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ABSTRACT

One way of solving a system of linear equations Az=5, where A is an m by n matrix, is
to use a QR-decomposition of A (or ATt m<n). In this thesis we consider the problem of
computing the decomposition when A is large and sparse. The approach we use is based on row
elimination using rotation matrices. The columns of A are permuted so that the triangular
matrix R in the orthogonal decomposition is sparse, and the rows of A are arranged so that the

cost of computing R is small. Then the rows of A are eliminated one at a time to generate R.

A graph model for studying the row and celumn ordering p}oblems is proposed. The
model allows us to predict the worst possible nonzero structure of R and to relate column and
row orderings. Experimental results indicate that the model is a good one in the sense that the
predicted structure of R is very close to the actual structure. The graph-theoretic results
obtained provide us with a mechanism of constructing good row and column orderings, and of
identifying good row orderings for some column orderings. Two column orderings based on
dissection techniques are examined and the induced row orderings are characterized. For each of
the column orderings we investigate in this thesis, numerical experiments show that there is in

general a saving in execution time when the induced row ordering is used.

The methods described above assume that the matrix ATA is sparse. There are
situations in which ATA is dense even though A is sparse. They often occur whea A contains
some dense rows. In those instances, it may be necessary to withhold the dense rows from the
orthogonal decomposition. Algorithms for solving linear systems using the withheld rows and the

orthogonal decomposition are presented.
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CHAPTER 1

INTRODUCTION

1.1. Overview

Large sparse systems of linear equations

where A is an m by n matrix and b is an m-vector, arise in many engineering problems and
scientific computations. Examples include underdetermined systems (m<n) in linear
programming problems [41,60, 67|, overdetermined systems (m>n) in statistical computations
and geodetic adjustment calculations [20,46,54], and square nomsingular systems (m=n) in

structural designs [1,5,6]. As we describe in the next section, one way of solving a linear system

. R ‘
involves decomposing A “into either a product Q[ 0] where @ is an m by m orthogonal matrix

and R is an n by n upper triangular matrix (for overdetermined and square systems), or a
product {L O}Q where @ is an n by n orthogonal matrix and L is an m by m lower
triangular matrix (for underdetermined systems). These orthogonal decompositions will
sometimes be referred to as the QR -decomposition and L Q-decomposition respectively. Note that
the L @-decomposition of a matrix A can be obtained by computing the QR -decomposition of the
iranspose of A. Thus in the following discussion we can assume that we always compute the

QR -decomposition of an m by n matrix A, with m>n. We assume that A has full rank.

Orthogonal decompositions have been used extensively when A is small and dense,
especially in the solution of overdetermined systems, because it is well known that such a
decomposition is numerically stable and the condition of the upper triangular matrix R is the

same as that of A [21,44,55,74]. The storage requirement and the operation count in the
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decomposition are:respectively O(mn) and O{mn®). See [71]. When A is large, the amount of
space and the time required to compute the QR-decomposition may be prohibitively large.
Fortunately, A is usually sparse if it is large; thus, sparsity should be exploited in order to

minimize space and execution time.

The QR -decomposition can be obtained by reducing A column by column, or row by row.

R
In the first approach, a sequence of m by n matrices A%=A, A, A% ---, A"=[O] is

computed, where A® is obtained from A% by annjhilating the nonzeros below the diagonal
element in column % of A*? using orthogonal transformations, such as Householder

transformations or rotation matrices (see [71]). That is, suppose A* is partitioned into
L Rey Spy
“lo )"

where R, , is a (k-1) by (k-1) upper triangular matrix, S;_, is a (k-1) by (n-k+ 1) matrix, and
Z*'is an (m-k+ 1) by (n—k+ 1) matrix. Then an m by m orthogonal matrix @, is comstructed

8o that

741 By S 3
AT =10 z*)=4 >

where R, is a k by k upper triangular matrix, S; is a & by (n—k) matrix, and A* is an (m—k) by

{n-k) matrix. See [71] for more details. The matrix A*

is usually called the active portion or
partially reduced matriz in step k. For large sparse problems, such an operation usually
introduces fill-in in A*; that is, zT; may become nonzero even though A—;" could be zero. Here
A denotes the (i,j)-element of A*. Note that some of the filkin may eventually be annihilated.
As a result, the number of nonzeros in R may be much less than that in the intermediate matrix
A}, For efficient implementation of sparse QR-decomposition, a flexible scheme (a so-called
dynamic storage scheme) must be used so that allocating space to accommodate the intermediate

fill-in in A* and the nonzeros of R, and deallocating space when a nonzero is annihilated, can be

done easily. The overhead in indexing and manipulating the pointers could be large, both in
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terms of space and time. In [17} the @R -decomposition computed using this approach was used
to solve sparse overdetermined systems. Empirical results comparing this method with other
direct methods (including the method of normal equations and a method based on Gaussian
elimination) were provided and they suggested that the use of sparse QR -decomposition could be
more expensive than the other direct methods. Because of the observations above, we do not

consider this approach in detail.

In the row by row approach, a sequence of n by n upper triangular matrices R°=0, R?,
R%: ---, R™=R is computed, where R* is obtained from R* and the k-th row of A. A
description of the algorithm is given in Chapter 2. The basic idea of this approach was given in
[22] and a movel implementation was described in [25]. This approach is attractive for large
sparse problems for the following reasons. First, only one triangular matrix and one row of A are
needed during the computation. It is not necessary to store the rows of A in the main storage.
They can be stored on secondary storage and read in one at a time. Second, assuming exact
cancellation does not occur, one can show that any intermediate fill-in in B* will remain nonzero
in the final upper triangular matrix R. Third, it can be shown that, in the worst case, the
nonzero structure of R is identical to that of the Cholesky factor of the symmetric positive
definite matrix ATA. Furthermore, it is well known that the structure of the Cholesky factor of
ATA can be determined from that of ATA. This means that one c¢an set up a storage scheme (a
so-called static storage scheme) for R before any numerical computation begins. Storage
allocation and deallocation are not necessary during the numerical computation and the overhead
in manipulating the pointers is small. {Detailed discussions can be found in Chapter 2.) It should

be noted that the m by m orthogonal matrix @, which is large and usually dense, is not saved.

Recently George, Heath and Ng have compared three direct methods for solving
overdetermined systems: the method of normal equations, a direct method based on Gaussian
¢limination, and a method based on the QR-decomposition computed using the row by row

approach. They found that the method based on QR-decomposition is better, both in terms of



storage and execution time required, than the method based on Gaussian elimination. In fact,
both the method of normal equations and the QR -decomposition approach are implemented using

the same amount of space. See [26] for details.

Another important aspect of the row by row approach is that one can preserve sparsity.
We pointed out that the structure of R is the same as the structure of the Cholesky factor of
ATA. It is also well known that reordering the rows and columns of ATA may affect the
sparsity of R if ATA is sparse. It can be shown that a symmetric ordering of ATA corresponds
to a column ordering of A. Thus one can choose a column ordering so that the corresponding

upper triangelar matrix R is sparse.

An associated problem is whether reordering the rows of the sparse matrix A has any
effect on the computation of the QR-decomposition. Experience has shown that even though
reordering of the rows of A does not affect the structure of R, it may affect the cest (or fime) of

the computation. Relatively little is known about this problem.

In this thesis we study the problem of reordering the rows in the computation of sparse
QR -decomposition using the row by row approach described in [25|. We investigate the
relationship between row and column orderings. The results obtained allow us to derive ‘‘good”

row orderings for some given “good’’ column orderings.

Note that a basic assumption we have made is that ATA is sparse. Unfortunately, it is
very easy to construct examples in which A is sparse but ATA is dense. However, this usually
occurs when some of the rows of A are relatively dense. In the last part of this thesis we derive

algorithms for handling this situation.

In Section 1.2 we review how linear systems can be solved using orthogonal
decompositions. In Section 1.3 we provide a brief survey of the literature on computing a sparse

orthogonal decomposition. An outline of the thesis is then given in Section 1.4.
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1.2. Algorithms for solving linear systems using orthogonal decompositions
In this section we review some basic algorithms for solving the system of linear equations
Az =1 .

using ae orthogonal decomposition of the coefficient matrix A. We assume that A is m by n and
has full rank. Since the solution is computed using finite-precision arithmetic, the computed
solution is, in general, not the same as the ezact solution. The accuracy of the computed solution
depends on the machine number system and a quantity known as the condition number of the
coeflicient matrix A [74]. The condition number of A, denoted by cond(A), is a measure of the
sensitivity of the computed solution to perturbations in the coefficient matrix and the right-hand

side vector. The Euclidean norm will be used throughout this thesis.

Underdetermined systems (m < n)

The linear system Az=>) is always consistent, but it has an infinite aumber of solutions.
One of the solutions can be obtained by the following method. Suppose a QR -decomposition of

A is given by
a=g{F 5},

where & is an m by m orthogonal matrix, K is an m by m upper triangular matrix, and 5 is an

m by (n-m) matrix. Then the linear system can be written as

(F 5} =a%

£31
Partition z=lz ], where z, and z, are m- and (n-m)-vectors respectively. Then the linear
2

system becomes
(z N m L5 a7
‘R S’ 2, = Rz + Sz,= Q" & ,

and a solution to the underdetermined system is given by



2, =R"'q"
and ‘
2,=0 .
In some situations, one may prefer to find the solution that has the smallest Euclidean

norm, the so-called minimal b-solution. One can show that this minimal L-solution, which is

unique, is given by

T=AT(AAT} Y .
See [12]. Since A has full row rank, the symmetric matrix AAT is positive definite, and has a
Cholesky decomposition AAT=LL7, where [ is an m by m lower triangular matrix. Thus the
m-vector y=(AAT)b can be obtained by solving two triangular systems LL Ty=. However, it
is well known that the computed AAT may be quite different from the actual AAT, because severe

roundoff and/for cancellation may occur, and thus one should avoid computing AA T explicitly. A

more stable method can be derived using an L @Q-decomposition of A [41,60, 67].

Suppose an L @-decomposition of A is given by
=f ]
A= ll’ o jQ ,

where @ is an n by n orthogonal matrix and L is an m by m lower triangular matrix. (Note

that this decomposition can be obtained from a QR -decomposition of A T.) Then we have
T
r_ o Yoorll o)
AA \L OJQQ[O]—LL ,
and the minimal /-solution ¥ is obtained by first solving two triangular systems

LLTy =14

and then multiplying y by A7,
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Note that the accuracy of the computed solution y depends on cond(LLT) [74]. Since
AAT=LLT and cond(AAT)=cond(A)* (see [71]}, the accuracy depends on cond{A). Thus,
intuitively, the accuracy of the computed minimal irsolution would depend on cond[A}Z.
However Paige has shown that, as long as A is not poorly conditioned (more precisely,
¢ cond(A)<1, where ¢ is the machine unit roundoff error), the accuracy of the computed solution

¥ depends essentially on cond(A ) [60].

Overdetermined systems (m > n)

In general the linear system Az="» is inconsistent; that is, it may not have a solution. In
this case we usually find the unique n-vector Z such that the Euclidean norm of the residual

r=b-AZ is minimized. This is the well-known least squares problem

min[| Az 5 ||, .
7

Suppose a QR-decomposition of A is given by

a=dlf).

where @ is an m by m orthogonal matrix and R is an n by n upper triangular matrix. Because

the Euclidean norm is preserved under orthogonal transformations, we have
R R
Il Az=b =i Q[o}-"“b lz=1 [o]“qrb 2 -

¢
Let @7 b=[ d]’ where ¢ and d are n- and (m-n)-vectors respectively. Then the unique least
squares solution T is given by the solution to the triangular system
Rz=c¢ .

This approach is due to Golub [44]. The accuracy of the computed solution depends essentially

on cond(R) which is the same as cond(A).
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In some situations, several problems having the same coefficient matrix A, but different
right-hand side vectors, may have to be solved. Thus the orthogonal matrix ¢ must be saved so
that, for each new right-hand side §, Q75 can be formed. As we have noted in the previous
section, we assume that the orthogonal matrix @ is not computed explicitly, and the orthogonai
transformations are not saved. Thus the solution scheme above cannot be used in those instances.

An alternative is to use the normal equations

We could compute the least squares solution by computing the Cholesky decomposition of ATA
and using the Cholesky factor to solve for . As in the case of underdetermined systems, it may
be undesirable to compute ATA explicitly because severe roundoff and for cancellation may occur.

However, it is not necessary to form AT A when we have a QR -decomposition of A since
ra _ (ot A YorolBl_ or
AA—(R OJQ QIO]—RR

Hence the system of normal equations can be written as

Note that the orthogonal matrix @ is only needed in the computation of R; it is not needed in

solving the linear system.

It should be pointed out that, in the second scheme, the accuracy of the computed
solution depends on cond(RTR)=cond(ATA). That is, the accuracy depends on cond(A)
instead of cond(A). Another interesting note about the second approach is that it can be adopted

to handle certain partitioned least squares problems very easily, as we discuss in Chapter 6.

Square systems {m = n)

The linear system Az=»b, where A is square and nonsingular, may be treated like an

overdetermined system. That is, if a QR -decomposition of A is given by



A=gQR ,

where @ is an n by n orthogonal matrix and R is an n by n upper triangular matrix, then the

unique solution is given by the solution to the triangular system
Rz =QTs .
1.3. Survey of previous work on sparse orthogonal decomposition

In this section we provide a brief survey of work that has been done on the orthogonal

decomposition of sparse matrices. An excellent survey can be found in [9].

Chen and Tewarson were among the first ones to study sparse orthogonal decomposition
[11,73]. They were interested in generating an m by »n matrix @ from a sparse m by n matrix
A so that the columns of @ are orthonormal. Their approach was to compute the columns of @
from the columns of A using the Gram-Schmidt process, and the columns of A were permuted so
that the matrix @ was sparse. Computation using Houscholder transformations was also

considered.

Duff considered the problem of computing a QR -decomposition of a sparse m by n
matrix using rotation matrices {15]. He compared several strategies of choosing the pivot element
and reordering the rows in the active portion so that the amount of intermediate fill-in could be
minimized. Based on numerical experiments, Duff suggested that the pivot column should be
chosen so that it had the minimum number of nonzeros in the active portion. Then, a row
ordering was chosen so that the fill-in was minimized when ofl-diagonal nonzeros of the pivot
column were "annihilated. It was assumed that the anmihilations were carried out column by

column.

Kaufman recently considered the problem of applying Householder transformations to the
columns of a sparse matrix [53]. She rearranged the computation so that the sparsity of the
coefficient matrix could be exploited and the cost of the computation was small. The

Householder transformations were stored explicitly. The problems of row and column orderings
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were not considered.

In the papers we have considered so far, the computations were assumed to be carried out
column by column. However, there is no reason why the QR-decompﬁsition of a matrix cannot
be obtained by applying rotation matrices to its rows. This approach was proposed by Genileman
for sparse matrices [22]. He suggested that the upper trapezoidal form should be “built up
gradually’”” from the rows of the given sparse matrix. Several strategies for ordering the rows so
that the amount of fill-in was small were described. Gentleman also pointed out that this
approach would bg attractive for very large matrices, since the rows could be stored on secondary
storage and they were read in one at a time. This approach is useful because the matrix A is

obtained one row at a time in many applications.

Gill and Murray also considered the elimination of rows using rotation matrices [42].
They proposed a new way of carrying out the QR -decomposition where only a sequence of sparse
vectors was stored. The orthogonal matrix and the upper triangular matrix were represented in

product forms. The choice of row and column orderings was ignored.

As we have mentioned in Section 1.1, George and Heath described an eflicient algorithm
for computing the QR-decomposition of a sparse matrix in {25}, based on the idea proposed in
[22]. Column ordering was chosen to reduce the number of nonzeros in the upper trapezoidal
form. Their algorithm is attractive for large sparse problems because a storage scheme can be set
up for the upper triangular matrix before the numerical computation begins and the sparse
coefficient matrix can be stored on secondary storage. The orthogonal matrix was not saved.
Even though some experiments were provided to illustrate the effect of row ordering on the
computation time, the problem of finding a “good’’ row ordering problem was not investigated in

detail.

George, Heath and Plemmons have implemented the algorithm of [25] for the case when

the upper trapezoidal form is too large to be stored in main storage. See {27] for details.
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Finally, Zlatev recently compared two pivotal strategies in sparse orthogonal
decomposition using rotation matrices [77]. The paper is similar to [L5] in nature. One of the
pivotal strategies was the one recommended in [15], and the other one was based on some ideas
proposed in [22}. The ordering decisions to be made in both strategies depended on the structure
of the active portion of the matrix and the orthogt;nal transformation was carried out column by

column.

1.4. Outline of thesis

The purpose of this thesis is to study the problem of ordering the rows in the QR-
decomposition of a sparse matrix using row elimination, and to derive algorithms for handling
dense rows in the solution of the m by n linear system Az==} (or dense columns in the case of
underdetermined systems). In Chapter 2 we review the algotithm of George and Heath for
computing the QR-decomposition of a sparse matrix and some basic results are presented. We
show why the computation can be carried out using a static storage scheme. The effects of
reordering the rows and columns of the coeflicient matrix A are examined. A storage scheme

suitable for row elimination is then described.

Chapter 3 is devoted to developing a graph model that provides us with a systematic way
of studying the row ordering problem. The model can be used to predict the worst possible
nonzero structure of the upper triangular matrix R obtained in the @R-decomposition. The
decomposition process can also be expressed as a sequence of simple operations on graphs.
Graph-theoretic results relating row and column orderings in sparse QR-décomposition using row
elimination are presented. These results are important, since they provide us with some insight
into how to construct good row and column orderings, and in some cases they allow us to identify
good row orderings for a given column ordering. The matrix version of some of the graph-
theoretic results appears in [38]. A model problem that we use to compare the quality of the
proposed row orderings is then introduced. We prove that our graph model predicts correctly the

nonzero structure of the upper triangular matrix R for the model problem. In the last section of
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Chapter 3, we consider a restricted class of problems for which the storage requirement and the
operation count can be derived if the column and row orderings proposed in Chapters 4 and 5 are

used.

Based on the graph-theoretic results obtained in Chapter 3, we propose in Chapter 4 a
column ordering (width-2 nested dissection ordering), which is similar to the well-known nested
dissection ordering [23, 28]. This ordering tends to minimize the number of nonzeros in the upper
triangular matrix R. An interesting and important result is that the width-2 nested dissection
ordering induces simultaneously a row ordering which reduces the cost of computing the QR-
decomposition. We show that the number of nonzeros in the final upper triangular matrix R is
optimal (in the order of magnitude sense) for a model problem, and we derive the cost of
computing B. We alse describe how a width-2 nested dissection ordering can be generated
automatically for general sparse problems. Numerical experiments are provided to demonstrate

the effectiveness of the induced row ordering.

Even though width-2 nested dissection orderings are effective for most problems, the space
requirements and execution times for some general sparse problems can be large. In Chapter 5 we
show how a good row ordering can be characterized in a width-1 nested dissection column
ordering, which is a better column ordering (in terms of storage requirements) than a width-2
nested dissection column ordering. (This is especially true in general sparse problems, assuming
widtk-1 and width-2 nested dissection orderings do exist.} We show that, for the model problem,
the complexities of width-1 2nd width-2 nested dissection algorithms have the same order of
magnitude. We provide numerical experiments which confirm that in general width-1 nested
dissection orderings are better than width-2 nested dissection orderings (in terms of storage
requirements and execution times). For some general sparse problems, the improvements are

large.

It is well known that the minimum degree algorithm [33,34,64] is a very effective

(beuristic) algorithm for reducing fill-in in the Cholesky decomposition of large sparse positive
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definite matrices, even though very few re;mlts about its behavior have been obtained. Since the
structure of the upper triangular matrix R depends on the structure of the symmetric matrix
ATA and on the choice of the symmetric ordering, one can use the minimum degree algorithm to
obtain a row and column ordering for ATA. This provides a column ordering for the QR-
decomposition of sparse matrices. At the end of Chapter 5, we present some empirical resuits
which suggest that a minimum degree ordering is also a width-1 nested dissection ordering. Thus
a good row ordering can be characterized in a manner similar to that in width-1 nested dissection.
Numerical experiments are provided to show that the time required to compute the QR-

decomposition is smaller when the proposed row ordering is used.

Throughout the discussion we assume that the matrix AT A is sparse if A is sparse. This
is usually true. However there are examples in which AT A is dense even though A is sparse, and
in these cases the upper triangular matrix R will usually be dense. This often occurs because a
few of the rows of A are relatively dense. One way to handle this situation is to withhold the
dense rows and compute the QR-decomposition of the remaining sparse portion; then the sparse
upper triangular matrix and the withheld dense rows are used to solve the given linear system.
We refer to the technique used in the solution process as the updating technique. In Chapter 6 we
derive some updating algorithms for solving the three types of linear systems. Some of these

algorithms appear to be new.

All numerical experiments were carried out on an IBM 4341 and single precision floating-
point arithmetic was used. The programs were written in ANSI FORTRAN and compiled using
the IBM Extended Optimizing FORTRAN Compiler. Times were reported in seconds. Some of
the routines were taken from SPARSPAK, a FORTRAN package for solving sparse positive

definite systems [30, 37].

The analyses given in Chapters 4 and 5 were done using MAPLE, an algebraic

manipulation system developed at the University of Waterloo [19}.



CHAPTER 2

ROW ELIMINATION USING ROTATIONS

In Chapter 1 we saw that systems of linear equations can be solved easily and stably using
an orthogonal decomposition of the coefficient matrix. However this approach will mot be
attractive for large sparse problems unless efficient ways are available for computing such a
decomposition. In this chapter we describe an efficient algorithm for reducing a sparse matrix to
upper trapezoidal form using orthogonal transformations. We also look at thev effects of

permuting the columns and rows of the sparse matrix on such an orthogonal decomposition.

2.1. Basic algorithm for row ellmination using rotations

In this section we consider the reduction of a sparse m by n matrix A, with m>n, to
upper trapezoidal form using- orthogonal transformations. We assume that A has full column
rank. The reduction algorithm is due to George and Heath [25] and it uses so-called rotation

matrices (or simply rotations) which are defined in the following lemma [43].

Lemma 2.1.1
o
Let v=[ ﬁ] be a vector of length 2. Let y== || v || ;=va’+ &°. If 7540, then there exists

c 8 T
an orthogonal matrix (or rotation matrix) G=[ o —c] such that Gv= [0], where c=-$— and

= -é_
it

Note that rotation matrices preserve the Euclidean norm since || Gv || ,=y=| v ||,

Suppose z7 and yr are two sparse row vectors of length n. Then one way to annihilate a

nonzero element, say y;, in y7 is to construct the appropriate rotation matrix G using z; and y,,

- 14 =
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T
z .
and to form the product G [yT]‘ We call z; the pivot element and z7 the pivol row. Let 27 and

FT denote the transformed row vectors. Consider the j-th elements of Z© and y“r, where j#£i,

I; G [zj] e 8 ][:j ¢z;+ 8Yy
i)~ )T e ey )T Lesmew; ) -
There are two possibilities:
(1) =70
Zi Ui
Now c=———35%0 and s=—xl—
VA Vit y

oceur, both z; and F; are nonzero if either zjory; (or both} is nonzero.

#0. Thus, assuming exact cancellation does not

(2) ==0

Ui
Yi

Now ¢=0 and s= ==1. Thus =y, and ¥i=z;. That is, the two row vectors are

2]
interchanged. In particular, if 2,=0, for 1<k<n, then F=¥ and 7=0.

For future reference, we summarize these observations in the following lemma.

Lemma £.1.2

Let z7 and g,rr be two sparse row vectors of length n. Suppose a rotation matrix is
constructed o operate on z” and y7 so as to annihilate a nonzero element in 97, Let 7 and y’

denote the transformed vectors.

(1) If the pivot element is nonzero, then the structure of the remaining parts of 77 and FT is
the unson of those of z7 and yr.

(2) If the pivot element is zero, then 7' =y T and 77 ==zT.

1]

The first case is illustrated by an example in Figure 2.1.1, where the rotation matrix has been

chosen to annihilate y;.



- 16 -

o X

¢ s ) |7 e sl[x0x x0000x000X

8 —¢ yT=3—c X000 X0x00 0 X 0 X
X0 X X0X00X0X2O0X 2
“loox x0x00x0x0x)T[F

Figure 2.1.1 Example showing fill-in that occurs
when two sparse rows are transformed by a rotation.

Note that when the pivot element is zero, z' and y’r can be obtained without performing
any arithmetic operations. But if the pivot element is nonzero, the number of multiplicative
operations required to compute 7 and Fr is then proportional to the number of nonzeros in the
transformed pivof row. Thus a simple way of measuring the arithmetic cost in the latter case is to
count the number of nonzeros in the transformed pivot row. For example, in Figure 2.1.1, the

cost is therefore 7.

Now consider using such rotation matrices to reduce a sparse m by n {m>n) matrix A
to upper trapezoidal form. Our approach is that the computation begins with an “‘empty” n by
n upper triangular matrix R° (that is, R°=0). Then a sequence of n by n upper triangular
matrices, R', R%, -, R™=R is computed, where R* is obtained from R** by rotating in the
k—th row of A.

Suppose that the first (k-1) rows of A have been processed (or eliminated) to generate

R**. Denote the k-th row of A by a* and its elements by af, 1<j<n. The (i,j }-element of

R*' is denoted by R,-'}‘l. The following algorithm rotates ¢* into R*.
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Algorithm 2.1.1 (row elimination using rotations)

(1) Let p=min{;| af?éo,lSan}. That is, a: is the first nonzero in row .

(2) Use row 5 of R™ as pivot row and R:;] as pivot element to construct a rotation matrix
(see Lemma 2.1.1) to annihilate a:. By Lemma 2.1.2 this may introduce nonzeros (fill-in) in

both a* and row n of R* For simplicity the transformed row and the upper triangular

matrix will still be denoted by a* and R*™! respectively. Note that a: should now be zero.

(3) If " does not contain any more nonzeros, then it has been rotated into R*' (or

eliminated). Otherwise go to step 1.

Note that if row  of R* ! is initially empty, then eliminating a* is the same as transferring the

entire row a* into row 5 of R*! {see Lemma 2.1.2).
After a* has been eliminated, the upper triangular matrix then becomes R*.

The lemma below follows from the fact that only the diagonal elements of R*™ are used

as pivot elements.

Lemma 2.1.8
It Rf=0, then R}=0, for j>i.
¥

An important observation is that the rows of A are eliminated sequentially. Exactly one

¥ and the upper triangular matrix R* are needed in each step. It is not

row of A, say ¢
necessary to store the entire matrix A in main storage at any point during the computation. The
rows of A can be stored in secondary storage and read in one by oné when they are needed. This
approach is particularly attractive when A is large. It will be shown later in this section that for

the sequence of upper triangular matrices, B!, R%, ---, R™, all we need in main storage is a

storage scheme to accommodate B™.

Two examples illustrating the elimination process are given in Figures 2.1.2 and 2.1.3.

Nonzero elements of R* and a* are denoted by X, nonzeros (fill-in) introduced into R * and o*
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due to the elimination of 4* are denoted by +, and all elements involved in the elimination are

circled. Of course elements in 6* denoted by @ are ultimately annihilated.

@ @ @

® © ®
2] (3]

Rt = X X
@

X
X
ot = Ce 0 @ @ 3

Figure 2.1.2 A sparse upper triangular matrix B* where circled elements
are involved in the elimination of a*.
Elements introduced into R* and o*
due to the elimination of a* are denoted by ©.

® & & ®

® © ®

) ®

R* = X
X
X

X

ot = Ce @ ® o]

Figure 2.1.3 Another example which is similar to
the one given in Figure 2.1.2.
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We call the increasing sequence of row indices involved in the elimination of a* its

elimination segquence, which we denote by E"={§f,£§, R ,E,f&}. Here p; is called the length of
B*. In Figure 2.1.2, B*={1,2,3,5}, and in Figure 2.1.3, 8*={1,2,3}. Clearly 1<€5<n for
1< <p;. The following lemma is an immediate consequence of the elimination process,

Lemma 2.1.4

Let E"={£1*,£2", o ,6,;} be the elimination sequence of row a*. Then

(1) &l is the column index of the first nonzero in a*,

(2) € is the column index of the first ofi-diagonal nonzero in row & of R¥, for 1<i<py.
a

Note that the elimination sequence terminates for one of two reasons:
(1) Row 5,’,'* of R¥ has no off-diagonal nonzeros, as in the example of Figyre 2.1.2.
(2) Row 5:; of R* ! is empty. Hence the row being eliminated can be transferred into row 65}
of R*, as in the example of Figure 2.1.3.

In case (1), the elimination sequence is said to be mazimsl. When m >>n, there will usually be
more maximal elimination sequences than non-maximal ones. The following lemma relates the
members of an elimination sequence 8* to the nonzero structure of the upper triangular matrix

R*. 1t is a consequence of Lemmas 2.1.2 and 2.1.4.

Lemma 2.1.5

Let s and t be consecutive members of B¥. Then
(1) Riz0,
(2) if t-8>1, then RE=0 for s<j<t, and

(3) if RE40, then RE£C, for j>¢.
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The next result follows from Lemma 2.1.5 and the definition of maximal elimination

sequences.

