BARTMENT

PARTMENT
PARTMENT

AERS O YAER R

ITE
COMPUTER SCIENCE DE

COlPotER SCENGE Re

NIVER
UNIVERSITY OF WATERLOO

SC

E

Finding

Rectangle Intersections
by
Divide-and-Conquer

Ralf Hartmut Giiting
Derick Wood

Data Structuring Group
CS8-83-03

March, 1983

FINDING RECTANGLE INTERSECTIONS BY
DIVIDE-AND-CONQUER®

Ralf Hartmut Giiting?)
Derick Wood)

ABSTRACT

In this paper we reconsider three geometrical problems for
which we develop divide-and-conquer algorithms. The first
problem is to find all pairwise intersections among a set of hor-
izontal and vertical line segments. The second is to report all
points enclosures occurring in a mixed set of points and rectan-
gles and the third is to find all pairwise intersections in a set of
iso-oriented rectangles. We derive divide-and-conquer algo-
rithms for the first two problems which are then combined to
solve the third. In each case a space- and time-optimal algo-
rithm is obtained, that is O(n) space and O(nlogn+k) time,
where n is the number of given objects and k the number of
reported pairs.

These results show that divide-and-conquer can be used in
place of line sweep, without additional asymptotic-cost, for some
geometrical problems. This raises the natural question: For
which class of problems are the line-sweep and divide-and-
conquer paradigms interchangeable?

1. INTRODUCTION

We reconsider the Rectangle Intersection Problem, that is finding all
intersecting pairs among a set of n iso-oriented rectangles. This is an

(1) The work of the first author was carried our under a DAAD (Deutscher Akademischer
Austauschdienst) Grant, while visiting McMaster University, and that of the second author
under Natural Sciences and Engineering Research Council of Canada Grants Nos. A-5692
and A-7700.

(2) Lehrstuni Informatik VI, Universitét Dortmund, D-4600 Dortmund 50, West Germany.

) Data Structuring Group, Department of Computer Science, University of Watetloo, Waterloo,
Ontario N2I. 3Gl, Canada.

2 Giiting and Wood

important step in checking the design rules of VLSI-circuitry (see Baird [B],
Lauther [L1] or Mead and Conway [MC]) and has other applications as well,
for instance in architectural data bases [EL]. For more details and motivation
see [BW].

The first time-optimal solution for the problem was given by Bentley
and Wood [BW], that is O(nlogn+k) time, where k is the number of inter-
secting pairs. Almost immediately Edelsbrunner [E] and McCreight [M]
independently found space- and time-optimal solutions. However, each of
these algorithms is based on the line-sweep paradigm. A natural question is
whether or not this problem can be solved efficiently using divide-and-
conquer (see for instance [AHU] for an introduction to this paradigm). Lee
[L2] the first to investigate this approach produced a divide-and-conquer algo-
rithm requiring O(nlognlog* n-+k) time.

In this paper we develop a space- and time-optimal divide-and-conquer
algorithm for the rectangle intersection problem. This raises the question: for
which class of problems the line sweep and divide-and-conquer paradigm are
interchangeable with the same space and time bounds.

In Section 2 we recall how the rectangle intersection problem can be
divided into two subproblems, the line segment intersection problem and the
point enclosure problem. In Section 3 we describe a divide-and-conquer algo-
rithm for the line segment intersection problem, while in Section 4 a divide-
and-conquer algorithm for the point enclosure problem follows. In Section 5
we put the pieces together to solve the original problem and finally discuss
the results and give some directions for further work in Section 6 .

Finding Rectangle Intersections 3

2. THE SUBPROBLEMS

The Rectangle Intersection Problem is:

Given a set of n iso-oriented rectangles, report all pairwise intersec-
tions.

Two rectangles intersect if and only if either their edges intersect or one
encloses the other one completely.

