BEPARTMENT

3 e
O COMPUT

DEPARTMENT
DEPARTMENT

NGE
N

S
GIE

1t

1

—
o
.=

F Wal
F WATERL

VERSITY 8
VERSITY
VERSITY OF WATERLO

Search Trees
and
Bubble Memories

Philippe Flajolet
Thomas Ottmann
Derick Wood

Data Structuring Group
CS-83-02

November, 1983

SEARCH TREES AND BUBBLE MEMORIES®

Philippe Flajolet®
Thomas Ottmann(®)
Derick Wood®

ABSTRACT

We consider the storage of binary search trees in major-
minor loop configurations of bubble memories. This leads,
under reasonable assumptions, to the investigation of two cost
measures for binary search trees, free search cost FCOST, and
root-reset search cost RCOST. We analyze the average case
behaviour of both cost measures and characterize their associ-
ated minimal cost trees. The average case analyses are them-
selves of interest since they are examples of the application of a
recently developed methodology.

1. INTRODUCTION

Because bubble memory devices are now a practical proposition, the
mathematical analysis of their properties is a useful and fruitful exercise, for
example see Chandra and Wong (1979), Chung, Luccio and Wong (1979,
1980), and Bongiovanni and Weng (1981).

One area of concern is the representation of standard data structures in
various bubble memory configurations. This representation or encoding
problem has been much studied for standard memory configurations, for
example see Rosenberg (1978), Rosenberg and Snyder (1978) and Standish
(1980). Recently Bongiovanni and Wong (1980) have considered the
representation of tree search in bubble memories. Their concern is related to
yet different from ours; related because they consider the (implicit)
representation of trees, and different because they are concerned with fixed

) This research was partially carried out under a Natural Sciences and Engineering Research
uncil of Canada Grant No. A-5692 and partially under NATO Grant No, RG 155. 81
3 INRIA, Domaine de Volugeau, Recquencourt, F-78150 Le Chesnay, France.
G Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit
Eﬁ lstuhe, D-7500 Karlsruhe, West Germany.

Data Structuring Group, Department of Computer -Science, University of ‘Waterloo,
Waterloo, Ontario N2L 3G1, Canada.

2 Flajolet, Ottmann, and Wood

or static trees, whereas our concern is the dynamic behaviour of explicit
representations of trees.

We study the representation of birary search trees in a major-minor
loon bubble memory configuration. Abstracting this, in Section 2, we are led
o the problem of representing a binary search tree in a two-way circular list,
see Vaishnavi and Wood (1982). We then make the reasonable assumption
that comparison time far outweighs bubble movement time (or entry point
movement time in our abstraction), which leads naturally to the concepts of
root-reset search cost and free search cost for binary search trees whose ana-
lyses we then undertake.

We first derive in Section 3 some basic properties of both cost measures
including the characterization of their associated minimal cost trees. Second
we derive the average distance between two nodes in a binary tree and in a
binary search tree of n nodes, often called shape or static analysis and search
or dynamic analysis, respectively, giving the corresponding average free
search costs. The techniques used for these derivations are those introduced
in Flajolet (1981), which we explain in some detail. Then in Section 5 we
analyse the averagc behavior of root-reset search cost. Fairley (1973),
analyzed the average behavior for complete binary trees under this cost meas-
ure, which he called random entry search cost.

Finally in Section 6 we compare our results with those for the usual cost
measure on binary search trees.

2. BINARY SEARCH TREES IN BUBBLE MEMORIES

The typical major-minor loop configuration for bubble memories is

shewn in Figure 2. 1.
(O) ~—— major loop

20 Y aa N
O O O -=x—— minor loops
NS N/

Figure 2.1: Major-Minor Loop

The bubbles in the minor loops are simultaneocusly rotated in either a

Search Trees 3

clockwise or anti-clockwise direction. One position in each minor loop is
designated as a transfer position. At any time the values in these designated
positions can either be transmitted to or changed by their corresponding bub-
bles in the major loop. The major loop also has a designated transfer posi-
tion or “‘window” to the “outside world”.

To clarify its use, consider a table of m keys each of a bits. This could
be stored in #» minor loops where the loops contain at least m bubbles. A
“row” of bubbles in the n minor loops represents a single key. A linear
search for a key k of # bits might proceed as follows:

(1) Leti=1,
(2) Transfer key I in the *“windows" of the minor loops to the major loop.

(3) Do bit by bit comparison of &, in main memory, with [in the major
loop through its window, rotating one position at a time as long as the
comparison is successful.

(4) If the comparison is successful stop with ‘SUCCESS’.

(5) Increase i by cne. If i =< m, rotate minor loops by one position and
goto step 2, otherwise stop with ‘FAILURE’,

As is well known the rotate operation is unusually fast, viz. approxi-
mately 106 positions per second. Hence the dominant primitive operations in
the above algorithm are the major-minor transfer and the comparison opera-
tions. Since one major-minor transfer is needed for each comparison, hen-
ceforth the comparison operation will be assumed to include the major-minor
transfer operation. This means that we may consider a two-way circular list,
see Figure 2.2, to be the abstraction of a major-minor loop configuration,
where link chasing is inexpensive compared with the examination of a node
and a comparison with its contents.

wingdow
—_—

Figure 2.2

In this setting each node of the list represents the whole key (collected across
the minor loops). o

Let us now turn to the representation of binary search trees in such a
circular list, and hence in a major-minor loop configuration. Each node of

4 Flajolet, Ottmann, and Wood

the binary search tree is assigned to a unique node of the circular list such
that the assigned nodes are contiguous. The left and right links in each node
of the tree are then converted into offset values, that is move clockwise or
anti-clockwise by ¢ nodes. In Figure 2.4 we have represented the tree of
Figure 2.3 in symmetric order, and since each scn appears later than (clock-
wise of) its father all offsets are positive.