Lemma 2.1.6

Let 8* be a maximal elimination sequence and s€8*. If R}5£0, >3, then t€g".
o

Let )\*(p) be the number of nonzeros in row p of R*, Then, using Lemma 2.1.2 and the

definition of cost of arnihilating a nonzero, the cost of eliminating row a* is therefore 2 )\*(p )
peet

That is, the cost depends on the structure of R*, which depends on the structures of R*! and a*.
Note that if the rotation of a row into Rf’l simply amounts to transferring it inte R*, the cost
of such an operation, according to our definition, is also given by the number of nonzeros in the
given row. We adapt this definition for simplicity, and because in most cases time proportional to
the number of nonzeros in the row will be expended, even if it is not done so in performing
arithmetic. In any case, the error introduced in the cost is at most O(min(iA [,121])), and
problems where such a term is significant with respect to the execution time bound are probably
too small or special to be of much practical interest. Here, | M | denotes the number of nonzeros

in M where M is either a vector or a matrix.

So far we have only described how the reduction can be performed using row
transformations. We have not discussed how we can allocate space to accommodate the fill-in
that occurs during the transformation process. If the upper triangular matrices R* are large and
sparse, we want to store only the nonzercs. In order to reduce any overhead in space and time,
we need some mechanism to predict where the nonzeros in R* will be before the numerical
computation begins, so that we can set up a storage scheme to accommodate them. The

following results provide us with a solution to this problem.



-9

Lemma 2.1.7

Assume exact cancellation does not occur. If R,f,-‘lyé(), then Rfﬁé[).

Proof:

Ifi ¢E‘ , then row i of R* will not be used as pivot row in the elimination of a*. Hence

its nonzero structure will not be affected.
If i€E*, then either RE=0 or R,-k;‘l;éo. There is nothing to prove if R =0 because of

Lemma 2.1.3. Thus assume R:75£0. Then by Lemma 2.1.2, after the transformation the

structure of row i of R* is the union of those of row i of B*! and a®. This proves the lemma.

o
Theorem 2.1.8
For 1<k<m, if R}5£0, then R, 5£0.
Proof:
This follows from Lemriuié.ll
o

Hence all we need is the nonzero structure of the final upper triangular matrix R (ie.,
R™). If we can determine the nonzero structure of R, we can then set up a storage scheme for R

and there will always be space to accommodate any fill-in in the elimination of any row.

Note that algebraically the elimination process can be expressed as the following.

R
QaQmy - QIQIA = [0] :

Here @, is an m by m orthogonal matrix which is the product of the rotation matrices used in

the elimination of a*. Let

Q= 19z Orn1@m -

Then we have



A useful observation is that
R R
r, _{pr A\o7 _Mpr 4) _ pT
aTa={r" 0)e q[o]_(e o,[o]_Rlz

Since we assume that A has full column rank, then A7 A is an n by n, symmetric and
positive definite matrix. It is well known that ATA can be uniquely deco-mposed into the product
LT (the Cholesky decomposition), where L is an n by n lower triangular matrix with positive
diagonal elements. Hence R TR is the Cholesky decomposition of ATA, apart from possible sign
differences in some rows of R. It is also well known that given a sparse symmetric positive
definite matrix AT A, the nonzero structure of its Cholesky factor R can be determined from that
of ATA before any numerical computation begins -- a process which is usually known as symbofic

factorization |31,35]. Thus this provides us with a way of setting up a storage scheme for R .

There are two important points to make about this approach. First we are assuming that
the matrix ATA is sparse, even though there are examples in which the matrix A is sparse but
ATA is dense. We will consider this in more detail in Chapter 6. For the moment we assume
that ATA is sparse. Second the structure of R determined from that of ATA using the symbolic
factorization process may be pessimistic. In ot.h4er words, the number of nonzeros in the computed
upper triangular matrix R may be less than that predicted by a symbolic factorization procedure.
This discrepancy is due to the fact that R is computed from A while its structure is determined

from the structure of A7A. More on this can be found in Chapter 3.

We conclude our discussion in this section by presenting the algorithm for reducing A to

upper trapezoidal form.
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Algorithm 2.1.2 (orthogonal reduction of sparse matrix)
{1) Determine the nonzero structure of AT A.

(2) Perform a symbolic factorization on ATA to determine the nonzero structure of B and set

up an appropriate storage scheme for .

(3) Use Algorithm 2.1.1 to process the rows of A to generate R.

2.2, Effect of column ordering

Suppose P, is any n by n permutation matrix. Then post-multiplying the m by n
matrix A by P, eflects a reordering of the columns of A, Denote AP, by A. Let & be the upper

triangular matrix obtained by eliminating the rows of A using rotations. That is,
_ _Ir
A = Q O 3

for some m by m orthogonal matrix @.

Note that R is the Cholesky factor of the symmetric positive definite matrix A* A sinee

RTR=ATA. Furthermore, since
ATA = (AP,)T(AP,) = PNATA)P, ,

ATA is obtained simply by permuting the rows and columns of ATA symmetrically. This
symmetric permutation is identical to P,. Note that |ATA|=]A74 |, but their nonzero
structures are different. Intuitively the structure of R should depend on both P, and the
structure of A. In fact, it is well known that given a sparse symmetric positive definite matrix
ATA, the choice of the permutation matrix P, 'can drastically affect the sparsity of B [36,64].
This is illustrated by an example in Figure 2.2.1 in which B is completely full even though AT A

is sparse. However, after permuting the rows and columns symmetrically, the matrix F is as

sparse as Z‘TX
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51111
14000
ATaA=|10300
10020
10001

2.2361 0.4472 0.4472 0.4472 0.4472
0 19494 -0.1026 -0.1026 -0.1026

R=] o0 0 16702 -0.1261 -0.1261

0 ] 0 1.3318 -0.1700

0 0 0 0 0.8629
10001
02001
ATA=lo0301
00041
11115

1.0000 0 0 0 1.0000

0 14142 o 0 07071

F= 0 17321 O 05774

0
0 0 0 2.0000 0.5000
0 0 0 0 17078

Note: ATA = PT(ATA)P,, where

P, =

- O o O
Q- o o o
oo = oo
[T — -~
(=T =~ =T =

Figure 2.2.1 Examples of fill-in in the Cholesky decomposition
of sparse symmetric positive definite matrices.
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Hence in Algorithm 2.1.2 we want to determine, before eliminating the rows, a column
permutation P, for A (that is, a symmetric row and column permutation for AT A) such that the

upper triangular matrix B is sparse.

Yannakkis ha.‘; recently proved that finding an optimel permutation P, for a sparse
symmetric positive definite matrix is an NP-complete problem |76} (optimal in the sense that the
number of nonzeros in K is minimal). However, reliable heuristic algorithms are available for
finding a permutation P, that yields a reasonably sparse R. Examples are the minimum degree
algorithm [33, 34,64] and the nested dissection algorithm [23, 28]. Thus we can apply one of these
heuristic algorithms to the matrix ATA to provide us with a good permutation P, before we

perform the row elimination. This is summarized in the following algorithm.

Algorithm 2.2.1 (orthogonal reduction of sparse matrix - with column permutation)
(1) Determine the nonzero structure of ATA.

(2) Determine a permutation P, for ATA so that the Cholesky factor B of PHATAP, is

sparse.

(3} Perform a symbolic factorization on PJ{A7A)P, to determine the nonzero structure of &

and set up an appropriate storage scheme for .
(4) Use Algorithm 2.1.1 to rotate the rows of AP, sequentially into .
2.3. Effect of row ordering

In the last section we showed that the sparsity of the upper triangular matrix & depends
on the given matrix A and the choice of the column permutation matrix P,. What about

permuting the rows of A? Does it have any effect on B?

Let P, be any m by m permutation matrix. Pre-multiplying the m by n matrix AP, by
P, corresponds to permuting the rows of AP,. Denote P, AP, by A. Suppose A has an

orthogonal decomposition given by
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N f:4
A=qQ of
where @ is an m by m orthogonal matrix and £ is an n by n upper triangular matrix. Here £

is the Cholesky factor of the symmetric positive definite matrix ATA. The first observation is

that B =F since
RTR = ATA = (P,AP,)"(P,AP,) = PTATPP, AP, = PTATAP, = R'F .

That is, row permutations do not affect the sparsity of K. So what is the role of a row

permutation in the orthogonal reduction of a sparse matrix?

Note that the matrix B is obtained by generating a sequence of upper triangular
matrices,

R'=0, R E% - R™  E"=h=F ,

where B* is obtained from £* by rotating in the k—th row of A=P,AP¢. Thus the structure of
R* depends on those of E* and the k—th row of A. In other words, the structure of E*
depends on those of the first k rows of A. Note that the first k rows will be different for different

choice of P,,

Recall from Section 2.1 that the cost of eliminating row & of A depends on the
elimination sequence and the structure of B*. Thus the cost may be different for different P,.
That is, even though the structure of the final upper triangular matrix £ does not depend on the
choice of the row permutation P,, the overall cost of reducing A to upper trapezoidal form may
depend very much on P,. A small example is given in Figures 2.3.1 and 2.3.2 to illustrate the

effect of the choice of P,.

Hence in general we want to choose a row permutation P, so that the cost of reducing
P AP, is small. The following algorithm is the same as Algorithm 2.2.1 with the addition of

choosing a row permutation.



X X 0 0 0
X 0 0 X 0
Ix x 0o 00
A=]0 0 X 0 X
00 X X0
0X 000
o 0 0 x o
* 000 ¥ *x ) 0
o fpecool . Joroso
oamz 00000 F = looooo
00000 00000
00000 00000
* %0 %0 X X 0 X0
0%0=*0 0 X 0x0
_3_ —
aTe|ooooo f;;goo‘o*
000=*0 0 00x%0
00000 0 0000
X X.0 X 0 X X 0 X 0
0 X 0X0 0 * 0 * 0
—5_ ==
Bze o 0+ s« g:,=500xxx
0 00 » « 0 0 0 *
0 000 * 00 0 0 *
X X 0 X 0
Fo |0 X0 x0
s [0 0 x x x
0 0 0 *
0 0 0 0 *

total cost = 29

Figure 2.3.1 The cost of reducing a matrix to upper trapezoidal form.
Nonzeros involved in the reduction are denoted by *.
Nonzeros not involved in the reduction are denoted by X.




00 0 X 0

0 X 0 00
XX 0 0 ¢

0 0 X x 0

|

X X000
0 X000
0 0% s 0
¢ 00 X0
0 00 0 0
00 0 0 x|

l

00 0 X X
Figure 2.3.2 The cost of reducing a matrix to upper trapezoidal form.

00000
00X 000
00000
000=*0
90000
**0 00
0* 0 0 0
00 X X X

*

0

*

52 _
cost=1
51 _
cosi=2
56 _
cogt=3
* % 0
00 X X X
00 0 *+ =
000 0

Pt
/

X 0 0 X 0
total cost = 23

00000OC

00000

00000

00000
* +« 0 0 0
X X000
0 X000
0 0 = = =
0 0 0 * *
0 0 00 *

57
=
cost=8

lt
000 0 0f

00000
00 0 x 0

cost
cost=2
cost=>6
(The matrix is a permuted form of that in Figure 2.3.1.)

H5
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Algorithm 2.3.1 (orthogonal reduction of sparse matrix - with row and column

permutations)
(1) Determine the nonzero structure of ATA.
{2) Choose a column permutation for A so that the Cholesky factor B of PJ{(ATA}P, is sparse.

{3) Perform a symbolic factorization on PJ{ATA)P, to determine the nonzero structure of B

and set up an appropriate storage scheme for R.
(4) Determine a good row permutation P, for AP,.
{5) Use Algorithm 2.1.1 to rotate the rows of P, AP, sequentially into .

There appears to be no literature on the problem of finding good row permutations in this
context. In the next few chapters we will introduce a graph model for studying this problem and

describe two heuristic algorithms for finding good row permutations for row elimination.

2.4, A storage scheme for sparse matrices

For completeness we describe a storage scheme for the n by n sparse upper triangular
matrix R. Other storage schemes for sparse matrices can be found in [36, 49, 63].

Consider the elimination of a* using Algorithm 2.1.1. Exactly one row of R* (or R) is

needed in the annihilation of a nonzero in a*

. Thus one must be able to access the nonzeros of
any row of R from the data structure easily and efficiently. A simple storage scheme is the

following.
(1) The diagonal elements of R are stored in a floating-point array DIAG.

{2) The ofi-diagonal nonzeros in each row of R are stored consecutively in a floating-point array
RNZ. An integer array NZSUB is used to record the column index of each nonzeto in RNZ.
An additional integer array XRNZ is used to store pointers to the beginning of the off-

diagonal nonzeros in each row of B.



DIAG - Ry, Ry, Rg R, Ry
RNZ = RIZ RIA‘ 324 R34 R35 Rﬁ
XRNZ - 1 3 4 6 1 7

NZSUB - 2 4 4 4 5 5

Figure 2.4.1 Storage scheme for the last upper triangular matrix
shown in Figures 2.3.1 and 2.3.2.

An example is given in Figure 2.4.1. The upper triangular matrix is the last upper triangular

matrix shown in Figures 2.3.1 and 2.3.2.

Assume that an integer and a floating-point number occupy the same amount of space,

say one storage location. Then the number of storage locations required in this storage scheme is

(1)
(2}
(3)
)

DIAG - n locations,
RNZ - | R | locations,
NZSUB - | R | locations, and

XRNZ - n+1 locations (for programming convenience, XRNZ(n+ 1) has the value

|R|+1).

The total is 2| R |+ 2n+ 1.

In the scheme described above, the length of NZSUB is the same as that of RNZ.

However NZSUB may contain redundant information (see the example in Figure 24.1). It is
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DIAG - Ry Ry Ry Ry Ry
RNZ - Ry Ry Ry Ry Ry Ry
XRNZ - 1 3 4 6 7 7
NZsUB - 2 4 5

XNZSUB - 1 2 2 3 3

Figure 2.4.2 Compressed storage scheme for the example shown in Figure 2.4.1.

often true that the column indices of the nonzeros in a row of R form a final subsequence of those
of a previous row. Thus NZSUB can be “compressed” by removing this redundant information.
On the other hand, we now need an extra integer array XNZSUB to store pointers to the
beginning of column indices in NZSUB for each row. This compressed storage scheme is due to
Sherman [68]. The compressed storage scheme for the example in Figure 2.4.1 is given in Figure
24.2. Experience has shown that the storage required by this compressed storage scheme is
usually much smaller than that required by the uncompressed scheme, especially for very large

problems.



CHAPTER 3

GRAPH-THEORETIC RESULTS

Many sparse matrix algorithms are formulated as graph algorithms, since sparse matrix
problems can be described conveniently in terms of graphs. This is especially true in finding a
symmetric row and column ordering for a sparse symmetric positive definite matrix, which is
formulated as a problem of relabelling the nodes in an undirected graph. Our problem is to find
good column and row permutations for an m by n matrix A, with m>n. As we have noted in
the previous chapter, finding a good column ordering for A is the same as finding a good
symmetric row and column ordering for the symmetric positive definite matrix ATA. Thus our
problem is partially solved, since there already exist good heuristic algorithms for finding good
symmetric orderings for symmetric positive definite matrices. What we have to do is to develop
algorithms for finding good row orderings for A. In this chapter we introduce a graph model for
studying row elimination using rotations. This model is similar to the one used for sparse
Cholesky decomposition. Some graph-theoretic results relating row and column orderings are

then obtained. The matrix version of some of the results appears in [38].

3.1. Baelc graph-theoretlc terminology

An undirected graph G=(X,E) consists of a finite set X of nodes (or vertices) together
with a set E of edges which are unordered pairs of distinct nodes. A graph G=(X,E) is a
subgraph of G if XCX and ECE(M(XXX). For any non-empty subset Y of X, the section
subgraph G(Y) induced by Y is the subgraph (Y,E(Y)) of G, where E(Y)={{z,y}€E|z,yeY}.
A node y is said to be sdjscent to another node z in G if {z,y}€E. The node y is

sometimes called a neighbor of z. The degree of a node z is the number of its neighbors. For

Y CX, the adjacent set of Y is defined as

-32-
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Adj(Y)={z€X-Y | {2,y}€E for some yeY} .
It Y={y}, we write Adj(y) rather than Adj({y}).

A set CCX is a cligue of G if the nodes in C are pairwise adjacent; that is, if z,y€C,

then {z,y}€E. The section subgraph G(C) is called a complete subgraph.

For distinct nodes z and y in G, a path from z to y of length [ is an ordered set of
distinct nodes (vg,vy, * * +,v;), where vo=z, y=y, and v,€Adj{v,_,), 1<i<!. The graph G is
said to be connected if there is at least one path connecting every pair of distinct nodes in G. If
G is disconnected, it consists of !wo or more connected subgraphs called components. The

distance d(z,y) between any two nodes z and y in a connected graph & is the length of the

shortest path connecting them,

I'n Yo

¥s Yo

Nodes that are darkened are in V.
Nodes that are shaded are in Reachg(z,V).

Figure 3.1.1 An example of reachable set.
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Let VCX.and y¢V. The node y is said to be reachable from a node z through V if
there exists a path (z,v, - - - ,u;,¥) from z to y such that y;€V for 1<i<k. The reachable set

of z through V is then defined to be the set
Reachy(z,V)={ yEX-V|y is reachable from z through V} .

Note that the paths may be only of length one (k may be zero). That is, any node y¢V that is
in Adj(z) is also reachable from z through V. Furthermore, V may be empty, in which case
Reachg(z,V)=Adj(z). An example is shown in Figure 3.1.1. Nodes that are in V are darkened

and nodes that are in Reachg(z, V) are shaded.

Let G=(X,E) be a connected graph. A non-empty subset S of X is a geparator of G if
the section subgraph G{X-S) consists of fwe or more components; that is, G(X-5) is
disconnected. We denote the components by G(C)), G(C,), - - -, G(Cy), k>2. The set § is
called a width-1 separator of G (or an [-wide separator [40]) if for z€C; and yGC_,-,V i5£j, the

distance d(z,y} in G is greater than {. Furthermore, if no proper subset of S is a width-I

o ———

W) 3

e

s

Figure 3.1.2 An example of a minimal width-2 separator (5).
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separator of G, then S is called a minimal width-! sepsrator of G. In this thesis, we are
concerned with the cases /=1 and [=2. An example of a width-/ separator is given in Figure
3.1.2, for {=2. Liu considered the use of width-2 separators when he investigated the solution of
sparse systems on parallel machines [58]. Gilbert also used width-2 separators in the solution of

spatse systems using Gaussian elimination with partial pivoting [40].

Let G,=(X,,E,} and G,=(X,,E,) be two graphs. The union of G, and G,, denoted by

G| J Gy, 1s the graph (X,| JX,,E\| JE,). An example is given in Figure 3.1.3.

For a graph G=(X,E) with 1X|=n, an ordering {or labeiling) of G is a bijective

mapping
a: {1,2, .- ,n}—»X .

We denote a graph G with an ordering « by G*. The node and edge sets of G* are denoted by

Figure 3.1.3 An example of the union of two graphs.
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X* and E” respectively. Suppose &, and a, are two different labellings of G. It should be noted

that the graphs G™' and G"? have the same structure. In fact, the set of labelled graphs { G*}

forms an equivalence class.

3.2. Computer representation of graphs

As we see in the next section and Chapters 4 and 5, the column and row ordering
problems are expressed respectively as labelling the nodes of an undirected graph and merging of
graphs. Thus it is important that graphs can be represented economically and efficiently so that

these operations on graphs can be performed easily.

Let G=(X,E) be an undirected graph with n nodes. In most cases, we have to access
the adjacent sets frequently. Therefore it is appropriate to store them consecutively in an integer
array, say ADINCY. Then an integer array, XADJ, is used to store pointers to the beginning of

each adjacent set. An example is given in Figure 3.2.1. If G has r edges, then ADINCY will

0
5
\/

—®

©

ADJNCY - 2 3 1 3 5 1 2 5 5 2 3 4

Figure 3.2.1 A representation of a graph.
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have - 27 entries. For programming convenience, XADJ{n+ 1) contains 2r+1. Hence & is
represented using n+ 2r+ 1 integers. Note that the neighbors of node % are contained in
ADINCY(i), for i = XADJ(k), XADJ(k)+1, ---, XADJ{k+1)-1. This representation is the

same as that used in SPARSPAK [30]. Other representations of graphs are described in [36, 48].

3.3. Graph model for row elimination and basic results

Let A be an m by n matrix with m>n, and R* be the n by n upper triangular matrix
obtained by eliminating the first & rows of A using rotations. We assume AT A is sparse. Denote
the k—th row of A by at. In Chapter 2 we have shown that the cost of eliminating a* depends
on the structures of a* and R*. Implicitly, the cost depends on the structures of the first &
rows of A (that is, the row ordering). Thus a model for studying the row elimination (and the

row ordering) problem should possess the following charactetistics.

(1) It models the structures of the sequence of upper triangular matrices R°, R!, - - -, R™1
Rm

(2} It provides a way to simulate the process of rotating a row, say a*, into R*,

Note that the sequence of upper triangular matrices “approaches’” R™, which is the Cholesky
factor of the sparse symmetric positive definite matrix A7A. Thus a reasonable model to be used
for studying the row elimination problem would be one that is based on a model for sparse
Cholesky decomposition. Because of this observation we will first present a model for sparse
Cholesky factorization. In the following discussion, if M is a matrix, M;; denotes the (i,5}
element of M, and | M| denotes the number of nonzeros in M. Also | S} denotes the number

of elements in § if S is a set.

Let B be an n by n sparse symmetric positive definite matrix. The graph of B, denoted
by Gp=(Xp,Ep), is a labelled undirected graph with Xg={z,,2;, - - - ,2,} and {z,5;}€Ep i
and only if Beﬁéﬂ, i#j. Here z; is the node having labelling {. An example is given in Figure

3.3.1. Sparse Cholesky decomposition can be described using the graph of B. See [36,61,64,72]



for more details.

Let B be the Cholesky factor of B. Lemma 3.3.1 tells us exactly where fill-in will occur
in sparse Cholesky decomposition from the graph of B [33,65]. Note that it does not depend on
the numerical values of ’the nonzero elements in B. Thus it allows one to predict, before any
numerical computation begins, the nonzero structure of . This forms the basis for symbolic

factorization [31, 35).

* Lemma 8.8.1

Let §;={z,,z,, - -+ ,2,,}. Then for §>1, R;j50 if and only if zjeReachB(z,-,.S}}.

o

»
Consequently the number of of-dizgonal nonzeros iz R is p=Y) |ReachG3(z,~,S,~] |-
i=1

Suppose P is any n by n permutation matrix. Let F=PTBP, and Gp=(Xg,Epg) be the

graph of B. Let Xp={z,,%, - - ' ,Z,}, where %Z; is the node having labelling ¢ in Gg. The

t

I
S oo X oo X
XoooX X o
coX eoXXo

oo X X ooX
XXX XXoco
oX X oooo
X oX oo X o

Figure 3.3.1 Graph of a sparse symmetric positive definite matrix.
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structures of Gp and Gy are the some, but their labellings are different. An example is given in

Figure 3.3.2 in which the matrix B is the same as that in Figure 3.3.1.
Let R be the Cholesky factor of B. Then the number of ofi-diagonal nonzeros in & is
Ta’=i: iRsachGB_(z’,,i) |, where S={7.%, -+ ,F4}. Cleatly s and 7 may be different since
i=1
lReachG’(z,-,Si)l and |Reachai(.’t;,§,-)| may not be the same. In other words | R |#[ R | in

general (as we have seen in Chapter 2). Hence the problem of finding a “good”” permutation for a
sparse symmettic positive definite matrix B can be stated as follows. Given the graph Gp of B,

relabel the nodes of Gp such that the reachable sets Reach;.(%;,5) are small. A thorough
B Ggrrir¥i

0000001
0000010
0000100
P=J0ooc1000
0010000
0100000
10006000
@ (1
X 0 X 0 0 x 0
0 X X 0 0 0 0
X X X X X 00 (3]
B=]0 0 x x ¢ 0 x
00X 0 X X0 ] @O (&
X 0 0 0 X X 0
000 X 0 0 x

Figure 3.3.2 Graph of B=PTBP, where
B is the same as the one given in Figure 3.3.1.
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treatment of this problem can be found in [36].

Now we return to our row elimination problem. Denote the j—th element of row a* by
aJ'-‘. For each row qk of A, define an 1 by n symmetric matrix ¥*={a*)7(e¥). Note that Y,';;é()
if and only if a,~" and a,’-’ are both nonzero. Moreover some of ihe columns and rows of Y* may be

k

null; they correspond to the zeros in a*. In fact if alf the null columns and rull rows are deleted

from Y*, what is left will be a dense square matrix whose order is the same as the number of

nonzeros in 4*.

The row graph of a*, denoted by ¢"=[x",e*), is a labelled undirected graph with
x*={z;}e}£0} and ¢ ={{2,,2,}| 7;,2,€x*}. Hence the row graph of any row of A is a
complete graph and it corresponds to the dense submatrix in ¥*. The row graph ¢* of a* will

sometimes be called the graph of ¥*. An example is given in Figure 3.3.3.

Recall that the cost of eliminating a* depends on the structures of the first £ rows of A,

30 it is helpful to consider the & by n matrix A* which is defined by

st}

02
At=]"1.

ak

The upper triangular matrix R* is obtained by eliminating the rows of A¥ using rotations. Let

B* denote the n by n symmetric matrix (4*)T(4*). Note that

Bt — {(a,)r (@7 - (ak)r} _ f)(a')"(“')= f; ¥
i=1 =1

That is, the symmetric matrix B* is the sum of k sparse matrices, each of which contains a dense

submatrix. Lemma 3.3.2 follows directly from the definition of B¥,
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Figure 3.3.3 The sequence of row graphs of an 10 by 7 matrix.
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Lemma 3.5.2

Assume exact cancellation does not occur. Then Bf};éo if and only if a,-';é() and 4}740 for

some {<k.

.

1

Note that there may be some null columns in the matrix A*. Thus as in the case of Y,
B* may be structuraily singular, since any null columns in A* correspond to null rows and null

columns in B*.
Define a labelled undirected graph G"=(X ol ol ) as follows. Let
X* = {#| column i and row { of B* are non-null } ,
and
Ef = {{’n-"jHB-";?éO} .
The sequence of feld corresponding to the example given in Figure 3.3.3 is shown in Figure 3.3.4.
Let W* be the submatrix obtained from B* by deleting qlf the null rows and null columns. Thus

G* is the graph of W*, Assume that the non-null columns of A are linearly independent. Then

Wk is symmetric and positive definile.

Furthermore G* can be defined using the row graphs of a', a% -- -, and aF.
Lemma 3.3.8

G"=|3 ¢'. 'That is, X”=|:jx‘ and E'=Ge'.

=1 =1 =1

Proof:

Suppose z;,,z;€X* and {z,,7;}€E*. Then by the definition of G*, Bls£0. Applying
Lemma 3.3.2, there must exist some [ <k such that a/540 and a};éﬂ. Hence by the definition of

row graphs, :c,-,x,-ex' and {zi,zj}Ee’.
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Figure 3.3.4(a) The sequence of G for the matrix shown in Figure 3.3.3.
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Figure 3.3.4(b) Continuation of Figure 3.3.4(a).

On the other hand, if 7;,z;€x" and {z;,z,}€¢, for I<k, then af and af are both nonzero.
Lemma 3.3.2 and the definition of G* immediately imply that z,,2;€X* and {z,,2;}€E*.

o

m

Note that when k=m we have B™"=(A")T(A™)=ATA and G™=[ J¢' is the graph of
U
i=1

ATA. Thus, assuming exact cancellation does not occur, the nonzero structure of the Cholesky
factor R™ (or R) of the symmetric positive definite matrix AT A can be obtained from G™ using

Lemma 3.3.1. How about the structure of R* when k<m? It is known that B* may be
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structurally singular since it may have null colemns and null rows. But any null columns and
null rows in B* must correspond to null columns and null rows in R*. In fact if V* is the
submatrix obtained from R* by deleting the null columns a.n>d null rows, then V* is structurally
the Cholesky factor of W*. Thus, apart from the null columns and null rows in R*, the nonzero
structure of B* can be determined from G* using Lemma 3.3.1. Here instead of using 5;, we
have Sf which includes only ‘those nodes that are actually in G*. This is summarized in the

following lemma which is a generalization of Lemma 3.3.1.

Lemma 8.5.4

For j>i, R,-'};é[] if and only if :r,,zjeXk and szReach,(z,-,S,»‘) where
st={zext|i<i}.
i

Thus the structures of the upper triangular matrices R*, R% - --, R™ can be modelled
by the sequence of graphs G, G% ---, G™. It is important to note that our discussion and
Lemmas 3.3.1 and 3.3.4 assume that we are working with B* and that ezact cancellation does not
occur during the computation. Furthermore afl elimination sequences are assumed to be mazimal.
The structure of R* , k=12, + + + ,m, determined only represents the worst case situation. This is
illustrated by two examples in Figures 3.3.5 and 3.3.6. If m>>n, there would be more maximal
elimination sequences than non-maximal ones. Thus in this case the actual structure of R should
be very close to that predicted by Lemma 3.3.1. We will see later in this thesis that this is indeed

the case.

