest signature occuring among
the overflow records. Because the length of a signature (and a separator) is limited to & bits, we
may not be able to find a separator that gives exactly the partitioning (b, r—5). In that case we
try (b-1, r-b+1}, (-2, r=b+2),..., (0, r) until we find a partitioning where the highest signature
in the first group is different from the lowest signature in the second group. This only means that

a page having overflow records may contain less than b records.

An example may be helpful at this point. Assume that a page is probed by 5 records with
signatures 0001, 0011, 6100, 0100 and 1000. If the page size is 4, we can obtain a perfect parti-
tioning: the first 4 records are stored on the page and the separator is 1000. However, if the page
size is 3, a perfect partitioning cannot be obtained. The best partitioning is {2,3). The two

records with signatures 0001 and 0011 are stored on the page and the separator is 0100.

The separators are easily maintained during insertion. If a record probes a page with a
separator that is greater than the signature of the record, the record “belongs” to that page. The
record is inserted into the page. If the page was completely filled already, this will force out one
or more records (those with the highest signatures) and the separator is updated accordingly.

Note that this means that a record may be relocated after it has been inserted,

One small problem remains: how do we initialize the separator table or, in other words,
how are pages that have not yet overflowed marked? The subsequent algorithms assume that the
initial separator values are strictly greater than all signature values. Using k bits the largest
value possible i3 2F -1, meaning that this value cannot be allowed as a signature. This must be

taken into account in the implementation of the signature function.

An algorithm for computing the current page address and the corresponding signature of a
record with key K is given below. The separator table is called sep. Note that the procedure

returns two values: the page address and the corresponding signature.

procedure address (K);
for i = 1to mdo
adr: = b; (K);
sign : = §; (K);
If sign < sep [adr] then return (adr, sign) ; endif ;
endloop ;
{no such record can exist in the file}
return (-1, -1) ;
end address ;
Given the address computation algorithm the retrieval algorithm is trivial. First the
address is computed. If (~1,-1) is returned there is no such record in the file. Otherwise the
indicted page is read in and the records on the page are checked. If the desired record is not

found on that page the algorithm terminates unsuccessfully. At most one disk access is required,

provided that the separator table is available in main memory.

The insertion algorithm is more complicated. The complications arise from the fact that
insertions may cascade, and it is not known in advance whether or not this process will terminate.
By insertions cascading we mean that inserting a record into a (full) page will force out one or
more records from the page, each one of these records has to be reinserted into some other page,

which in term may force out other records, etc.

The insertion algorithm is given at the end of this section. Records which have been forced
out from some page are stored on a stack, and the algorithms keeps inserting records from the
stack until it is empty. All the pages that are changed during insertion are kept in a page pool
and written out only if the insertion process terminates successfully. The insertion fails if we run
out of space for the record stack or {more likely) the page pool. The separator table is updated
during insertion, but the old values are saved, and restored if the insertion fails. The main data

structures used by the algorithm are defined below in a Pascal-like notation:

-5-

page-pool : array 1..maxpages of page ;

page : array 1..b of {b record slots}
record
status : (empty, full);
key ; {record key}
info ; {additional fields}
end ;
page-thl :
array l..maxpages of {keeps track of what}
record {pages are in page-pool}
page-no : integer ; {external page address}
patr : integer ; {points to a page in page-pool}
old-sep : bit(k) ; {saves the old separator}
end ;

rerd-stk : array 1..maxstk of
record
pg : integer : {points to a page and}
slot : Integer ; {record slot in page-pool}
end ;
buffer : record {holds the record currently}
status : (empty, full); {being inserted}
key ;
info ;
end ;