(0)
(20} (69
m ® ® ©

Figure 2.3
O=OTOSOS OO
position 1 2 3 4 5 6 7
left offset +1 +1 0 0 +1 0 0
right offset +4 +2 0 0 2 0 0
Figure 2.4

The search strategy may now mirror that for binary search trees by assuming
that the circular list is always reset to the root of the tree (position 1 in Figure
2.4). The offset denotes the number of nodes to be skipped in either a clock-
wise or anti-clockwise direction,

Observe that the offsets are not, and cannot be, of equal value, hence
we may interpret them as different length edges. For example in Figure 2.5
the tree of Figure 2.3 is drawn with the offset values of Figure 2.4 as the
edge lengths. Bongiovanni and Wong (1980) consider binary search trees
with variable edge lengths induced by such a storage representation. It is not
clear whether or not the minimal cost tree is Figure 2.3 is also minimal with
respect to this edge expansion. However Vaishnavi and Wood (1982) show
that this is indeed the case and moreover any seven node tree is equally costly
under the new cost measure. However this is not the case when the keys and
gaps have unequal probabilities.

As pointed out above, because of the dominance of the cornparison
operation over the rotation operation, our main interest is not this variable
edge length model. But having dismissed the rotation operations necessary
along the search path there remains the reset rotation, which we would like to

Search Trees 5

Figure 2.5: Variable Edge Lengths

avoid. We avoid it by starting a new search at the node where the previous
search terminated,

To do this effectively a new searching strategy is necessary. At least
two reasonable ones exist, see Section 6 for a further discussion cof this issue.

Method 1: Search from the entry node as if it is the root node. If the
search is unsuccessful begin again at the root of the tree. If the
second search is unsuccessful then the search key is not present.

Method 2: Check if the search key is within the interval specified by the
subtree of the entry node. If it is then search in the usual way,
otherwise back-up to the father if one exists and repeat the pro-
cess. If no father exists then the search process is at the root and
the search key is not in the tree.

Method 1 has been studied previously in a limited way by Fairley
(1973): We call such search trees, roof-reset search trees. Method 2 has not,
as far as we are aware, been studied previously: we call such trees, free
search trees. The associated cost measures we call root-reset search cost
RCOST, and free search cost FCOST, respectively, Two reasonable bubble
memory representations suggest theruselves for Method 1. Either each leaf
contains its offset from the root or each node contains its offset from its
father; we will assume the former. For Method 2 the latter representation is
the appropriate one.

Both representations easily support insertions; deletion is more diffi-
cult, since it leaves gaps in the representation. Since each node is also
‘linked’ to its father when using Method 2, the tree has bi-directed edges, in
other words undirected edges. Moreover although the trees are ordered,
since they are search trees, their behavior is closer to that of unordered,
unoriented trees, that is free trees, Knuth (1968). This is the reason for cal-
ling them free search trees. Such trees are of independent interest, for exam-
ple the notion of rivalling of processors is possible on free search trees,
Mihibacher (1582).

6 Flajolet, Ottmann, and Wood

3. PRELIMINARY DEFINITIONS AND RESULTS

In the present section we define the two new search cost measures on
binary search trees and characterize minimal cost search trees under these
measures,

Let T be a binary search tree with root p. For each node u in T let T(u)
denote the subtree of T rooted at 1, and let val(u) denote the value associated
with #. As is usual we distinguish between internal nodes, which have two
successors and leaf nodes which have none,

Then for any two nodes u and v in T let the distance from u to v,
denoted by dist(u, v), be defined as the length of the shortest path from u to
v in T. Similarly let the value distance of x from u, denoted by vdist(u, x)
denote the length of the standard search path for the value x in T beginning at
node u. If x appears in T(u) at node v then vdist(u, x) = dist(u, v), other-
wise it is the distance from u to the leaf representing an unsuccessful search
for x.

We can now define the reset distance of v from u in T, denoted by
rdist(u, v), as either dist(u, v) if v is in T(u) or vdist(u,val(v))+dist(p,v) oth-
erwise.

These distance measures lead to three associated cost measures for
binary search trees. The usual search cost measure is defined as:

COST(T) = 3, dist(p, u)

winT
while the free search cost measure is captured by:
FCOST(T) = 5. dist(u, v).

wvin?
and the root-reset search cost measure by:
RCOST(T) = 3, rdist(u, v).

u,vinT
As with standard binary search trees we may consider the corresponding
extended cost measures. For this purpose trees are assumed to be extended
by the addition of external nodes to all leaves and semi-leaves. Extended
binary trees contain only binary and nullary nodes. The nullary or external
nodes correspond to unsuccessful searches in the tree. We now obtain:

ECOST(T) = 3, dist(p,u), where uis a leaf
uinT

EFCOST(T) = 3, dist(u, v), where u and v are leaves

u,vinT

ERCOST(T) = 3. rdist(u, v), where u is an internal node

wvinT

and v is a leaf .