Figure 1

In Figure 1 the pairs of rectangles (A,B) and (B,C) intersect by edge
intersection, while (B,D) constitutes a rectangular enclosure. The two types
of intersections can be found efficiently by treating them separately. We fol-
low [BW] in this approach. The result is a 2-stage algorithm which finds all
edge intersections in the first step and all rectangular enclosures in the
second.

In the first step, in Section 3, we consider the set of all edges composing
the rectangles, that is 4n edges and solve the line segment intersection prob-
lem for them. In the second, in Section 4, we extend the set of rectangles to
include an interior point for each rectangle. We then solve the point enclo-
sure problem for the resulting set. Letting R be a rectangle and pgp be the
chosen interior point for R, then it is important to realize that a report
A encloses pp holds not only when B is enclosed by A, but may also hold
when B is not enclosed by A. However, in this latter case B and A have a
point in common and hence intersect (see [BW] for more details). Finally in

4 Gliting and Wood

Section 5 we combine the solutions to the two subproblems to solve the rec-
tangle intersection problem.

Finding Rectangle Intersections 5

3. LINE SEGMENT INTERSECTION

The first subproblem is:

Given n horizontal and vertical line segments, report all pairwise inter-
sections.

A line sweep algorithm for this problem was found by Bentley and
Ottmann [BO] and used in [BW]. In this section we first give an algorithm
LINE SEGMENT INTERSECTION which makes use of a second algorithm LIN-
SECT, then explain it and finally analyze its time- and space-requirements,
LINSECT uses divide-and-conquer to accomplish its task.

For the sake of simplicity and clarity we initially assume all line seg-
ments to have distinct x- and y-coordinates.)

Algorithm LINE SEGMENT INTERSECTION

Input:

QOutput.

Step 1:

Step 2:

A set of horizontal line segments H and a set of vertical line seg-
ments V.

The set of all intersecting pairs (h,v) where h€¢H and v€V,

Let H be the set of endpoints defined by H. Let § be HUV
sorted by x-coordinate. (Observe that sorting is possible because
all objects in HUV are characterized by a single x-coordinate. For
simplicity we assume at present al! x-coordinates to be distinct.)

LINSECT (S, LEFT, RIGHT, VERT).

end of algorithm LINE SEGMENT INTERSECTION.

Algorithm LINSECT(S , LEFT, RIGHT, VERT)

Input:

Output:

An x-ordered set of objects § where each object is either a point (a
left or a right endpoint of a horizontal line segment) or a vertical
line segment.

Three sets LEFT, RIGHT and VERT. LEFT and RIGHT contain the
y-projections of left and right endpoints in §, respectively, whose
partner is not in §. VERT is a set of intervals. It contains the y-

Giiting and Wood

projections of all vertical line segments in §.

Recursive Invariant: On exit LINSECT has reported all edge intersections

Case 1:

Case 2.

within §, that is all pairs (k,v) where A is a horizontal line seg-
ment in § (represented by its left or right endpoint) and v is a
vertical line segment in §.

§ consists of one element p.

a) p={p,,py) is the left endpoint of a horizontal line segment:

LEFT - {p,}, RIGHT ~ &, VERT « & and return

b) p=(p,.p,) is the right endpoint of a horizontal line segment:

LEFT ~ &, RIGHT - {p,}, VERT « & and return

¢) p=(p:.py1,Py2) is a vertical line segment:

LEFT ~ &, RIGHT « &, VERT «{[p,1,p;>]} and return

§ contains more than one element.

Divide: Choose an x-coordinate i dividing § into two subsets
§; and § of approximately equal size.

Conquer: LINSECT(Sy, LEFTy, RIGHT, VERT)) ;
LINSECT(S,, LEFT,, RIGHT,, VERT-) .

Merge: (Let LR = LEFT|\NRIGHT,)
output((LEFT) \ LR) ® VERT,)) (1)
output((RIGHT, \ LR) ® VERT,)) (2)

{ the operator ® is defined below }

LEFT ~ (LEFT\ LR) U LEFT 3
2

Finding Rectangle Intersections 7

RIGHT « RIGHT; U (RIGHT,\ LR) @

VERT « VERT, U VERT, and return .)

end of LINSECT.