One tricky detail of the algorithm may require clarification. To reduce the size of rerd-stk,
only pointers to records forced out from a page are stored on the stack. The actual records
remain in their former home pages, until they are picked up, one by one, to be reinserted. Let us
call such a record a guest. For each record slot containing a guest there will be an entry in rerd-
stk. In all other respects guests are indistinguishable from “normal” tenants. During processing
we may have a situation where several entries on the stack point to the same record slot. This
occurs when a record is inserted into a full page where some of the slots still contain guests.
Because the guests have the highest signatures they will be forced out, their page addresses and
record slot numbers being placed on the stack again. The same entries deeper down in the stack
hence become superfiuous. Because this occurs very rarely, the algorithm was designed to make
processing of superfluous stack entries harmless, instead of checking the whole stack each time a

new entry is added. A superfluous stack entry points either to an empty slot (the record has

already been processed) or to a record that is already on the correct page. The first case is taken

care of whan an elameant is nannad feam tha atank har ahankine sohadbbhon dbho 2o B2 223 J1_i - s w0

-6-

contains a record. In the second case the record will be processed, but it will immediately be

inserted into the same page again.

Deletion of a record can be performed in two accesses. The page containing the record to be
deleted is read in and the record slot is declared empty (or deleted). No separators are changed.
Note, however, that this is not a “true” deletion in the sense that it would leave the file in the
same state as if the record never had existed in the file. A “true” deletion would involve chang-
ing the separator table, possible relocating some records. To find out what changes are necessary,
every page in the file may have to be checked. This is obviously too slow so we must resort to

the above marking solution.

procedure insert (Rerd) ;

page-cnt : =0 ; {number of pages in page-pool and entries in page-tbl}
stkp: = 0; {stack pointer for rcrd-stk}

done : = false ;

buffer : = Rerd ;

buffer.status : = full ;
while not done do

(b, sign) : = address {buffer key) ;
it b < 0 then goto [ailure ;

{check if page k is in core, if not bring it in}

ep:=0;

for i == 1 to page-cnt do
if page-tbl [i].page-no = h
then cp : = page-tbl [i].pntr ; exitloop ;
endif ;

endloop ;

fecp=20
then

If page-cnt = maxpages then goto failure ; endif ;
page-cnt : = page-cnt + 1 ;
read page h into page-pool [page-cnt] ;
page-tbl [page-cnt] : = (h, page-cnt, sep [h]) ;
cp : = page-cnt ;

endif ;

-7.

rerd-cut : = {number of full record slots on page cp} ;
case
(rerd-cnt < b): {there is room on the page}

t : = {any empty slot on page cp} ;

page-pool [cp].page {t] : = buffer ;
page-pool [cp].page [t].status : = full ;

{get next record from the stack}

repeat
If stkp = O then done ; = true ; exitloop ;

else
(r, 8) : = rerd-stk [stkp] ;
stkp: =stkp-1;

buffer : = page-pool [r].page [g] ;
clear page-pool [r].page [s) ;
page-pool [r].page [s] : = empty ;
endif ;

until buffer.status = full ;

{rerd-cnt = b) : {the page is already full}
maxsgn : = {the highest signature among the records on page cp};

if maxsgn < sign
then sep[h] : == sign ;

else
fori: = 1tobdo
(adr, sg) : = address (page-pooljcp].pageli] key) ;
If sg — maxsgn
then if stkp > maxstk then goto failure ; endif ;
stkp: =stkp + 1;
rerd-stk [stkp] : = (cp, i) ;

endif ;
endloop ;
sep [h] : = maxsgn ;
if sign < maxsgn
then

{cp, 8) : == rerd-stk [stkp] ;
stkp : = stkp-1;
exchange buffer and page-pool [cp].page [s] ;
endlf ;
endif ;
endcase ;
endloop ;

-8-

{the insertion succeeded, write out all pages}
for i : = 1 to page-cnt do
h : = page-tbl [i].page-no ;
ep : = page-tbl [i].pntr ;
write page-pool[cp|.page into page h ;
endloop ;
return (‘‘done”);
failure : {the insertion failed, restore the separator table}
for i : == 1 to page-cnt do
h : = page-tbl [i|. page-no;
sep |L] : = page-tbl [i].old-sep ;
endloop ;
return (“‘failed”);

end insert ;

3. Implementation of the hashing and signature functions

The overall performance of the new method is largely determined by the performance of the
hashing function and signature function used. This section presents an implementation designed
for files where the key is a string of ASCII characters. The design has been tested on two existing

files, and it was found to work reasonably well.