The cost and extended cost measures for the first two measures are

Search Trees 7

closely related as we summarize in the following:

Proposition 3.1 Let T be a binary search tree with n internal nodes, where
n = 0. Then

(i) ECOST(T) = COST(T) + 2n,
(i) EFCOST(T) = FCOST(T) + 4n* + 6n + 2.

Proof: By induction on n, (ii) depends upon (i), which is, of course, a
well-known result. O

The exact nature of the relationship between ERCOST (T,) and RCOST
(T,) continues to elude us; however it is almost certainly of the form
ERCOST (T,) = RCOST (T,,) + f(n), where f(n) is some function of n.

Before considering the average case analysis of FCOST and RCOST we
close the present section by stating the characterizations of minimal cost trees
under both FCOST and RCOST and sketching their proofs.

We first consider FCOST minimal trees.

Let T be a binary tree. Then the diameter of T, denoted diam(), is
defined as:

diam(T) = max({dist(u, v): u, vin T}).

A tree T of n nodes has minimal diameter if for all T’ with n nodes
diam(T ') = diam(T).

It is not too surprising that trees with minimal FCOST have minimal
diameter, However this is insufficient to provide minimal FCOST. Let T be
a minimal diameter tree, then it can be pictured as in Figure 3.1; where sub-
trees a and b have height &, ¢ has height !, and ! = k — 1, kor k + 1. The
node u is termed the centroid of T. There can be at most two such centroids,
in which case I = k + 1. We call a tree of height & perfect if it has minimal
height and has 2%+ leaves.

We say T is clustered if a and b are perfect, ¢ is minimal height and
moreover if ¢ is not perfect then it only has frontier nodes on at most two
levels, but those at distance ! from the root of ¢ are grouped (or clustered) in
the rightmost (or leftmost) positions on that level. See Figure 3.2 for an
example of both cases. Lemma 3.2 Let T be as in Figure 3.3, where T,
denotes the perfect binary tree of height n = 0, and the root of T,, has distance
t + 2 from the root of T,,_1,t = 0. Adding a node to T,_, in T yields T! and
to T, in T yields T2, Then FCOST(T') — FCOST(T?) = (2" - 2) (¢ + 1).

Proof: Since we are only interested in the difference between the FCOST
of T! and T2, we only need to consider the contribution of the extra node in
7! and T2, Now this contribution to FCOST(T?) is twice:

8 Flajolet, Ottmann, and Wood

Figure 3.1

clustered not clustered
Figure 3.2

[(3x(2'-1) + COST(T))] + [4.(2%-1) + COST(T)] + - - -
+ [n(2""2=1) + COST(T,_,)]
+ [(n + 1+ 1).(2"~1)+ COST(T,)]
+14+2+ - +n+1t
Similarly the contribution to FCOST(T?) is twice:
B.2'-1) + COST(TY] + - -+ + [n.(2"72=1) + COST(T,_)]
+ [(n + 2)(2""1-1) + COST(T,_,)]
+ [(n+2+0)(2""1=1) + COST(T,_})]
+142+ -+« +n+t+1.

Hence

since

Search Trees 9

Figure 3.3

FCOST(TY) - FCOST(TY)
= 2[(n+t+1)(2"~1) + COST(T,)]
= 2[(n+1)(2"" 1) + COST(T,_})]
— 2[(n+1+2)(2""1~1) + COST(T,_1)] — 2n+1+1)
= (2"=2)(t+1)

COST(T,) = 2" = 2 + 2 COST(T,_;) . ©

Theorem 3.3 A binary search tree T with n internal nodes, n = 0, has
minimal FCOST and EFCOST if and only if it has minimal diameter and is
clustered.

Proof:

If:

We will provide proof sketches in both cases.

By induction on 2. Since T has minimal diameter and is clustered it
has a subtree T’ of » — 1 nodes which also satisfies these conditions.

Hence by the inductive assumption 7' * has minimal FCOST. Now T '

can be viewed as in Figure 3.1, Consider the three cases
height(c) = £ — 1, , and k + 1 separately. We will sketch the case
height(c) = k only, the remaining two cases being left to the
interested reader. If ¢ is perfect then the additional node givento T’

can be added anywhere. Hence assume ¢ is not perfect. Now if a
node is not added at a clustered position then consider the smallest -
tree § enclosing it and a clustered position. Compare the FCOST
associated with these two choices. Since § is in one of the forms
displayed in Figure 3.4, in both cases by invoking Lemma 3.2 we see

10 Flajolet, Ottmann, and Wood

that the chosen position is less costly than the clustered position
within §. However there are greater than (2' - 2) nodesin T" — §
in the first case and greater than a 2(2' ~ 2) contribution in the
second case to the cost of the chosen position with respect to all of
T'. Hence T must have minimal FCOST.

