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ABSTRACT

This paper presents the programming language Lucid, both its
syntax and semantics, and discusses some possible ways of thinking about
the operational behaviour of Lucid programs. (The actual operational
behaviour is really completely different, but we find that having some
sort of operational ideas is often very useful when designing Lucid pro-—
grams. )

This paper does not consider the manipulation (transformation)
rules, or the inference rules, that are an integral part of Lucid and
which allow reasoning about programs. It is concerned mainly with Lucid

as a programming language.



The commomplace expressions of avithmetic and algebra have a
certain simplicity that most communications to computers Lack.

[P.J. Landin, 1966]

0. INTRODUCTION

It is apparent that the goals of language designers and logi-
cians are quite similar: to develop systems for precisely specifying
objects and properties. In both cases this means the study and development
of the syntax and semantics of purely formal, as opposed to natural,
languages.

It is also apparent that logicians have been eminently more
successful. The logicians' languages, such as predicate calculus, are
simple, elegant and, above all, semantically well defined. Programming
languages, by contrast, are complex, clumsy and, above all, semantically
very poorly defined. Tt is often said that they are "illogical".

Furthermore, the languages of logicians were developed in con-
junction with rules of inference, so that reasoning about properties of
objects could proceed by simple finite manipulations completely within
the language itself. By contrast, formal reasoning about programs, to the
extent that it is possible at all, has to be carried out in a separate
formal system in which the manipulations are performed on comments om,
or a translation of, the original program.

The obvious conclusion is that logic (and mathematics in general)
could be usefully applied to the study and design of programming languages.
Few would dispute this; but there have always been two points of view about

the relationships between logic and computer science.



One point of view sees mathematics as playing primarily a
passive role, being used to describe, to model and to classify. The
other point of view sees mathematics as playing primarily an active
role, being used mot so much to describe existing objects as to plan
new objects.

These two approaches, which we might call the descriptive
and prescriptive approaches [1], are well illustrated by two important
papers by Landin, "A Correspondence between Algol 60 and Church's A
Notation" and "The Next 700 Programming Languages™, [2, 31.

In the first Landin defines a translation from Algol 60 into
the A-calculus and so uses logic to describe Algol. In the second he
begins with A-calculus and develops a simple non~procedural language
(ISWIMT), with a naturally defined construct (the "where" clause)
which introduces local variables in a way similar to the Algol block,
but which is actually based on the h—calculué. Landin's first paper
represents the descriptive approach and the second represents the pre-
scriptive approach.

It is clear that if we want to develop computer languages
having the elegance of mathematical languages it is the prescriptive
approach that we must adopt.

Tt has become almost accepted without question that computer
languages can not hope to have the simplicity we desire. For example,

Scott and Strachey [6] say that "computer oriented languages differ

+ If you See What I Mean.



from their mathematical counterparts by virtue of their dynamic character.
An expression does not generally possess one uniquely determined value ...
but rather the value depends on the state of the system at the time of
initialization of evaluation ... . Therefore the "algebra" of equivalences
of such expressions need not be as "beautiful" as the well-known mathemati-
cal examples. This does not mean that the semantics of such languages will
be less mathematical, only am order more complex'. We feel that this
attitude is a result of trying to mathematically desecribe existing languages.
By taking the prescriptive approach, and basing new languages on existing
mathematical languages, such as mathematical logic, more positive results
can be obtained, and equivalences of expressions can be "beautiful".

Our goal here is to follow Landin's lead in the second paper
mentioned above and develop an uncompromisingly logical language which
has "facilities" for functions and scope and has mon-trivial and useful
operational interpretations.

The language, Lucid, is in fact similar to ISWIM. Landin,
however, gave no direct semantics (ISWIM is a syntactic variant of a
subset of the A-calculus), and neither did he give an inference system
for the verification of ISWIM programs. (He did give a system, of sorts,
for transforming programs, but it is not very useful.) Of course, these
omissions are not Landin's fault, because at that time semantics and
program verification were in their infancy. With Lucid we £ill in the
gaps in Landin's treatment, and the fact that the semantics and trans-~
formation and inference rules turn out to be simple, natural and elegant
is a vindication of Landin's mathematical approach to language design.

In this paper we will not comsider Lucid's inference system.



1. ISWIM AND LUCID
ISWIM is based on the where clause which is an expression

qualified by auxiliary definitions. For example

2 + y2 where x=a+b

y=a-5b

end

is a typical where clause. Such a clause is a term, i.e., has a value;

in the above example, it is the same as that of the term (a+b)2 + (a-b)g.
These constructs can of course be nested, i.e., expressions occurring
anywhere in a where clause may contain where clauses. The variables
defined by the equations in the right arm of the where clause are the

locals: their definitions apply only to the left-hand side expression
of the clause. In addition, functions are defined with the formal

parameter list on the left hand side, e.g.,

fle, y) = o’ - p*q where p=ay+h

g =ax-b

end

The formal parameters may represent functions, so "higher-order" functions
can be defined. ISWIM also has a "whererec" clause in which circular
(recursive) definitions are allowed, (the definitions in the whererec clause

apply also to the right arm of the clause) .