The key is assulx;ed to be a string (of fixed or variable length) of ASCII characters. The
first task is to convert this string to an integer. The conversion algorithm takes five low-order
bits from each character, concatenates 6 such bitstrings to a string of 30 bits, and XORs these
longer strings together. All blanks are discarded. The algorithm is given below in a Pascal-like
notation. AND is the bitwise and - operation, XOR is bitwise exclusive or, and ord is Pascal’s

ord function, The function returns a 30 bit integer.

procedure convert {key, keylng) ;
key : array 1.keylng of character ;
keylng : integer ;
begin
cnt, v, t, i, ¢ : integer ;
ent :=v:=4:=0;
for i: ==} to keylng do
¢ = ord (key [i]) ;
ifcord ()
then c : = AND (¢, 37g) ;
t : = shiftleft (t, 5) + c;
ent:=cnt + 1;
ifcent =26
thenv : =XOR (v, t);t:=cnt: = 0; endlf;
endif ;
endloop ;
return (XOR (v, t)) ;
end convert ;

To implement the hashing function H discussed earlier any method that generates a
sequence of valid addresses could be used. However, for performance reasons it is recommended
that double hashing [2] be used. For double hashing two values must be computed from the (con-
verted) key: an initial address, fo and a steplength, sl Given these two values the probe
sequence Ay, hy, - - - , h, is computed as

hy= fa

hi=(h_,+ s) mdm, 2Li<m,
where m is the file size. To guarantee that a probe sequence will trace through every valid
address, the step length must be relative prime to the file size m. The easiest way to ensure this

is to choose m as a prime.

To compute fa and sl the procedure based on the division - remainder method, and sug-
gested by Knuth [2] was selected. This procedure has been tested on several occasions and usu-
ally found to perform well. According to this procedure fa and 8! are computed as

fo : = ckey modm
sl : = ({ckey div m)mod (m-2))+ 1

where ckey is the converted key (see above), and dlv means integer division.

The method chosen for computing the sequence of signatures makes use of a random

number generator, to which the converted key is supplied as the seed. Again a conservative

- 10 -

approach was taken, and a well-tested mixed congruential generator was selected. Successive ran-
dom numbers are computed as

tiv1=(a%; + d} mod 2%
where ro = ckey and the constants are a4 = 3141592653 and d = 2718281829. This generator

has been extensively tested by Knuth [2].

From each random number generated we need only a few bits for the signature. It is well-
known that the low order bits of numbers computed by a generator of the above type are rela-
tively “non-random”. To obtain a signature which depends on all 32 bits, it was decided to first
divide the number by a suitable constant, ¢, and extract the required number of bits from the
remainder. The choice of the constant is not completely arbitrary. Assume that the remainders
are uniformly distributed in [0, ¢-1]. In order for the numbers obtained by extracting k low order
bits to be uniformly distributed, as well, ¢ should be close to 2° for some sufficently large i. It
should not, however, be exactly equal to 2, bec »1se then the remainder is simply Lhe‘i low order
bits. The constant chosen was ¢ = 2'® -1 = 8191, which satisfies the requirements and also hap-
pens to be a prime. If signatures of more than 10 bits are needed, which we consider very

unlikely, this constant should be increased.

The above procedure gives signatures uniformly distributed in [0, 2F —1]. However, because
all separators are initialized to 2% -1, signatures having the value 2% —1 cannot be allowed. If this

value is obtained the signature is set at 0. This will result in 0 occurring as a signature twice as

often as any other value. But 0 is the last value to be used as a separator for a page, and conse-

quently it is very unlikely that O will ever occur as a separator. This was considered to be a

better solution than computing signatures uniformly distributed in [o, 2f -2].