\ b
/a b
clustured chosen f chosen clustured f
position position position position

Figure 3.4

Only if: Again we prove this by induction on n. Clearly a tree with 0 or 1
node(s) satisfies the required conditions. Therefore consider a T with
n nodes, n > 1 having minimal FCOST, but which does not satisfy
the required conditions. Now if T has minimal diameter, then we can
obtain a contradiction via Lemma 3.2 and the inductive assumption.
Hence assume T docs not have minimal diameter. Again if there is a
subtree T ’ of T with n — 1 nodes having minimal diameter, we easily
obtain a contradiction. Finally if there is no subtree T’ of T with
minimal diameter, then there exists § with n — 1 nodes and minimal
FCOST satisfying:

diam(S) < diam(T ") = diam(T").

Construct a tree U from § with N nodes and minimal FCOST. On
the one hand if diam(U) = diam(T), in which case n = 3.27 + 2 for
some p = 0, we obtain a contradiction either to the assumptions on
T' or to the minimal FCOST of 7. On the other hand if
diam(U) < diam(T) we may consider the largest tree V; which is a
subtree of both U and T having minimal cost (and hence satisfying
both conditions, by the inductive assumption). Then in U there is a
sequence of minimal cost subtrees Ug, - -, Up such that
Vo= Uy, U = U, and the number of nodes in U; is { — 1 more than
in vy, Then FCOST(U;) < FCOST(Up) < - - - < FCOST(U,) and

similarly there are T,,..., T, swh that T)=Vg T,=T,

Search Trees 11

FCOST(Ty) < FCOST(T;) < - - - < FCOST(T,) and
FCOST(U,) < FCOST(T,),
FCOST(U;) < FCOST(T3),

FCOST(U,) < FCOST(T,),

since none of Ty, ..., T, satisfy the conditions of the Theorem.
That is FCOST(U) < FCOST(T) yielding a contradiction. ©

Theorem 3.4 A binary search tree T with n internal nodes n= 0, has
minimal RCOST and ERCOST iff it has minimal COST.

Proof: By induction on n. Clearly the proposition holds for n = 0 and
n = 1. Assume it holds for all » < k, where k = 1, and consider a tree T
with n = k + 1 internal nodes. Let u be a internal node in T with only
leaves as sons. There must be at least one such node. Let T’ be T with u
replaced by a leaf.

We first establish the following:

Claim: Adding an internal node « to a T ' leads to minimal RCOST if and
only if the resulting tree is also minimal COST.

Proof of Claim: Consider T* in Figure 3.5, where
dist(p,u) = 1 + dist(p, v). Replace u by w to give T,’ and v by w to given
T,'. We prove that ERCOST(T,") < ERCOST(T,").

Figure 3.5

Now ERCOST(T,’) — ERCOST(T,') = difference in cost with respect
to the two paths p and ¢ in T’ and T,’. The contribution of all other nodes

12 Flajolet, Ottmann, and Wood

is the same in each tree. Therefore we obtain:
ERCOST(T,') — ERCOST(T,’) = 2(m+1) + 2(n~2m—1) +
(difference between nedes on p and q,
where m is the number of internal nodes on path q.)
ERCOST(T,") — ERCOST(T,") > 2(m+1) + 2(n—2m=1}+2m,

=2n >0, asdesired O

Returning to the proof of the Theorem if T is minimal height then T has
minimal RCOST by the claim. In this case, there is a minimal height T’
obtained by deleting an internal node of T. On the other hand, if T has
minimal RCOST then T ' obtained by deleting a node » in 7 must also have
minimal RCOST. This follows by a similar argument to the one in the proof
of the claim. O

4. AVERAGE CASE ANALYSIS OF FCOST

Most families of trees of use in computer science can be generated by
the iterative application of a set of constructors to trivial trees. Examples
include planar trees, called simply trees by Knuth (1968), labelled non-planar
trees, and unlabelled non-planar trees, and tournament trees together with
their binary search tree counterparts.

Following Flajolet (1981) the situation can be informally described as
follows: Given a family of trees F, we have for each integer r = 0 a con-
structor K,: F" + 2F, that constructs a set of trees {which in some cases con-
sists of a single element) from an r-tuple of trees by appending a root to
them and possibly reorganizing the labels. The set of trees F then satisfies
the equation

F=3K(F,F,... F).
r=0
This recursive definition can, in the cases that we consider here, be translated
into an equation over multisets. If we now consider F as a multiset of ele-
ments with multiplicity 1, there exists a set of constant w, = 0 such that
F=3Y o K(F,F,...F)

rp
where the equation is now an equation over multisets, and the K, are

extended to multisets by multi-linearity. In practice, w, = 1 or % For the

classes described above, it so happens that the recursive definitions can be
translated into equations over generating functions. More precisely, let A, B,

Search Trees 13

C, D... be multisets; let A, B,, C,, D,... be the corresponding numbers of
elements of size n, each element being counted with its multiplicity. For ade-
quately chosen generating functions of the type

NORD R WY

where the A, are a reference sequence of real numbers depending on the
classes of trees considered (here A, = 1 or 711!—), the constructors K, have
images: if
E=K,(A,B,C,..),
then the ‘corresponding generating functions E(z), A(z), B(z), C(z)... satisfy
an equation
E(z) = ©,(A(2), B(2), C(2)...)

for some functicnal ®@,. In other words, if a is the morphism that associates

to each multiset its corresponding generating function, then the diagram in
Figure 4.1 commutes.