We now consider the graph G* in more detail. By Lemma 3.3.3, we have
E B-1
Gk=U¢l= U*i" U¢k=Gk-1U¢k )
=1 =i

Thus from the graph-theory point of view, eliminating a row is equivalent to merging the row

graph ¢* with the ezisting graph GF! of B¥'. Lemma 3.3.5 is equivalent to Lemma 2.1.4, It
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X X X 00
A'=]o0o x 0 x 0
0 0 0 ¢ X)
(x x x 0 0]
X X X X 0
B=]x xx 00
0 X 0 X 0
0 0 0 0 x]
X X X 00
0 X X X 0
Expected structureof R2*=J§0 0 x x 0
0 0 ¢ X ¢
0 ¢ 0 0 x
X X X 00
0 X 0 X 0
Actual structureof R°=]0 0 0 0 o
0 0 0 0 0O
00 0 0 X

Figure 3.3.5 Difference between the expected
and the actual structures of R¥, for t=3.

relates the elimination sequence we introduced in Chapter 2 to our graph model. It also shows
that the elimination sequence depends on the structure of G*. Note that we are assuming that

exact cancellation does not occur and all elimination sequences are maximal.

Lemms 8.3.5

Let B¥={cf ¢k - - - ’E:;} be the elimination sequence of row a*. Then
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(1) ¢=min{l]|zex*}.

(2) Fori1gi<yy, £f =min{/| Zi€Reach (1,5t )} Where Sg={z;€x*|j<¢l}.
Proof:

(1) Since #* is the row graph of a", the first nonzero in a* corresponds to the node z, such that
p=mia{!|zEx*}.
(2) By Lemma 3.3.4, the of-diagonal nomzeros in row £f of R* are given by the set

Reach G,{:c S:k ). Hence the result follows.

e
1]

The next lemma, which is equivalent to Lemma 2.1.6, characterizes maximal elimination

sequences using the graph model.

Lemma 5.3.6

Let B* be a maximal elimination sequence and s€S*. It z‘EReacth(:c,,S,‘}, then teS”.

o

In Chapter 2 the cost of eliminating a® is defined to be ¥ A*(p), where 2¥(p) is the
pegt

number of nonzeros in row p of R¥. This can be restated using our graph model: the cost of
merging a row graph ¢* with G*is

2‘{| Reach ,(z,,5)) | + 1] .

P€E

Note that this cost depends on the structure of G* which depends, in turn, on the structures of
the row graphs ¢*, ¢, - -+, ¢*. Thus the problem of finding a ‘‘good” row ordering for A can
now be viewed as the problem of arranging the row graphs such that the cost of merging the row

graphs is small.

Some basic results about the row elimination (or graph merging) process can be ‘derived

easily from this graph model.
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X X X X X X X X X X
X X X X X X
A= X B=|X x X X X
X X X X X X
X X X X X X
X X X X X
X X X X
Expected structure of B = X X X
X X
X
X X X X X
X
Actual structure of B == X
X
X

Figure 3.3.6 Another example illustrating the difference
between the expected and the actual structures of R .

Let ¢*={C*,C§, s ,C:}} be the component partitioning of G¥. That is, the

partitioning of the node set X* induced by the connected components G"(C}) of the graph G*.
T

Thus for 1<4,7 <7, and i%j, Cfn Cf=ﬂ and | J Cf=X*. Furthermore no path joins any node
=1

in CF and any node in Cf when i#j. (See Figure 3.3.4 for an example.) Lemma 3.3.7 is a

consequence of Lemma 3.3.3.

Lemma 3.3.7

& k
For 1<k, <k, <m, if C; IEVJi‘, then there exists j such that Cf‘g C;’ and Cfewk’.

o
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That is, the size of any component set, say Cf, is non-decreasing as k increases,

It is important to note that the sequence of component partitionings {gb"} depends only
on the order in which the row graphs are merged; that is, it depends on the row ordering of A.
The effect of permuting the columns of A is just a relabelling of the nodes of G* which may,
however, affect the cost of eliminating the rows, and the nonzero structures of the upper

triangular matrices.

The next result illustrates the significance of the component partitioning y*.

Theorem 9.8.8
Let ¢*={C"’,C*,---,C$}} be the component partitioning of G*. Denote the

component containing the row graph ¢* by G"( Cﬁ& ). Then z,EC':k, for all peB®.

Proaof:

The proof is by contradiction. Since z efe Ciﬁ , there must exist two consecutive members
s and ¢ of E¥ such that z,€ C‘:} and zE€CF, for some I#o,. From Lemma 3.3.5,
t=min{i} :e,-EReachGg(z,,Sf}}. This means that there must be a path joining z, and z, in G*.

This contradicts the fact that z, and z; are in different components.

1]

Theorem 3.3.8 shows that the set of nodes that are involved in the elimination of row k,
{“'e'hxfzb Tt ,36‘1} :

is limited to the component G'(C;‘k) whose node set C:» contains x*, the node set of the row
graph ¢*. Note that the cost of eliminating a row depends in part on the length of the
elimination sequence. Hence we want to find a row ordering which allows the component

el Cs‘ ) to be kept small for as large a k as possible.



Theorem 8.3.9

The cost of eliminating row % is bounded by
1k &
: ?}Cv,, | {]Ca,, | +1} .
Proof:

The bound is obtained by assuming B* is maximal and for i€B*, row { of R¥ has

nonzeros in position j wherever ;€ Cﬁb and j>i.

Corollary 8.5.10
Let B* be the elimination sequence of row a* and 7=min{p | p€8*}. Then
E'Q{anl 2,60':* } Furthermore if §,= | {qzrﬂ %EC:} } | , then the cost of eliminating a* is

bounded by -%-6,,(5,,+ 1).

o

Theorem 3.3.9 suggests that we should keep C:t smalt and Corollary 3.3.10 suggests that
regardless of whether C’:1 is small, we should arrange that the column index of the first nonzero

of row k be as large as possible.

3.4. A model problem

In the next two chapters we will describe two algorithms for finding good row and column
orderings for a sparse rectangular matrix. The complexity of each algorithm will be analyzed for
a model problem. This model problem is defined on an n by n grid. It is typical of those which

arise in the natural factor formulation of finite element methods [3, 4, 38].

Consider an n by n grid which consists of (n—1)° small squares (or elements). An
example is given in Figure 3.4.1 with n=3. For our purpose, the model problem is defined as

follows. Associated with each of the n” grid points {or nodes) is a variable, and associated with
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each of the (n~1)? small squares is a set of four equations {or rows) involving the four variables at
the corners of the square. This gives rise to a large sparse overdetermined system of linear
equations. The number of equations is 4(n-1)° and the number of unknowns is n®. The
unknowns are the variables at the grid points. Denote the coefficient matrix by A. The matrix
associated with the example in Figure 3.4.1 is shown in Figure 3.4.2. The matrix A is reduced to
upper trapezoidal form using rotations. Let R be the n® by n® upper triangular matrix obtained

after the transformation.

Because of the way in which the model problem is defined, the row graph of any row has
exactly four nodes and each node corresponds to a variable at a grid point of a small square. The
graph of AT A, which is the union of all the row graphs, is therefore almost identical to the n byv
n grid. The only difference is that all the four nodes of a small square are now pairwise

connected. Figure 3.4.3 shows the graph of ATA, where A is the matrix shown in Figure 3.4.2.

In the previous section we have pointed out that the graph model we introduced assumes
that all elimination sequences are maximal. However this assumption is not valid in general. For
example, the elimination sequence of the first row cannot be maximal unless it contains exactly

one monzero. Thus the graph model only represents the worst case situation. In general the

Figure 3.4.1 A 3 by 3 finite element grid.
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XXX X
X X X X X X X X
X X X X

XX XX
XX XX

XX XX
XX XX

KYEXRXKAKKXKXXAKXXX XXX
XXX AX XXX

X XXX
X X XX

Figure 3.4.2 The matrix associated with a 3 by 2 finite element grid.

Figure 3.4.3 Graph of a 3 by 3 finite element grid.

number of nonzeros predicted by the graph model using Lemma 3.3.4 (or Lemma 3.3.1) may be

larger than the actual number of nonzeros in R. We now show that for our model problem, even
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though not all the elimination sequences are maximal, the actual structure of R is given correctly

by the graph model. That is, the nonzeros are given correctly by Lemma 3.3.1.

Let G==(X,E) be the graph of ATA. For simplicity we will use the same notation for

the nodes in G and for the column indices of A. That is, the node set of G is X={1,2, - - - ,n%}.

The following two results will be useful in proving our claim.

Lemma 5.4.1

Let E"={§l,fz, s ,5”} be the elimination sequence of a given row a*. Suppose £, and

£, are any two members of B* with t>s. Let G* be the union of the row graphs of a!, 4%, - - -

’

a*. Then there is a path in G* joining &, and £;. The nodes on this path are &,,,, - -, &,

and nodes with labels less than £, ;.

Proof:

Let & and &, be two consecutive members of B*. It follows from Lemma 3.3.5 and the
definition of reachable sets that there is a path (&;,0,,8;, - -+ ,8,,61,,) in G* such that §;< £, for
1<i<p. Now suppose £, and £, are any two members of B* with £>s. Using the observation
above repeatedly shows that there ‘is a path connecting ¢, and ¢ in G* and the nodes on this

path are §,, §,, 4, -, &1y &, and nodes with labels less than £,;.

Lemma S 4.2

Let B be a maximal elimination sequence. Suppose # and ¢ are two nodes in the same
component in the graph G* with s€8¥, t¢Et and ¢<t. Then any path joining s and ¢ in G*

must contain a node v such that v>1,

Proof:

The proof is by contradiction. Assume there is path (s,vy,v,, - - - ,9,,t) such that v, <¢,

for 1<i<r. Note that r>1. Otherwise {s,t} would be an edge in G*. This would mean that
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{EE* because of Lemma 3.36. Let v, be the first node on the path such that v,>s. This

implies that v,EReachGg(s,Sf). Because of Lemma 3.3.6, v, is in the elimination sequence =L

Using the same argument repeatedly shows that ¢ must be in E* too, which is a contradiction.
1]

We now show that the structure of the upper triangular matrix R is predicted correctly
by the graph model. Without loss of generality, we assume that the rows associated with a small
square are eliminated together. {Note that using a particular row ordering in the proof does not
affect the result, since the structure of R depends only on the column permutation of A or the

labelling of the nodes in the graph of ATA )

Suppose the small squares in the n by n grid are numbered from 1 to {n-1)° in some
manner. Let Z, denote the set of rows associated with the p—th small square. There will be four
rows in Z,, 1<p <(n-1)®. The rows in Z, have the same structure and their row graphs are
identical. For simplicity, let ¢*=(x",”) denote the row graph of each of these four rows. Let
1 ={wwlwlwl}, where w{<w!<wl<w? are the column indices of the nonzeros of a row in

Z,.
Let R® be the upper triangular matrix obtained by eliminating ail the rows in 2y, 2y,

©+ v, Z,. Let G?={(X*E" )=L_j’l¢'. We first prove‘ that Lemma 3.3.4 predicts correctly the
structure of R?. We assume exact cancellation does not occur.
Theorem 3.4.8
(1} RE#0 if and only if i€X?.
(2) 1If Rj5£0, then the ofi-diagonal nonzeros in row i of R® are exactly given by Reach o {i,59),

where SP={I€X? |I<i}.
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Proof:
The proof is by induction on p.

Consider the elimination of the rows of Z,. There are four rows which have the same
nonzero structure. Assume exact cancellation does not occur. Then after these four rows of Z,
are eliminated, R' will contain a full upp.er triangular submatrix in rows and columns wy,
1<k<4. All other elements in R' are zero. This full submatrix corresponds to the complete

graph G*=¢'. So the theorem is true for p=1.
Assume the theorem is true for p. Now consider the elimination of the rows in Z,,,.
There are five different cases.
(a} X’x**i=9.
(b) There is exactly one node in X?(x**".
(¢) There are exactly two nodes in X*(x**.
(d) There are exactly three nodes in X?(x** 1.
(e) x™* 1CX"V.

In case {a), since X’nx’“=¢, rows and columns w!*!, 1<k<4, of R’ must be null
because of the induction hypothesis. Thus eliminating the four rows of 241 using orthogonal
reductions will not destroy the existing structure of R?. The elimination process only introduces
a new full upper triangular submatrix into R”. The nonzero structure of R?*! is given by the
following. For i¢x’*", RE"'=Rf. Fori€x’*', R} '#£0 if and only if j€x"** and j>4. This
is illustrated by an example in Figure 3.4.4, Note that G® and ¢**! are disconnected in the
graph GPtl= G'Unﬁ"“ and x**! is a clique. Thus row i of R”*! is non-null if and only if
t'EX’”=X’Ux’“. For i€X?*!, the off-diagonal nonzeros in row i of R**! are given by

Reach ., W(#,5271), since

Reach . (3,57 = Reach ,(i,5]) , for i¢X*
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Figure 3.4.4 Elimination of the rows of Zpes
where XP (" '=#.

and
Reach . i, 577 = {w]* Tex* Hwl* 1>}, foriex™! .
In case (b), let {w;“}=X’nx’+ ', By the induction hypothesis, rows and columns s of

R’ must be null, for s€x?* 1—{w",‘“}. Moreover R7=0 for i€X?, jex’”v{w:”}, and 7>1.

This is illustrated by an example in Figure 3.4.5.
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Let A={6,,5, ' - - ,5,} where
(i) &=w!*" and

(i) for 1<i<r, &, , is the column index of the first of-diagonal nonzero in row & of R?. In

terms of the graph G?,

;¢ = min{{| I€Reach (5,57 )} -

Because of Lemma 2.1.4 and the fact that row and column s of R? are null for s€x”* '~{w?*1},
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Figure 3.4.5 Elimination of the rows of Zpirs
where X* (M|x** ! contains exactly one node.




- 58 -

the elimination sequence of each row of Z,,; must be a subset of A| Jx” *!, Furthermore since

all the rows of Z,, , have the same structure and they are eliminated together, AU}(“ !is indeed

the elimination sequence of the fourth row and it is maximal.

1)

(2)

(3)

(4)

Let G+ l=gG? ue™ !, Consider the structure of R?*1,

X Tt

By the induction hypothesis, both row and column i of R? are null. In the elimination
process, row ¢ will not be used as a pivot row. Thus row § will remain null in 22", Note
that i is not a node in G**1,

i<w!*'and i€X? :

Row i of R? will not be used as a pivoi row in the elimination process. Thus row i will not
be affected; that is, 1'?,-",-'F 1=R,5-, for j>i. By the induction hypothesis, the column indices

of the off-diagonal nonzeros in row i are given by Reacha,(i ,57). But
Reachgy.((i,57 1) = Reach,,(i,S) ,
since i <w?™! and X” and x*** have exactly one node, w?*', in commoen.
i<w:';'1 and i€x?t1:
Row i of R® is null since i¢X". Thus the elimination process will introduce fill-in in

position 7, for 7€x"* ! and j>i. That is, RIY1520 for i,7€x?* ! and 4. In the graph

s
Reach,,(i,87"") = {tex**!|1>i} .

i 1.

i=with:

Row § of R’ is not null and it is used as a pivot tow. The elimination of the rows of Zyn

can only introduce fill-in in position j, for j€x**! and j>w:+1. Thus RE* 1220 i REFAO

or je{iex”  [i>w)*'}. Note that in GP*Y,

Reach o i(i, 5P Y) = Reach ,(i,S7) | {lex"* | I>wi™ '},



)

(6)

™
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because wq’,’“ is the only node which is in both X? and x*!.

i>witl i€X? and i€A :

By the induction hypothesis, R5=0 for j€x** ' and j>i. Row i will be used as a pivot
row in the elimination process. Because of the structure of the rows of Zy4 1, fill-in will only
occur in R for jEX**' and j>i. That is, R}™'5£0 if R}540 or je{lex’ !|i>i).
Consider the graph G, By Lemma 3.4.1 there is a path (wf* Lo,y - -0 ,y,,i) in GPHY
such that v;<i, 1<i<r. Thus any node in x**' whose label is greater than i is also
reachable from i through nodes whose labels are less than i. Since w:“ is the only node

that is in both X? and x**, we have

Reachgy(i,57"") = Reach,(i,87) | {1€x** [ 1>i} .

i>wi*l ieX? but igA :
Row i of R” is non-null and it is not used as a pivot row. Thus the structure of row i

remains the same after the elimination of the rows of 2, . 1; that is, Rf,-"' 1=R,-’J’~, j2i. Now

consider the graph G**. Let s be a node in x**! such that s>wtl I there is a path
joining ¢ and ¢, the path must contain w:”. However by Lemma 3.4.2, there must be a

node v>>i on this path too. Hence s¢Reach, . ,(i,577"). That is,
Reach ,, (1,57 1) = Reach,(i,87) .
i>w:+l and s€xPT!:

Assume 6, <i{<§, . Because row i of R? is null and because of Lemma 2.1.5, the column

indices of the off-diagonal nonzeros in row i of R**! are given by {j>i | R}'#0}. From

(5) this is the same as
{i1R; Foy U liex™'i>i}-{6} .

Note that in G, j=min{/| lEReachG,H(ﬁk,Sf:’}}. Since X"nx“ t={wlT},
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Reach, (3, SP7Y) = Reach (8,55 1) - {i}

= Reach, (5,57, )| {lex’ | i>8.)-{i} .

Thus in each of the seven cases, Reach,(z,5! *1y is exactly the set of column indices in
row z of R°*1,

The proofs of cases (c}, (d) and (e} are similar to that of case (b), and for this reason are
omitted.

o

The fact that Lemma 3.3.1 predicts the structure of R correctly follows immediately from

the previous result.

Corollary 8.4.4

Let A be the rectangular matrix associated with an n by n grid. Suppose R is the n® by
n® upper triangular matrix obtained by reducing the rows of A using rotations. Let G=(X E)
be the graph of A”A. Then the nomzero structure of row i of R is given correctly by
Reachg(i,S;), where §;={1|i<i}.
o
A close examination of the elimination process reveals that if the rows of Z, are

eliminated together, the elimination sequence of the fourth row is always maximal.

The technique used in the proof of Thecrem 3.4.3 can be used to prove a more general
result which we state below.
Theorem 3.4.5

Let A be an M by N matrix. Partition the rows of A into Z,, Z,, - - -, Z so that &l

the rows of Z; have the same structure. Suppose the following conditions hold.

{1) The number of rows in Z; is greater than or equal to the number of nonzeres in each row of

Z,.
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{2)  All the rows of Z; are eliminated together.
Let R be the N by N upper triangular matrix obtained in the orthogonal reduction of 4. Then

(1) the elimination sequences of the last | Z; |-w rows of Z; are maximal, where w is the

number of nonzeros in each row of Z,,

(2) Lemma 3.3.1 predicts correctly the structure of R from the graph of ATA.

3.5. Planar graphs, finite element graphs and separator theorems

Certain problems defined on two-dimensional finite element graphs are examples that
satisfy the conditions in Theorem 3.4.5. We refer to these problems as finite element problems.
In fact, the model problem we introduced in the previous section is a special case of these
problems. Before we describe the finite element problems, we define finite element graphs in

terms of planar graphs.

A graph is said to be planar if it can be represented on a plane in such a way that its
- nodes correspond to distinct points on the plane, its edges correspond to simple curves on the
plane, and no two curves share a point except possibly a common end-point. The corresponding
graph on the plane is called a planar embedding of the planar graph. A face of a planar graph is a
region of the planar embedding bounded by edges of the planar graph that does not contain any
nodes or edges in its interior. Note that every planar graph has a number of finite faces and
exactly one infinite face. I_n the following discussion, a “‘face'’ will refer to a finite face. The set
of edges that surround a face is called its boundary. A diagona! of a face is an edge joining non-

adjacent nodes on its boundary.

For our purpose, a finite element graph is a graph formed from a planar embedding of a
planar graph by adding all possible diagonals to each face. Thus the nodes of each face of the
planar embedding form a clique in the finite element graph. The planar graph or its planar

embedding is called the skeleton of the finite element graph and each of its faces is an element of
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the finite element graph.

A finite element problem is defined as follows, We assume that there is one variable
associated with each node of a finite element graph. Suppose the i—th element has &; nodes.
Then there are at least o; equations associated with this element and only the variables associated

with the nodes of this element are involved in each equation.

Some of these finite element problems are important since their finite element graphs are
guaranteed to have “small” width-1 and width-2 separators. As we see in Chapters 4 and 5, this

property is important when we consider the problem of finding good row and column orderings.

We now review the separator theorems for planar and finite element graphs. Lipton and
Tarjan recently prove that any planar graph with n nodes has a width-1 separator which has

O(vn') nodes [57). Furthermore, when this separator is removed, the graph is decomposed into
two pieces, each of which contains no more than %ﬂ nodes. This is summarized in Lemma 3.5.1.

An O(n)-time algorithm for finding such a separator is also provided. One can use the result to
construct an Of{nlogn}-time algorithm to find a symmetric ordering for symmetric positive
definite systems that are defined on planar graphs [40,56,57|. The number of nonzeros in the
Cholesky factor of the reordered matrix is O(nlogn).

Lemma 8.5.1

Let G=(X,E) be a planar graph with n nodes. Then the nodes of X can be partitioned

into three sets A, B and C such that

(1) if z€A and y€B, then d(z,y)>1 (that is, C is a width-1 separator),
(2) neither A nor B contains more that %n nodes, and

(3) C contains no more than 22V nodes.
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Unfortunately the existence of small width-1 separators in a planai- graph does not
necessarily imply the existence of small width-2 separators. Consider the planar graph in Figure
3.5.1. The set {::,y,z} is a width-1 separator, but the graph does not have a small width-2
separator. The problem in this example is that the degree of y-is not bounded. It is almost equal
to the number of nodes in the graph. In fact, if the degree of any node is bounded, it can then be

proved that the planar graph will have a width-2 separator that has O(Vn) nodes.

Theorem 8.5.2

Let G=(X,E) be a planar graph with ]X I =n. Assume that each node is shared by no
more that § faces (that is, the degree of each node is bounded by 6+ 1). Then the nodes of X can

be partitioned into three sets A, B and C such that

(1) if €A and y€B, then d(z,y}>2 (that is, C is a width-2 separator),
(2) neither A nor B contains more that %n nodes,

(3) C contains no more than 2v2(6+ 1)/ nodes.

Figure 3.5.1 A planar graph that does not have a smail width-2 separator.
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Proof:
According to Theorem 3.5.1 the nodes of G can be partitioned into three sets A, B and
T such that | A | S_%n, {B| 5% n, |T|<2v/2Vr, and T is awif!th-l separator.
Without loss of generality, assume [E |=|F|. Then define
A=X-aj(0), B=B, mdc=Ty@EN44(D) .
Clearly, because of the choice of C, C is a width-2 separator. Moreover we have

Al = |A-44i(D)| < |A] < Tn

@ |t

Bl =|B] <

le]

| CUENAGD)| = |T] + | TN4di(D)]
NTE + | Adi(T)]

IA

< 2V2vn + 5| T|
< 2V2/n + 2V

= 235+ 1)V .
o
The proof of Theorem 3.5.2 provides a way of constructing an algorithm for finding a
width-2 separator in a planar graph. Note that the complexity of determining A, B and C from
A, B and T is O(n) since at most n nodes are to be examined. Thus a width-2 separator can be

found in O(n) time.

Theorem 3.5.2 is similar to a result stated by Gilbert in [40]. He considers the use of

width-2 separators in Gaussian elimination with partial pivoting for sparse matrices.

Suppose G is a finite element graph with n nodes. In [57], it is proved that G has a

width-1 separator if each element has a bounded number of nodes.
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Lemma 3.5.8

Let G=(X,E} be a finite element graph with » nodes. Suppose no element of G has
more than ¢ boundary nodes. Then the nodes of X can be partitioned into three sets A, B and

C such that

(1) if z€A and y€B, then d{z,y)>1 (that is, € is a width-1 separator),

(2) neither A nor B contains more that -g-n nodes, and

{3) € contains no more than 4Ig-len— nodes.

o

As in the case of planar graphs, a finite element graph may not have a small width-2
separator even if it has a small width-1 separator. However if we impose certain restrictions on
the finite element graphs, we can also prove that any such finite element graph will have a

width-2 separator that has O(v/n) nodes.

Now consider a class of finite element graphs satisfying the following conditious.
(1) Each element has at most ¢ boundary nodes.
(2) Each node is shared by at most § elements.

(3) Both o and § are small and independent of n, where n is the number of nodes in the finite

element graph.

It might seem that condition {3) is too restrictive. However, it is not: typical values for o are 3
and 4, which correspond to triangular and quadrilateral elements respectively, and typical values

for & range from 4 to 10.

We now prove that any finite element graph belonging to this restricted class has a small

width-2 separator.



Theorem 8.5.4

Let G=(X,E) be a finite element graph satisfying the conditions above. Then the nodes

of X can be partitioned into three sets A, B and € such that

(1) if z€A and y€B, then d(z,y)>2, (that is, C is a width-2 separator),

{2) neither A nor B contains more than %n‘ nodes,

(3) € contains no more that 4¢6 lg—l\/? nodes.

Proof:

The nodes of G can be partitioned into three sets A, B, and € which satisfy Lemma

3.5.3. Without loss of generality, assume [E ] > |§ | Construct a width-2 separator as follows.

Let C be initially empty. If any element in G(4] Ua contains nodes of €, then all the
nodes of that element are included in €. Clearly C is a width-2 separator. Furthermore, since at
most § elements share a given node and each element has at most ¢ nodes, the total number of

nodes that are included into € must be bounded by
|| <08|T| < 4aal§!ﬁ .

Let A be the set of nodes of G that are in A but not in €, and let B be the set of nodes of G

that are in B but not in €. Neither A nor B will contain more than —2-n nodes because

lal = |T-c| < |l < 2n,

and
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The bound on the size of the width-2 separator may be pessimistic, since it is uniikely

that all the elements that share a node of &' will be in G(A|_JT).



CHAPTER 4

WIDTH-TWO NESTED DISSECTION ORDERINGS

In this chapter we describe a heuristic algorithm for ordering the rows and columns of 2
sparse rectangular matrix A simultaneously. The algorithm works with the graph of ATA and is
motivated by some of the results that were presented in the previous chapter. Denote the
reordered matrix by A and let R be the upper triangular matrix obtained in the orthogonal
reduction of A. We show that the number of nonzeros in R and the cost of computing R using
rotations are respectively O(n’log,n) and O(n®) when A is the rectangular matrix associated
with an n by n grid. We describe 2n heuristic scheme for generating the orderings automaticaily.

Numerical experiments are presented.

4.1, Width-2 nested dissection

In Section 3 of Chapter 3 we presented some basic results relating row and column

orderings. We first review some of the important ones. Here z; is the node having labelling 7.

(1)  The rotation of row a* into R** can be viewed as merging the row graph ¢* of a* with the
graph G*™, where G*™ is the graph of {4*)T4* (or the union of ¢', 1<i <k-1).

(2) Let B¥F={ekef - - ,E:k} be the elimination sequence of af. Then B* is related to the
component G"{Cﬁk) of G* that contains ¢* {see Theorem 3.3.8). More precisely, the set
{z, IseE"} is a subset of C:k. Note that the cost of eliminating a* depends partly on p,,
the length of the elimination sequence.

(3) The cost of eliminating s also depends in part en the labelling of the nodes of the
component G"[Cﬁ‘) (see Corollary 3.3.10). Loosely speaking, it depends on the number of

nodes of C:k whose Iabellings are greater than &,
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These results provide us with a way of eonstructing “good” row and column orderings. In
order to ensure that the p,, 1<k<m, are small, the row ordering should be selected so that the
components, G'"(C’:k )» 1<k<m, can be kept small. On the other hand, the column ordering

should be chosen so that the number of nodes in C:k whose labellings are greater than 51" is kept

small. Of course, the column orderink should also be chosen so that the upper triangular matrix

R is sparse. How can these be achieved? A simple heuristic way is described below.

For simplicity we use the following notation in our discussion.

k

{1) Let E* be the elimination sequence of row a*. The corresponding node set of G, namely

{z, ] sEE"}, is denoted by A*, We also call A* the elimination sequence of af.

(2) If Z is a set of row graphs, then x(Z) is the union of the node sets of the row graphs of Z.

The corresponding rows of A are referred to as the rows of Z.

m
Consider the graph G=(X,E) of ATA. From Lemma 333, G=|J #*, where ¢* is the
=1

row graph of a*, We assume that G is connected. (If G is disconnected, we simply apply the
strategies described below to each component consecutively.) Suppose we can find a set of row
graphs Z; such that if this set is removed from @, the remaining graph is decomposed into two or
more components. Assume there are two components and denote them by G, and G,
respectively. For 1=1,2, let Z; be the set of row graphs remaining in G;. Note that the node set
of G; is exactly x(Z;). Now 21\ JZ.|JZ; is the set of all row graphs in G, and
x(Z ) Ux(Z)Ux(Ze)=X. Because of the choice of Z,, x(Z,)Mx(Z2)=8, but x(Z,)Mx(Z;)748,
for i=1,2. We now reorder the rows of A so that those corresponding to the row graphs of 7,

occur fast. In other words, the rows of Z; will be eliminated last.