Combining all the bits and pieces discussed above we finally arrive at the following imple-
mentation of the address-signature algorithm. All undeclared variables are assumed to be

unsigned integers.

e

[

-11-

procedure address (key, keylng, m, k) ;
key : array 1..keylng of character ;
keylng : integer ; {key length}

m : Integer ; {file size, must be prime}
k : Integer ; {separator length}
begin

constants a — 3141592653 ;
d = 2718281829 ;
¢ == 8191 ;

ckey : = convert (key, keylng) ;

fa: = ckey mod m ;
sl : = ({ckey dlv m) mod (m-2))+1 ;

adr: = fa-sl;
r = ckey;
fori: = 1tomdo
adr : = (adr + st} mod m ;
r :==(r+*a+d) mod 2%;
sign: = (r med ¢) mod 2* ;
It sign = 2%—1 then sign : = 0 endif ;
It sign < sep [adr] then return (adr, sign) endif ;
endloop ;
return (-1, -1} ;
end address ;

4. Test results

The impetus to implement the new method came from a large time-sharing installation with
a cluster of CPUs running in full load-sharing mode. All CPUs access a common userid file,
currently containing information about approximately 11000 users. This file is accessed fre-
quently, especially during a few peak hours. To speed up retrieval each CPU has an in-core index
of approximately 7K bytes. The index is fixed in real core, not paged. Even so, retrieval nor-
mally requires 2 accesses. By using the new method the size of the in-core table can be decreased

to 2-3 K bytes, and retrieval will require only one access.

At the time of writing the design has been tested on two files. Test file A is the userid file
discussed above containing 10802 records. The key is a character string of at most 8 characters.
Test file B is another userid file of 2129 records from a different installation. The key is at most

12 characters long. Most of the keys in file B actually consist of names in the form: <initials>

- 12

<surname>>. Test results will be given below and compared with theoretically predicted results,

whenever the theoretical results are known.

The first tests concentrated on the performance of the hashing and signature functions. The
procedure for computing the first address in the probe sequence (the home page} was tested by
checking the observed distribution of the number of records hashing to a page. If the hashing
function gives addresses uniformly distributed over tl_]e file, the number of pages receiving 0, 1, 2,
.. records will follow a Poisson distribution with parameter N = n/m. Results from one of the
tests of file A and the corresponding theoretical results are plotted in Fig. 1. The parameter is

= 10802/2621 = 4.121. The observed and theoretical distributions are in close agreement: a
chi-square test does not reveal any significant deviation. Further tests of both file A and B gave

similar results.

|

of pages

No.

e
b 5 0 15 20
No. of records

Figure 1; Observed and'theoretica]ly predicted number of pages
receiving i records, i=0, 1, 2, ... (Test file A, » = 10802/2621 = 4.121)

The distribution of the step length was tested in the same way. The results were not quite

satisfactory, however. All tests performed on File A showed a statistically significant deviation.

13-

The tests on file B gave slightly better results: the deviation from the theoretical results was gen-
erally less, and for some test cases the deviation was not statistically significant on a 1 peréent
confidence level. A more detailed study revealed that this behaviour was caused by two factors:
both files contained some very short keys (1 or 2 characters), and, in addition, file A contained
many keys which differed only in the last character. Both these factors will have the same effect:
certain step lengths will occur more frequently. However, double hashing is not very sensitive to
the distribution of the computed step lengths, as long as there is enough variety. The clustering
must be quite severe to have any noticeable effect on the performance. Consequently the imple-
mentation of the hashing functions was tentatively accepted, even though there was room for

improving the computation of the step length.

The signature function was tested for signature lengths 4,6 and 8 hits, using both file A and
B as input. For each key the first 10 signatures were computed and used in the test. Hence each
test run gave 10 observed signature distributions, which were checked against the theoretical dis-
tribution, If the signature length is &, the signature values 1, 2, ..., 2% -2 should occur with equal
frequency, and the value 0 twice as often. Table 1 shows the number of cases for which the com-

puter chi-square value exceeded the 5 percent limit.