Kr

A B C ——=

04 o o a

Alz) B(z) Clz}) ———= Ef{2)

3 _
Figure 4.1

Exampies:
a) Uniabelled planar trees

For each r, K,(t,t5, . . ., t,) is the unique tree obtained by appending
aroottory tp, t.

K"
'1"2""""*’1 l‘2"' Ir

The family of all planar unlabelled trees then satisfies the equation
G =73 K.(G, G,... G)

rel

14 Flajnlet, Ottmann, and Wood

valid as an equation over multisets.
If we take as the size of a tree, the number of nodes in the tree, the
morphism « is simply

ala) = A(z) = Eo A"

where again A, is the number of trees of size n in A. The relation
E = K, (ay, a3, a,)

translates into
E(2) = 2A,(2)Ax(2)...A,(2).
Thus the image of the constructor K, is nothing other than a variant of

the Cauchy product.

Let G(z) be the generating function associated with the family of unla-
belled planar trees, then G(z) satisfies the equation:

G(2) = z + 2G(2) + 2G2(2) + z2G3(z) +...,
that is
. z
6 = 1760
whence

11— 4z 1 2n
—5— ad Gy =——=(,)

G(z)=1-
b) Binary trees
These are defined by

B = K0+ Kz(B, B)

K; and K, being as above. It is customary to take the number of internal
nodes in the tree to be the size of a tree. The image of K is less than 1, and
the equation over the corresponding generating function becomes

B(z) = 1 + zB(z).
whence

1- 4z 1 ,2n
— —(,)-

B()=1-~"p— and B, = —

c) Tournament trees

A tournament tree is a binary tree the internal nodes of which are
labelled as consecutive integers starting from 1, in such a way that labels are
to be found in increasing order along each branch, The corresponding

Search Trees 15

defining equation is

T=Ly+ Ly(T, T},
Here L constructs the empty tournament tree and Ly(ry t5), where 1), ¢, are
in T, is the set of those trees formed from ¢ and ¢, by appending a root with

label 1, and by distributing labels from the set [2..[#| +| ;| +1] in a manner
consistent with the ordering in #; and 1,.

Now for a multiset A, the morphism «o is

afA) =3 A, —

z’l
= " onl

The relation
E= LZ(AD Aj)

translates into
E(z) = .!:' Ay(2)A;(2)dz,

and thus the image of L, is the integral of a Cauchy product. There are
clearly n! tournaments of size n, and the exponential generating function

of) = T@) = 3 nl :—

az0 !

which is equal to 1 !

3 satisfies the equation

T() =1+ j‘ T2(z) dz,
0

as is to be expected.

We can, after these preliminaries return to our main theme for which
we need to consider the following three parameters for trees - whether binary
trees oOr tournaments.

(i) The size of the tree is the number of its internal nodes.

(ii) The COST of a tree, which for manipulative convenience we denote by
p(0).

(iii) The FCOST of a tree, which, again for manipulative convenience we
denote by d(1).

COST has the inductive definition:

P(:,/O\:z) =pty) + (0] + p@) + |1,

and similarly for FCOST:

16 Flajolet, Ottmann, and Wood

d(rl/c\:z) =d(t) + d(ty) + 2(p(t) + [1]) (Ie2] + 1) + 2(p(ex) + [22]) (4] +1)

Now define the corresponding multisets for binary trees

SB3=13 |t.t
PB =% p(H).t
DB =% d(1).t
where the 7 runs over B,
And in the same way:
ST=T3 |t|.t
PT =73 p().e
DT = ¥, d(1).1

where now t runs over 7. The inductive definitions of CGST and FCOST
yield the equations

PB = K,(PB + SB, B) + KB, PB + SB)
DB= K(DB, B) + Ko(B, DB)+ K5(PB + $B, B + SB)
+ K,(B + SB, PB + SB)
PT= Ly(PT + ST, T) + Ly(T, PT + §T)
DT= Ly(DT, T) + Lo(T, DT) + Lo(PT + ST, T + ST)
+ Ly(T + 8T, PT + ST) .
It now remains to translate these equations into equations over generat-

ing functions using the schemes cutlined above, and then extract the Taylor
coefficients that give explicit enumeration results.

The equation relative to COST translates into
PB(z) = 2:B(z).(PB(z) + DB(z))
with PB and DB the ordinary generating functions associated to PB and DB,
namely
PB(z) = 3, PB,z" and DB, = ¥, DB, 2"

Azl nz=l
The function B(z) = 3, B,z" is already known; as to DB(Z) have:
ax0
DB(z) = 3nB,z" = ZM -4 (zB(2)) — B(2)

dz dz

The above equation can be solved for PB giving

2:B(z)DB(z) _ 2:B(z)SB(z)

1-2zB(z2) V(i-%)

PB(z) =

Search Trees 17

which makes it possible to obtain the explicit expression for PB,. See Knuth
(1968) for a different derivation.