What has this procedure achieved? First we note that G, and G, are disconnected unless
the row graphs of Z, are merged with G, and G,. That is, even if we have formed G, and G, {or
equivalently, processed the rows of Z, and Z,), the graph G will not be formed until the row

graphs of Z; are processed. Thus when a row graph ¢* of either Zy or Z, is merged with an
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existing graph G*7}, the component that contains A® is, in the worst case, G| or G, as long as
the row graphs of Z; are processed last. This is a consequence of Theorem 3.3.8. That is, by
eliminating the rows of Z, last, the length of the elimination sequence of any row of Z, or Z, is
limited to a proper subgraph of G. It is important to note also that the elimination sequences of
the rows of Z, and those of the rows of Z, are completely disjoint, regardless of the order in
which these rows are processed. Thus the same technique can be employed to label the rows of

Z, and Z, recursively.

Now assume that the rows of Z, and Z, have been eliminated; that is, G; and G, have
been formed. Consider the elimination of the rows of Z;. Let a* be any row of Z; and E* be its

elimination sequence. Theorem 3.3.8 says that A* is contained in the component G"(C':,r ), where
the node set C:k contains x*. Because of the row ordering strategy, this immediately means that
the component G"(Cﬁk) will include both G, and G,. Hence the elimiration sequence A* of of

may include nodes of &) and G, Thus, even though the lengths of the eiimination sequences of
the rows of Z; and Z, are limited, the elimination sequence of any row of Z; may be long, which
is undesirable. An important observation is that relabelling the nodes of G (that is, reordering
the columns of A) does not change the fact that G and G, are disconnected (before the rows of
Zy are processed). Yet it may be possible to limit the length of the elimination sequence of any
row of Z;. Consider the following strategy. Suppose we relabel the nodes of G so that the nodes
of x(Z3) are labelled !ast. Then, because of Carollary 3.3.10, the elimination sequence A* of any
row of Z; contains only nodes of x(Z3), even though the component containing the corresponding
row graph could be as large as G. Naturally we want to choose Z, so that x(Z,) is small,

compared to the size of G.

Another important consequence of the node labelling strategy is the following. Denote the
reordered matrix by A and let R be the upper triangular matrix in the upper trapezoidal form.
Suppose z,€x(Z,}-x(Z5) and z;€x(Z;)-x(Z;), where z; is the node having labelling i in the

relabelled graph. Assume {<j. Then Lemmas 3.3.1 and 3.3.4 imply that R;;==0 since there is
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ne path joining z; and z; in G that involves nodes whose labellings are less than both i and ;.
Thus our ordering strategies guarantee that

(1} the fl-in in R will be low,

(2) the rows of Z; will not be expensive to eliminate, since the elimination sequence of any row

of Z, is limited to a subset of nodes of G that have the largest labellings, and

(3) the elimination sequence of any row of Z 1 or Z, is limited to a proper subgraph of G.
We now summarize our ordering strategy. Find a set (;f row graphs Z; such that

(1)  x(Z;)is small, and

2) removing the row graphs of Z, from G disconnects the remaining graph into two or more
3

components,
Then we reorder the rows and columns of A so that
(1) the rows of Z, appear last, and
(2) the nodes of x{Z;) are labelled last.

Note that the first one implies a partial row ordering and the second one implies a partial column
ordering. Thus our ordering technique determines 5otk row and column orderings stmuitaneously.
Figure 4.1.1 illustrates the structure induced in the reordered matrix by this process. For clarity,
the rows of Z, and Z, have been arranged consecutively, and the nodes of x(Z,} and x(Z,), apart
from those appearing in x(Z;), have also been arranged consecutively. The portion of R that is

involved when the rows of Z;, 1<i<3, are eliminated is also shown.

The ordering technique also allows us to derive simple bounds on the number of nonzeros
in R and the cost of computing B. Let n,= lx{Z,.}| and m;= | Z; |, 1<i<3. Assuming the
non-null blocks of A and R are full, the number of nonzeros in R is bounded by

12
T umn+1),
25
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and the cost of computing R is bounded by

mn(n+ 1) .
1

83 =
e

¥
Note that m,+ mg+ my=m, but in general n,+ n,+ ny>n.

Finally note that the technique has decomposed the problem into two smaller
subproblems. The elimination of the rows of Z; and the elimination of the rows of Z, involve two
completely independent subgraphs. Thus the same strategies can be recursively. applied to the
tow graphs of Z, and Z; (or G, and G,) respectively. This refinement can be repeated until no
further decomposition is possible. Note that each level of refinement would allow the

determination of better bounds on the number of nonzeros in B and the cost of computing R .

Clearly the effectiveness of our strategies depends on how the set of row graphs Z, can be
identified. Since m>>n in gemeral, it may not be economical, both in terms of space and time,
to work with the sequence of graphs G* or the sequence of row graphs ¢* for determining Z,.
Recall that the graph G of ATA is simply the union of all the row graphs and is the same as
G™. Hence it seems more natural to work with G. We now show that the set Zy can be

identified easily if we can determine a minimal width-2 separator in the graph of AT A,

For simplicity we assume G'=(X,E} is connected. Let S be a separator of G whose
removal disconnects the graph into two or more components (say two). Denote the node sets of
the two components by €, and C, respectively. The first result follows directly from the

definition of 2 separator.

Lemma 4.1.1

Let K be any clique in G. Then either KQCIUS or KC Gy JS.
o

We now assume that S is a width-2 separator. Recall that each row graph ¢*={x",e"]

which corresponds to row a* of A is a complete graph. The following lemmas characterize these
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row graphs in the partitioning {CI,CQ,S } of X.

Lemma 4.1.2
Assume S is a width-2 separator. Let xigCIUS and x'C CA S, i5#j. It xin C#p

and xjn C, 59, then x‘nx"= .

Proof:

It xinS=B or xj ﬂS=0, then the result follows immediately from Lemma 4.1.1.
Assume x‘ns;éo and xjns#ﬂ. Let z,-ex‘nCl and ijxjn C, It x‘nxjyéﬂ, there would
exist ysx"nx"gs such that z;,z;€Adj(y), which contradicts the fact that § is a width-2

separator,

Lemma {.1.8

If § is a width-2 separator, then there is at least one row graph ¢* in the section graph

G(8).

Proof:

Since .5 is a width-2 separator, there must exist ¥€C, and v€C, such that the distance
between u and v in G is 3. Let the corresponding path joining u and v be (u,2,y,v), where
z,y€S. Now G is the union of the row graphs ¢, 1<i<m. So there must exist one row graph,
say ¢*={x",e’], such that z,yex® and {z,9}€¢". By Lemma 4.1.1, either x'QC,US or
x'C Cy| JS. Assume the first alternative. If x"n C,#8, then there exists wEx"nCl and a
path (w,y,v) in G, contradicting the fact that S is a width-2 separator. Thus x*C S and ¢* is a

subgraph of G(S}).
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Lemma .14

If $ is a minimal width-2 separator, then every edge in G(S) belongs to at least one row

graph ¢* of G(S).

Proof:

This follows from the fact that ¢ is a union of the row graphs 4' and § is a minimal

width-2 separator.
a

The fact that a minimal width-2 separator identifies a set of rows now follows from

Lemmas 4.1.3 and 4.1.4.

Theorem 4.1.5

If S a minimal width-2 separator, then G(S) is the urion of one or more row graphs oF.
o

We now assume that § is a minimal width-2 separator. Theorem 4.1.5 provides us with a
mechanism of identifying the sets of row graphs desired. Let Z; be the set of row graphs in
G(S). It follows from Lemma 4.1.3 that Z; must be non-null. Then Lemmas 4.1.1 and 4.1.2
imply that the node set of any row graph not in Z; must be contained in either Cy| JAdj(C)) or
Col JAdj(Cy). Note that Adj(C,), Adj(C)CS, and Adi{C)NAdi(Cy)=9 because S is a
width-2 separator. For i=1,2, let Z; be the set of row graphs in the section subgraph
G(C;} JAd](C;)). Then x(Z;) is the node set of the union of the row graphs of Z;. Since
x(Z;)C C;| JAdi(C;) for i=1,2, x(Z,) and x{Z,) are disjoint. Thus a minimal width-2 separator
S identifies the set of rows and the set of nodes desired. Now we simply reorder the rows and

columns of A so that

(1) the rows of Z; appear last, and
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(2} the columns corresponding to the nodes in x(Z;) (that is, the nodes of S) are labelled last,

Since we intend to work with the graph G, determining the separator § does not
immediately identify the set of row graphs Z, Fortunately tﬁis can be done cheaply, as the
following discussion shows. We assume that the nodes of G have been relabelled so that the
labellings of the nodes of 5 are greafer than those of the nodes of C, and C,. Define the leading
subscript of a row to be the column index of the first nonzero in that row. In terms of graphs, the
leading subscript of a row graph is the labelling of the node having the smallest labelling.
Because of t_!le labelling strategy for G, the labelling of any node in C;, i=1,2, must be less than
the labelling of any node in §. Thus if ¢* and ¢* are row graphs in Z; and Z; respectively
(§=1,2), then the leading subscript of ¢* {or 2*) must be greater than that of ¢ (or a'). Thus
the row ordering can be obtained simply by arranging the rows in (the column-permuted) A so
that the leading subscripts are in ascending order. Note that it is assumed that the graph of ATA

{and its subgraphs) has width-2 separators.

This dissection technique can of course be applied recursively to the subgraphs G(¢),
yielding a widih-2 nested dissection, which is similar to the nested dissection described in [28].
However, care has to be taken when choosing width-2 separators. Consider the graph G=(X,E)

in Figure 4.1.2.

Let S, be the set of nodes that are darkened. Clearly S, is a minimal width-2 separator
of G. Denote the components of G{X-5) by G(C]) and G(C;). Now we apply the dissection
technique again to the graph G(C) and find 2 minimal width-2 separator 5, {5, contains nodes
that are shaded). Denote the components in G(C}-5;) by G(C?) and G(C?). Note that even
though 5, is a minimal width-2 separatot of G(C?}), S| J5; is not a minimal width-2 separator of
G with respect to the components G(C{), G(C2) and G(C}), since there is a path of length 2
from z to w. VThe problem is due to the fact that Adj(C])CS,. In this case, we cannot

guarantee that there would not exist t €C7 and v€C7 such that 51 Ad7 ()M Adi (v)F#D.
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. nodes in S e nodes in 5,

Figure 4.1.2 An example illustrating the choice of width-2 separators.
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To solve this problem, we proceed as follows. Instead of choosing a width-2 separator
from G(C[), we choose it from the graph G(C} JAdi{C])). As an example,
Sz-—*S‘;U{z,y,zl,zz} is a minimal width-2 separator of G( CfUAdj(Cll)] in Figure 4.1.2, and
SIU32=SIU.§2U{z,y} is a minimal width-2 separator of G. The following theorem shows

that the separator constructed in this way is always a minimal width-2 separator of G.

Theorem §.1.6

Let S be a minimal width-2 separator of a connected graph G=(X,E) and denote the
components in G(X-5)) by G(C{), G(C;), -+, G(C}). Let S? be a minimal width-2
separator of G(C/|JAdj(C}/)) and demote the components in G(C{-S7) by G(CZ), G(C2),
.-, G(Cf). If z€CF and yECjz, i7£j, then the distance between z and y in G is greater than

2. That is, 5} | JSf is a width-2 separator of G. Furthermore, Si1JS¢ is minimal.

Proof:

It z6C? and y€C}, i5%j, then Adj(z)C CHYAdj(CT) and Adj(y)C CFAdI(CH).
Note that G(C/|JAdi(C/)-Sf) and G(CH|JAdj(CP)-52) are components in G(CUAdi(C))),
and 57 is 2 minimal width-2 separator of G(C,}UAJJ'(C,,‘)}‘ Thus, C,»zUAdj(C,z)' and
CHUAdi(C]) must be disjoint, implying that Adj(z)MAdj(y)=8. Now S| JS7 is minimal
because §)' and Sf are minimal, and G is a union of complete graphs.

o

We now define a width-2 nested dissection pariitioning formally. Let G=(X,E) be the

unlabelled graph of ATA. Let Y’=X, and for m=0,1,2, - - - ,h until ¥** =9, do the following:

m

(1) Determine the connected components of Y™ and label them Y™, Y7, - -, Y™,

(2) For j=L2, - -,r,, choose .S-';'-“QYJ'-"UAdj(Y}"} such that 57" is a minimal width-2

separator of G{Y[ JAds(Y]). I 3}"74!&, set S_;-"=.S_‘;-"n Y. Otherwise, set S"=Y".
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'm
{3) Define "= J S and Y™ l=Y"-5",
=1

The partitioning <I>={S}"§X,15j5rm,05mgh} is calied a width-2 nested dissection

partitioning of G.
An ordering of X is said to be a width-2 nested dissection ordering with respect to

&={5S["} if for z€S] and yEY[-S7, z is labelled affer y. An example of a width-2 nested

dissection ordering with respect to the partitioning of Figure 4.1.3 is shown in Figure 4.1.4,

The following theorem is a minor modification of Theorem 2.4 in [28]. It provides a
bound on the number of nonzeros in the upper triangular matrix R.
Theorem 4.1.7

Let ®={S["} be a width-2 nested dissection partitioning on G and the ordeting of X be
any width-2 nested dissection ordering with respect to ®. Then the number of ofi-diagonal

nonzeros in R is bounded by

f;o,ijl|s,w|[[,w(m|+u§z}ﬂ} .

o

This result is not only true for width-1 and width-2 nested dissection partitionings and orderings.

It can be generalized for any width-[ nested dissection ordering with {>1.

We now derive the cost of computing R, where cost is measured as described in Chapter
2. The results in this section show that the node set S (a minimal width-2 separator of Y7
identifies a set of rows of A, which we denote by Z _,’-". Let a7 be one of those rows, and consider
the corresponding component partitioning %7 of Theorem 3.3.8. Obviously, one of its members
contains the set S| JAdj(Y"), and this set contains x{Z]), where x(Z ) is the union of the node
sets of the row graphs of Z}". Moreover by Corollary 3.3.10, the length of the elimination

sequence of a? will be bounded by )", where



o om m———

-
i
]
1
i

[ o
Yi=X 8y = {zs:zsr-‘"lov“u}

Vi = {zanmazazzezt 80 = {zg2,25}

1 __ 1
Y; = {31274’13:zw’xs-zaonzn»"‘m} §; = {313,314,215,2m}

le = 512 = {zv’z}
Y22 = 322 = {ze,z-,}
Yi =55 = {z:}

Ycz = Sf = {311’318}

Figure 4.1.3 A width-2 nested dissection partitioning {5]"}
of the graph of ATA.
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Figure 4.1.4 A width-2 nested dissection ordeting on
the width-2 nested dissection partitioning of Figure 4.1.3.

wi'=|sruAdi(yn)| .

Thus we have the following theorem.

Theorem 4.1.8

Let ={S"} be a width-2 nested dissection partitioning on G and the ordering of X be
any width-2 nested dissection ordering with respect to $. If the row ordering induced by the
width-2 nested dissection ordering is used, then the cost of computing R is bounded by

S 120 afte+ )
I
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Since both the number of nonzeros in R and the cost of computing R depend in part on the sizes

of the width-2 separators, it is desirable to use small separators.

4.2. Complexity of width-2 nested dissection for the model problem

Consider the model problem introduced in Section 3.4. Let A be the rectangular matrix
associated with an n by n grid. Denote the graph of ATA by G=(X,E). (Recall that G is
almost identical to the grid.) We assume that the labelling of the nodes of G {and hence the
column ordering of A} is a width-2 nested dissection ordering. An example is shown in Figure
4.2.1 with n=14. For clarity we have displayed the grid instead of the graph G. We also
assume that the row ordering induced by width-2 nested dissection is used. That is, the rows are
arranged so that the leading subscripts are in ascending order. Let R be the upper triangular
matrix obtained in the orthogonal decomposition of A. In this section we investigate the quality
of width-2 nested dissection orderings by deriving the number of nonzeros; in £ and the cost of

computing R.

The technique used in the derivation is due to Rose and Whitten [66]. It involves the use
of a so-called bordered n by n grid which is an n by n grid where one or more sides of this grid
are bo;-dered by an additional grid-line. This additional grid-line is sometimes referred to as a
boundary line. Some examples of bordered 3 by 3 grids are shown in Figure 4.2.2. Note that
when a grid is bordered along two sides, we assume that the two boundary lines are adjacent to
each other (sce the example in Figure 4.2.2). For our purpose the labellings of the grid points (or
nodes) on the boundary lines are always greater than those of the nodes in the n by n grid. If R;
is an upper triangular matrix associated with an n by n grid which is bordered along ¢ sides, then
m(n,i} and f(n,¢) will denote respectively the number of off-diagonal nonzeros in R; and the cost
of computing R;. Hence n(n,0) and 6(n,0) are the quantities we wish to determine. For

convenience we assume n=2"-2, for some integer m>1.

First we review the dissection strategy. Consider a p by ¢ grid, with p<g. Any two

consecutive {horizontal or vertical) grid-lines in its interior form a minimal width-2 separator.



41 42 &b b ] 3 54 18 195 126 126 111 135 17 138

47 1 8 0 1) L4 150 194 131 132 143 134 143 14

46 48 63 L13 87 53 t7e m 120 130 147 183 141 142

3 40 [+ " 81 82 178 w2 123 124 148 152 136 13

ki 0 58 2 3 " 44 ] 150 183 JLLY 188 108 167 18

Figure 4.2.1 A width-2 nested dissection ordering on an 14 by 14 grid.
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M [T
1

Figure 4.2.2 Examples of bordered 3 by 3 grids.

That is, a width-2 separator is either a p by 2 or ¢ by 2 subgrid iz the interior of the r by g grid.
The discussion in the previous section indicated that the separator should be small. Thus we will
use a p by 2 subgrid as a separator. Furthermore, for convenience, the p by 2 subgrid will be

chosen so that removing this subgrid decomposes the p by ¢ grid into two components, each of
which is roughly a -% by ¢ grid (see the example in Figure 4.2.1). In the following discussion, a

separator-line refers to a grid-line in the separator with p nodes. Thus a width-2 separator
consists of two parallel separator-lines. We assume that the nodes in a width-2 separator are
labelled by separator-line (see Figure 4.2.1). The labellings of the nodes on one separator-line
(called the first separaior-line) will be less than those of the nodes on the other one (called the

second separaior-line).
Now consider an unbordered n by n grid. We first find a width-2 separator S, to dissect

the grid into two n by é—(n—?) grids. Then for each n by -%—(n—i’) grid, we find a width-2

separator S, to dissect it into two %(n_z) by %{n—2) grids. Note that |$;|=2n and
[ 8;| =n-2. Hence after the dissection technique is applied twice, the n by n grid is dissected

into four identical pieces, C;, C,, C; and C,, each of which is an %{n-Z) by %(n—Q] grid
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bordered along two sides. This is illustrated by an-example in Figure 4.2.3. The observations

below follow immediately from the ordering strategies.

{1) Let z; denote the grid point (or node) having labelling i. If z,ES5,, 2,€ES, and 2,€C,
1<{<4, then i>j>E.

(2) The rows associated with the small squares in Ci|JAdj(C,), 1<1<4, will be processed first.
Those in S, will be processed next, and those in 5, are processed last.

The same dissection technique can be applied recursively to relabel the remaining nodes of C,

1<I<4.

C, C,
S, S,
¢, 5 Cy

Figure 4.2.3 Structure of the grid after dissection technique is applied twice.
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Let Reachg(z;) denote the set Reachg(s;,T;), where T,={z;€X|j<i}. We will use

. Gy=(X,.E,) to denote the graph of the subgrid containing C,UAdj{C,), 1<i<4. The first and

second separator-lines in S; {i=1,2) are denoted by S;; and S;, respectively. Let #;;+ 1 denote

the smallest labelling in S;.

)

(2)

3)

Q)

)

The following observations will be useful in the derivation of n{n,0).

By Lemma 3.3.1 and Corollary 3.4.4, the number of off-diagonal nonzeros in R is

a(n,0) =¥ | Reachy(z)| .
€X

For any z€C;, 1<1<4, Reacha[z}zReachGl[z}. This follows from the fact that the nodes

of 8, and §, are labelled last.

The graphs G|, G, G, and G, are identical. The nodes of each C; will be assumed to be

labelled in exactly the same way. Thus

Y |Reachq (z)] = ¥ | Reachg (2)| , 1<p,q<4 .
€C, ? 2€C, !

Note that G, is simply the graph of an %(n—Z) by %{n—Q] grid which is bordered along two

sides. Thus

5 | Reachg (2)] = «( n-2 ,2) .
:€C, ] 2

Consider the two width-2 separators S, in Figure 4.2.3. Denote the one on the left by S}

and the one on the right by S;. Assume the same dissection strategy is applied to each of

the two n by -;—(n—2] grids. Then

Y |Reachg(z)| = 3} | Reachg(z)] .

SES; EISA

Let 2€5,,. If the labelling of z is n,+ 7, 153'5—;-("—2), then it can be shown that



- 87 -

| Reachg(z)| = n .

This is illustrated in Figure 4.2.4. Darkened nodes are in Reachg{z)| J{z}. Nodes which

_are shaded have labels less than that of z.
(6) Let 2€S,. If the labelling of z is npy+ 7, 15;‘5%{”), then
| Reachy(z)| = %n -1-j .
This is also illustrated in Figure 4.2.4.

(7)  Using observations (5) and (6), we obtain the following.

Y |Reschg(z)| = Y |Reachg(z)| + 3 | Reachy(z)]

€5, €5y, €5,

Figure 4.2.4 Darkened nodes are in Reachg(z)u{z}.
Shaded nodes have labels less than that of z.




1 1
-2-(5-2) -2-{n-2]

= Y n+ g}(%n—l—j)

J=1

= %—nz—l‘:—n+ 1.

{8) Let z£S5,;. If the labelling of z is 5y, + 7, 1< <n, then
| Reachg(z)] =n+1 .

(When the labelling of z is 5+ n, | Reachg{z)|=n.) This is illustrated in Figure 4.2.5.
Nodes which are in Reachc(z]u{x} are darkened, and nodes whose labellings are less than

that of z are shaded.

(9) Let z€S8,,. If the labelling of z is ,,+ 7, 153’57‘,‘ then

Figure 4.2.5 Same as Figure 4.2.4, except that z€5,.
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| Reachg(z)] =n-j .
This is also illustrated in Figure 4.2.5.

(10) Using observations (8) and (9), we-obtain the following bound.

53 | Reachg(z) | Y |Reachg(z}| + ¥ | Reachg(z)]

1€8, €S, €S,

2(“‘ )+ Y (n-j)

=1

Now we return to the derivation of n(n,0). The number of ofi-diagonal nonzeros in

R=R, is given by

7(n,0) =Y, | Reachy(z)]
. FEX
This can be simplified using the observations above:

a(n,0) = E 2 |Reacha(x)! + Y [Reachg(z)| + 12 |ReachG[z}|

k=12€C, SES, SES'

+ E | Reachg(z)]

2ES. 1
= 4n(=2 8. 1L 3,2 L
= 4552+ Agn’-Fnt D+ (5n )
n-2 15
=47r(—2 ,2)+ 1 —n?-6n+ 2 . (42.1)

Using the same technique and arguments, we can derive the recurrence equations for n(n,i),
i=2,3,4, which are given in (4.2.2)-(4.2.4). The choices of width-2 separators in various bordered

n by n grids are shown in Figure 4.2.6.

125n2—6n +1, (4.2.2)

w(n2) = 250+ 20 R g 4 (2 gy

3)+ 27{("2;2,4)+ 441:: ~5n , (4.2.3)

n(n,3) = 2a( n2—2



Figure 4.2.6 Choice of width-2 separators in various bordered n by n grids.

n(n 4) = 47r("2;2,4)+ %l—nz—2n -4 . (4.24)

n-2

Since n=2"-2, we have ==2™1_2 Thus equations (4.2.1}-(4.2.4) can be restated in terms of

#(m ,0) = dn(m-1,2) + 145—22'"—21[2"‘)+ 29 | (4.2.3)

#(m,2) = a(m-1.2)+ 2n{m-13)+ n(m-14)+ 125—22'"-36(2'”)+ 3, “.2.6)
n(m,3) = 2r(m-1,3)+ 2n(m-1,4) + 44—122”'-46(2"')-1— 51, (.27
7(m,4) = 42(m~1,4)+ 54—12”"-53(2"']+ 51 . {4.2.8)

The following lemma is useful when we determine a closed form for a{m,0). It can be

proved by induction.
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Lemma {.2.1
(a) If f(m)= f{m-1)+ am2®™ + O(2%"), then f(m)= *;—ozm22"'+ o2*).

(b) H g(m)=2g(m-1)+ am2*™ + O(2®™), then g(m)= 2am2*™ + 0(22"')

(c) 1If A(m)=4g{m-1)+ a2®™ + O(2"), then k(m)= am?®™ + O(2™).

o
Applying Lemma 4.2.1 (c) to (4.2.8), we have
51 \2m m 51 22m 22m
a{m,4) = 4n(m-1,4) + i oEem) = e+ o(2'") . (4.2.9)
Using Lemma 4.2.1 {b} and (4.2.9), (4.2.7} becomes
51 2 2m 51 2m 2m
1(m,3) = 2x{m-1,3}+ rRca o(2*™) = <Tmem o™ . (4.2.10)
Now using Lemma 4.2.1 (a), (4.2.9) and {4.2.10), (4.2.6) can be written as
m(m,2) = n{m-1,2) + IT‘E’:—mzz"‘ + 0(2"™) = %Lmzz’” + o2"™) . (4.2.11)
Finally the closed form for n(m,0) is obtained from (4.2.5), (4.2.11) and Lemma 4.2.1 (c):
15 om my_ 5L 2m 2m ’
7(m,0) = 4z(m-1,2) + TQ + 0(2") = Tm2 + 0(2*") . (4.2.12)

Replacing m and 2™ by logy(n+ 2) and (n+ 2) respectively and expanding log,(n+ 2}, we have
7(n,0) = rud logon + O(n?) . (4.2.13)

Thus the number of nonzeros in the upper triangular matrix R is O(nzlog,n}.

It should be pointed out that the bounds in (4.2.1}-(4.2.4) are obtained by assuming a
patticular labelling of the nodes of S; and S,. Such an assumption will make the derivation of
8(n,i) much simpler. It is possible to derive the worst case behavior without assuming any
particular ordering. For example, let n+ 1 and #;+ 1 be the smallest labellings in S, and S,

respectively, Let z€5, and y€S,. If the labellings of z and y are respectively 7,+ i and n,+ 7,



-92-

then, in the worst~case, we have
| Reachglz)| == 2n-i
and
| Reachgly)| = 2n-2-5 .

That is, the submatrices corresponding to the nodes of $; and S, are full matrices. These bounds

are attainable by treating a separator as a p by 2 grid and labelling the nodes row by row. Thus

Y3 | Reachg(z)| = §1(2n-i)=2n2—n

€5,
and
-2 3, 9
Y | Reachg(y)] = ¥(20-2-) = Sn-Zn4+3 ..
¥ES, F=1 2 2

Hence the upper bound on #(%,0) is given by

7(n,0) = 33 | Reachq(z)]
2€X

n—2
2

= 4x( 2)+ 2(%n2—%n + 3)+ (2r%-n)

= 4n( "2‘2 2)+ 5n2+ O(n) .

Similarly it is possible to derive the worst case situations for n{n ), i=2,3,4.

n-2 n-2
2 2’

a(n,2) = ﬂ{%z—,Z)‘!' 2nf ,3) + 7 4) + 11n%4 O(n) ,

(n,3) = 2n(2223) 4 2r( 222

2 3

4)+ 14n®+ Ofn) ,

- n(n,4) = 4n( "2'2 A)+ 172%+ O(n) .
Using the previous technique, it is then possible to show that, in the worst case,

7(n,0) = 17n%log,n + O{n?) . (4.2.14)
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The leading terms in both (4.2.13) and (4.2.14) are O(n’log,n), but the coeflicient in (4.2.14) is

slightly larger than that in (4.2.13).

It is intgresting to note the following. Consider an n by n grid. Let z; denote the node
having labelling j. Define a symmetric matrix B as follows: for ‘j >1, B,-ﬁé[) if z; and z; are
associated with the same small square. The unlabelled graph of B is ezactly the same as the
unlabelled graph G of ATA. Moreover the structure of R is the same as that of the Cholesky
factor L of B if the rows and columns of B are reordered using the width-2 nested dissection. In
[52] it is proved that the number of monzeros in L, for any symmetric ordering, is at least
O(n*log,n). Thus we can immediately conclude that, in terms of nonzero count, width-2 nested

dissection is optimal (in the order of magnitude sense).

To derive the cost of computing R, we first make a few observations. Here G =(f( ,E’)

will denote the union of the row graphs of those rows that have been eliminated.

(1) Let B be the elimination sequence of the current row. Then the cost of eliminating this

current row using Algorithm 2.1.1 is

& = z{ch“c}'d(zn‘i” + 1} ?
=]
where z, is the node having labelling s and §,={z;€X|i<s} (see Chapter 2 for details).