Signature length Total
4 6 8
File A 1/10 210 3/10 6/30
File B 110 1/10 0/10 2/30

Table 1: Number of cases for which the chi-square value
exceeded the 5 percent limit

For file A high chi-square values occur more often than statistically expected, but not alarmingly
so. For file B the results are close to what is statistically expected. The performance of the sig-
nature function was considered to be acceptable, even though there seemed to be some need for
improvement. A closer study of the observed distributions did not reveal any apparent, con-

sistently occurring pattern.

Even if the hashing functions and signature function seemed to work reasonably well when

studied in isolation, this does not guarantee good overall performance when combining them into

-14

a complete system. Some theoretical results are available against which the observed overall per-
formance can be tested. Gonnet and Larson {1} derived the probability that a page will contain 7
records, j=~0,1,..., b. This probability is different for pages which have overflowed and pages
which have not overflowed. From this model the expected number of pages containing
7, J=0, 1,... b. records can be computed and compared with the observed number of pages.
Table 2 contains such a comparison for one of several test cases studied. A chi-square test does
not indicate any significant deviation. Other test cases gave similar results: none of them showed

any statistically significant deviation from the predicted results,

Pages without Pages with
overflow reds overflow rcds
of Pred. Obser. Pred. Obsger.
records -
0 19.2 26 0.0 0
1 94.4 94 0.0 0
2 232.1 212 21 4
3 380.3 374 23.0 26
4 467 .4 496 170.2 171
5 459.6 424 771.7 794
Sum 1653.0 1626 967.0 995
Average 3.55 3.53 4.77 4.76

No. of pages: 2621 No. of records: 10484
Load factor: 0.8 x%®==104df =28
Page size: 5 Separator length: 4
Test file: A

Table 2: Predicted and observed number of
pages containing 0, 1, ..., 5 records

Larson [3] has analysed the insertion costs and obtained a formula for the expected number
of accesses required for an insertion. A comparison of the observed and expected behaviour dur-
ing insertion gives a good indication of the overall performance. This was done for both test files,
using several different page sizes and separator lengths. The results of two tests of file A are plot-
ted in Fig. 2. The separator length was 4 bits in both tests, the page size is 5 records in Fig. 2(a)
and 10 records in Fig. 2(b). The continuous line is the theoretically predicted average and the
points scatter around the line are the observed values. Each point represents the average number
of accesses for 120 insertions. The observations agree well with the predicted values for these two

test cases. Other test rins gava similar reanlte Nata that tha numbhas of nanannee Do deien dbho

-15-

number of pages changed, because each page must be read and written.

As indicated by the above results the overall performance for the two test files was close to
what can be achieved by this method. The implementation of the hashing and signature func-
tions was not “custom designed” for these files and we believe that they can be successfully used

for other files as well,

16 -

Accesses
ks
.

Accesses

(b) Load factor

Fig. 2: Predicted and observed average number of accesses required
for an insertion (k=4, b==5, 10, test file A)

- 17 -

5. Setting the target load factor

When using the new method a load factor of 100 percent cannot be achieved, not even
theoretically. The usable capacity of a page depends on the value of its separator and there is no
guarantee that a page can be completely filled. There is an upper bound on the load factor which
depends on the page size and the separator length. This was analysed by Gonnet and Larson [1].
The mode! is asymptotic and assumes that there is no restrictions on the amount of work allowed

for an insertion. Numerical results are listed in Table 3.

Separator length
Page 2 4 6 8

size

5 0.7922 0.9309 0.9793 0.9041
10 0.8238 0.9439 0.9838 0.9955
15 0.8374 09493 0.9856 0.9960
20 0.8453 09523 09866 0.9964

50 0.8637 0.9592 0.988% 0.9971

Table 3: Maximum achievable load factor

The crucial assumption is that there is no bound on the amount of work for an insertion. In
practice we must set the target load factor lower because, during an insertion, all pages that have
been changed are stored in a page pool of limited size. On average the number of pages in the
pool will be small (cf Fig. 2), but occasionally an insertion may cascade badly causing many pages
to be changed. If we run out of space for the page pool, the insertion fails. The problem is to
dimension the page pool and set the target load factor at such a level that the risk of an insertion
failing is minimal.

