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ABSTRACT

We consider computational aspects of the problem of fitting
parameters in differential equation models. We first review three
basic techniques, whick all involve least squares estimation. We
then discuss the important problem of sensitivity analysis of the
parameters, and give both a local, mathematical approach and a
more global, computational approack. We then present two numer-
ical examples, and present an alternative technique for the special
case of the two-dimensional Lotka/Volterra equations.

1. INTRODUCTION

The general problem we are concerned with can be described as follows: we
are given a system of differential equation

¥ =1t yp) (1.1)
=y, 0) P ={r1Pm)
plus some data for the solution:
)=y , i=1.,N
and we seek parameter values p s0 as to
min 8(p) = ;:'fl ]g(y;(a; P)- vl (1.2)

The problem may also specify initial and/or boundary conditions ¥{ts), uty),
with of course { < ¢ <t .

Such problems arise frequently in the modelling of various physical, chemi-
cal, and biological processes. Different algorithms have been proposed by many
authors, and we review these in Section 2.

In addition to the minimization problem itself, one is normally also
interested in the sensitivity of the parameters p to changes in the data. In
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Section 3, we discuss the mathematical process of sensitivity analysis, and in
addition describe a computational method of sensitivity analysis which we feel
can make a valuable addition to the computational solution process. In Section 4
we present two numerical examples illustrating these ideas, and in Section 5 we
present an alternative approach for the special case of the Lotka/Volterra
equations.

2. THE METHODS

The basic methods in use presently are of three types:

(a) Initial Value (or Boundary Value) Technique:

where for any choice of p , we calculate ®(p) by numerical integration
using an initial value or boundary value method, assuming a full set of imitial or
boundary conditions is given. Thus with some initial choice of parameters p°, we
can proceed to minimize ®(p) using some optimization techmique, preferably
one which does not require gradients explicitly. If a full set of initial or boundary
conditions is not known, the set of parameters p must be extended to include
these before the technique can be applied. This can cause extra difficulties; for
example the initial estimate of the iritial conditions may lead to a numerical
integration which diverges, if the solution of the system (1.1) is sensitive to the
choice of initial conditions.

Many authors use this method; we mention in particular van Domselaar and
Hemker (1975), Bard (1974), and Benson (1979). The mecthod can be extremely
time-consuming because of the necessity of integrating the full set of equations
for each choice of parameter value. Thus it must be used with caution: we
suggest using it only when good estimates of the parameters are available
(possibly from (b) below).

(b) Spline-Fitting Technique:

where we fit the data {y;;} by splines s;(t), j=1,..,n, and then find
p to minimize the residual least squares function

B (p) =35 35 /() L5{t 0,0
i=1 j=1

Of course, since this is a different function, its minimum will not in general
be the same as for &$(p), so this is really only a way of obtaining an
approximate solution p . However, it seems to work well in practice, and has
the advantage of not requiring costly numerical integrations of the DE system.
We recommend this be used to get a good estimate of p , and this estimate
refined by using method (a}. References are Varah (1982a) and Swartz and
Bremerman (1975). Notice also that when a full set of initial or boundary
conditions is not known, the basic technique is the same; however, to estimate
®(p), one still must integrate the DE using the given p , which requires a
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minimization of ¢ over the space of possible initial conditions.

(c) Explicit Integration:

where the DE system is explicitly integrated to functional form
Fy(y,t,p)=0, j==1,..,n, and the least squares function &(p) computed
explicitly by solving for each y{t;) . Of course, this is only possible for certain
equations, but when it is, we recommend it; it avoids numerical integration
completely, and we have found the results from this method more reliable in
general. Again, if a full set of initial or boundary conditions is not known, one is
left with integration constants to solve for; however this can be done using the
data (see Section 5 for an example).

3. SENSITIVITY ANALYSIS

The problem (1.1) is really much more complicated than it may appear: in a
particular problem the least squares surface ®(p) may not be convex; there may
be more than one local or global minimum; even if the minimum is unique, the
surface may be very flat in some directions, so that some of the values p; are
indeterminate. All of the above can and do occur in the simplest problem of
fitting parameters in linear constant coefficient systems; this problem is
essentially equivalent to fitting data by a sum of exponentials, and examples and
references are provided in Varah (1982a).