Thus the total cost of eliminating the rows of A is
TaF .
¥

(2) For any node labelling, the leading subscripts of the four rows associated with a small
square are the same. Thus if the row ordering induced by width-2 nested dissection is used,
it is reasonable to assume that those four rows will be eliminated together. Furthermore,
because of the discussion in Section 3.4, the elimination sequence of the fourth row is
maximal. The elimination sequences of the first three rows are subsets of that of the fourth

one.
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(4)

(5)

6)
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If we assume that the nodes of €}, 1<I<4, are labelled in the same manner, then the costs
of eliminating the rows of G;, 1</<4, are identical. Moreover, since G, is bordered along
two sides, the cost of eliminating the rows of G is simply 0(-'—1-2:-2-,2).

Similarly we assume that the cost of eliminating the rows in G(S}) is the same as the cost
of eliminating the rows in G(S}).

The row ordering induced by width-2 nested dissection implies that, before the rows of
G(S,) and G(S;) are eliminated, the rows of G;, 1<{<4, must have been eliminated and

G;, 1<1<4, are disjoint.

Consider any row in G(S,) and assume its elimination sequence is maximal. Because of the

way in which the nodes are labelled, the node which corresponds to the leading subscript
must be in S,;. Let the leading subscript be g+ 7, 1< < nT—Z_ Using Lemma 3.3.5, the
elimination sequence is

‘ e =2 , ;
{fp21+=!_75:5-"—2—}[_]{:|z,-ESu}U{t|z,-ESu} , k=lor2 .

This is illustrated in Figure 4.2.7. Darkened nodes are in the elimination sequence. Nodes

which are shaded have labels less than 5+ 7. The following results are obtained using
Lemma 3.3.4. If 2€S,, and its labelling is n,+ 1, jﬁis—n“é—-g-, then
|Reachy(z)| + 1=n+1-i+j .

It 2€S,; and its labelling is gyt 5, 1<i < L;i then

| Reachy(z)| + 1= %n—i .
If €5, and its labelling is 5+ ¢, 1<:<n, then
| Reachy(z)| + 1=n+1-i .

Thus the cost-of eliminating this row is



current row in S,

N,

current row in S,

Figure 4.2.7 Darkened nodes are in the elimination sequence of a row.
Shaded nodes have labels less than 5, and are not in the elimination sequence.

n-’Z) -€n—2)
b = Z (n+1-i+ )+ Y {in—z]-i— Z(n+l-:)
i=j =1
_3, 1 3. 1,
2" TeM TRy

Since there are —;—(n—2) small squares in §;, the total cost of eliminating the rows of S, is

bounded by
n-g) L) s 1 .
=1 E by =4y (—n -—nJ— =i 2}— 3" d_6n’+ —n
= 2’ 3

The factor 4 comes from the fact that there are four rows in each small square.

(7) Consider any row in §;. Assume its elimination sequence is maximal. Let its leading

subscript be 5,4+ 5, 1< <n-1. Using Lemma 3.3.5, the elimination sequence is
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{nt+iligi<n}y{mat+iligi<al) .

This is illustrated in Figure 4.2.7. Nodes which are in the elimination sequence are
darkened, and nodes whose labellings are less than n,,+ f are shaded. The following results

are obtained using Lemma 3.3.4. If €S, and its labelling is 5,;+ ¢, § <i<n, then
|Reachy(z)| + 1=n+2-i+ 7 .
If z€S}, and its labelling is 5,,+ i, 1<i<n, then
[ Reachy(z)| + 1= n+ 1-i

Thus the cost of eliminating this row is

by = E(””’? ’+J)+2{n+1—:}—n+3n+2———;-;2_
i=§

Since there are {n—1) small squares in S, and each small square has four rows, the total cost

of eliminating the rows of S, is bounded by

_4):;9“ —4E[n +3n + 2-—3—3‘-l2)_ Byent-dn g
=2 = 2 3 3

Now we return to the derivation of f(n,0). Recall that the cost of computing R =R,

using rotations is given by
én0)= Yot
]

Using the previous observations, this can be written as

8(n,0) = Zk: t

10 2ty

-6r?+ -—n)+( 6n —%n—s]

P2, B 4,
—40(—2 2)+ - 3 ~6n?+ — 3h -8 . (4.2.15)

Using the same technique and arguments, the recurrence equations for 6(n,:), i=2,3,4, can also



-97-

be derived.
8(n,2) = 6 n-2 413 3
+ 20n%+ -g,f-n-s , (4.2.16)
6(n,3) = 26(" a4+ 6tni+ 16 , (4.2.17)
8(n,4) = 245 n®+ 191+ go n+ 16 . (4.2.18)

Recall that n=2"-2. That is, 2=

=2""12 Thus equations (4.2.15)-(4.2.18) can be rewritten

in terms of m.

é(m ,0) = 46(m-1,2)+ 23"' 58(2%™) + -~—2"‘-104 {4.2.19)
8(m,2) = 8(m-1,2)+ 20(m-1,8)+ O(m—1,4)+ 31123—23"'
3%&2 1024 1028 om 290 , (4.2.20)
8(m,3) = 26(m-1,3)+ 28(m-1,4) + L2
_273(22™) + l?ﬁz"' —244 (4.2.21)
8(m,4) = 46(m—1,4)+ 245 =% _2g9(2*™) + 113"8 ——2m-180 . (4.2.22)

The next lemma is useful when we determine a closed form for ¢(m,0). It can be proved

by induction.
Lemma §.2.2
(a) It f(m)= f(m-1)+ 2™+ O(m2°™), then f(m)= —?—a?a"'+ o{m2®).

(b) If g(m)=2g(m-1)+ a2™ + O(m2®™), then g(m)= -;—a23"‘+ o(m2™™).
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{e) It h(m)=4h(m-1)+ a2’ + O(2°™), then h{m) = 202°"™ + O(m2*").

1]
Now applying Lemma 4.2.2 (¢) to (4.2.22), we have
#(m ) = 46(m-1,)+ B2om 4 0(gom) = Lo s 0(me™) . (4.2.23)
Applying Lemma 4.2.2 (b) and (4.2.23) to (4.2.21), we have
8(m,3) = 20(m-1,3)+ %23"' + O(mZ&™)+ 336 ™4 omEm) . (4.2.24)
Using Lemma 4.2.2 (a), (4.2.23) and (4.2.24), {4.2.20) becomes
8(m,2) = 8(m-1,2) + 87(2™}+ O(m2™™) = %‘5—23"‘ + 0(m2™™) . (4.2.25)
Finally applying Lemma 4.2.2 (c) and (4.2.25) to (4.2.19), §(m,0) is given by
8(m,0) = 46(m-1,2)+ 2:;23” O(m2t™) = %%9-23"+ o(m2™) . (4.2.26)

Replacing m and 2™ by logy(n+ 2) and (n+ 2) respectively and expanding log,{n+ 2), we have

on0) = 1228

21 n’+ O(n®logyn) . (4.2.27)

Thus the cost of computing the upper triangular matrix R is O(ns}.

The bound obtained in (4.2.27) may be too pessimistic because we are assuming that the
elimination sequences of afl the four rows associated with a small square are mazimal. As we have
shown in Theorem 3.4.3, this is not the case if the rows associated with 2 small square are

eliminated {ogether. Some of the elimination sequences are non-maximal, but the fourth one must

be maximal. This discussion means that 6{n,0) must be less than 1326 8

Tt O(n’log,n), but it

must be at Jeast %nﬁ O(n’log,n). In any case, the order of magnitude remains O(n?).

Finally, as in the case of #(x,0), the bounds in (4.2.15}-(4.2.18) are obtained by assuming

a particular width-2 nested dissection ordering of the grid points. It is possible to derive a worst



case behavior without imposing such a restriction. For example, the elimination sequence of any

row in S, is, in the worst case, given by
8= {i|5eS Ulil%€S,} , k=ler2,

and |B|=2n-2. Thus using Corollary 3.3.10, the cost of eliminating this row is at most

by = 51i= %{2:. ~1)(2n-2) .

i=1

Note that there are 2(n-2) rows in 5,. Hence the total cost of eliminating the rows in 5, is

2(n-2) 2%2]1 3 2
8, = ; 102j= . 1;{2n—1)(2n—2)=4n —-14n*+ 14n-4 .
= =

Similarly the elimination sequence of any row in S, is, in the worst case, given by
B = {‘ | 3!'631} ’

and | g2 I =2n, Thus the cost of eliminating this row is at most

28
b= Yi=n@n+1) .

i=1

Since there are 4(n-1) rows in §,, the total cost of eliminating the rows in S, is

n-1) 21}
0, = 42 Oy = ‘2 n(2n+ 1) = 8n’—4n’—4n

=1 j=1
Hence, in the worst case, 8(n,0) is given by

n-2
2

6{n,0) = 46( ,2)+ 26,+ 6,

= 49("7‘2,2)1- 16n°-32n%+ 24n-8 .

Using the same approach, it is possible to derive the worst case situations for 8(n,i), i=2,3,4.

n-2 n-2 n-2 101 3
5 3 3)+ 8( 3 ,4) + ="

8(n,2) = 6(22,2) + 26(

+ —;—n2+ 2ln-4 ,
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#(n,3) = 1;9 n’+ 430+ 12n
#(n,4) = 1480 + 40 .
Then one can show that, in the worst case, |
#(n,0) = 760 n®+ O(n®logyn) . (4.2.28)

As in the case of 7(n,0), the leading terms in both (4.2.27) and (4.2.28) are O(n®), but the
coefficient in {4.2.28) is larger than that in (4.2.27). However it is obvious that in this case the

worst case situation is not attainable.

We summarize our derivations in the following theorem.

Theorem 4.2.8

Let A be the rectangular matrix associated with an n by n grid and let R be the n’ by
n® upper triangular matrix obtained by reducing the rows of A using rotations. If the labelling of
the grid points is a width-2 nested dissection labelling aﬁd if the row ordering induced by this
width-2 nested dissection is used, then the number of nonzeros in R is O{n’log,n) and the cost of
computing R is O(ns). 4

1

To conclude this section, we present some numerical experiments on n by n grids. The
objectives are to provide some specific instances of the bounds just obtained and to demonstrate
the effectiveness of the row ordering induced by width-2 nested dissection. Some of the
subroutines used in the experiments were taken from SPARSPAK-B. This package, which is an
extension of SPARSPAK [30|, is designed for solving large sparse systems of linear equations

using rotation matrices and is still under development.

The column ordering used in the experiments was the one induced by width-2 nested

dissection. The row orderings were the following.
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(a) Row ordering A — This is the row ordering induced by width-2 nested dissection. The rows
are arranged so that the leading subscripts are in ascending order. (That is, the rows

associated with the separators are eliminated last.)

(¢} Row ordering B — The rows are arranged so that the leading subscripts are in descending

order. (That is, the rows associated with the separators are eliminated first.)

{c) Row ordering C — This is the so-called natural row ordering. The rows are collected from

the small squares in the grid row by row.
The following notation is used in Tables 4.2.1 and 4.2.2.
N — number of columns (N=n?).
M — number of rows (M=4(n-1)%).
NZ - number of nonzeros (NZ=16(n-1)?).
§ — number of storage locations required for the upper triangular matrix R.
7 — transformation time for row ordering A (in seconds).
g — transformation time for row ordering B (in seconds).
7 — transformation time for row ordering C (in seconds).

The results in Table 4.2.1 confirm that if the column and row orderings induced by
width-2 nested dissection are used, the storage requirement and transformation time are
Ofn’log,n) and O(n®) respectively. Note that S includes the storage required to store the

nonzeros of R and the structure of B (that is, pointers and column indices).

The results in Table 4.2.2 show that the row ordering induced by width-2 nested

dissection (that is, row ordering A) is indeed better than the other two row orderings used.

More numerical results will be presented later in this chapter.
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n N M NI S g no A
- n’loggn n
10 100 324 1296 2223 8.69 1.230 0.00123
52 144 484 1038 3410 8.62 2.297 0.00133
4 198 678 2704 5058 8.78 3.323 0.00139
18 258 200 3600 7180 7.02 8.153 0.60150
18 324 1156 4624 0805 T1.28 8.008 G.00153
20 400 1444 5778 12679 7.33 12,416 0.00155
22 484 1764 7056 16076 145 18.596 0.00158
24 576 2118 8464 19500 1.3¢ 21.595 0.90t58
28 876 2500 10000 23771 7.48 28.725 0.00163
28 184 2018 11664 28850 7.80 38.384 0.00188
30 200 3364 13453 34093 732 46.224 00071

Table 4.2.1 Storage requirement and execution time
for width-2 nested dissection orderings.

n N M NZ Ta T8 7o

10100 324 1208 1230 1.763 1407
12 144 434 1038 2.207 3.738 2,845
14 196 676 2704 3323 8.923 5.102
16 266 000 3600  6.153 1.749 8449
18 324 1156 4024  3.908 18815 13.420
20 400 1444 5778 12.418 27422 20.145
22 484 1764 7058 16508 40877 20288
24 576 2118 8484 21505 56009  40.307
28 676 2500 10000  28.725 79.248  55.037
28 784 2016 11684  36.364  108.088  72.135
30 000 3364 13456 46224 141788 07.634

Table 4.2.2 Execution times for three different row orderings.
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4.3. Generalized width-2 nested dissection

Suppose G=(X,E) is a finite element graph satisfying the conditions of Theorem 3.5.4
and assume | X [=n. Then we have shown that the node set X can be partitioned into A, B

and C such that C' is a width-2 separator having O(Vn ) nodes. The graphs G{A) and G(B) are
disconnected, and neither A nor B contains more than -g-n nodes. Because of our definition of

finite element graphs, G(A| JAdj(A)) and G(B| JAdj(B)) also satisfy the conditions of Theorem
3.5.4. Hence, one can partition A{ JAdj(A) and Bl JAdj{(B) similarly. In fact, the process can

be repeated recursively and it produces a width-2 nested dissection partitioning.

Suppose the modes are labelled in such a way that the labelling is a width-2 nested
dissection ordering with respect to the width-2 nested dissection partitioning. Consider the finite
element problem defined on . Let R be the n by n upper triangular matrix obtained in
Algorithm 2.3.1. The rows of the problem are assumed to be arranged so that the leading

subscripts are in ascending order. Then it is possible to show that the number of nonzeros in B

3
and the cost of computing R are respectively O(n?*) and O(nlogn), as long as there is 2 bounded

number of equations defined on each element. The proofs are omitted since they are similar to
those in Section 4.2 and [40,56]. Note that the results are consistent with those of the model

problem.

4.4, Automatic width-2 nested dissectlon

The success of width-2 nested dissection hinges on the ability to find width-2 separators in
the subgraphs of the graph of ATA. For problems arising from n by n grids, we have seen that
it is very easy to find small width-2 separators. For problems arising from two-dimensional finite
element graphs whose skeletons are planar graphs, Lipton and Tarjan have proposed an algorithm
for finding small width-1 separators [57). This can be used as a basis for finding width-2
separators {see Section 3.5). Unfortunately their algorithm is very complicated. As far as we

know, no actual implementation exists yet. For more general problems, there is no known
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algorithm that will guarantee to find small width-1 separators. Thus in order to implement the
width-2 nested dissection algorithm for labelling general graphs, we need some heuristic methods
for finding width-1 and width-2 separators. In this section we describe one such heuristic method.
Expérience has shown that for two-dimensional finite element problems, the separators are usually
small, The method has been used extensively by George and Liu in the automatic generation of
symmetric orderings for large sparse symmetric positive definite matrices [36]. Examples include
the width-1 nested dissection [28], the one-way dissection [24], and the refined quotient tree

orderings [29]. It is based on a so-called rooted level structure [2].

Let A be an m by n matrix with m>n. Let G=(X,E) be the graph of ATA. A level

structure rooted al ¢ node r, denoted by
L(r) = {LO(Y)JLl(r)r T rLI,(r)} ’

is a partitioning of the node set X that satisfies the following conditions.

[f
&) ULdn=x.

E=0
{b) For i5#f, Li(r)N\L(r)=0.
() Lolr)={r}, Li(r)}=Adj(Lo(r)), a0d Ly{r)=Adj(Ly.o(r )Ly olr), for 2k <L,.
That is, for 1<k <41, Adj(Ly{r)SLyo(r)Lyss(r). Thus for 0<k<l,, Ly(r) is a width-1
separator (even though it may not he minimal). A minimal width-1 separator $ can be obtained
from Lg(r) simply by finding those modes in Ly(r) that have neighbors in both L, ,(r) and
Lyyo(r). A minimal width-2 separator is them given by S| JAdi (S)NLsalr)) or
SUAdF (SIN Ly alr))-

How do we choose the node r? A simple solution to this problem is the following. Let

R

w,=! )
(i

where n= |X | . That is, w, is the average number of nodes in each level. Now we may
regard the level structure rooted at r as a w, by {, grid. From the discussion in Section 4.2, we

: |,
would choose as a width-1 separator the “grid-line”” L,{r) where k= —2'- Hopefully L,(r} will be
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small if /, could be made large.
How can we make /, large? Define the eccentricity of a node z {7] to be the quantity
e(z) = max{d(z,y)| yeX} .
The diameter of G is then defined as
5= max{e(z)]z€X} ;

that is, the diameter is the largest distance between any two nodes in the graph. Thus one can
choose r so that its eccentricity is the same as the diameter of G. Such a node is called a
peripheral node. However the best known algorithm for finding peripheral node in a given graph
G=(X,E) has a time complexity bound of O(|X || E|) [70]. This is too expensive for sparse

matrix applications.

Instead of using a peripheral node, we use a so-called pseudo-peripheral node which is a
node that has large eccentricity. Many efficient heuristic algorithms are available for finding

pseudo-peripheral nodes [32,39]. The one we use here is due to George and Liu [32, 50].

We describe below an algorithm that automatically determines a width-2 separator in the

graph G. For simplicity we assume ( is connected.

Algorithm 4.4.1
(i) Find a pseudo-peripheral node r in G using the algorithm from [32].

(2) Generate a level structure rooted at r, L (r)={Lo{r),L(r), : - - ,L,’(r)} .

{ l
(3) If {,>3, then choose a minimal width-2 separator from levels l?'! and I?'!+ 1. Otherwise,
the whole set X is a width-2 separator.

Note that different ways of determining the width-2 separator in step 3 will generate different
width-2 nested dissection orderings. Experience has shown that these orderings differ only slightly

in most cases in terms of nonzero count in £ and time for computing B.
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Problem | Number of | Number of ] Number of Remarks
number rOWS columns nonzeros
1 219 85 438 Holland survey data.
2 958 292 1916 UK. survey data.
3 331 104 662 Scotland survey data.
4 608 188 1216 England survey data.
5 313 176 1557 Sudan survey data.
6 1033 320 4732 A well conditioned least squares
problem in the analysis of gravity-
meter observations (provided by M.A.
Saunders).
7 1033 320 4719 An  ill-conditioned problem whose
structure is similar to that of preblem
2.
8 1850 712 8755 Similar to problem 2, but larger in size.
9 1850 712 8636 Problem similar in structure to problem
4, but ill-conditioned.
10 784 225 3136 Artificial - 15 by 15 grid problem.
11 1444 400 5776 Artificial - 20 by 20 grid problem.
12 1512 402 7152 Artificial - 3 by 3 network, p=2.
13 1488 784 7040 Artificial - 4 by 4 network, y=1.
14 900 269 4208 A geodetic network problem provided
by the U.S. National Geodetic Survey
(ill-conditioned).

Table 4.4.1 Characteristics of the test problems.
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We pow present some numerical experiments to demonstrate the effectiveness of
automatic width-2 nested dissection orderings. The test set consists of fourteen problems, some of
which are real problems while the others were generated artificially. They are large sparse
overdetermined systems of linear equations. Problems 5 to 14 were used in [26]. There are two

types of artificially generated problems.

(a) The first type of artificially generated problem involves a network which is typical of those
arising in geodetic adjustment applications [54]. Problems 12 and 13 belong to this class.
Each network may be regarded as being composed of g° “junction boxes", connected to

their neighbors by chains of length /. An example is shown in Figure 4.4.1 with ¢=3 and

Figure 4.4.1 A 3 by 3 network with [=2.
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{=2. There are two variables associated with each vertex in the network. There are u
observations involving four variables associated with each pair of vertices joining by an
edge, and there are x additional observations involving six variables associated with each

triangle in the network.

(b) The model grid problem is the second type of artificially generated problem. Problems 10

and 11 are examples of it.

Table 4.4.1 contains some characteristics of each of the fourteen problems. For the
artificially generated problems, the numerical values in the observation matrices and the right-

hand sides were generated using a uniform random number generator.

problem N M NZ S Ta T8 o i)
1 85 210 438 1600 0.700 0.980 0.787 0.780
2 202 958 1916 7708 7.136 10.803 7.588 7.540
3 104 331 682 2210 1.387 2.057 1.337 1.350
1 183 608 1218 4385 3.803 6.203 1478 1328
5 176 313 1557 4352 1443 1.873 1500 1923
s 320 1033 4732 13831 38.608 25043 48.823 26.603
7 320 1038 4710 13684 38533 28.240 19.363 26.876 '
8 712 1850 87556 48857  328.013  235.047  350.183  308.010
] 712 1850 8836 48054  330.2886  402.564 378775  420.165
10 225 784 3138 6135 5.037 10.410 8.280 8.557
1t 400 g444 5776 12380 12.223 32.556 28.876 28.126
12 402 1512 TISZ 10732 11340 16.288 15.403 27.843
13 78 188 7040 24550 15182 25.103 10.417 42,670
] 200 000 4208 11546 20.210 23.800 24.888 20.110

Table 4.4.2 Storage requirement in width-2 nested dissection column ordering,
and execution times for four different row orderings.
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The column ordering used in the experiments was the width-2 nested dissection ordering
which was generated using the automatic scheme described in this section. Four row orderings

were investigated.

(2) Row ordering A — The rows are arranged so that the leading subscripts are in ascending

order. This is the row ordering induced by width-2 nested dissection.

(b) Row ordering B -- The rows are arranged so that the leading subscripts are in descending

order.
{c} Row ordering C -- This is the initial row ordering provided.

(d) Row ordering D — The rows are arranged so that the numbers of nonzeros in the rows are in

ascending order.

We include row ordering D because some believe that the upper triangular matrices in the
intermediate stages will be less dense if rows with smaller number of nonzeros are eliminated first.
This might imply that the overall cost of computing the upper trapezoidal form would then be
smaller. However this is not necessarily true, since the distribution of the nonzeros is important
as well. The intermediate upper triangular matrices could be dense, and the elimination of some

of the rows may be very expensive. The objective here is to illustrate this possibility.

Table 4.4.2 contains the storage required for the upper triangular matrices and the
transformation times (in seconds) for the various row orderings. For convenience the following

notation will be used in Table 4.4.2.
M — number of rows.
N — number of columns.
NZ — number of nonzetos.
§ — number of storage locations required for the upper triangular matrix.

7y ~ transformation time for row ordering A (in seconds).
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7y — transformation time for row ordering B-(in seconds).
7¢ == transformation time for row ordering C (in seconds).
7, — transformation time for row ordering D (in seconds).

A few remarks on the numerical results must be made.

() The numerical results confirm the fact that row ordering D (arranging the nonzero counts in
ascending order) may not be a good one. For some problems, the transformation times are

even larger than those when the initial row ordering (row ordering C) is used.

(2) Row ordering A (the one induced by width-2 nested dissection) is the best row ordering for

nine of the fourteen problems.

problem N size of separator
1 86 10
2 202 22
3 104 16
4 188 20
5 178 1t
[ 320 217
7 320 217
8 712 490
¢ 712 490
10 225 32
1 400 40
12 402 4
13 784 58
" 260 42

Table 4.4.3 Size of width-2 separators in the first level of dissection.




(3)

(4)
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Both storage requirements and transformation times for problems 8 and 9 are large.
Furthermore row ordering A is not the best row ordering for problems 6, 7 and 8. One
possible reason is as follows. The way in which the width-2 separators are obtained is
heuristic. There is no guarantee that the width-2 separators are small. If the width-2
separators are large, then our discussion in Section 1 of this chapter implies that the storage
requirement could be large. Furthermore, the number of rows associated with a large
width-2 separator could also be large and the cost of eliminating these rows could be high.
We have listed in Table 4.4.3 the size of the width-2 separator for each problem in the first
level of dissection. Notice that for problems 6, 7, 8 and 9, each separator contains more
than half of the nodes in the graph. This explains why the storage requirements and

transformation times are large for those four problems. For the other problems, the width-2
separators are relatively small; each contains less than -i— of the nodes in the graph. This

illustrates the main disadvantage of automatic width-2 nested dissection algorithm: the
induced row and column orderings are good (in terms of storage requirement and execution
time) only when one can find small width-2 separators in the subgraphs of G. However only
a few classes of graphs, which include planar and some two-dimensional finite element

graphs, can be guaranteed to have small width-2 separators,

Recall from Chapter 3 that the number of nonzeros in the upper triangular matrix predicted
by our model may be pessimistic. That is, it may be much larger than the actual number of
nonzeros produced in the numerical phase. This would be particularly true for general
sparse problems. In order to obtain some idea on how good our model is, we have counted
the actual number of nonzeros produced in the transformatiom for each problem and
compared it with the number of nonzeros predicted by the symbolic factorization procedure.
Surprisingly, for our set of test problems, the number of nonzeros produced in the
transformation process was ezactly equal to that predicted by the model, except for

problems 6 and 8. Even for problems 6 and 8, the rumber of nonzeros produced was very
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close to the predicted number (99.9%).



CHAPTER 5§

WIDTH-ONE NESTED DISSECTION ORDERINGS

In Chapter 4 we showed that, for an m by n matrix A, we identify a set of rows if we
can _ﬁnd a small minimal width-2 separator in the graph of ATA. The important thing about
these rows is that they are relatively cheap to eliminate if they are eliminated last. Moreover the
amount of fill-in is small. By applying this idea recursively we obtain a width-2 nested dissection
partitioning and a width-2 nested dissection ordering. As we have shown, this ordering induces
good column and row orderings in the orthogon:;l decomposition of A using rotations. However
experience shows that the amount of fill-in in the upper triangular matrix R (that is, the
Cholesky factor of ATA) is often larger than that obtained when the columns of A (or the
columns and rows of ATA} are labelled by other ordering algorithms, such as the minimum
degree algorithm or even the width-1 nested dissection algorithm. This is particularly true for
general sparse problems. In this chapter we consider the width-1 nested dissection algorithm. We
show that there is a good row ordering induced by a width-1 nested dissection column ordering,.
We show that, for the model problem, the number of nonzeros in R and the cost of computing it
are respectively O{n’log,n) and O(r®) if the orderings induced by width-1 nested dissection are
used. Empirical results that suggest that a minimum degree ordering may be a width-1 nested

dissection ordering are provided.

5.1. Width-1 nested dissection

Width-1 nested dissection (or simply nested dissection) was first proposed by George as a
technique for ordering the columns and rows of a sparse symmetric positive definite matrix that
arises in the application of finite difference and finite element methods on square grids [23]. It is
known that the number of nonzeros in the Cholesky factor of the reordered matrix and the

number of multiplicative operations in the computation are both optimal (in the order of

- 113 -
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magnitude sense) [52]. In [28] an automatic scheme was proposed for gemerating a mnested
dissection ordering for irregular finite element meshes. Related work and analyses can be found
in [8, 16, 56,66}, Width-1 nested dissection is 2lmost identical to width-2 nested dissection; the

only difference is that, in width-1 nested dissection, the separators are width-1 separators.

Let A be an m by n matrix, with m>n. Denote the n by n upper triangular matrix
obtained in the orthogonal decomposition of A by R. Recall from Chapter 2 that the structure
of R i3 assumed to be identical to that of the Cholesky factor of the symmetric positive definite
matrix ATA. Thus we can use a width-1 nested dissection algorithm to relabel the columns of A
{or the columns and rows of ATA). Assume the algorithm produces a width-1 nested dissection
column ordering (we will see later than this is possible if the graph of ATA satisfies certain
conditions). In this section, we show that a width-1 nested dissection column ordering also
induces a good row ordering and that there is a simple characterization of the induced row

ordering.

We first describe the width-1 dissection technique. Let G=(X,E} be the graph of the n
by n matrix ATA. We assume G is connected. Let S be a width-1 separator of G whose
removal disconnects the graph into two or more components. Assume there are two components
and denote their node sets by C; and C, respectively. In width-1 dissection, the nodes of C, and
C, are labelled before those of S. Let 1, denote the node having labelling k. Then p<g if
z,€C;, i=1,2, and z,€S. The node labelling strategy, together with Lemma 3.3.1, implies the
following. Suppose z;,€C,, 2;€C, and i<j. Then R,;=0 since there cannot be a path
connecting r; and 2z; that involves nodes whose labellings are less than i. Hence the dissection
technique based on width-1 separators guarantees that the amount of fill-in in R is low. The
technique can be used to label the nodes of C; and €, recursively, yielding a width-1 nested

dissection ordering.

For completeness we now define formally width-1 nested dissection partitionings which are

similar to width-2 nested dissection partitionings. Let G'=(X,E} be the unlabelled graph of
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ATA. Let Y'=X, and for m=0,1,2, - - - ,h until Y**'=@, do the following:

(1) Determine the connected components of Y™ and label them Y7', Y, - - -, Y,':.