The merge step needs some explanation. First we have to define the
operator ®:

Let P be a set of points on the line and I a set of intervals on the line.
Then

PR!:={(p,i)| p€P,i€l and i containsp} .

In the merge step intersections between horizontal and vertical line seg-
ments are reported. Since horizontal line segments are represented by their
endpoints we have to examine the interaction between points and vertical line
segments,

Any set §, to which LINSECT is applied has an associated rectangular
area A(S,) which is defined by the minimal and maximal x- and y-
coordinates of objects in S,. For a left or right endpoint p ¢ §,, let I, be the

horizontal line segment from which it is taken. Then the partial segment
PS(p) is defined by

PS(p) := I, N A(S,)

Example:

PS(p)

A(Sa)

Figure 2

8 Gilting and Wood

We know from the recursive invariant that after execution of LINSECT
(Sq, - + -) intersections between partial segments and vertical line segments
in §, have been reported. Hence in the merge step of LINSECT(S, - - -) we
only have to find intersections between partial segments in §; and vertical
line segments in S, and vice versa, In the merge step of LINSECT(S, - - -)
the following things can happen to a partial segment PS(p) (let us assume p is
a left endpoint; the other case is symmetric):

a) pisin$;
T
S ' *—
PS(p) . PS(p)
: '
1
:
5 Sy 8
Figure 3

It remains as it is; no new intersections occur.

b) pisin§; and its partner is in 5

Figure 4

It has completed meeting its partner partial segment; no new

Finding Rectangle Intersections 9

intersections occur; both partial segments (or the complete segment) are
removed from §.

c) pisin §; and its partner is not in S,

J

Figure 5

It is extended across §;. The crucial point is that all vertical line seg-
ments in §; which contain p’sy coordinate intersect I, regardless of their x-
coordinate. In other words

I, intersects a vertical line segment v, €S, if and only if p’s y-projection
(a point) is contained in v;'s y-projection (an interval).

Hence, since Case (c) describes the only way intersections can occur, we
have reduced the two-dimensional line segment intersection problem to the
one-dimensional point enclosure problem. The task of finding all intersec-
tions between extended partial line segments from §; and vertical line seg-
ments from S; is exactly the computation of (LEFT|\ LR)®VERT,. There-
fore the two output statements (1) and (2) report exactly the intersections that
occur by combining §; and §;. Hence the recursive invariant holds once
more. Lines (3)-(5) construct the sets LEFT, RIGHT and VERT in the obvious
manner; subtraction of LR yields the removal of complete (horizontal) seg-
ments from S.

Time:

Step 1: Constructing H takes linear time, sorting O(nlogn) time, hence
Step 1 takes O(nlogn) time.

Step 2: Let T(n) be the time complexity of applying LINSECT to aset §

: of cardinality n, that is LINSECT(S, LEFT, RIGHT, VERT). Then

10

Case 1.

Case 2:

we have:

n=1

Giiting and Wood

All actions take only constant time, establishing

n>1

Divide:

Conguer:

Merge:

T(1) = O(1) . ©)

The x-ordered set § can be given as an array-
subrange. Then dividing takes only constant time.

The recursive calls yield two terms T(-'ZL)

Finally we have to choose some representation of
the sets LEFT, RIGHT and VERT. Surprisingly,
simple y-ordered linked lists are sufficient to obtain
an optimal solution. For VERT, each list item con-
tains one interval [y,,y,] and the list is ordered by
the y,-coordinates. Now all operations in the
merge step can be realized by scanning some of the
given lists in parallel. For instance, a first scan may
operate on the lists (representing)
LEFT{,RIGHT|,LEFT, and RIGHT, and construct
lists LEFT and RIGHT. At the same time the ele-
ments of LR are removed from lists LEFT; and
RIGHT;. (This can be done by removing elements
occurring in both LEFTy and RIGHT;, because we
assumed all y-coordinates to be distinct. If we per-
mit multiple y-coordinates we use a different tech-
nique, see below. A second scan operates on lists
VERT, and VERT, and the reduced lists represent-
ing LEFT)\LR and RIGHT,\LR. During this
scan VERT is constructed and the sets
(LEFT)\ LR)®VERT, and (RIGHT,\ LR)®VERT
are computed and reported.