If possible, space for the page pool should be allocated dynamically. On average space for a

few pages only is required, but occasionally space for several pages will be needed. If space is

ANnnntnAd nbnélanller secand o Zo IV Lo oo d 03 oIl L oo LW oL Llar. o e 41 P i

- 18 -

support dynamic memory allocation, the best alternative seems to be a two-level solution: a
small in-core page pool and a larger one on disk. We have not worked out the details of this solu-

tion.

Even if space for the page pool is allocated dynamically, some limit on its size must be
imposed. Given such a limit, at what load factor level can we expect to exceed the limit for the
first time? To gain some insight into this problem we turned to simulation; at the time of writing
no theoretical results are available. To this end a series of simulation experiments was run.
Loading of a file was simulated and the load factor at which the number of pages in the page pool
for the first time exceeded 10, 25, 50 and 100 pages was recorded. In each experiments 500 file
loadings were simulated and the results printed. In Fig. 3 the results from two experiments are
plotted. The number of pages is 500. In Fig. 3(a} the page size is 5 and the separator length is 4
and in Fig. 3(b) they are 10 and 8, respectively. The graphs should be interpreted as follows (see
Fig.3(a)): in approximately 90% of the cases, the limit of 10 pages had not been exceeded by any
insertion when the load factor reached 0.7. When reaching a load factor of 0.8, less than 25% of

the runs had not exceeded the 10 page limit.

-19 -

1
10 25 50 00
.75 ‘
B3
. 254
b=5 l\
k=4 i
o , \
6 7 B a8 1
(a) Load factor
bt
10 25\50
. 75+
.51
- 25
b=10
k=8
e k) s kY 1
(b)

Load factor

Fig. 3: Load factor at which the number of pages changed exceeds
10, 25, 50 and 100 pages.

What conclusions can we draw from Fig. 37 If the limit on the page pool i3 set to 25, it is

- 20 -

very unlikely that an insertion will fail before we reach a load factor of 0.8 for a file with b=35
and k=4 (0.9 for a file with 5==10 and £=8). Note, however, that at a load factor of 0.8 the

average number of pages changed is only 2.18 (1.51 for h==10 and k=8).

In general, it appears that if we set the limit at 25 pages, and the page size is 5 or more and
the separator length 4 or more, then we should be able to achieve a load factor of at least 0.8

with very high probability.

8. Conclusion

An implementation of a new file organization guaranteeing retrieval of any record in one
access has been presented. The design has been tested on two existing files and found to achieve
the overall performance theoretically predicted. The method makes use of an in-core table. As
predicted by a theoretical model and confirmed by the tests this table can be kept very small:lcme
or less than one bit per record stored is sufficient. A load facior of 0.8 - 0.85 in the file itself
seems to be a realistic goal. The page size has a profound effect on the performance: when the
page size i3 increased, the in-core table can be made smaller and/or a bigher load factor can be

used.

The algorithms used for implementing the hashing and signature functions were presented in
detail. As for all hashing schemes these are of critical imporiance for the sverall performance.
For the two test files they were found to perform reasomably well. They were not “custom
designed” for the test files, and we believe that they can be successfully used for other fles with

a similar key structure as well.

Acknowledgement

The authors wish to thank the Depariment of Computing Services, University of Waserloo for

their support, and Ron Hurdal for his interest in #he project.

-21-

References
[1] Gonnet, GH. and Larson, P-A.: External hashing with limited internal storage, CS-82-38,
University of Waterloo, 1982 (Extended Abstract published in Proc. ACM Symposium on

Principles of Database Systems, (March 1982), Los Angeles, California).

[2] Knuth, D.E.: The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, Mass. 1973.

[3] Larson, P.-A.: Further analysis of external hashing with fixed-length separators (in prepara-

tion).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