Thus we feel it is imperative that, along with any parameter estimates
which are produced, estimates of how well-determined or how sensitive the
parameters are be given as well. In what Tollows we shall describe both
mathematical and computational approaches to this sensitivity analysis.

A. Mathematical Approach

This technique involves first of all obtaining an estimate of the Hessian
matrix H{p,y) of the function ®(p) at the minimum point p=p*. This is
By
done by integrating the sensitivity equations: if we define Z;; = Bi , the Z;
12}
satisfy the lincar equation

a 8
dt " Op; dp;

3.1
T On Op; 1)

or

Z'=G+JZ ,
which can be integrated for any value of p and y(¢) assuming initial (or
boundary) conditions are known, say Z(f;). Of eourse with fixed initial

conditions y{fo) , this is no problem: we can set Z(to) = 0. However if we do
not have a complete set of fixed initial or boundary conditions, it is not clear
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what to use for Z({y), and it may be necessary to assume some probabilistic
model for Z{t). In the fortuitous case that the original equations can be
explicitly integrated (see 2(c) above), the situation i3 much simpler:
differentiating F; (t,y,p) = 0 with respect to p; gives
aF, 8y,  OF,
— 4 =0
v Ou Opj Op;

or
JZ+ G=0,

which can be solved explicitly for Z(t).

Once Z(¢) has been computed for the minimum p = p* and solution
y(t) , the Hessian of & (p) is given by

Hu(p,y)= )_E };3 Za () Zin () + f} i (w;{ti) - wsy) Fule)

. (3.2
i=tj=1 Opy 8p; 5.2)

In practice, the second term is usually ignored in the calculation of H; this is
really only justified for problems with small residual or problems which are nearly
linear.

Recently, efforts have been made (in the setting of general nonlinear least
squares problems) to use both terms, the first as a measure of parameter -
dependent sensitivity, and the second as a measure of intrinsic sensitivity. See
Ramsin -and Wedin (1977) and Bates and Watts (1980). We take the view here
that we are given a particular model (1.1) with both kinds of sensitivity present,
and that any results on sensitivity should be for this fixed model.

Once the Hessian has been found, there are two ways of using it to estimate
parameter sensitivity; both ways depend basically on the ill-condition of H .
Assume for simplicity of notation that n = 1. The first method allows p to vary
from p* (the minimum point) as long as the least squares function &(p) does
not change appreciably: that is,

d(p)-d(p') <. 3.3)

This is the approach used by Bard (1974, pg. 71); who shows that if we assume
local quadratic behaviour behaviour for & (p} near p’, then (3.3) leads to the
ellipsoid in p-space

1 2 1
Fle-p" )T Hip-p") S e

Thus the greatest uncertainty in (p—p°) is in the direction of the

2¢€
Amin (H)
eigenvector corresponding to App (H). This method is also used by van
Domselaar and Hemker (1975), who manage to define ¢ very precisely by

assuming a normal distribution for the errors in the data {y;}, giving
lem &(p*) Fo(m,N-m), where F,(m,N-m) is the upper «
probability point of the Fisher distribution with m and N-m degrees of

€ =
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freedom.

A second approach which uses the Hessian is to allow a perturbation in each
data value y; — y;(1+ ¢}, with ¢; measuring the noise or un;':,ertainty in the

data. Then we can argue that instead of minimizing @ (p) = Y, (v(ti,p)- %)
1

to get p=p*, we could just as well minimize
N
& (p) = Y (wlti,p)- w1 + &)
1
toget p=p/=p’+ & . To measure §,, we can proceed as follows:

«»((p)=¢(p)—2zf:e.-u.»w(s,~)-y.-)+ ollell

so at the minimum p ==p;,
2 3 N 9 2
0= ——(8fp)) = —(®(p))-2) ;i — (wlte ) -w)+ O(Hl €}l ) .
py opy 1 i
Recall that b%”(!l(‘i)) = Z,(¢;) , which is singly subscripted here because we are
%

assuming y(t) has only one component (for notational simplicity only). Thus we
can write the above equation as