The computation of P®I where P and I are given as linked lists Lp and
Ly is the only nontrivial (but not difficult) task. Lp and L; are scanned in
parallel. For each interval i=[y;,y,] encountered in Z; this scan (called the
main scan) pauses. From the current position in Lp (which corresponds to
¥p) 8 report scan is started which reports a pair (p,i) for each point p=y’
encountered in Lp. The report scan terminates as soon as a y-coordinate
y'>y, is encountered. Then the main scan is resumed.

Finding Rectangle Intersections 11

Since the size of all lists is O(n) the total time for scanning them
(excluding report scans) is also O(n). Hence the merge step contributes an
O(n) term if we count the time for reporting separately. Thus we have

T(n) < 2:T(n/2) + O(n) @)
It is well known that the recurrence equations {6) and (7) have the solution
T(n) = O (n log n)

(see for instance [AHU]). Obviously the report scans require time lincar in
the number of reported pairs (which correspond to intersections). Hence if k
is the number of pairwise intersections between H and V, the total worst-case
time required by the algorithmis O (n logn + k) .

Space: The space required is O(n) since each of the six lists used by the ulgo-
rithm contains at most n elements.

Muttiple x- or y-Coordinates

We now drop the restriction that the x- and y-coordinates of all line seg-
ments have to be pairwise distinct. The algorithm has to find all intersections
between horizontal and vertical line segments. Finding intersections of type
horizontal/horizontal or vertical/vertical is no problem (it amounts, for exam-
ple, to sorting the horizontal line segments by y-coordinate and then for each
subset with equal y-coordinate to find the intersections among a set of inter-
vals) and can be done in separate step in O(nlogn) time (the line sweep
algorithm of Bentley and Ottmann [BO] reports only intersections of type
horizontal/vertical and would also require a separate step to report the other
types).

To accommodate multiple x- or y-coordinates we modify the algorithm
slightly. We first deal with multiple x-coordinates. After the initial sorting
of all objects in HUV (points and vertical line segments) we are left with a
set of groups gi,...,8, of objects, where each proup g; contains one or more
objects with the same x-coordinate.

Example:

1 4 5 7 7 7 9 . 11 | 11 § 19 | 19
"

Bl B B &4 E(r-1) &y

12 Giiting and Wood

For each group g; we construct the sets LEFT, RIGHT and VERT in advance
and report the point enclosures (intersections) LEFT®VERT and
RIGHT®VERT. Since these are one-dimensional problems the task only
involves sorting the objects in the group by y-coordinate and can be done in
O(slogs) time for a group with s elements. The total time taken for this step
is O(nlogn). ’

We now apply divide-and-conquer in the following way: Let S=HUV
contain the elements xj,...,x, (m=2x). We select the median object
X|(a+1y2]- It belongs to some group g;. We divide § into three subsets Sy,
§. and §; where:

i-1 r
$1=Ug S.=8 52= U & -
=1 j=T+1

We recursively apply the unmodified algorithm to S, and S, constructing the
sets LEFT RIGHT and VERT for each of them (remember that for 5, we con-
structed these sets beforehand).

After this §1,5, and §, are merged. This can either be done simultane-
ously or sequentially by first merging §; and §, into S}, then S;4 and §;
into §.

It is easy to see that this algorithm still has the same time complexity: By
construction, each of the sets §; and §; contains less than n/2 elements.
Merging 5,,8, and §; takes O(n) time. Hence the recurrence equations

T(1) = OQ1)
T(n) = 2T(n/2)+O(n)

with solution O(nlogn) holds again.