(2) For j=12, - - - r,, choose 57" such that 5" is a width-1 separator of G(Y7). If 3758, set
'=87. Otherwise, set §)'= g
'ﬂ
(3) Define S"={J S/ and Y™ '=Y"-5",
=1
The partitioning ¢={S}"QX ALigr, 0<m Sh} is called a width-1 nested dissection

partitioning.

An ordering of X is said to be a width-1 nested dissection ordering with respect to
¢={S}"} if for z€S and y€Y[™-S?, z is labelled after y. An example of a width-1 nested
dissection ordering with respect to the partitioning of Figure 5.1.1 is shown in Figure 5.1.2. It is
possible to obtain a bound on the number of off-diagonal nonzeros in R by replacing width-2
separators by width-1 separators in Theorem 4.1.7. Note that it is desirable to choose small

separators, since the bound depends on the size of the separators.

Throughout our discussion, the graph (and its subgraphs) are assumed to have separators.
This is not true in genmeral. Planar and certain two-dimensional finite element graphs can be
guaranteed to have small separators (compared to the size of the graph) [57]. General graphs may

not necessarily have separators; even if they do, the separators need not be small.

We now return to the row ordering problem. Unfortunately, unlike width-2 nested
dissection, a width-1 separator § or the section subgraph G(S) need notf identify a set of rows.
This is illustrated by an example in Figure 5.1.3. Here S=={z,,z,} is a width-1 separator, but
there are not any rows of A such that their row graphs are in the subgraph G(S). That is, G(5)
does not contain any row graph. Thus, apparently width-1 nested dissection does not

immediately provide information on how the rows of A should be labelled.
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Yf =X Si) = {33-39:3101311}

Yl = {21’32v33-34-35:=o,37} 511 = {34,-1‘5}

Yzl = {zlzﬁlsvzu;"xs-zm} Sz1 = {313}

le = Sf = {31:32-’3}
Yzz = 5: = {ze:zv}
Y32 = Saz = {z“}

Ycz = 342 = {312r315v'~"m}

Figure 5.1.1 A width-1 nested dissection partitioning {SJ"} of a graph of A7A.
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Figure 5.1.2 A width-1 nested dissection ordering on
the width-1 nested dissection partitioning of Figure 5.1.1.

Now recall that G is the union of m row graphs, ¢*=(x",€*), each of which is a complete
graph. Lemma 4.1.1 indicates that each x* is contained in either CyJS or Cy| JS, where S is a
separator. Thus, intuitively, the subgraph G(S{_JAdj(S)) should coptain some of the row graphs
#%. If this is the case, then a width-1 Separator does provide us with a mechanism for studying
the row ordering problem. Before we prove that G(S|_JAdj(S)) is the union of some row graphs, -
we consider the example in Figure 5.1.3, Here § UAdj(S)={zz,za,zs,ze,zs} and G(S| JAdj(S))

contains the row graphs of rows 3, 4, 8 and 10.

Lemma 5.1.1

If § is a width-1 separator, then there is at least one row graph in the section graph

G(S|JAL(S)).
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Figure 5.1.3 An example illustrating the fact that a width-1 separator
may not identify any row.

Proof:
m
Let z€S. Since G=U¢‘, there must exist one row graph, say ¢‘=(x",e"), such that
f=1
z€x*. Note that x"—{z}gAdj(z]QSUAdj(S) since x* is a clique in the graph G. Hence the

result follows,
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Lemma 5.1.2

Let S be a width-1 separator and ¢"={x",e") be a row graph. If x*ns%ﬂ, then either

x*CSU(AI(S)N C1) or x* CSY(Ad; (S)N C,)-

Proof:

This follows from the fact that x* is a clique and § is a width-1 separator.
1]

Consequently there is no row graph ¢*={x",e") such that x" contains nodes from C,, €, and S.

Theorem 5.1.8

If 5 is a width-1 separator, then G{S|_JAdj(S)) is the union of one or more row graphs.

Proof:

By Lemma 5.1.1, there is at least one row graph in the section graph G’(SUAdj (5))
Then the result follows from Lemma 5.1.2 and the observation that any node of S must belong to

at least one x‘.
]

The fact that G(S|_JAdsj(S)) is the union of some row graphs provides us with a mechanism of

finding a “‘good” row ordering. Consider the following strategy.

Let Z, be the set of row graphs in G(S| JAdj(S)). For i=1,2, let Z; be the set of row
graphs remaining in G(C;). Thus Z 1lJZ2l JZ5 is the set of m row graphs. Moreover Z,, Z, and
Zy are disjoint. As in Section 4.1, we use x(Z;) to denote the union of the node sets of the row
graphs in Z;. Hence x(Z;)l_Jx(Z.\Jx(Z5)=X. Note that x(Z,)CC, and x{Z;)CC, Thus
X(Z)Nx(Z)=0, but  x{ZJMx{Z)#P and  x(Z)Nx(Z)#8. In fact, for i=12,
x(Z3)Mx{Z:)=C;MAdj(S). We now propose eliminating the rows of Z, and Z, before those of
Z3 It is easy to understand why it is desirable to eliminate the rows of Z, and Z, first. The

argument is the same as that used in Section 4.1.
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Denote the component G(C;) by G;, i=1,2. The first observation is that G, and G, are
disjoint unless the row graphs of Z, are merged with G, and G,. In other words, the elimination
“of any row of Z; involves only the nodes of €, i=1,2. This is due to Theorem 3.3.8. Thus, by
eliminating the rows of Z; last, the elimination sequence of any row of Z, or Z, is limited to a
proper subgraph of G. Moreover the elimination sequences of the rows of Z; and the elimination
sequences of the rows of Z, are independent, regardless of the order in which these rows are
eliminated. Note that the nodes of C; and C, are also labelled recursively using the width-1
dissection techmique. Thus the rows of Z;, and Z, can be reordered using the same strategy

recursively.

How about the elimination of the rows of Z;? Suppose ¢"=(x" ,e") is a row graph of Z,.
Let S* be the elimination sequence of the row corresponding to ¢¥ and s the leading subscript of
this row. From Lemma 2.1.4, s is therefore the first member of B*. Let z, denote the the node
of X having labelling k. Denote the set of nodes {z,€X|i€8*} by A*, which will also be

referred to as the elimination sequence of ¢¥. There are two possibilities.

The first possibility is that z,€S. Then Lemma 3.3.5 tells us that the set Ab s just a
subset of § since the labellings of the nodes of €, and C, are less than 2. Hence the length of
the elimination sequence will be small (if S is small). Note that this is possible only when x* is .
entirely contained in S, because of the node labelling strategy and because § is a width-1

separator.

The second possibility is that either z,€C,(MAdi(5) or z,€C,(Adj(S). Note that s
may be much smaller than the labelling of any node of §. Using Theorem 3.3.8, the set that
contains A* would be as large as U 02US' and the elimination sequence would be long. This
is undesirable. However, since the labellings of the nodes of S are the largest, any path joining
5EC, and z,€C, must contain a node 7€S where k>i and £>j. Thus, using Lemma 3.3.5,
the set that contains A* would only be as large as Ci|JS or Cy| JS, depending on whether

z,€C, ot 7,€C, Note that | C,(JS| or | €y JS| would still be large compared to |S].
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Hence eliminating the rows of Z; last may be expensive.

Since the nodes of €y and €, are also labelled using the width-1 dissection technique, the
elimination sequence A* is only a subset of G| JS even if 1,€C;MAdj(S). In order to have a
better understanding of the elimination of the rows of Z,, we partition the separators according to
the level of dissection. A separator is a level-k separator if it is obtained in the k—th level of
dissection. In the example given in Figure 5.1.2, {14,15,16,17} is a level-1 separator, {7,8} and

{12,13} are level-2 separators and {6}isa level-3 separator.

Now suppose ¢¥ is in G(S (JAdj(S)) and assume z, is in a level-i separator, say S;, i >1.
In the worst case the entire level-i separator will be included in A*. The level-i separator is
obtained from a connected component created in the (i-1}-s¢ dissection. The component is
surrounded, in part, by a level-{(i-1) separator, say S;,. (It is also surrounded by the level-1
separator §;=S and some level-j separators, 8;, 1< 7 <1, which will eventually be considered.)
Thus the level-(i-1) separator S;_, is part of AF. Using the same argument repeatedly, one can
see that the set A® involves, in the worst case, ezactly one level-j separator S;, for 1<5 <.
That is, A* does not include the entire set €\ JS or Cy| JS. It is a proper subset of O Ys or
C,|JS even in the worst case. (Here we assume that the graphs G(C,) and @(Cz), and the
subsequent subgraphs have separators.) This is illustrated by an example in Figure 5.1.4 where
the separators included in A* are darkened. In other words, the length of the elimination
sequence of any row of Z; is limited. Moreover the reachable set of any node on a level-j
separator S; contains only nodes of those separators immediately surrounding 5; (see Figure

5.1.4). Thus the cost of eliminating the rows of Z; could be low if the separators are small,

As in the case of width-2 nested dissection, since we are working with the graph of ATA,
identifying the sets § and Adj(S) does not immediately provide us with the information for
ordering the rows. Fortunately, as we are going to show, the induced row ordering can be
obtained easily. Define the last subscripi of a row to be the column index of the last nonzero in

that row, or equivalently, the last subscript of a row graph is the labelling of the node having the
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Figure 5.1.4 The nodes involved in the elimination of a row in
G(S|JAdj(S)) belong to separators which are darkened.

largest labelling. Suppose ¢* and ¢* are respectively row graphs of Zy and Z; (i=1,2). Because
of the node labelling strategy, the node having the last subscript of ¢” must be in S, while that of
#¥ isin C;. That is, the last subscript of ¢, must be greater than the last subscript of ¢?. Hence
the row ordering induced by width-1 nested dissection is obtained simply by arranging the rows of

the (column-permuted) matrix A so that ¢he last subscripts are in sscending order.
We now summarize our discussion below. Let A be an m by n matrix with m>n.

(1) Find a width-1 nested dissection column ordering for A. Denote the ordering by P.
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{2) Permute the rows of AP so that the last subscripts are in ascending ordering.

Theorem 4.1.6 can be modified easily to provide an upper bound on the cost of computing
the upper triangular matrix R. Let {S}",ls Fi Srm,OSmSh} be a width-1 nested dissection
partitioning. Note that ST, 1<j<r,, are level-(m+ 1) separators. Let Z be the set of row
graphs associated with ST\ JAdj(S]"). Our discussion above shows that the elimination sequence
includes ST and exactly one level-(k+ 1) separator, say S, m<k<h. Thus

. A
< Ispl+ 3 me st

=m+1 15050

and the cost of computing R is given by

3 T | ZP| el + 1)
Y
m=05=1

5.2. Complexity of width-1 nested dlissection for the model problem

Coansider the model problem of Section 2.4. Let A be the rectangular matrix associated
with an n by n grid and R be the upper triangular matrix obtained from A using row
elimination, We now show that if the columns of A (or the grid points) and the rows of A are
ordered by width-1 nested dissection, then the number of nonzeros in R and the cost of
computing R are respectively O(n’log,n} and O(n®), which are the same as those in width-2

nested dissection.

As in éection 4.2, we will make use of bordered n by n grids. Let R; denote the upper
triangular matrix associated with an n by n grid bordered along i sides. Let n(n,i) and 8(n,i)
denote respectively the number of off-diagonal nonzeros in R; and the cost of computing R,.
Thus #(n,0) and ¢(n,0) are the quantities we want to determine. For simplicity we will assume

that n=2"-1, for some integer m>1.

We first review the width-1 dissection technique. In the first level of dissection, a vertical

grid-line containing n grid points is chosen as the level-1 width-1 separator. It dissects the

unbordered n by n grid into two n by %{n—l) grids. Then, in the second level of dissection, a



-124-

Sz

S

Figure 5.2.1 The first two levels of width-1 dissection on an n by n grid.

horizontal grid-line containing %{n—l) grid points is chosen to dissect each n by %(n—l) grid into
two %{n—l) by —;-(n—l) grids. Thus, after two levels of dissections, the original n by n grid is

dissected into four identical pieces €, €, C, and C,. Each piece is an %{n—l) by %(n—l) grid

bordered along two sides. An example is shown in Figure 5.2.1. The dissection technique is then
applied recursively to C,, C,, C; and €. A width-1 nested dissection ordering on a 15 by 15

grid is shown in Figure 5.2.2.
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Denote a level-k separator by S.. The result below follows from the fact that the
dissection technique is applied recursively on an n by n grid, where n=2”‘—i.
Lemma 5.2.1
For an n by n grid with n=2"-1,
(1) the number of levels of dissection is 2m-1,
(2) the number of level-k separators is 25, for 1<k <2m-1, and

(3) the number of grid points on a level-k separator is 2™ //(¥/ 2)—1, for 1<k<2m-1, where
fi(kf2)=kf2)
o
For simplicity, we use Reachq(z} to denote Reachg(z,5), where § contains nodes whose
labellings are less than that of z. It is possible to obtain a bound on | Reachy(z}|, for any node

z in G. In the following discussion, the smallest labelling in S; will be denoted by 5,4+ 1.
Lemma 5.2.2
Let z€5;. Suppose z has labelling n,+i. Then
| Reschglz)| + 1 < p 2™ HEA_g

where p,=5 when k is odd and p, =T when £ is even.

Proof:

Let p= | S | . The separator S, is obtained by dissecting either a p by p grid or a p by
(2p+ 1) grid. The worst possible situation is that the grid is bordered along four sides. The
number of nodes on the additional grid lines is therefore at most (4p+ 4) for the p by p grid or
(6p+ 6) for the p by (2p+ 1) grid. The result then follows from Lemma 5.2.1, and the fact that &

is odd when a p by p subgrid is dissected and even when a p by (2p + 1) subgrid is dissected.

o
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The derivation of 7(n,0) is similar to that for width-2 nested dissection in Section 4.2 and

is given in |23, 36,65]. We state the result and the proof is omitted.

Lemma 5.2.3

The number of nonzeros in the upper triangular matrix R is

1r(n,0)=§j4l—nzlogzn + 0(n%) , : (5.2.1)

o
Note that this has the same order of magnitude as that obtained for width-2 nested dissection.
The coeflicient in the leading term is smaller than that in (4.2.13). Moreover the number of

nonzeros in R is optimal (in the order of magnitude sense) 23 a result of the discussion in Section

4.2,

We now derive the cost of computing R which is more complicated. Here C:'=()Z’ ,E] will
denote the union of the row graphs of those rows that have been eliminated. The graph

G(C)| JAdj(C)) is denoted by Gy, 1<!<4. The following remarks are useful.

(1) As we have pointed in Section 4.2, if B is the elimination sequence of the current row, then

the cost of eliminating this row is

S {| Reachy(z,,5,}| + 1} ,
scl

where z, is the node having labelling # and §,={zeX li<s}. Thus the cost of

eliminating the rows of A is

Y 2| Reacha.(z,,S‘,)l +1} .

all rows gcfl

(2) Note that the four rows associated with each small square have the same last subscript. So
we can assume that they are eliminated together. Furthermore the elimination sequence of
the fourth row is maximal and the elimination sequences of the first three rows are subset of

that of the fourth one. This is a consequence of the discussion in Section 3.4.
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The row ordering strategy is such that the rows associated with G(C)), 1<I<4, are
eliminated first, those associated with G(S;| JAdf(S,)) next, then those associated with

G(S;| JAdj(S))) are eliminated last.

We assume that the same column and row ordering strategies ar;a applied to each ¢,
1<i<4. We can then assume that the cost of eliminating the rows in G(C,) is the same as
that of eliminating the rows in G(C,), 1<p,g<4. Let S; and S} denote respectively the
left and right level-2 width-1 separators in Figure 5.2.1. If we assume that the nodes of S;
and S}, and the rows in G(S} UAdj(S;)} and G(S;| JAdj(S;)) are labelled using the same
strategies, then we can also assume that the cost of eliminating the rows in

G(s} UAdj[Si }) is the same as that of eliminating the rows in G(S7| JAdj(S])).

Consider the rows in G(C)), 1<I<4. Before the rows in G(5,_JAdi(S;)) and

G(S,|JAdi(8,)) are eliminated, G(C,) and G{C,) are disjoint, for 1<p,g<4. Note that
G(C)) is simply the graph of an unbordered %(n—l) by %{n-l) grid. Thus the cost of

eliminating the rows of G(C}) is given by 4( n;l ,0).

Using remarks (4) and (5), the cost of eliminating the rows of A is therefore given by

8(n,0) = 44( "2‘1

0)+ 26,+ 8, ,

where ; is the cost of eliminating the rows in G(S;|_JAdj(S;}), i=1,2.

Consider the elimination of the rows in G(S,| JAdj(S,)). We will assume that the grid
points in S, are labelled consecutively. (Note that the rows in G(S,| JAdj(S5))) have not
been processed yet.) Recall that #,+ 1 is the smallest labelling in S,. Suppose the last

subscript of the row we are eliminating is n,+ 5, 2<;< n;l =2""1_1. Note that the node

corresponding to the leading subseript (and the first member in the elimination sequence) is
the only node in S,,_, (see Figure 5.2.2). Moreover, using Lemma 3.3.4, the elimination

sequence contains {n,+ i |1<i <7} and exactly one level-k separator S, for 3<k<2m-1.
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current row

e\

5

Figure 5.2.3 Darkened nodes are in the elimination sequence
of arow in G(S;|_JAdj(S,)).

This is illustrated in Figure 5.2.3. Using Lemma 5.2.2, the cost of eliminating this row is

given by

2m-1 2™/ /2

7
=% ¥ {p,,z'"-"“/ﬂ-;}+ i
i=1

k=3 i=1
49 om 31, ., 22 1.,

= —0" __—=9 —_— — . 29
242 " + 3 + 2J(j+l) (5.2.2)

Note that there are two small squares whick have n,+ j as the last subscript, and there are
four rows associated with each small square. So the total cost of eliminating the rows in

G(5;| JAdj(S,)) is bounded by

i
b,=8 Y, by -

j=2
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= 3—3‘123’” - %22"' + %2’" - —3—;:6— . (5.2.3)

(8) The cost of eliminating the rows in G{8,JAdj(S,)) can be derived in a similar manner.
Let n,+ 1 be the smallest labelling in S;. Suppose the last subscript of the row we are
eliminating is #,+ j, 2<j<n. The node corresponding to the leading subscript is in the

last level of dissection. That is, it is in S,,_,. The elimination sequence, using Lemma
3.3.4, contains {nl+£ils:'5j} and exactly one level-k separator S, for 2<k<2m-1.

This is illustrated in Figure 5.2.4. Using Lemma 5.2.2, the cost of eliminating this row is

bounded by

2m-1 2l

;=% ¥ {pk2m—!“k"2)—i}+ i

k=2 i=1 i=1

.Lﬁ\

L cutrent row

5

Figure 5.2.4 Darkened nodes are in the elimination sequence
of arow in (5| JAdF(S))).
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22 1..
- %‘—22"'-11(2'")4- T+ i+ 1) (5.2.4)

Since there are eight rows that have the same last subscript n,+ j, the total cosi of

eliminating the rows in &/(S,| JAdj(S,)) is bounded by

2m-1
4=8Y,6,; .
J=2

— 92 om 440 o 700, 376
= 323 e i (5.2.5)

Hence using observations (6), (7) and (8), the cost of eliminating all the rows in A is given

by

#(n,0) = 49(12‘—1-,0}4- 20,+ 6, ,
or

6(m,0) = 46(m-1,0)+ 26,+ 6,
Using (5.2.3) and (5.2.4}, the cost is then given by

458 ,m _ 376
32'3)

92 am 440 o, 700, 376
Z2oBm 22U Ll gm 2
{3 3 L 3 2 3 )

1616 "

8(m,0) = 46(m-1,0)+ 2(23—523"' -8y

+

142

= 46(m-1,0)+ ——2"" - 274(2°™) + -376 . {5.2.6)

Using Lemma 4.1.2{c}, the closed form for 4(m,0) is given by

#(m,0) = -2-& M O(metm) (5.2.7)

Replacing m and 2™ by log,{n+ 1) and (n+ 1) respectively, and expanding log,{n+ 1), we have
284

6(n,0) = 50" 8+ O(n’log,n) . (5.2.8)

Thus the cost of eliminating the rows for the model problem is also O{n®), which is the same as
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that for width-2 nested dissection. The coeflicient obtained may be too large since the bounds

obtained in Lemma 5.2.2 may not be tight for some separators. A more careful, but long and

tedious, analysis will show that a tighter bound is %n:@ O{nzlogzn).

We summarize our results in the following theorem.

Theorem 5.2.4

Let A be the matrix associated with an n by n grid and let R be the n® by n® upper
triangular matrix obtained by reducing the rows of A using roté.l:ions. If the labelling of the grid
points is a width-1 nested dissection labelling and if the row ordering induced by this width-1
nested dissection is used, then the number of nonzeros in R is O{n’logyn) and the cost of
computing R is O(n?).

o

We now provide some numerical experiments on n by n grids. The objectives are to
demonstrate the effectiveness of the row and column orderings induced by width-1 nested

dissection and to compare the results with those obtained in Section 4.2.

The column ordering used was the one induced by width-1 nested dissection. The row

orderingi were the following.

(a) Row ordering A — This is the row ordering induced by width-1 nested dissection. The rows
are arranged so that the last subscripts are in ascending order. (That is, the rows associated

with G(S|_JAdj(5)) are eliminated last.)

{b) Row ordering B -- The rows are arranged so that the last subscripts are in descending order.

(That is, the rows associated with G/(S|_JAdj(S)) are eliminated first.}

(c) Row ordering C — This is the so-called natural row ordering. The rows are collected from

the small squares in the grid row by row.
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The following notation is used in Tables 5.2.1 and 5.2.2.
N — number of columns (N=n?.
M — number of rows (M=4(n-1)?).
NZ - number of nonzeros in A.
§ — number of storage locations required for the upper triangular matrix R.
7, - transformation time for row ordering A (in seconds).
7g — transformation time for row ordering B (in seconds).
7¢ — transformation time for row ordering C (in seconds).

The results in Table 5.2.1 confirm that if the column and row orderings induced by
width-1 nested dissection are used, the storage requirement and transformation time are

O{n’log,n) and O(n®) respectively.

The results in Table 5.2.2 show that the row ordering induced by width-1 nested

dissection (that is, row ordering A) is indeed better than the other two row orderings used.

Furthermore if we compare the numerical results in Table 5.2.1 with those in Table 4.2.1,
we see that the orderings induced by width-1 nested dissection are better than those induced by
width-2 nested dissection, in the sense that both the storage requirements and execution times are

smaller for width-1 nested dissection.

5.3. Generalized width-1 nested dissection

Complexity results similar to those of Section 5.2 can be derived for finite element
problems (see Section 3.5). Suppose G=(X,E) is a finite element graph with | X |=n. Lipton,

Rose and Tarjan have shown that one can find a width-1 nested dissection ordering for X [56].

Assume that the width-1 nested dissection ordering is used. Let the rows be arranged so
that the last subscripts are in ascending ordering. If R is the n by n upper triangular matrix

obtained in Algorithm 2.3.1, then it can be shown that the number of nonzeros in R and the cost
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n N M Nz T T %
nlog,n n
10 100 324 1208 2202 8.63 1293 0.00120
12 144 484 1036 3315 8.42 2163 0.00125
14 196 878 2704 4898 .56 3673 0.00134
18 256 990 3600 6600 .45 5346 000131
18 324 1156 4624 8667 8.41 8159  0.00140
20 400 1444 5778 11123 8.43 11473 0.00143
22 484 IT64 058 14119 8.54 15.59¢  0.00148
24 576 2116 8464 17018 8.44 10825  0.00143
26 676 2500 10000 20859 .58 26.168  0.00140
28 784 2016 11864 24734 .56 31981  0.00148
36 00 3384 13458 29030 8.57 40.708  0.00151

Table 5.2.1 Storage requirement and execution time
for width-1 nested dissection orderings.

n N M NZ T Ty Ta

0100 324 1208 1208 1.503 1.583
12 M4 484 1038 2163 3.000 2.838
14108 676 2704 3473 5.480 5.153
18 258 000 3600  5.346 0.220 7.843
18 324 1156 4624 B.150 15426 12743
20 400 1444 5778 11473 22972 18075
22 484 1784 T056 15500 33a21 26.738
24 576 2116 8464  10.825 47490 30474
28 676 2500 10000  26.188 64.7¢8 50.040
28 734 2018 11664 31981 80.048  64.835
30 000 3364 13458 40708 118.412 84821

Table 5.2.2 Execution times for three different row orderings.
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3
of computing R are O(n®) and O(nlogn) respectively. The proofs are similar to those of Section
5.2 and [40,56). As in the case of width-2 nested dissection, thé results are consistent with those

of the model problem.

5.4. Automatle width-1 nested dissection

For general sparse problems, a width-1 nested dissection ordering can be generated
automatically using the technique described in Section 4.4. That is, a width-1 separator can be
chosen from a level structure of the graph of ATA rooted at a pseudo-peripherﬂ node. Here each
interior level of the level structure is a width-1 separator (even though it may not be minimal).
The bound provided by Theorem 4.1.7 on the number of ofi-diagonal nonzeros in the upper
triangular matrix depends on the size of the width-1 separators. Thus instead of using an entire
level as a width-1 separator, one can choose a subset from that level so that it is a minimal
width-1 separator. The discussion is summarized in Algorithm 5.4.1. We assume that the graph

of ATA, denoted by G=(X,E), is connected.

Algorithm 5.4.1
(1) Find a pseudo-peripheral node r in G using the algorithm from [32].

(2) Generate a level structure rooted at r, L (r)={Lqfr),L (r}, - - - Ly (r)}

I}
(3) I I>2, then choose a minimal width-1 separator from level IzL] Otherwise the whole set
X is a width-1 separator.

An algorithm that uses Algorithm 5.4.1 to generate width-1 separators was proposed by George
and Liu for generating an automatic width-1 nested dissection ordering of sparse symmetric

matrices arising from irregular finite element meshes [28].

We now present some numerical experiments to demonstrate the effectiveness of the

column and row orderings induced by the automatic width-1 nested dissection. The test set is the
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problem N M NZ h T T T >
1 8 210 438 1703 0553 0.780 0.740 0.743
2 202 858 1918 Y572 .46 7.823 7.000 8.070
3 104 331 682 21686 0.000 1.343 1133 1103
4 188 808 1218 4620 2513 3.048 3.620 3.708
5 178 313 1557 4450 1497 1.537 1570 1787
[ 320 1033 4732 8350 5.450 5.110 5.808 5.283
7 320 1033 4719 6358 5523 1.990 5.800 5.648
8 712 1850 8755 20063  37.521  30.101  43.084 42384
¢ 712 1850 8638 20301  38.887  30.468 44061 44111
10 226 784 336 5800  5.028 7.828 6.356 8.300
11 400 1444 STTS M1B13 13209 25415 19.075  10.120
12 402 1512 7152 10207 9188 15902  13.202  22.340
13 784 1488 7040 23414 13775 24342 15508  32.681
T 260 900 4208 (0302 12278  17.676  2LI82  18.630

Table 5.4.1 Storage requirement in width-1 nested dissection column ordering,
and execution times for four different row orderings.

same a3 the one used in Section 4.4. The column ordering was the one where width-1 separators

were generated by the heuristic algorithm described above. Four row orderings were investigated.

(a) Row ordering A -- The rows are arranged so that the last subscripts are in ascending order.

This is the row ordering induced by width-2 nested dissection.
(b) Row ordering B — The rows are arranged so that the last subscripts are in descending order.
{c) Row ordering C -- This is the initial row ordering provided.

{d) Row ordering D — The rows are arranged so that the numbers of nonzeros in the rows are in

ascending order.
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The following notation is used in Table 5.4.1.

N - pumber of columns,

M — number of rows,

NZ — number of nonzeros,

S — number of storage locations required for the upper triangular matrix R,
7, — transformation time for row ordering A (in seconds),

7y — transformation time for row ordering B (in seconds),

7 — transformation time for row ordering C (in seconds),

7p — transformation time for row ordering D (in seconds).

Table 5.4.1 contains the results of the experiments. Following are a few remarks on the

numerical results in Table 5.4.1.

1)

&)

@

As in width-2 nested dissection, row ordering D is not a good row ordering in general. The

transformation times may be large.

Except for problems 6, 7, 8 and 9, the results show that ordering A (the one induced by
width-1 nested dissection) is better than the other three row orderings, in terms of execution

time.

Except for problems 1 and 5, the width-1 nested dissection column ordering is better than
the width-2 nested dissection column ordering, in terms of storage requirements. In
particular, there is a more than 50% reduction in storage requirement for each of problems
6, 7, 8 and 9. This can be explained by the fact that, in automatic width-1 nested
dissection, a separator is chosen from a single (middle) level in a rooted level structure,
while in automatic width-2 nested dissection, a separator is chosen from two consecutive
(middle) levels. Thus the size of a width-1 separator should, in general, be expected to be

smaller than that of a width-2 separator. Since the number of nonzeros in the upper
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triangular matrix depends on the sizes of the separators, the storage requirement for width-1
nested dissection shouid be smaller than that for width-2 nested dissection. Table 5.4.2
contains the size of the level-1 width-1 separator for each of the fourteen problems. Notice

that each width-1 separator is smaller than the corresponding level-1 width-2 separator in

Table 4.4.3.