0= zzl":(ytti,p)fyf)zk(c.) . 2)5 v 2+ oIl D) -

Now since p=p/=p"'+ 5,
vt p) =yt ")+ (Z)T 5+ O 2N D) -
Substituting this in the above equation and keeping only first order terms gives
Hi =} (3.4)

where
N N
H = ;(?jie)}ré(fi) b= Zl)fi i Z)

Notice that H, which here i3 only the first term of the Hessian, can be written as
JTJ, with J the NXm Jacobian matrix Ju = Z(4). Thus § is the
least squares solution to the overdetermined system

6 =1 (35)

where 7; == ¢;y; . If we use the singular value decomposition J=UEVT
{(notice H=JTJ=VD?VT) then again the largest deviations in p are in the
direction of the smallest eigenvector of H.

In a practical situation, we will only have a bound for each |n;| .
However, using J=U%L VT , we obtain

m u;
(B = 3 Va—
k=1 a;
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where u = UTy . Thus we get the bound

mo | Vi
O] <lnll: X5 . (36)
k=1 i
which we have found useful in practice. One can actually store J and compute
the SVD to avoid the extra ill-conditioning in H, but it is probably more
practical to keep only H which is only mXm, and use its eigenvector
decomposition to get (3.6).

B. Computational Approach

Although the above techniques can indicate when paramecters are sensitive,
a serious drawback is that they are only local techniques. Often it is much more
enlightening to have a more global picture of the relative changes in ®(p) asp
varies. One way of doing this is to plot contours or surfaces of ®(p) projected
into two-dimensional planes; that is, we vary just two parameters (p; v Piy)
holding the others fixed, and measure ®(p) for these parameters varying between
given limits. We have built this facility into our parameter estimation program,
and find that, although this is time-consuming, it provides a very useful tool for
gaining insight into parameter sensitivity of a particular model. We will show
some results of this technique in the examples following. See also the surface
plots in Varah (1982a).

4. TWO EXAMPLES

The first of our examples i3 a pharmacology problem modelling the
absorption of ethanol in the bloodstream (Ralston et al (1879)) which we also
mentioned earlier (Example D of Varah (1982a)). The equation modelling ¢thanol
concentration is

dz 0y 2

= t

dt 93"' 2z ! _2
dz 2%
a6+ z i >2

with 2(0) =0 and 0<:{<85. The data are given in both the above
references, and the qualitative behaviour of z(t) is that it rises almost linearly to
t =2 and then decays back to zero.

One can of course integrate numerically and use techniques (a) or (b} to
minimize a least squares residual, but it is possible to integrate explicitly, as we
indicated in Varah (1982a): for ¢t < 2, solve

(8:-80,)°t .

8 (e*-1)-0,z =
O3
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6y bz(e” -1)
0,0,
nonlinear equation for z which has two roots. Since we need z(t) > 0, we take
the positive root if 6, <4, , and the negative root if 8, > 8, . Fven the case
b, =0, can be handled by using limits: 2{t)—0,¢ as 8,— 8, ) for t >2, solve

byz+ 2(2)(e* ~1) = (2-1),

for z, and set =z(¢)= (This involves, for each ¢, solving a

For z and set z(t)==z(2)e* .

This problem has a unigue minimum near 8+* = (.557,.221,.151) with
V@8 ¥) = 0.300 . However the least squares surface is very flat in the 0,/6,
plane, with a narrow trough running roughly along the line 6;=2.56,-0.4. We
present a surface plot of this in Figure 1, with 0.1<6,< 20, 0.1<8;,<50.
Thus the parameters are very sensitive in this direction, with other values

i

00 = (58,.78,1.54) , V& = .3236
8@ = (.607,1.29,2.76) , V& = 3243 .
PO = (61,2.03,463) , V& = .3286

i
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The first of these was found as the minimum using the spline least squares
technique (b) in Varah (1982a).

However, this sensitivity, readily apparent from the surface plot, is not
apparent from solving the sensitivity equations and finding the Hessian; the
singular values of J, measured at #=20%, are o;~.24,5.4,30. However, at
0==0" we get o, = 034,1.2,18 and the sensitivity is more noticeable.