With multiple y-coordinates it becomes a problem to form the intersec-
tion of the set LEFT; and RIGHT,. We said previously that LEFT and
RIGHT are represented by y-ordered point lists. If a point list contains many
elements with identical y-coordinates then it becomes a problem to identify a
pair of points in LEFT and RIGHT, stemming from the same horizontal line
segment. However, there exists a simple way around this difficulty. Note
that any set S to which LINSECT is applied contains all objects within a cer-
tain x-range. We pass this range as a parameter of LINSECT. Furthermore
we add to the representation of a left (right) endpoint the x-coordinate of its
right (left) partner endpoint. Merging, for instance, sets §; and S, with asso-
ciated x-intervals (a,b) and [b,b], say, it is then possible to decide for any
point in LEFT, and RIGHT, whether its partner endpoint is in the other set.

Finding Rectangle Intersections 13

Hence it is once more possible to perform the subtraction of set LR
(=LEFT,\NRIGHT,, in this case) in linear time.

In this way the time complexity of the algorithm is maintained for the
general case which permits multiple x- or y-coordinates.

We summarize the results of this section in

Theorem 3.1 For a set of n horizontal and vertical line segments in 2-space
with k intersections the line segment intersection problem can be solved by
divide-and-conquer in O(nlogn+k) time and O(n) space.

14 Giiting and Wood

4. FINDING POINT ENCLOSURES

The point enclosure problem is:

Given n objects each of which is a point or a rectangle in the plane,
report for each rectangle all points that lie within it.

Remember that the study of this problem is motivated by the fact that
we can combine its solution with the solution of the line segment intersection
problem to find all intersections among a set of rectangles. Again we use
separational representation and divide-and-conquer and assume for simplicity
at the moment that all objects have pairwise distinct coordinates.

The Idea

Separational representation applied to the given set reduces each rectan-
gle to its left and right vertical edge and leaves the points unchanged. Hence
we obtain a mixed set of points and vertical line segments which we sort by
x-coordinate. To the resulting ordered set § the divide-and-conquer algo-
rithm PENC is applied.

PENC splits a given set § into two subsets §; and S, and recursively
computes y-ordercd interval sets LEFT; (the y-projections of left rectangle
edges), RIGHT; (the y-projections of right edges) and a set of y-coordinates
POINTS; (y-projections of points) from §;. The merge step which computes
LEFT RIGHT and POINTS from LEFT;, RIGHT; and POINTS; (i=1,2) is
once more the crucial step. It makes use of the following observation:

. L
Ve ==-F: .
|2 . " R
yb"‘ - R
S1 SZ
Figure 7

If a left vertical edge ! in § of a rectangle R= (x,x,,¥p,y;) is not

Finding Rectangle Intersections 15

matched by its partner edge in §,, then the bottom edge and the top edge of
R extend through all of S;. This means all points in the y-ordered set
POINTS, in the range [y,y,] are enclosed by R. [yy,y,] is precisely the y-
projection of ! which is contained in LEFT;.

To report all point enclosures within §=5;US, we have to check
whether or not the partner of each interval in LEFT is in RIGHT,. For each
. of the remaining intervals all enclosed points in POINTS have to be reported
(or rather the corresponding point-rectangle enclosure). Obviously the same
has to be done for RIGHT; and POINTS;. Using the notation P@I of Section
3 this is nothing other than computing and reporting POINTS,®(LEFT \ LR)
and POINTS®(RIGHT,\ LR). Where LR=LEFT{NRIGHT,;. Hence the
algorithm is a simple adaptation of LINSECT:

Algorithm POINT ENCLOSURE(P,R)
Input: A set of points P and a set of rectangles R.
Output: .~ The set of all pairs (p,r) where p€P and r €R and p lies inside r.

Step 1: Construct the sets L and R of left and right edges of rectangles in
R, respectively. Sort LURUP by x-coordinate, resulting in the
ordered set §.

Step2: PENC(S,LEFT,RIGHT,POINTS)

end of algorithm POINT ENCLOSURE.