In terms of execution times, width-1 nested dissection with the induced row ordering is
better than width-2 nested dissection with its induced row ordering (except for problems 5
and 11}. The reductions in time for problems 6, 7, 8 and 9 are large. For each of problems

5 and 11, the execution time in width-2 nested dissection is only slightly larger than that in

width-1 nested dissection.

size of separator

problem N
1 85
2 202
3 104
4 188
5 178
1] 320
7 220
3 712
¢ 712

10 225
1n 400
12 402
13 784
14 260

10
10

13

18
18
21
21
15
21
18
24
10

Table 5.4.2 Size of width-1 separators in the first level of dissection.

.
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Note that the transformation time f{or problems 6, 7, 8 and 9 are not the smallest when the
induced row ordering is used. (In fact, the transformation times are the smallest when row
ordering B is used.) A possible explanation is the following. Consider problem 6 and
supposeA C is component set obtained in some stage in the automatic width-1 nested
dissection. It has been observed that, in most cases, C is dissected into two portions where
one portion is very small compared to the size of the other. The number of levels of
dissection tend to be large. Recall that, in width-1 nested dissection, the cost of eliminating
a row depends in part on the number of levels of dissection and om the size of the
separators. Consequently, the length of some elimination sequences would tend to be long,
and the elimination of the corresponding rows would be expensive. Problems 7, 8 and 9

have the same behavior.

The actual number of nonzeros produced in the transformation process is identical to the
number predicted by the symbolic factorization process, except for problems 6 and 8. For
each of problems 6 and 8, the actual number is very close to the predicted number (more

than 99.5%).

5.5, Minimum degree and width-1 nested dlssection orderings

Let A be an m by n sparse matrix with m>n and R be the n by n upper triangular

matrix obtained in the orthogonal decomposition of A. We have seen that, for the problems we

have tested, width-1 nested dissection orderings are better than width-2 nested dissection

orderings in the semse that both the amount of space required to store ® and the cost of

computing R are smaller for most problems. However, for general sparse problems, the storage

requirements may be large even for width-1 nested dissection column orderings. The main

problem here is that the number of nonzeros in R depends on the size of the separators (see

Theorem 4.1.7). For problems arising from grid-like structures, the separators are usually small.

For example, if the graph of ATA is a two-dimensional finite element graph, then it is possible to

find a width-1 or width-2 separator that has O{vn') nodes (see Section 3.5). For general sparse
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' problems, even thbugh there are heuristic algorithms for finding separators, there is no guarantee

that the separators obtained are small.

For general sparse symmetric positive definite matrices, the minimum degree algorithm
[64] usually produces an ordering for which the amount of fill-in in the Cholesky factor is small.
Since we are working with the structure of the symmetric matrix ATA, we can also apply the
minimum degree algorithm to ATA and §nd a minimum degree ordering (i.e., 2 minimum degree
column ordering for A). For completeness we now describe the basic minimum degree algorithm

using our terminology.

Let G=({X,E) be the unlabelled graph of ATA. In the following discussion, z; is the
node having labelling i, and S,,={:r,- |i<k}, for 1<k<n. ‘
(1) Set Sy=.

(2) For k=0,1,2, - - - ,n-1, do the following:

(2.1) Let u be a node such that

| Reachg(u,S;) | =’énxi_u%[1i‘each¢(z,5,;)[ .

(¢ is a node with minimum degree.)

(2.2) Label u next. That is, set 2, ,=u.
(23) Set S =5, J{zes1}-

The minimum degree algorithm is simple. In each step of the Cholesky decomposition of A T4 , 3
diagonal element whose corresponding column and row contain the minimum number of nonzeros
in the partially reduced (or decomposed) matrix is chosen as the pivot element. Even though this
algorithm is heuristic, experience has shown that it is very effective in reducing fill-in for general
sparse problems. Much research has been done on the efficient implementation of this algorithm.
{See ]33, 34] for details.} However few results are known about the behavior of minimum degree

algorithms, or the quality of the orderings produced by such algorithms.
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Suppose the columns of an m by n matrix A have been ordered by a minimum degree
algorithm. In the orthogonal transformation of A, one would like to find a row ordering such that
the cost of compqting the upper trapezoidal form is small. The results we obtained in Chapter 3
indicate that the choice of a ‘“good"” row ordering depends in part on the co;umn ordering.
Because of the lack of results on the minimum degree orderings, it appears difficult to identify
such a row ordering. The following observation was made in {25]. Suppose the column ordering
of A is a minimum degree ordering. If the rows of the (column permuted) matrix are arranged so
that the last subscripts are in ascending order, then for certain problems, the cost of computing
the upper trapezoidal form would be smaller than the cost when other row orderings are used. In

this section, we investigate this problem further and provide some interesting empirical results.

Let B be a sparse symmetric positive definite matrix and G=(X,E) be the graph of B.
We assume G is connected. One interesting, and perhaps important, observation about minimum
degree orderings is the following. It has been observed that, in many instances, if the node
ordering is a minimum degree ordering, then there exists ¢ such that G(S,) is disconnected but
G(S;) is connected for ¢+ 1<k<n. Here §;={z,€X|j<i} and z; is the node having labelling
j. What this means is that the set Ty={z,, 1,2, ,, * -,2,} is a width-1 separator in the graph
G (even though it ﬁ:ay not be minimal). It has also been found that, for such instances, the
components of G(5,) exhibit similar behavior. That is, if G(C) is a component of G(S,), then
there exists a set of nodes T'wC ' which forms a width-1 separator. The labellings of the nodes

of T are larger than those of the remaining nodes of C.

These observations suggest that a minimum degree ordering could be a width-1 nested
dissection ordering. If this is true, then we can immediately conclude that an induced ‘“‘good’
row ordering for a minimum degree colemn ordering is characterized in the same way as in
width-1 nested dissection. That is, the rows are arranged so that the last subscripts are in

ascending order.
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poblem | [C| |Tel JlC] |Tc| JIc] ITc| |lel |7Tc]
1 85 8 59 3 53 3 29 2
2 202 14 231 [ 218 5 163 L]
3 104 " 75 4 84 5 55 3
4 188 18 65 4 82 3 57 5
5 175 13 20 3 88 13 81 4
] 320 3 1 300 1 230 2 233 1
7 320 8 300 1 230 3 233 4
8 712 ] 704 28 345 5 298 2
9 712 L] 705 21 480 T 305 2
10 225 25 141 7 LT T 51 8
1 100 24 3 14 278 11 177 u
i2 162 18 108 2 102 4 154 4
13 784 H 614 8 550 ] 354 ]
4 2609 20 247 18 153 2 150 12

Table 5.5.1 Sizes of some of the width-1 separators induced by
a minimum degree ordering.
(C is a component obtained in some level of dissection,
T is a separator in C'.)

We have carried out the following experiment on each of our fourteen test problems. Let
A denote the coeflicient matrix in each problem. The columns of A are ordered by a minimum
degree algorithm. For each component in the labelled graph of ATA, say G(C), we try to
i&entify the set T, If there is such a set T, then we remove it from C and repeat the same

process recursively on the components in G{C-T,).

Since the volume of data generated is large, we only present some of the empirical results
in Table 5.5.1. A minimum degree ordering on a 15 by 15 finite element grid is displayed in

Figure 5.1.1. The induced width-1 separators are shown by darkened lines.
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3 7 101 2 167 0 34 H) 102 12 nr i3 » 182 “
1 EL] 108 L] 182 L1} 218 82 1% 11} 17¢ 0w 151 183 L]
109 ”n 1% ” s e @ 154 49 25
24 i 144 143 m nr 1% @ k{3 10 n 158 -
[ ][ o]
4 1 1m 74 1 205 04 203 203 i 188 L4 2
2 4% e @ uz 13 218 10 @ L 08 7 e
@ 7 " m " 170 207 @ 159 4% 21
e
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——
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Figure 5.5.1 A minimum degree ordering on an 15 by 15 finite element grid,
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The empirical results confirm, at least for our set of test problems, that a minimum
degree ordering is indeed a width-1 nested dissection ordering. In Table 5.5.2, we have provided
some numerical experiments on the fourteen test problems., The column ordering was a minimum
degree ordering. The row orderings were those used in Section 5.4. The notation is the same as

that used in Table 5.4.1.
Following are some remarks on the results.

(1) In terms of storage requirements, the minimum degree orderings are definitely better than
the width-1 nested dissection orderings (except for problem 11). For problem 11, the

difference in space requirements for minimum degree and width-1 nested dissection is small.

problem N M N2 S TA T8 e ™
1 85 - 210 438 1400  0.403 0.760 0.673 0.653
2 202 958 1918 6264  3.010  10.803  10.576  10.000
3 104 331 682 1095 0.833 1.837 1.883 1.780
4 1838 808 1218 3060 1773 4.290 3378 3.490
5 176 313 1557 3547  0.883 2.577 1.490 2.097
[ 320 1033 4732 6072 3.343 5.450 £.840 4.800
7 320 1033 4710 6072 3430 5.476 4.800 5.008
8 712 1850 8755 18584  16.836  18.885  20.305  22.089
[ 712 1850 8636 18549  10.838  18.012  21.012  23.375
10 225 784 3136 5753 5.073  10.408 7.350 7.370
i 400 1444 5776 11706 13823  30.811 28428  27.002
12 402 1512 7152 8668 6.253 12072 0.378 15032
13 784 1488 7040 17311 6108 11336 8.880  18.046
1 268 000 4208 9530  9.800 20045  20.362 17.835

Table 5.5.2 Storage requirement in minimum degree column ordering,
and execution times for four different row orderings.
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The results show that if the column ordering of the toefficient matrix A is a minimum
degree ordering, then by arranging the rows so that the last subscripts are in ascending
order, the transformation time (7.} is indeed smaller than the transformation times when

other row orderings are used.

The transformation times required for row ordering A are smaller than those required for
the induced row ordering in width-1 or width-2 nested dissection (except for problems 10

and 11).

For most problems, the actual number of nonzeros produced in R is identical to the number
predicted by the symbolic factorization process. The exceptions are problems 6, 7, 8 and 9.

However, for each of these four problems, the difference is less than 0.8%.



CHAPTER 6

DENSE ROWS AND UPDATING ALGORITHMS

As we have pointed out in previous chapters, the approack we use in reducing a large
sparse matrix A to upper trapezoidal forin assumes that ATA is sparse. However there are
examples in which this assumption may be violated. That is, A7 A4 may be dense even though A
is sparse. This usually occurs when A has some relatively ‘‘dense’ rows. In this chapter we look
at the effect of dense rows on the sparsity of and the cost of computing the upper trapezoidal

form. We present some algorithms for handling these dense rows.

8.1. Effect of dense rows

The method described in Chapter 2 for reducing a large sparse rectangular matrix A to
upper trapezoidal form can be implemented efficiently (in terms of storage requirement and
execution time) if the matrix ATA is sparse and can be permuted symmetrically so that its
Cholesky factor is sparse. However it is easy to construct examples which do not satisfy these
conditions. One such example is given in Figure 6.1.1 in which A is sparse but R is a full upper

triangular matrix {and ATA is a full matrix}). If the matrix A in Figure 6.1.1 is » by n, the

number of nonzeros in R is —;—n{n+ 1} and it can be shown that the cost of computing R is

%(nz-i- 5n-4), even though A has only 3n-2 nonzeros. The row ordering given in Figure 6.1.1 is

already one which yields the lowest cost. The high cost of computing R and the large number of
nonzeros in R are due to the existence of a completely full row. An upper bidiagonal matrix is
obtained after the first (n—1) rows are eliminated; but this structure is destroyed when the last
row is processed. This example illustrates that even though a matrix A is sparse, the matrix
A7TA and the upper trapezoidal form may be dense if some of the rows of A are relatively full.

We refer to these rows as dense rows.

- 146 -
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X X
X X
X X
A= X X
X X
X X
[ X X X X X X X |
X X X X X X X
X X X X X X
X X X X X
R = X X X X
X X X
X X
- X ]

Figure 6.1.1 An example illustrating the effect of dense rows.

It should be noted that there are also examples in which the matrix A is sparse and has

some relatively dense rows, yet the upper trapezoidal form remains sparse, as illustrated by an

example in Figure 6.1.2,

Using our model, each row of a matrix A is a complete graph and the structure of the
upper triangular matrix R depends on the structure of the graph of ATA (and the labelling of
the vertices). Thus for the example in Figure 6.1.2, the graph of ATA is a complete graph
because A has a full row. Hence, using the graph of ATA, the model would predict that R is a
dense upper triangular matrix regardless of the choice of node labelling. Consequently the storage
requirement predicted by the model will be larger than necessary even though the actual amount of

fill-in 13 small and the cost of computing R remains small.

On the other hand the method of reducing A to upper trapezoidal form using rotations

remains attractive in spite of the deficiencies in the graph model. There are two reasons. First
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XX XX XXX
X X
X X
X X
X X
A= X X
X X
X X
X X
X X
L X X
X X X X XXX
X X
X X
R = X X
X X
X X
- X

Figure 6.1.2 Another example illustrating the effect of dense rows.

the method provides a numerically stable way for solving systems of linear equations (see the
discussion in Sections 1.1 and 1.2). Second it can be implemented efficiently for large sparse A if
the strueture of ATA is sparse (see Chapter 2). For problems containing dense rows, it would be
desirable if we can arrange the computation so that only an orthogonal decomposition of a sparse
matrix with no dense rows is computed. More precisely, suppose A denotes the sparse portion of
A and assume ATA is sparse. An orthogonal decomposition of A is then computed. The dense
rows are said to be withheld from the decomposition. The orthogonal decomposition is used to
solve a modified problem. Denote the solution by Z. The solution to the original problem is

obtained by updating T using the previously withheld rows.
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Updating algorithms for least squares problems have been known for a long time even
though they were not developed for large sparse problems (see [18,62]). These algorithms are
derived from the normal equations. Recently George and Heath have proposed an updating
algorithm for least squares problems which is based on orthogonal decomposition [25|. Heath ha;l
proposed another algorithm for least squares problems and has extended it to handle problems
with equality constraints [50]. He has also proposed an updating algorithm for partitioned square
systems. All these updating algorithms for least squares problems assume that both the sparse
portion A and the original matrix A are of full rank. However this condition may be too
restrictive, as illustrated by the example in Figure 6.1.2. The first row is the one to be withheld;
the remaining sparse submatrix has a null column and hence is rank deficient, even though the
original matrix may have full column rank. Recently Bjorck has presented a general updating
algorithm for solving least squares problems [10}, which does not require the sparse submatrix A
to have full rank. Furthermore it handles both sparse and dense linear constraints. The problem
is more complicated if the original matrix A is rank-deficient. Bjorck claims that the algorithm

proposed in [10] can be modified to handle this situation.

In this chapter we present some updating algorithms for solving partitioned linear
systems. Some of them are modifications of existing ones, but those for solving underdetermined
systems are believed to be new.

8.2. Updating algorithms for underdetermined systems
Consider the underdetermined system of linear equations
Az =14 , (6.2.1)

where A is an m by (n+ p) matrix and # is an m-vector, with m<n and p<<n. We assume

that A is partitioned into
a={8 ¢},

where B and C are respectively m by n and m by p matrices. For large problems, B and €
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may respectively contain the sparse columns and dense columns of A. It is assumed that BB7 is
sparse.

We derive some updating algorithms which are based on computing an orthogonal

decomposition of BT {for example, by applying rotations to the rows of BT ). As far as we know,
this is the first attempt in whick updating algorithms are employed for solving underdetermined

systems.

Case 1 -- Boih A and B Rave full row rank

We assume that an orthogonal decomposition of BT is given by

LT
veot))

where @ is an n by n orthogonal matrix, and L is an m by m lower triangular matrix. Since B

has full row rank, L must be nonsingular.
The minimal L-solution to the underdetermined system (6.2.1) is given by
T=AT(AATY Y . ' (6.2.2)

Using the orthogonal decomposition of B, AAT c¢an be written as
aaT= [ o}[ﬁ:] =BBT+ ¢t
={r o }QQ’[LOT]+ cct
=LL"+ cCcT .

Thus the minimal {-solution is given by
T=ANLLT+ cCT) % . (6.2.3)

Since both A and B have full row rank, the matrices BBT=LL T and AAT=LLT+ CCT are
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nonsingular. It is possible to avoid computing the Cholesky decomposition of AAT (6.2.3) by
using the well-known Sherman-Morrison-Woodbury formula which is stated below (see
(51,69, 75]).

Lemma 6.2.1

Let M be an m by m nonsingular matrix, and U and ¥V be m by p matrices. If

M + UVT is nonsingular, then

M+ UVt = MY-MU(T+ VIMIUY VI
1]

Applying Lemma 6.2.1 to (6.2.3), the minimal {-solution to the underdetermined system (6.2.1) is

given by
T=AT{LTL-LTLC(+ CTLTL e CTLTTL

Even though this expression seems to be very complicated, the resulting computational algorithm

which we state below-is very simple and straight-forward.

Algorithm 6.2.1

LT
1) Compute an orthogonal decomposition of BT, That is, BT = QT .
4]

(2) Solve the m by m sparse triangular systems LL T y==.
(3) Solve p sparse triangular systems LW = C.

{4) Form the p by p matrix D=1+ WTW.

(5) Solve the p by p dense system Dz = CTy.

(6) Solve the m by m sparse triangular systems LL Ty = 3.
(7) Compute T=AT(y-v).

If the lower triangular matrix L is obtained by applying rotations to the rows of BT (see

Algorithm 2.1.2, 2.2.1 or 2.3.1), then @ will be discarded and BT can be stored on secondary
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storage. Also both € and D are small matrices as long as p is small. Thus the amount of
storage required to implement Algorithm 6.2.1 is essentially dominated by that required for L.
Moreover it is easy to see from the algorithm that the cost of the solution process is essentially
given by the cost of computing L (step 1} and the cost of solving the m by m sparse triangular

systems (steps 2, 3 and 6).

Case £ -- A kas full row rank, bul B is rank-deficient

Assume B has rank r, where r <m. We also assume that (m-r) is small. Since B is
rank-deficient, it is possible to arrange the columns and rows of B so that the orthogonal

decomposition of BT has the form

L T ST
QT
o 0]
where @-is an n by n orthogonal matrix, L is an r by r lower triangular matrix and § is an

(m-r) by r matrix. In the following discussion we assume that the columns and rows of B (and

~hence A) have been reordered so that

LT st
BT = Qf{ o o] ) (6.2.4)

Since A has full row rank, the minimal [-solution to the underdetermined system of

linear equations (6.2.1) is given by
r=AT(AATY Y

Using the orthogonal decomposition of B, we can write AAT as
r
WP | _ gpr T
B ¢ Nez )= BB "+ CC

=
AAT =

Lof LT sT r
=15 0J%9 |0 o) CC
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A D

Define the m by m lower triangular matrix Lz by
L O
LB = S O .

AAT = LpgLf+ ccT .

Then we have

Hence the minimal /y-solution is given by
F=AT(LgL S+ cCcTyY . (6.2.5)

Since Lp is singular, Lemma 6.2.1 cannot be applied to (6.2.5) even though the matrix

AAT = LBL,{-!- ¢¢7 is nonsingular.

In order to be able to use Lemma 6.2.1, we modify the matrix Ly so that it becomes
nonsingular. This process will be referred to as promoting thé rank of Lg. It is important to note
that any modifications should preserve the sparsity of Lp as much as possible. Define the m by

m lower triangular matrix L by
L O
-9,
Then
—r  |L o)jLT sT LLt st
Sl Io 1)TA\sLT 145ST
LLT LST 00 L’ s’ 00
=SL‘"SST+01= o1
. [oo
=LgLi+ o 1] -

Thus we can write AAT as
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_ . loo
AAT = Lpf+ coT = [LT- |+ ccT .
B~B OI

Partition € as

Cl
c=\gl-

where Cy is r by p and Cpis (m-r) by p. Define two m by (p+ m—r) matrices U/ and V by

c, 0 ¢, 0
U= c, - and V= c, 1}-

Note that
. {eo [c, c,] c el ecf
W =\e, -1 c,cT ¢,0f-1
CCI 0102 CI‘T ) o0
C,C7 G0} I (e lCl Ce ) lo 1
00
— oot
= ¢ _[O I] .

Therefore we have
AAT = L i+ ¢0T =[E7 + UVT
and hence the minimal -solution to the underdetermined system is given by
r=ATLL"+ V7Yl . (6.2.6)

The most important things about this modification are that I is now nonsingular and the off-
diagonal nonzero structure of L is exactly the same as that of L. Now we can apply Lemma

6.2.1 to (6.2.6), and the minimal L-solution is given by
=AY -CTCv(+ VTP vID T LY

We now give the computational algorithm which is similar to Algorithm 6.2.1.
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Algorithm 6.2.2

LT §7
(1) Compute an orthogonal decomposition of BT, Thatis, BT = o7 [ 0o o ] Construct the

' - Lo
m by m lower triangular matrix I, = [ s l]‘

(2) Solve the m by m sparse triangular systems [Z Ty = 5.

(3) Solve (p+ m-r) sparse triangular systems LW, = U and solve (p+ m-r) sparse triangular

systems LW,= V.
(4) Form the {p+ m-r) by (p+ m—r) matrix D = I+ WIW,.
(5) Solve the (p+ m-r) by {p+ m-r) dense system Dz = V7y,
(6} Solve the m by m sparse triangular systems [ Ty e Uz,
(7) Compute T=AT(y-v).

Apparently we have to compute both W, and W, in step 3, but in fact we only need to

o
compute either W, or W,. Let J be the m by {m—r) matrix [I] Then we have U= {C ~J}

and V={c J}. Thus
W= = (¢ L) ¢ w,=rC'v={r¢ )
1= =1 J an =1L V——lLC JJ.

That is, W, and W, are the same except that the last (m-r) columns have different signs.
Moreover it is not difficult to see that W] W, is the same as WIW, except that the last (m-r)

columns have different signs.

As in case (1), if p and (m-r) are small, the storage requirement will be dominated by the

amount of space required for I, and the cost will depend essentially on steps (1), (2), (3) and {6).

In Section 6.5 we will look at the implementation aspects which include the problem of
reordering the rows and columns of B in order to obtain the upper trapezoidal form (6.2.4) and

the problem of determining the rank of B.
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Case 8 -- Rank-deficient underdetermined systems

The case in which both A and B are rank-deficient seems to be a more difficult problem.
The iupdat.ing technique we have used in the previous cases cannot be used since AAT is now
singular, and the Sherman-Morrison-Woodbury formula is mot applicable. However the rank-
promotion technique can be modified to solve efficiently a rank-deficient sparse underdetermined

system which does not possess any dense rows.

Let A be an m by n matrix with m<n. Assume A has rank r, where r <m. Suppose

an orthogonal decomposition of AT is given by

LT 8T
T __ nT
ar=otll 5.

where Q is an n by n orthogonal matrix, L is an r by r lower triangular matrix and S is an
{m-r) by r matrix. We have assumed that the rows and columns of A are reordered

appropriately.

We now show that the minimal L-solution to the underdetermined system (6.2.1) has a

form similar to (6.2.2), provided that the system of linear equations is consistent. Let b be

¢
partitioned into [ d] where ¢ and d are respectively r- and (m-r)}vectors. Then the

underdetermined system of linear equations can be written as
L o ¢
s o) =\4) -

], where ¢ and v are respectively r- and (n—r)-vectors. Then we

[+ - ).

4

Let @z be partitioned into [v

have

or
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L ¢
s = 4) -
That is, Lu = ¢ and St = d. Thus if the system is consistent, we have

SLle=4d .

Let w be the solution to the r by r sparse triangular systems LL Tw = ¢. Then

w

4T

r=art]

is a solution to the system (6.2.1), since

_ e} 1L o} L7 sT|{w
AT=AA1o]=15 0J99 |0 oo

A L olftTw] [LLTw ¢ c

=tsojl o )= seTw) = sz} = la)=? -
Furthermore suppose % is any solution to Az=>5 and let $=z-%. Then

A= A(F-2) = AT-Az =0 .

Note that

T
w
N8l = I7-812 = U=l i+ Dol i-22"s = =2+ uau:—zla’[o]] g
)
= lzii+ nelg-2{u™ oJas = [zh+ NaIZ 2 Nz

Thus 7 is in fact the minimal &-solution.

In terms of implementation, the approach above is inefficient since we have to identify the
matrix L from the orthogonal decomposition. For large sparse problems, the data structure for
storing the lower trapezoidal form (L and S) is usually complicated, and it may be difficult and

expensive to extract L from the data structure. To solve this problem, we can use the same

L o
technique we used in case (2): replace the m by m lower triangulgr matrix [5 0] by
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_ Lo
L= l g1 ] Then instead of solving LL Tw=:¢, we do the following. First solve

A2)- -1

Note that y;=L'¢ and y,~d-Sy;=d-SL'c. Because the system is assumed to be consistent,

=[)-15 5)0-)-1)-

Now z=0 and w=L Ty,=L"TL . Finally the minimal solution is given by

e=arli)-wl)

yo=0. Next solve

Algorithm 6.2.3

T T
s
(1} Compute an orthogonal decomposition of AT. That is, AT = QT[ 0 o } Construct the

m by m lower triangular matrix [ = [f;. ?]
(2) Solve the m by m sparse triangular systems L1~ Tf =}
(3) Computez=ATf.
It is important to note that the algorithm only works when the system is consistent.
8.3. Updating algorithms for overdetermined systems
Consider the least squares problem
min|| Az-5 |, , 6.3.1)

where A is an (m+ p} by n matrix and b is an (m+ p)-vector, with m>n and p<<m. We

assume that A is partitioned into
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[,

where B and C are respectively m by n and p by n matrices. The vector b is similarly

=[)

where e and f are m- and p-vectors respectively. For large problems, B and € may respectively

partitioned; that is,

contain the sparse rows and dense rows of A.

This “partitioned” least squares problem also occurs frequently in another context (for

example, in statistical computations}. Suppose we have solved the least squares problem
min|f Bz ¢ ||; . (6.3.2)

We may, at a later stage, decide to add more observations (or equations) to form the new least

squares problem

minj| Az-3 |, .
3

If the problem is large, it is not desirable to compute the new least squares solution by finding the
orthogonal decomposition of A directly. It would be much cheaper if one would obtain the new
solution by updating the solution te {6.3.2) using C, f and the orthogonal decomposition of B
(see [25,50]}. Another alternative is to find the orthogonal decomposition of A indirectly, for
example using the orthogonal decomposition of B and C. One such algorithm is described in [23]
for small dense problems. For large sparse problems, the latter approach may not be feasible
since it is assumed that one can set up the storage scheme for the upper trapezoidal form before
carrying out the numerical computation. Since the nonzero structure of the upper trapezoidal
form of A may not be the same as that of B, there may not be space in the data structere for the
upper trapezoidal form of B to accommodate fill-in when we compute the orthogonal

decomposition of A from the orthogonal decomposition of B and the matrix C. Moreover ¢ may
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not be available when the least squares problem (6.3.2) is solved. The amount of fill-in caused by
the elimination of C' cannot be predicted when (6.3.2) is solved.

We now derive some updating algorithms for least squares problems.

Case | -- Both A snd B have full column rank

1t is assumed that an orthogonal decomposition of B is given by

o ff).

where @ is an m by m orthogonal matrix and R is an n by n upper triangular matrix. Notice

that R is nonsingular since B has full column rank.

We first note that the unique least squares solution to (6.3.1) is given by the solution to

the system of normal equations

Using the orthogonal decomposition of B, we- have
74 - [pT |8 — pT T
AA—lB C}[C]—BB*]-CC
R
= {RT o}QTQ[O]+ cfc=RTR+ C¢TC .
Thus the least squares solution is given by
T=(RTR+ CTCY'ATH | (6.3.3)

This expression is similar to (6.2.3). It needs the inverse of the sum of two matrices,
RTR and ¢TC. Since both A and B are assumed to have full column rank, R R=B7B and
RTR+CcTC=ATA are nonsingular. Thus we can wuse the technique for solving
underdetermined systems to compute the least squares solution. That is, we apply the Sherman-

Mortison-Woodbury formula to (6.3.3) and obtain:
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7={RTRT-R'RTCTI+ CRTRTCT)CRRT}AT}

We now state the computational algorithm for finding the least squares solution to (6.3.1). This

algorithm is similar to Algorithm 6.2.1.

Algorithm 6.3.1

R
(1} Compute an orthogonal decomposition of B. That is, B=Q[ 0 ]

(2) Solve the n by n sparse triangular systems RTRy=ATb.
(8) Selve p sparse triangular systems RT W=¢7T.
(4) Form the p by p matrix D=1+ WTW.
(5) Solve the p by p dense system Dz==Cy.
{6) Solve the n by n sparse triangular systems R T Rv=¢T 2.
(7) Compute T=y-v.
Note that in step 2, the vector ATH can be computed either from A and b, or as

{RT O}QT b. Suppose several problems which have the same coefficient matrix are to be

solved. Then @ may only be available as a sequence of rotation matrices when the first problem

is solved. For subsequent problems, AT must therefore be computed from A and 5.