As a second example (and we thank Robert Miura for the reference), we use
the Hodgkin-Huxley (1952) equations modelling nerve action potentials, as
presented in Hafner et al (1981). The model equations (for the squid axon) are

a8,
it
dS,
Tdr

= —[p, 57 S(S1+ 115)+ py 57 (S1-12)+ pa(S5y+ 10.6)]

= A (¥ + Bm) S

b (41)
a5,
dt
a5,

7=ar(an+ﬂn)54 - /

= Gy *(au + ﬂl)SS

Here S,(¢) denotes the membrane potential and §(t), S5(t), $4(¢) are excitation
variables; the «'s and f's are rate constants varying with the membrane
potential as follows:

ap = 0.1(25+ 5}/ (exp#(0.1{S; + 25))-1)
Bm = 4exp (5, /18)

ay = 0.01(5,+ 10)/ exp#(0.1(5, + 10))-1)
B, = 0.125exp (8, / 80}

= = 0.07exp #(0.055,)

Br = 1[(exp#(0.1{5;+ 30))+ 1) .

a

The parameters py,p, p; represent maximum conductivity for the three
different ionic currents present. Initial values for the state variables are
5,{0)=0, 5,(0)=0.1, 55(0)=0.2, S5(0)=10 (note: 5,(0) and S,(0) are
reversed in Hafner et al). For realistic values of the parameters, the membrane
potential decreases from zero to a minimum rather sharply, increases to a slightly
positive value, and then decays to zero over a time interval of about 10
milliseconds.

Hafner et al generate 100 data points by simulation: they fix the parameters
at appropriate values (p;=120,p,=36,p,=0.3), and integrate the equations
{4.1) at these parameter values, using the numerical values obtained as data after
adding random normal noise. They then try to recover the original parameter
values by minimizing a least squares function ®(p). We are more interested in
parameter sensitivity: therefore we derive data for 5(¢) rather arbitrarily (as in
Table 1), and once we find 2 minimum near the above parameter values, we
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measure deviation in $(p) as we vary p two components at a time in a region
around the minimum.

t 0.5 1.0 1.5 2.0 2.5 3.0 3.5

5,(t) 5.0 -0, -30 -100  -100 =70 -50

t 4.0 4.5 5.0 5.5 6.0 7.0 8.0

Su() -30 0 10 0 10 10 10
Table 1

Because of the computational time involved in the numerical integrations,
we did not produce surface plots as we did in the previous example. Indeed we
merely computed contours in the three planes p,/p,, p./ps,py/ps. The
results however were interesting: although p, and p, seem well-determined, the
value of p; appears to be rather sensitive; in the p,/p, plane, the value of ¢(p)
varied by less than 10% when p; was changed by 50%.

5. THE LOTKA/VOLTERRA EQUATIONS: AN ALTERNATIVE
APPROACH

Now consider the two variable Lotka/Volterra model

z'(t)= rz-azy
iy (5.1)
') = -sy + Bay

with positive parameters p =(a,8,r,5), and positive data values (z;,y),
i=1,.., N . This is a common model in ecology and other areas (sce e.g. Clark
(1976, pg. 194)). If the data are given as (z(f;),y(4)), one can proceed as
above, treating the problem as a two-variable system of equations and forming
®(p) asin (1.2). However, we would like to present an alternative procedure for
parameter estimation for this equation which may be more meaningfu! in some
cases, and may also be used for other two-dimensional autonomous systems.

The equations (5.1) can be explicitly integrated to the implicit function
form

g{z,y) =rlogy-ay+ slogz-fz-C =0 (5.2)
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which defines a simple closed curve in the positive z—y quadrant for any positive
values of the parameters a,f,r,s . As the integration constant C increases, the
solution curve shrinks, finally to the single point z==¢/8, y=r/a for
C = r(log(rfa)-1)+ e(log{s/f)~1) . Thus, for given C,0a,B,r,s, we can
use (5.2) to find the solution curve numerically by first finding the limiting z-
values (the two z-solutions of (5.2) for y =r [« ), and then for each z between
these limits, finding the two corresponding y-values by solving (5.2) as a function
of y for this z-value,