The equation relative to FCOST reads
DB(z) = 2zB(z)DB(z) + 4z(B(z) + SB(z))(PB{(z) + $B(z))

which again can be solved for DB(z):

4z
DB(z) = —zumme (B(2) + §3 PB(z) + SB(2)).
@ 5] (B(2) @)PB(z) ()
It is to be noticed first that
=4 S |
B(:) + DB(:) = 4 (B()) = T
then
SB(z 1
PB(z) + SB(z) = SB(z) 2z8(z2) +
(2) + SB) = e QaB@) + =)
_ _SB(z)
V=i
Putting everything together, we obtain

4z _ 2 + 2
(1-42) (1-42%2 (1-42)

Hence with the value of the Taylor coefficients:

DB(z) =

n 4z — ndf
[z"] 1= 42)2 n4
n 2 = n
("] 1-az =24
[2"12(1 — 42)"¥2 = (n + 1) (2::12) =2(n + 1)(2n + 2)B,,

the final closed form expression
DB, =4"(n+2) - 2n+ 1)(2n + 2) B,

is obtained.
Now the average FCOST, assuming all B, are equally likely, is simply
DB,
‘Bﬂ

We have seen that the same equations apply to tournament trees with
the labelling constructor L, replacing K,. Translating into generating func-
tions, we have

PT(z) = 2_]" (PT(z) + ST(2)) T(z) dz
)

18 Flajolet, Ottmann, and Wood

Here, PT, ST and DT are now exponential generating functions

PT(z) = 3 PT, -'z{;— etc...,
and
1) = 72—
whence
ST(z) = -(1—_”?

The equation can be solved by differentiating in z, solving the differen-
tial equation without the second term then applying the variation of constant
method. We obtain:

PT(z) = (T—17 2in(l - z) —2],

whose coefficients can be compared to the expression given by Knuth (1973).
This gives rise to DT(z):

DT(z) =2 j. DT(z)T(z) dz +4 j" (PT(z) + DT(2))(T(2) + DT(z)) dz.
) 0

Differentiating again, and substituting values:

dPT(z) _ 2PT(z) 4 1
p 1—z+(1—z)4(21n1—z z).
The equation without the second term has solution 7 so that we set
1-2z
PT(z) = H’L@l)? and substitute in the equation:
bl 4
du(z) _ 8 1 4z

In -
dz (1-2¢ 1-2z (1-2z)?
This can be integrated directly and one finds
8 1 1 12z

i T gy g gl punye

k)

so that
8 1 4 1 12z
In + In -
(-2 1-z (-2 1-z (@1-23
The simplest way to obtain the coefficients PT, is to introduce the series

1
-— n=
H(z) EUH,IZ l_zln g

PT(z) =

Search Trees 19

whose coefficienis are the harmonic numbers
1 1 1
Hn—1+"i"+"3—+...+;,

and express PT(z) as a linear combination of

dH(z) o d°H(z)
dz dz*

H(z),

One easily finds
dH(z) _ 8(2 - z)
dz (1-z)>"

Extracting coefficients we obtain the closed form expression

2
PT(z) = 4 dzgz) +4

PT,
— = 4+ D+ 3)H,, — 4n(3n+5),

that is the average FCOST in a tournament.

We now make use of the following equivalence principle in order to
carry these results over to binary search trees, see Frangon (1979) or Vuille-
min (1980).

The equivalence principle: For any binary tree B,

- let £;(B) be the frequency of appearance of B as the “‘shape” of binary
search trees when all n! sequences of insertions of keys 1,2,...n are
performed;

- let fr{(B) be the number of tournament trees that have B as their
“shape’’.

Then the following equality holds
£1(B) = f1(B).

Thus all parameters over binary trees that are only a function of the shape of
the tree can be evaluated by looking at the corresponding values for tourna-
ment trees. We have just proved:

Theorem 4.1
(i) For binary trees, the average FCOST for trees of size n is
(n + 1)(n + 2) (@/CM) = 2n + (20 + 1)

(ii) For binary search trees the average FCOST of trees of size n is
4(n + 1)(n + 3) H, — 4n(3n + 5).

20 Flajolet, Ottmann, and Wood

5. AVERAGE CASE ANALYSIS OF RCOST

Again for manipulative convenience we denote RCOST (r) by v(r) and
let

"(t) = 3 d(q’ X t) (5'1)

qint

where d(g, x, t) denotes rdist (g, s) in t, where val(s) = x.
We are interested in the quantities

Py = 23 d(g, x, 1) (5.2)
P =% X dla,x1) (5.3)
|t =n gins

where in this last summation (5.2), x ranges over all leaves of ¢+, These
quantities are such that

A 1 -

n? Pn n(n+1) Pn

represent the average costs of a search with a random entry point, with a
result either positive (5.2) or negative (5.3). We shall dzal only with (5.2),
hence we will write p,, for p,f in the following.

We need to give for an inductive definition for v. As usual let ¢ be decom-
posed into

tl tzwith Itll =1 and Itzl =1nj;
we say that an internal node of ¢ is of type 1 if it belongs to 1, of type 2 if it

belongs to ¢, and of type 0 if it coincides with the root, and similarly for
values x.