Algorithm PENC(S,LEFT RIGHT ,POINTS)

Input: An x-ordered set of points and left and right vertical rectanple
edges §.

Output: Three sets LEFT,RIGHT and POINT. LEFT and RIGHT contain
the y-projections of all left and right rectangle edges from S,
whose partner is not in S. POINTS contains the y-projection of
SNP.

Recursive Invariant: On exit, PENC(S, - - -} has reported all point enclo-
sures occurring within S, that is all pairs (p,r), where p€(PNS)
and r€R and r is represented in § by its left or right vertical edge.

Case I: - § contains only a single object x.

Depending on the type of x (line segment or point) let LEFT or
RIGHT contain a single y-interval or POINTS a single y-coordinate,

16 Giiting and Wood

respectively, and let the other sets be &,

Case 2: S contains more than one object.

Divide: Choose an x-coordinate dividing § into two sub-
sets §; and §» of approximately equal size.

Congquer: " PENC(S,,LEFT\,RIGHT,,POINTS,);
PENC(S8,,LEFT,RIGHT,,POINTS;).

Merge: (Let LR=LEFT{NRIGHT;).

output(POINTS,®(LEFT |\ LR))
output(POINTS 1®(RIGHT , \ LR))
LEFT~(LEFT{\ LR)ULEFT,
RIGHTRIGHT U (RIGHT, \ LR)

POINTS ~POINTS {UPOINTS and return

end of PENC.

Time and Space Complexity

We may choose the same linked-list representation for sets
LEFT,RIGHT and POINTS as for LINSECT. In the merge step of PENC the
same operations occur as in the merge step of LINSECT. Hence we know that
they can be performed in linear time. The analysis is the same as for LIN-
SECT and the algorithm may be adapted to multiple x- and y-coordinates by
the same techniques. Hence we obtain

Theorem 4.1 For a mixed set of points and rectangles in 2-space with cardinal-
ity n , the point enclosure problem can be solved by divide-and-conquer in
Of{nlogn+k) time and O(n) space where k is the number of point enclosures.

Finding Rectangle Intersections 17

5. COMBINING THE ALGORITHMS

We have already outlined in Section 2 how the algorithms of Sections 3
and 5 can be put together to yield a solution for the rectangle intersection
problem. Because this has been described in detail in [BW] we add only a
few final comments.

The preparatory steps in both algorithms can be replaced by a single
scan through the set of rectangles, creating all input sets as needed. Instead
of line segment names and point names we store, of course, the names of the
corresponding rectangles (in an implementation the ‘“‘name” is usually the
address of some representation of the rectangle).

In an implementation some details have to be taken care of, such as
avoiding multiple reporting (two rectangles whose edges intersect, have at
least two different edge intersections), and not reporting the intersection of a
rectangle with itself (two adjacent edges intersect, of course). However,
these details do not affect the asymptotic complexity of the algorithm. They
merely require careful programming.

The time and space requirements of the algorithm follow immediately
from those of the component algorithms:

Let n be the number of rectangles, k the number of intersecting pairs of
rectangles, k' the number of edge intersections and k'’ the number of point
enclosures, The algorithm LINE SEGMENT INTERSECTION requires
O(nlogn+k") time and POINT ENCLOSURE requires O(nlogn+k’’') time.
Since k'=0(k) and k’'=O(k) we have a total time bound of O(nlogn-+k).
This time is known to be optimal, see [BW]. The space bound is O(n) for
both algorithms and hence also for their combination; this is also optimal.
Thus we have proved:

Theorem 5.1 For a set of n iso-oriented rectangles in 2-space the rectangle
intersection problem can be solved by divide-and-conquer in O(nlogn+k) time
and O(n) space where k is the number of pairwise rectangle intersections.

18 . Giiting and Wood

6. CONCLUSIONS

We have shown the existence of a space- and time-optimal divide-and-
conquer algorithm for the rectangle intersection problem. This can be viewed
as a step towards investigating the relation between different algorithmic
paradigms and their respective power.