However, our object of course is to find that choice of parameters for which
the above closed curve best fits the given data in some sense. Since the
integration constant C only affects the overall size of the closed curve, we define
it in terms of the other parameters and the data as follows:

C = *}VE(rlogy,——ay,+ slogzi-fz) , (5.3)
7

so that the equation (5.2) holds in the mean for the given data. This choice
guarantees that we have a nontrivial curve, and moreover that the centre of mass

of the data (2%, y+)= (TIV-E 7, IFE ¥;) is inside the curve, since
1 a’ 5 1
g{z#, y¥) =r IOE(WE yi)_—ﬁz'; vyt IUS(WE Z.’)-“j%z: z-C

(o) Tesy Yn. Ylogz
r[logl N ]— N + aftog ( N TR }

>0

using the arithmetic-geometric mean inequality. Notice that the interior of the
curve is described by g¢(z,y)>0. Of the other parameters, one is merely a
scaling factor, which we fix by setting a=1, leaving free parameters 8,r,s .
In our experience, fitting all three parameters from the data is too ill-conditioned,
and we normally fix 8 and fit only the two parameters r and s. Notice also that
the centre of the closed solution curve (z,y)==(s/8, y/a) will match the centre
of mass of the data (z#,y*) when r=ay*, s=fz+, and these values are
usually good initial estimates for the ‘‘best” r and s.

To define the “best” values of the parameters, we need a least squares
function like ®(p) which measures the deviation of the closed curve from the
data points. We define this as follows, with thanks to David Kirkpatrick: let d;
be the distance from (z;, ;) to the solution curve along the ray from the centre
of mass {z¥,y*). One peeds to solve a simple scaler nonlinear equation to find
the intersection points of the ray with the curve; then d; is the smaller of the
distances. We then define

O(r 5 8) = A 472 . (5.4)

Each d; will be small if the point (z;, y;) is close to the solution curve, and if all
are close, the curve will fit the data well,
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With this choice of &, we can proceed to find best choices of r and s for a
fixed 5, and to give surface plots measuring the sensitivity of the parameters.
Our first example is for the Barnes data given by van Domselaar and Hemker
{1975), and also used in Varah (1982a), We fix f==1 and give in Figures 2 and
3 the solution curves and data for {r,s)=(1.0,2.0) and (r,s)={(0.8,2.0). Then
we minimize ®(r,s;1) giving (r,8)=(.377, .832) with the solution shown in
Figure 4. To show that the results are very insensitive to the choice of § (and
thus that f can not be well-determined by the data), we tried various values of 8,
and for each we minimized ® over r and s. The results are shown in Table 2;
the minimum value of & changes only very slightly with 8, and as well the
corresponding solution curves are very similar.

B |bestr | bests § &(r,e;p8)
0.3 371 238 0272
0.4 375 323 0266
0.5 377 407 0264
0.6 .379 492 0265
0.7 379 577 0267
0.8 379 663 0270
0.9 379 748 0274
1.0 378 832 0217
1.1 377 917 .0282

Table 2
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Now consider the data set in Table 3, obtained from an ellipse in the z-y
plane by adding random noise at the 0.5 level in both z and y coordinates.

.87 .82 87 74
71 12 47 } 1.53
196 | 1.17 | 1.58 .02
1.84 72 1199 | 157
1.03 .64 87 | 1.58

Table 3

In Figures 5 and 6 we give the optimal solutions for f=1 (for which
=67, 8=107, &=116) and A=8 (r=.71, s =101, =.071). In
this case, a3 @ increases, the minimum &(r,s;p) slowly decreases, but the
corresponding solution curves change drastically, giving largzer and larger y-values
at the top of the curve. The reason is the large gap in the data at the top, which
might be of practical relevance if this were a model of a predator/prey cycle;
population measurements might not be possible at certain times of the year for
example. In any case, there are no data points to keep the curve bounded in this
region, and in fact for large f, slightly smaller values of ®(r, s; f) occur for these
solution curves. For much the same reason, with a large fixed value of j, the
surface plot of ®(r,s;f) is very flat in the r-direction. Although the solution
curves are very different again, the corresponding values of & do not change
much as r changes. Thus this “gap’ problem is much more ill-conditioned than
the first data set.
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