Also let
v P =3P, x, 0= 3 dq,x 0 G4
Pl
We decompose (5.1) in all possible ways
=30+ E"+2D+E+EM+EH+EH+ 0+ T,
where terms have been grouped for later application of symmetries.
By definition we have
=%d(g, 5, 1) = 13 (5.5)
and we consider separately 51,510, 5 1 apd 5212,
First for v°1, we find:
v =y + p(n) (5.6)

Search Trees 21

A search of type 01 will first visit the root (which can happen in n; ways
when all nodes of ¢; are searched), then proceeds as in the conventional
search of ¢;.

As to v1°, we observe that the search for the root starting from an entry
point g in 1 will result in following the rightmost branch from g and ulti-
mately visiting the root. Thus

Vi) = 3 rblq, 1)) + my
gint

where rb(q, 1) is the length; measured as the number of internal nodes; of
the rightmost branch from ¢ in . Writing

w(t) = 3 rb(g, 1) (.7

qins
(we shall later return to w), we find
Vi) = w(t) + ny (5.8)

The case of v!! is simple: we wish to sum over all pairs of nodes in t;
the cost of a search; this is precisely v(¢;), therefore:

V1) = v(ry). 5.9)

Lastly we deal with v!2: a search from an entry point ¢ in ¢; with an
exit point in #; will follow the rightmost branch of g in ¢;, then go through
the root of ¢ and ultimately descend in ¢;. Thus:

Vlz(‘) = 3 (rb(q, 1) + 1 + dist{root(ty), x)

ginty
tingy

vi2(e) = nygw(ty) + nyny + nyp(r) (5.10)

Summarizing the information gathered in (5.5)-(5.10) and using obvious
symmetries we find that:

vl = 14 [ng+ p(sy) + ny + play)]
+ [w(rg) + ny + w(ey) + ny} + [v(t) + v(tp)]
+ [npw(ty) + nyny + nyp(e) + mypwlty) + nyny + nop(ty)].
or, re-arranging the terms slightly:
v(8) = v(t) + v(ty) + 2n + 2nyny — 1 (5.11)
+ (ny+ Dp(t)) + (ng + Dpey) + (n + Dw(ty)
+ (ny + 1) w(ty)

This is the main equation. Recall that the inductive equations for p
have been given in Section 4 (as well as the corresponding averages); as to
w, equation (5.7) leads to

22 Flajolet, Ottmann, and Wood

w(t) = w(ty) + w(ty) + rb(1), (5.12)
and rb itself satisfies
ro(t) = rb(1y) + 1. (5.13)

We now translate these equations in terms of generating functions; for
this we use

1
S "= —2— and n+ 2= ———
b a - 2)? ,.%,() @1 - z)?
and with obvious notation, (5.11) becomes:
dv(z) 2 2 272
= v(z) + + 5.14
dz 1-z @ a-2° a-* (514
1 2z 2z
. + P(z) + wW(z) .
1= 2 a- 2)2 (2) a- z)2 ()
Similarly (5.12) becomes:
M = Ml + RB(Z), (5.15)
dz 1-z
and RB(z) can be obtained from (5.13):
dRB(z) _ RB(z) + 1
dz 1=z a-2?"
By solving this we derive the result
RB(z) = 70— log(1 —)" (5.16)

which is equivalent to the classical fact that a tournament of size n has an
average of H, = 1 + o teet ;1; nodes on its rightmost branch.
Now the differential equations (5.14) and (5.15) can be solved by using
(5.16) and (5.11) can be solved. We first find from (5.15) that
_ 2z 1 a1
w(z) = —-—-(1 g TS log(1 - 2) (5.17a)
whence
W,=2n-—H, (5.17v)

We can now solve {5.14): V is the solution of an equation of the form

V' = 1__:ZV+r(z),
whence, by variation of constants, for some X:
B 1 z 2
V=———7I[K+ | r(z)(1 — 2)<dz].
T K [0 - 2 el

Search Trees 23

The initial condition V(0) = 0 implies X = 0 whence

V(z) = (1-1—,)2-[()1 - 7). (5.18)

For polynomials ® and §, we can write

_ _R(2) 5(z2) ox(] — -1
r(z) = -7 + (-2 log(1—2)"".

So as to avoid tedious calculation, we are content with the first two terms in
the expansion of V,. We have:

V() =

R p S(1)
+
(1 - z)? { 1-22% (-2?
p -1 dz log(l — z)~1
log(1 — z)7! + O(—8 .
[rogt = 7T + O)
The “error” terms (valid around z = 1) only represent effectively com-

putable functions which we do not wish to evaluate here. We notice that
R(1) = 4 and (1) = 4. Intcgrating and simplifying, we find

Vo= o)3 1og(1—:)“1+0(—°&Ll) (5.19)

Now the n-th Taylor coefficient of V(z) is:
4 - log(1 — 2)~!
V, =" ——logl —)" 1+ "] O
» = [2"] (1_2)3 g(7) [z"] O((1_2)2)

and the last term can be seen to be O(n log n) (this either follows from the
explicit form available for this general term or from a Darboux-like
theorem). Equivalently

v, = [z"] [~log1 -)71 = 721+ O(n log n)

=(n+1)(n+2)2H,49~ 3(n+)(n + 2) + O(n log n),

so that finally we have:

Thecerem 5.1 For binary search trees, the average RCOST of trees of size n
is;

20+)(n+2)H, ~ 3(n + 1)(n + 2) + O(n logn) .