We achieved this by the use of an idea which we wish to emphasize: the
“separational representation” of planar objects. Applying divide-and-conquer
to a planar object has the inherent difficulty that a dividing line may interest
some of the objects. This yields immediately a partition into three sets
LEFT,RIGHT and MIDDLE where MIDDLE interacts with both LEFT and
RIGHT. “Separational representation’ is applied to orthogonal objects in the
following way: First, all horizonal parts are deleted. This leaves us with a
number of fragments which are characterized by a single x-coordinate. A
dividing line therefore splits the set of fragments into only two subsets LEFT
and RIGHT, which can be “conquered” independently. In the merge step the
horizontal parts are reconstructed though only on a conceptual level. Details
can be found in Section 3. This idea might prove useful for the development
of further divide-and-conquer algorithms,

We suggest the following open problems for further work:

(1) Generalize this algorithm to higher dimensions (d> 3).

(2) Examine other problems based on sets of rectangles, like the closure
problem [SSW], or the connectivity problem [EvLOW], for divide-and-
conquer solutions.

(3) Characterize the class of problems for which line-sweep and divide-and-
conquer are interchangeable.

(4) Is it possible to extend the applicability of divide-and-conquer (possibly

using separational representation) to non-orthogonal planar objects, for
instance arbitrarily oriented line segments?

Finding Rectangle Intersections 19

REFERENCES

[AHU]

(B]

(BO]

(BW]

(E]

[EVLOW]

[EL]

[G1]

[G2]

fL1]

{L2]

[M]

(MC}

[ssw]

Aho, A.V., Hopcroft, J.E., and Ullman, J.D.: The Design and
Analysis. of Computer Algorithms. Reading, MA: Addison-
Wesley, 1974,

Baird, H.S., Fast Algorithms for LSI Artwork Analysis, Journal
of Design Automation and Fault-Tolerant Computing 2, (1978),
179-209.

Bentley, I.L. and Ottmann, Th., Algorithms for Reporting and
counting Geometric Intersections, IEEE Transactions on Com-
puters C-28, (1979), 643-647.

Bentley, J.L. and Wood, D., An Optimal Worst Case Algo-
rithm for Reporting Intersections of Rectangles, IEEE Transac-
tions on Computers C-29, (1980), 571-577.

Edelsbrunner, H., A Time- and Space-Optimal Solution for the
Planar All Intersecting Rectangles Problem, Technical Univer-
sity Graz, Institut fiir Informationsverarbeitung, Report 50,
1980.

Edelsbrunner, H., van Leeuwen, J., Ottmann, Th., and Wood,
D., Computing Connected Components of Orthogonal
Geometric Objects. RAIRO (1983), to appear.

Eastman, C.M., and Lividini, J., Spatial Search, Institute of
Physical Planning, Research Report 55, Carnegie-Mellon
University, 1975.

Giiting, R.H., Optimal Divide-and-Conquer to Compute Meas-
ure and Contour for a Set of Iso-Rectangles, Technical Report,
Lehrstuhl Informatik VI, University of Dortmund, 1982.
Giiting, R.H., Doctoral Disertation, Lehrstuhl Informatik VI,
University of Dertmund, 1983.

Lauther, L., 4-Dimensional Binary Search Trees as a Means to
Speed Up Associative Searches in Design Rule Verification of
Integrated Circuits, Journal of Design Automation and Fault-
Tolerant Computing 2, (1978), 241-247.

Lee, D.T., Algorithms for Rectangle Intersection Problems,
unpublished manuscript, 1982.

McCreight, E.M., Efficient Algorithms for Enumerating Inter-
secting Intervals and Rectangles, XEROX Palo Alto Research
Center, Report CSL-80-9, 1980.

Mead, C., and Conway, L., Introduction to VLSI-Systems.
Reading, MA: Addison-Wesley, 1980.

Soisalon-Soininen, E., and Wood, D., An Optimal Algorithm
to Compute the Closure of a Set of Iso-rectangles, Journal of
Algorithms (1983), to appear.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