As in the case of solving sparse underdetermined systems with dense columns, the storage
requirement is dominated by the amount of space required for R if p is small and Algorithm
2.1.2, 2.2.1 or 2.3.1 is used for computing the upper triangular matrix. The cost of the algorithm

depends essentially on the cost of computing R and of solving the sparse triangular systems.

Numerical instability and inaccuracy are the possible difficulties that may occur. It is
well known that the accuracy of the computed solution Z will depend on the square of the
condition number of A if the system of normal equations is sclved. Thus this updating algorithm

may fail to give satisfactory results if A is poorly conditioned. The reason for presenting this
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algorithm is that, as in the case of underdetermined systems, it can be adapted very easily to
handle the case when B is rank-deficient. This updating algorithm is similar to the one proposed
in {62].

Casc 2 -- A has full column ronk, but B is rank-deficient

As in the case of underdetermined systems, Algorithm 6.3.1 can be adapted easily to find
the unique least squares solution to (6.3.1) using the rank-promotion technique when B is rank-
deficient. Assume B has rank r, where r <n. Suppose the rows and columns of B (and A) have

been reordered so that B has the following orthogonal decomposition

R S
B=2lo o) -
where @ is an m by m orthogonal matrix, R is an r by r upper triangular matrix and S is an r
by (n-r} matrix.
Since A has full column rank, the unique least squares solution to (6.3.1}. is then given by
= (ATA)'ATs

Using the orthogonal decomposition of B, we can write ATA as
ry (ot ~cWBl_ ot T
AA-—-lB C’,[C]—BB+CC
RT oj [r S r RT O|fr S| _,
= g7 OQ QOO+CC= sT o OO+CC
=RiRz+ CTC ,
R 5

where Rp is the n by n upper triangular matrix o ol Thus the unique least squares solution

is given by

T=(BIRz+ CToy'ATS .
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Now we apply the rank-promotion technique to the singular matrix Rp. Define the n by n upper
RS
z-(23).
Then

rr= (3 e - )
R B B e A B

r o0
=RBRB+ or .

triangular matrix B by

Thus we can write ATA as
e 00
ATA = RIRy + cTc=RTR-[O 1]+ c?c .
Partition C as

c=fc

(o, o)

B

where Cyis p by r and C, is p by (n—r). Define two (p+ n—r) by n matrices U and V by
¢, G} C, G,
U= 0 -I and V=1, AR
Note that
of C: Cz cic, cfc
UV = T
c2 -1 cle, ¢f 02-1
cle, efe, o o
= lefe, ofe,) o o)
o o
— T
Coro ,] |
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Therefore we have
ATA=R"R+U"V ,
and the least squares solution is then given by '
Te= (RTR+ UTV)ATS . (6.3.4)
Note that R'R and RTE+ UTV are nonsingular. Thus we can apply Lemma 6.2.1 to the
expression in (6.3.4). In other words, the least squares solution is given by
r={R'RT-F'ETU1+ VE'RTUTY'\VE'E T4 ) .

The computational algorithm which is stated below is similar to Algorithm 6.2.2

Algorithm 6.3.2
R S
(1) Compute an orthogonal decomposition of B. That is, B=Q[0 O]’ Construet the n by n

_ IR S
upper triangular matrix = o It

(2) Compute the n-vector d =AT}.
(3) Solve the n by n sparse triangular systems BT Ry = d.

4) Solve (p+ n-r) sparse triangular systems B:W,= U7 and st;!ve p+ n-r) sparse
1

triangular systems B W,= V7,
(5) Form the (p+ n-r} by (p+ n—r) matrix D =1+ WIW,
(6) Solve the (p+ n~r) by (p+ n-r) dense system Dz = Vy.
(7}  Solve the n by n sparse triangular systems B’ Rv = UTz.
(8) Compute T==y-v.

As in Algorithm 6.2.2, it is not necessary to compute both W, and W,. Note that



and

Ty T T of o
W,=RF"Vvi=F o 1
Thus W, and W, are identical except that the last {n—r) columns have different signs. Similarly

W W, is the same as WIW, except that the last (n—r) columns have different signs.

If p and (n—r) are small, then the storage requirement will be dominated by the space

required for B, and the cost will depend essentially on steps (1), (3), (4) and (7).

Case 8 -- Both A and B are rank-deficient

Update becomes much more complicated when both the original matrix A and the sparse
submatrix B are rank-deficient. The approach we used in deriving Algorithms 6.3.1 and 6.3.2
cam'wt be extended to solve this rank-deficient partitioned least squates problem because ATA is
now singular. Even if C is null (that is, there are no dense rows), there does not exist any
algorithm similar to Algorithm 6.2.3 for solving (6.3.1). Note that a rank-deficient least squares
problem has an infinite number of solutions. In most applications, we are interested in the one

that has the minimal Euclidean norm, the so-called minimal norm least squares solution.

Heath presented an algorithm for solving rank-deficient least squares problems in [50].
However it does not handle dense rows. In the same paper another algorithm for solving least
squares problems with dense rows is proposed, and it is similar to the ome in [25]. Both
algorithms requires that A and B have full column rank. Bjorck recently has proposed a general
updating algorithm for solving sparse least squares problems in [10] which is similar to those
proposed in [50]. It assumes that A has full rank, but B can be rank-deficient. It also allows
dense and sparse conmstraints. All these updating algorithms are derived by considering the

residuals in the least squares problem.
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We now derive an algorithm for solving a rank-deficient least squares problem with a
rank-deficient sparse submatrix B. It is based on ar approach that is different from the one used
in previous cases, and may be regarded as a generalization of Heath's algorithms. It is a sgecial
case of Bjorck’s algorithm since we do not include constraints, but on the other hand, it can be

considered to be more general because it handles the case in which A is rank-deficient.

Consider the least squares problem

min|| Az-b |, , (6.3.5)

B
where A=—-[C]. We assume that A has rank s, where s<n, and B has rank r, where r<n.

Without loss of generality we assume that the rows and columns of A and B have been reordered

so that B has the following orthogonal decomposition

RS
B=Q[o o]’

where @ is an m by m orthogonal matrix, R is an r by r upper triangular matrix and S is an r

by (n-r) matrix. Let the m-vector Q%e be partitioned into [;], where ¢ and d are respectively
r- and (m-r)}-vectors.
Let the r-vector w be the solution to the r by r upper triangular system
Rw=¢

For any n-vector z, let p denote the square of the residual in the overdetermined systém. That

is,

B -B.
p=lb-azlii=| [,][C] =1 [}_C’;] 2

=lle-Bz |3+ [[f-Cz ||} . - (6.3.6)

Because the Euclidean norm is invariant under orthogonal transformations, we can write
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’ c R S
le-Bz 1= | @(c-B2) 3= | [d] [o O]x -

71
Partition z into [22], where 2, and z, are respectively r- and (n-r)-vectors. Then we have

. ¢ R sH= . [c—Rxl—SzQ] .
He-Bzlf;=|| dJ 1o o}{=, =1 d Iz

=l c-Rzy-Sz {3+ || d |7
= || Rw-Rz,-Sz, |7+ || d |I7 .

Partition € into {Cl C,}, where C'is p by r and C,is p by (n-r). Then

2 ( #
lr-celi=Nr-{o0 &, Jui=11-0z-Cm i} .

Using (6.3.7) and (6.3.8), the square of the residual is given by
p=|| Rw-Rz,~ Sz, ||+ || f - Coo1-Comp 13+ 1 2 |5 -
Let u=Rw-Rz,~Sz,. Then after rearranging, we have
z,=w-RS5,-R ,
and the second term in (6.3.9) now becomes
f-Cz-Coz, = [ -Cyw + C,Ru-(C-C,R7'S)z, .

Now define the n by n upper triangular matrix

_ [rs
=10 |-

and let

bh=f-Cw .

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)
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Note that

. {&*-rs
=10 1}

and & can be expressed as

h=1-{c cz}[ﬁlmf-cw] .

Now observe that

. R -Rs
oF = {0, 02}[ o 1 ]= (crt —oirtseay) .

Let v={vl V,} be the p by n matrix defined by V,=C,R™ and V,=C,~C,R™S. That is,
V=CR". Then (6.3.10) can be written as
f-C2-Cozg=h+ Viu-V,z, .
Hence we have
p=Nulli+ b+ Viu-Voz |IF+ [ 415 .
Let —v=Ah+ V,u-V,z,; that is,
Vig+ v = Vo2, b,

or

u
{V, I}[v]= Vyza-h .
Hence the square of the residual becomes
u
p=Nlulli+ lvliZ+dlZ=| [U]II§+ hdlls .

The original problem is to choose z so that p is minimized. Note that d is a constant

vector. Thus the problem can now be stated as the following: find the r-vector u and the p-
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u .
vector v such that || [v}ﬂz is minimized with u and v satisfying the p by (r+p)

underdetermined system of linear equations
u
{V, 1}[0] = Vyzp-h . (6.3.11)

Notice that the p by (r+ p) matrix {Vl I } is always of full rank. Thus if the vector z, were

known, then the problem would be equivalent to finding the minimal L-solution to the full rank p
by (r+p) underdetermined system (6.3.11). Since we are assuming p is small, the

underdetermined system could be solved using any method for small systems.

Assume z, is known for the time being. Suppose the p by (r+ p) matrix ‘V I {has an
2 1t

[7)-5).

where @ is an {r+ p) by (r+ p) orthogonal matrix and L is an p by p lower triangular matrix.

orthogonal decomposition

Then the underdetermined system can be written as

{L 0}61' [:]= Viz,—h . (6.3.12)

‘

- T
Partition the (r+ p )-vector o7 [v] into [V , where @ and ¥ are r- and p-vectors respectively.

J

‘Then we have

[L 0} :]= Vazo—h . (6.3.13)

The general solution to the underdetermined system (6.3.13) has the form

T= L (V,z,-})

¥ = arbitrary .
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Thus the general sclution to the underdetermined system (6.3.11) is given by

(-

However we are interested in finding the minimal L-solution to (6.3.11); that is, we want to solve

u 13 by
min | [V]Ih? = min I C"’[V] 3= min I [V] i
=min{|| 7|3+ | 713}

= Tig{ I L7HVoza-h) |7+ 1t Tiif} .
»

since #, is not known yet. Obviously the minimal L-solution is obtained by choosing T==0 and z,
so that [| L™'V,2,-L7'h ||, is minimized. That is, z, should be chosen to be the solution to the p

by {n-r) linear least squares problem

min || L™ Vyz,- L7 |[5 - (6.3.14)
b1

Assume Z; is a solution to this least squares problem. (We will consider the solution of (6.3.14)

later.) The minimal k-solution to (6.3.12) is given by

oo ). e

and a solution to the original problem (6.3.5) is

I '
F= 5|

whete Z;=w-R'4-R7'S%;, u is given in (6.3.15) and Z, is a solution to (6.3.14).
When we considered the solution of rank-deficient underdetermined systems, we pointed
out that it may be inefficient to extract R and S from the data structure when the problem is

large and sparse. The same comment applies here. We prefer to work with the n by n uwpper

triangular matrix K instead of R and §. If we let
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=-RMW-RS5, .
Then we can write down two systems of linear equations
Rz+ ST, = -u

and

K
i
]

In matrix notation, we have

R S)(z —u
o I)ls)  |=)
After solving this upper triangular system, 7, is simply given by Z;=w+ z.

The only problem that has to be considered is the solution of the least squares problem in

(6.3.14):

min || L7'V,z,- L7 |}, .
3' -

Note that L'V, is p by (n-r). {There may be two cases: either p <n-r or p2n-r). It should
be pointed out that apart from the solution of this least squares problem, each stage in the
solution process provides a unique solution. If the original matrix A has full rank, then the
solution to the original problem (6.3.5) must be unique. In other words, L™V, must have full
rank and thus (6.3.14) must have a unique least squares solution. Since both p and (n-r) are
assumed to be small, the problem (6.3.14) can be solved using any standard method for small
dense problems (for example, see [55]). However if A is rank-deficient, then solving {6.3.14} is the
only stage that could produce a non-unique solution. In other words, the matrix L V, must be
rank-deficient in this case. Since the problem is small, one may use, for example, a singular value
decomposition [45,47] of L'V, to find the minimal norm least squares solution to {6.3.14).

However there are two important ohservations.
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(1) The vector u depends only cn the residual vector L™Y(V,F,-£) which remains the same for

any solution %, to (6.3.14).

(2} Even if T, is the minimal norm least squares solution to (6.3.14), the final solution Z==

may not be the minimal norm least squares solution to the original problem (6.3.5). The

minimal norm least squares solution to (6.3.5) also depends on R, S and w.

Now assume A is rank-deficient. In order to compute the minimal norm least squares
solution to (6.3.5), we consider the following approach. Recall that u is independent of the choice
of solution to the linear least squares problem (6.3.14) since any solution will produce the same
residual. Thus we will not compute ¥, when we solve (6.3.14). We only compute the residual
vector L7 V,7,-h) and ‘the vector u. Recall that for amy solution %, to (6.3.14),
F;=w-R'u-R7'S7,. To find the minimal norm solution to {6.3.5), we have to find Z; and %,

that solve the following problem

T w-Ru-R753,
min = min
min | o o =minll | 0 Y

\

RSH+ Ru-vw

=aaf | s

2

\
-t w-Rtu
= min | R_IS]fz‘“[ ; ]“2_ (6.3.16)

]

RS
This is just an n by (n-r) least squares problem whose coefficient matrix [ oI ] is always of full

rank. Apparently one has to go into the data structure to find R and S in order to compute

RS
R7S or R™'u. In fact this is not necessary since the n by (n-r) matrix [ I ] is the solution to

the n by n triangular systems
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_ RS )
Ry =, (Jr=14.

-1
u
where Y is an n by (n—-r) matrix. Similarly the vector 0 )can be obtained by solving

=5 =[]

Finally the residual vector of (6.3.16) at the solution will be the minimal norm least squares

solution to the original problem in (6.3.5).

The discussion above is summarized in the following algorithm.

Algorithm 6.3.3

{1)

@

@

#)

(8)

(6)

R S
Compute an orthogonal decomposition of B. That is, B=Q[ 0 O]' Construct the n by n

. _ RS
upper triangular matrix R = o1}

¢
Compute the m-vector @75 and partition it into [ d]’ where ¢ and d are r- and (m-r}

vectors respectively.
¢ w
Solve the n by n sparse upper triangular system Ry= ol Thus y= of

Compute the p-vector h=f-Cy.

Solve p sparse triangular systems E* V7=¢7T. Partition V={V1 V,}, where V; and V,

are p by r and p by (n-r) matrices.

vi
Compute the orthogonal decomposition of [ I }:

[7)-4l5).
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(7} Solve (n-r) lower triangular systems LW = V,,
(8) Solve the lower triangular system Lg==h.

(9} Compute the p-vector « where ||« || ,=min || Wz,—¢ ||,
]

(10) Compute [:] = (‘)[:]

. o
(11) Solve (n—r) sparse triangular systems RY = [__ I]'

S £
(12) Solve the triangular system Rz= [0 ]
(13) Seolve min || Yz,—(y-Z) ||, and let F, be the least squares solution.
*2

(14) The minimal norm solution to (6.3.5) is given by T = YT,—(y-7).

Note that this algorithm also handles the cases when A has fuill rank and B has either
full or deficient rank. Of course C' can be null. In terms of complexity, Algorithm 6.3.3 is more
complicated than either Algorithm 6.3.1 or 6.3.2. When A has full column rank, it is hard to say
for sure if Algorithm 6.3.3 is more stable or accurate than Algorithm 6.3.1 or 6.3.2. This problem
is currently under investigation. However it is certain that Algorithm 6.3.3 is more general than

the other two.

6.4. Updating algorithms for nonsingular square systems

Consider the system of linear equations
Az =1} , (6.4.1)

where A is an n by n nonsingular matrix and b is an n-vector. We assume that A is partitioned

=)

into
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where B and €' are respectively m by n and p by n matrices, with m+ p=n and p <<m. The

vector b is partitioned in a similar manner; that is,

=[3).

where ¢ and f are respectively m- and p-vectors, In the applications we have in mind, B and ¢

would respectively contain the sparse and dense rows of A.

One interesting note about this problem is that when A is square and nonsingular, all
rows of A are linearly independent. Consequently B must have rank m and adding C to B must
testore the rank to n. Heath made use of this observation and proposed an algorithm for solving

the partitioned square system using an orthogonal decomposition of B [50].

Alternatively one may regard (6.4.1) as a linear least squares problem. Thus the method
used to find the minimal norm least squares solution in Algorithm 6.3.3 can be simplified to

compute the unique solution to (6.4.1).
Suppose an orthogonal decomposition of B is given by
{ }

where @ is an m by m orthogonal matrix, R is an m by m upper triangular matrix and S is an

m by p matrix. Then the linear system can be written as

QTBs = Qe , (6.4.2)

and

Ce=1f . (6.4.3)

1
Let ¢=Q7e. Partitior z into l 2 }, where z; and z, are respectively m- and p-vectors. Also
2

partition C into {C‘l C, }, where C, and C, are respectively p by m and p by p matrices.

Then (6.4.2) and (6.4.3) become respectively



{R S}[:] =Rz, + Sz,=¢ , - (6.4.4)

and

(e, cz}[::] = Cyty+ Cytp=f . (6.4.5)
Let Rw=c. We can write (6.4.4} as
z,+ RSty = w
or
2, = w-R7Sz, .
Substituting z, in (6.4.5), we have
Cfw-R7Sz,)+ Cozy =1 .
After rearranging, z, is then given by
(Ca~C1RS)zy = f - Cyw = f—{Cl cz}[;"] )
Let R bethe n by n upper triangular matrix defined by
— R S
-9
The p by p matrix C,~C;R™'S can be obtained from the last p columns of the matrix
R* -R'S

Rt ={c, CZJ[ P ]== (er? ~ops+ o))

Let V={Vl Vz} be the p by n matrix defined by V1=(','11R’"1 and V2=02—01R'IS; that is,

V=CRE. Then z, is obtained by solving the p by p system

W
Vyz, = f_c[0] i
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Finally z, is given by z;=w-R™Sz,, where -R~'5z, can be obtained from

(") 1) -=C)

For completeness we state the updating algerithm for solving nonsingular partitioned

square systems, which is a simplified version of Algorithm 6.3.3.

Algorithm 6.4.1

M

@

&)

4
(3)

{6)

)

(8}

Compute an orthogonal decomposition of B. That is, B=Q{R s }, where R is an m by

m upper triangular matrix and § is an m by p matrix. Construct the n by n upper
. . R S
triangular matrix R = o1}

Compute the m-vector c=Qre.

¢ w
Solve the n by n sparse upper triangular system Ry= [0 ] (Thus y= [0 ]}
Compute the p-vector k=f-Cy.

Solve the sparse upper triangular s;ystems RTvT=¢T. Partition V into {Vl V, }, where
V, and V), are respectively p by m and p by p matrices.

Solve the p by p dense system V,z,=h.

z 0
Solve the n by n sparse upper triangular system I?[z ]=lz ]
2 2

z
Compute the solution ZF=y+ [ z ]
2

6.5. Implementation details

There are a few things we should consider in the implementation of the algorithms

presented in previous sections.



1)

2

)
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It has been assumed throughout the discussion that sparsity will be exploited when the
orthogonal decomposition of the sparse portion B is computed. This can be achieved by
using the method presented in Chapter 2. That is, the orthogonal decomposition is obtained
by climinating the rows of either B (for square and overdetermined systems} or BT (for
underdetermined systems) using rotations. We assume that the rotations are discarded once
they are used, that the rows of B or BT are stored on secondary storage, and that the
number of dense rows is small. The amount of main storage required is therefore essentially

governed by the sparsity of the upper trapezoidal form of B or BT.

Suppose B is the m by n matrix whose orthogonal decomposition is to be computed, and
assume m>n. In general the column ordering of B will be chosen so that the upper
trapezoidal form is sparse. Thus we do not want to change this ordering during the
numerical computation of the orthogonal decomposition, otherwise the effort of finding a
good column ordering will be wasted and the amount of fill-in may be large. This means
that if B is rank-deficient, we do not want to change the column ordering of B (during the

numerical computation) so that the upper trapezoidal form has the form

53

Fortunately this is not necessary. All we need is to identify the null rows in the first n rows
of the upper trapezoidal form. Then we replace those null rows by t_he appropriate rows of
the identity matrix. More precisely, we replace the diagonal element of a null row by one.
(See [50] for details on this technique.) Sometimes, instea(i of ones, we can put some other
numbers on the diagonal in order to decrease the condition number of the upper triangular
matrix. However, the problem of deciding what numbers should be used seems to be a

difficult one and little work has been done.

Let B be an m by n matrix with m>n, and R be an n by n upper triangular matrix

obtained via an orthogonal decomposition. Assume B has rank r, where r<n. A subtle
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problem to consider is the identification of the null rows. Since only finite-precision
arithmetic is used, it is unlikely that ome can find exactly (n-r) null rows in R. More
probably, one will find (n~r) rows which contain very small elements. A reliable way to
determine the rank of B in finite-precision arithmetic is to use a singular value
decomposition (see [45,47,55]). However if B is large and sparse, computing a singular
value decomposition may be very expensive, both in storage requirement and execution
time. A heuristic but often reliable method is to compare the diagonal elements of R with
some small tolerance. Suppose there are » diagonal elements that are smaller than this
tolerance in magnitude. Then (n-7} will be regarded as the numerical rank of B. One way
of choosing the tolerance is described in [14]. The errors in the matrix A are estimated.
The rows and columns of A are scaled so that the error estimates are approximately equal
to a common value, say 7. Then r is used as the tolerance. Experience has shown that the

numerical rank obtained is usually the same as the rank of B.

Another subtle problem which is not directly related to the updating algorithms is the
identification of the dense portion. We have left the meaning of dense rows somewhat
vague. Even though we know a full row is certainly a dense row, some rows which have a
relatively small number of nonzeros may also be regarded as dense rows if the rotation of
these rows introduces substantial fll-in in the upper trapezoidal form or they are expensive
to eliminate. The problem of identifying dense rows seems to be very difficuit and no
results are available. Following is an heuristic scheme. Suppose Y is a set of rows that
contain substantially more nonzeros than the others. One can withhold some of the rows of
Y. Experience has shown that, if this scheme is used, the storage requirement could be
reduced substantially (compared to the space required when no tows are withheld).
Similarly, the execution time, which includes the time for performing update, could also be

smaller than the time required when no rows are withheld.



CHAPTER 7

CONCLUDING REMARKS

7.1. Contributions

In this thesis we have studied the problem of computing the QR-decomposition of a

sparse m by n matrix, with m >n. Our approach can be summarized as follows.

)

(2

)

The columns of A are permuted so that the upper triangular matrix R obtained in the

QR -decomposition is sparse. Denote the permuted matrix by 4.

The rows of A are then ordered so that the cost of computing R is small. Denote the

reordered matrix by A.

The rows of A are processed one at a time using the algorithm proposed in [25].

The u})per triangular matrix R may be dense when A has a few dense rows. In this case we only

compute the @R -decomposition of the sparse portion of A.

)
(@
3)
(4)
(8)

(6)

The major contributions in this thesis can be summarized as follows.
Development of a graph model for studying the row and column ordering problems.
Derivation of graph-theoretic results and relationships between row and column orderings.
Characterization of good row orderings for nested dissection column orderings.
Complexity analyses of nested dissection orderings for a model problem.

Presentation of numerical experiments which show that a minimum degree ordering is a

width-1 nested dissection ordering (at least for our set of test problems).

Derivation of algorithms for solving systems of linear equations using the orthogonal
decomposition of the sparse portion of A and its dense rows (or demse columns in

underdetermined systems).

= 180 -
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As we have pointed out in Chapter 2, there are many heuristic algorithms for finding good
columa orderings for sparse @R-decompositions. On the other hand, few algorithms exist for
finding good row orderings. In this thesis we have proposed a graph model to study the row and
column ordering problems in 3 systematic manner. The model is based on the one that is
commonly used in sparse Cholesky decomposition. The graph-theoretic results obtained have

provided us with a mechanism of constructing “good™ row and column orderings.

Using the results, we have proposed a width-2 nested dissecciot; ordering which induces
both good row and coiumn orderings, and we showed that the induced row ordering has a simple
characterization. Width-2 separators play an important role in finding a width-2 nested dissection
ordering. It was shown that both the storage required for storing R and the cost of computing R
depend in part on the sizes of the width-2 separators, which means one should use small
separators. Only a restricted class of problems is guaranteed to have small width-2 separators,
but there is a larger class of problems that is known to have small width-1 separators. Because of
this, we would like to replace width-2 separators by width-1 separators. This gives a width-1
nested dissection ordering. We were able to show that a width-1 nested dissection ordering also
induces a good row ordering. For problems defined on n by n grids (our model problem), we
showed that the storage requirement for the upper triangular matrix and the cost of computing it
are respectively O(n’logyn) and O{n?) for both width-1 and width-2 nested dissection orderings,
but the coeflicients in the leading terms in width-1 nested dissection are smaller than those in
width-2 nested dissection. Numerical experiments on various types of problems indicated that
width-1 nested dissection orderings are in general better than width-2 nested dissection orderings,

both in terms of storage requirement and execution time.

For our set of test problems, we observed that a minimum degree ordering is a width-1
nested dissection ordering. This is important since the amount of filin in R is usually small if
the columns of A are labelled by a minimum degree algorithm. Assuming that a minimum degree

ordering is a width-1 nested dissection ordering, one can immediately characterize a good row
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ordering for A. Numerical experiments indicated that the minimum degree column and row
orderings are better than both width-1 and width-2 nested dissection orderings, both in terms of

storage requirement and execution time.

The numerical experiments suggested that the graph model we proposed is a good model,
in the sense that the structure of R determined from the model is very close to the actual
structure produced in the numerical computation. For the model problem, it was proved that the

structure of R predicted by the graph model is identical to the actual structure.

In the discussion above, we have assumed AT A is sparse if A is sparse. This is not
always true. In fact, when A contains some dense rows, the upper triangular matrix R may be
dense. One way to handle this situation is to withhold the dense rows from the QR-
decomposition. That is, we only compute the QR -decomposition of the sparse portion of A. We
have derived several new- algorithms for solving linear systems using the QR -decomposition of the
sparse portion of A and the withheld rows. The algorithms are capable of handling the cases in
which the sparse portion of A is of full rank or rank-deficient. For overdetermined systems, the

matrix A can even be rank-deficient and at the same time have dense rows.

7.2. Further work and open problems

Much work remains to be dore in the area related to the problems we have considered in

this thesis. Following is a list of some of the open problems.

(1) The empirical results in Section 5.5 indicate that, at least for our set of test problems, a
minimum degree ordering is also a width-1 nested dissection ordering. An open problem is
either to prove that or to find conditions under which a minimum degree ordering is
equivalent to a width-1 nested dissection ordering. This is important because if 2 minimum
degree ordering is indeed a width-1 nested dissection ordering, then we already know how to
characterize a good row ordering in the QR -decomposition of a sparse m by n matrix, with
m2n, when the column labelling is a minimum degree labelling. On the other hand, if a

minimum degree ordering is not a width-1 nested dissection ordering, then another problem
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is to identify a good row ordering.

The graph model we have proposed assumes that exact cancellation does not occur and all
elimination sequences are maximal. This is not always true. Consider the following

example.

X X
X

A= X X

X

X

Since the first row is a full row, the graph of ATA isa complete graph, and the symbolic
factorization process will predict that the upper triangular matrix R is full. However, R is

not full. If R is computed using row elimination, then its actual structure is given by

X X

X
X

X X X
X X X

X
X

One way to handle this situation is to withhold the first row and compute the QR-
decomposition of the submatrix containing the last five rows of A. Notice that the
elimination sequence of the first row is not maximal. In fact, when m=cn (for example, in
square matrices), it is possible that the number of non-maximal elimination sequences is
larger than that of maximal ones. Thus our model may not be a good model. An open
problem is therefore to find a new model for row elimination that will take into account
both non-maximal and maximal elimination sequences, and to have a better understanding

of the effect of non-maximal elimination sequences.

A problem that we have considered briefly in Chapter 6 is that of identifying dense rows,
which is usually done by examining the number of nonzeros in each row. The open question

is whether it is worthwhile to use a more sophisticated way of identifying dense rows. If it
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is, then a different definition of dense rows is required and a more robust method of

identifying them is needed.

We have derived updating algorithms for solving many classes of linear systems using the
QR -decomposition of a sparse portion of A and the withheld dense rows. Updating
algorithms for rank-deficient underdetermined systems with dense columns remain to be
developed. Another problem is to compare various updating algorithms for solving a
particular class of systems (in particular, linear least squares problems) in terms of storage

requirement, execution time and numerical stability.

In this thesis we have assumed that the ordering algorithms can be carried out in-core.
However, there are large problems in which orderings cannot be performed in main storage,
anci secondary storage must be used. Hence an important problem to be solved is to design
algorithma that will produce, for example, a miaimum degree ordering or a width-1 nested

dissection ordering, using secondary storage.

Another problem is to find out the difficulty of the ordering probléins. We know that
finding an optimal column ordering for 4 is an NP-complete problem. Is the problem of

finding an optimal row ordering for A, given a column ordering, also NP-complete?
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