Therefore the average cost of a (random) successful search with a random entry
point is:

2H, — 3+ 0(19;‘-1))

24 Flajolet, Ottmann, and Wood

It is to be noticed that our method can also provide a closed-form
expression (as a rational combination of H,, and n) if a more precise estimate
is required.

6. CONCLUDING REMARKS

The average COST for binary trees of n nodes is:
(n + D@IEM) - Gn + 1) (6.1)

and the average COST for binary scarch trees of n nodes is:
2(n + 1) H, - 3n. (6.2)

Recall that for COST these values should be divided by n to give the expected
number of nodes visited in one search, and for FCOST and RCOST the
corresponding values should be divided by n? to give the expected number of
nodes visited in one search.

Comparing (6.1) divided by » with Theorem 4.1(i) divided by n? and
comparing leading terms we find that the ratio of the average distance apart
to the average distance from the root is, approximately:

n+2
B

(6.3)

In other words the average distance between nodes in a binary tree of n
nodes differs by only 2/» from the average distance from the root.

A similar comparison of (6.2) with Theorem 4.1(ii) yields

2n+3) (6.4)

n

that is the average distance between nodes in a binary search tree of n nodes
is approximately twice the average distance from the root.

Finally comparing (6.2) with Theorem 5.1 in a similar manner yiclds:

n+2
E— (6.5)

once more. That is the extra distance involved in a root-reset search of a
binary search tree with n nodes is, approximately, 2/a times the average dis-
tance from the root.

Of these comparisons perhaps (6.5) is the most surprising result. How-
ever it confirms Fairley’s partial results, namely a root-reset search visits at
most 2 extra nodes, This follows from the observation that most nodes are
within 2 levels of the leaves. Comparison (6.4) similarly reflects the obser-
vations that most nodes are close to the leaf level and, on average, n/2 will
be found in each subtree of the root.

Search Trees 25

However the expectedness or otherwise of these results is not the focal
point of this paper. Rather it is that the statistics can be analyzed using the
general approach of Flajolet (1981), to provide these results. These analyses
confirm the utility of Flajolet’s methodology.

Let us mention some open problems before closing this paper. Two
mechanical issues are the evaluation of p, (see Section 5), and the evaluation
of the average RCOST for binary trees of n nodes (c.f. Theorem 4.1(i). A
nontrivial problem is the average case analysis of the diameter of a binary
tree and binary search tree. Only recently, in Flajolet and Odlyzko (1982),
has the average height of a binary tree of n nodes been determined. The
average height of a binary search tree remains a tantalizing open problem, It
appears to us that average diameter is even more difficult to determine than
the average height.

REFERENCES

Beausoleil, W.F., Brown, D.T., and Phelps, B.E., Magnetic Bubble
Memory Organization, IBM Journal of Research and Development 16 (1972),
587-591.

Bongiovanni, G., and Wong, C.K., Tree Search in Major/Minor Loop
Magnetic Bubble Memories, IBM Yorktown Research Center Report RC
8160, 1980.

Bonyhard, P.I., and Nelson, T.J., Dynamic Data Reallocation in Bubble
Memories, The Bell System Technical Journal 52 (1973), 307-317.

Chandra, A.K., and Wong, C.K., The Movement and Permutation of
Columns in Magnetic Bubble Lattice Files, IEEE Transactions on Computers
C-27 (1979), 8-15.

Chung, K.M., Luccio, F., and Wong, C.K., A Tree Storage Scheme for
Magnetic Bubble Memories, IBM Yorktown Research Center Report RC
8116, 1979.

Chung, K.M., Luccio, F., and Wong, C.K., A New Permutation Algo-
rithm for Bubble Memories, Information Processing Letters 10 (1980), 226-
230.

Fairley, R.E., Random EnTry Searching of Binary trees, University of
Colorado, Boulder, Computer Science Report CU-CS-035-73, 1973.

Flajolet, P., Analyse d ‘Algorithms de Manipulation d ‘Arbres et de Fichiers.
Cahiers du B.U.R.0., nos. 34-35, Paris, 1981.

Flajolet, P., and Odlyzko, A., The Average Height of Binary Trees and
Other Simple Trees, Journal of Computer and System Sciences 25 (1982),

26 Flajolet, Ottmann, and Wood

171-213.

Francon, I., Combinatoire des Structures de Données, Doctoral dissertation,
Université de Strasbourg, 1979.

Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental Algo-
rithms, Addison-Wesley Publishing Co., Reading, Mass., 1968,

Mihlbacher, J., private communication, 1982.

Rosenberg, A.L., Data EnCeding and Their costs, Acta Informatica 9
(1978), 273-292.

Rosenberg, A.L., and Snyder, L., Bounds on the Costs of Data Encodings,
Mathematical Systems Theory 12 (1978), 9-39.

Standish, T.A., Data Structure Techniques, Addison-Wesley Publishing Co. ,
Reading, Mass., 1980.

Vaishnavi, V.K., and Wood, D., Encoding Search Trees in Lists, Interna-
tional Journal of Computer Mathematics 10 (1982), 237-246.

Vuillemin, J., A Unifying Look at Data Structures, Communications of the
ACM 23 (1980), 229-239.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