One difference between Lucid and ISWIM is that the former is
based on a slightly different construct, namely the valof phrase. A valof
phrase consists of a set of definitions (like those in the right arm of
a where clause) called the body, enclosed by the 'brackets' valof
(i.e., "value of") and end . One of the variables defined in the body
must be vresult , whose purpose is to indicate the value of the phrase.
Functions are defined as in ISWIM, except that the formal parameters may
not represent functions; there are no definitions of "higher-order"
functions.

The following are legal wvalof phrases:

valof valof
rx=a+b; nglobal n,m ;
y=a-»b; p=1 fEX p m2 H
resu1t=zz+y2; q=n2-1;
end fle, d) = 1 + valof

pgiobal 4 ;
eglobal e,q;
p= o dz ;
result = pz + 2'prq asap>c;
end ; |
result = f(3, qJ 3

end



An important difference between valof phrases and where clauses
is that in the former recursiveness is assumed, i.e., the valof phrase
corresponds to the whererec clause of ISWIM. This eliminates one of the
most confusing features of ISWIM, namely the fact that the same variable
can refer to different things on the opposite sides of the same equation.
It would be possible to base Lucid on the whererec clauses of ISWIM, and in
fact in the latest versions of Lucid this is exactly what we do. Here
we will consider Lucid with valof phrases because that is the Lucid that
is handled by the 1981 Version of the Lucid interpreter [5].

All Lucid programs in this paper correspond to the 1981 Version.
of the interpreter. It was written by Calvin Ostrum at the University of
Waterloo (while he was an undergraduate student!). It runs on a VAX,
under Berkeley UNIX. Improvements have been made to the interpreter by
Tony Faustini at the University of Warwick, and the late 1982 Version
handles a slightly different language, with where clauses as well as

valof phrases. This paper does not consider the 1982 Version.



2. SYNTAX OF LUCID

We wish to achieve a clear separation between two aspects of
a programming language, the set of given or primitive things and the ways
of expressing things in terms of other things. We thus get a family of
languages, each of which is, in Landin's words, "a point chosen from
well-mapped space™. The coordinate of a point in this well-mapped space
is the set of chosen primitives. Since Lucid is based on expressions, to
specify the primitives we have to supply a domain of data objects, a
collection of operations on these objects, and a collection of symBols
used to denote the operations. In other words, a member of the Lucid
family is determined by an algebra A ; we will call the corresponding
language Tucid(A) . The syntax of Lucid(Ai is determined only by the
signature of A .

Suppose that we are given an algebra A with sigpature I .
That is, I 1is a coliection of constant symbols of various arities
("individual constants" being of arity 0). We follow the usual term-
inology of symbolic logic and refer to the elements of Z as 'constant
symbols'", even though it is only those of arity 0 -which are what
computer scientists usually refer to as "constants”. This is under-
standable when we realise that, for example, + , like 3, has the same
meaning in all contexts.

We also assume that we have available an unlimited number of
variables of various arities (these are what are usually called identifiers).

The set of variables is the same for all algebras A .



The nullary variables will also be called "individual variables".
Strictly speaking, the constant symbols and variables should be typed to
indicate the number of arguments expected, but in practice we will omit
these types. Non-nullary constant symbols will often be called operation
symbols, and non-nullary variables will often be called function variables.
A Lucid program is simply a termf,but to define the class of
terms we must also define the classes of definitions and phrases
simultaneously and inductively.
A tepm 1is either
(1) an n-ary constant symbol together with & sequence of n terms as
operands (n will be zero if the symbol is an individual constant};

(11) an n-ary variable together with a sequence of n terms as actual
parameters (n will be zero if the variable is an individual
variable);

or

(iii) a phrase.

A phrase consists of an unordered set of declarations and an
unordered set of definitions, no two of which have the same definiedum,
and exactly one of which has the individual variable result as its
definiendum,

A declaration consists of the word nglobal or eglobal

followed by a list of nullary variables.

* Actually, the 1981 Version of the interpreter considers pregrams to be
phrases without declarations. All globals of these phrases are im-

plicitly nglcbals



A definition consists of a definiens which is a term, and of
a term consisting of an n~ary variable { (the definiedum) together with
an ordered set of n distinct individual {nullary) variables (the formal
parameters). 4 is called a local variable of the phrase in which the
definition cccurs.

All variables which are not local variables of a phrase are called
global variables of the phrase. All the nullary globals must be declared*;
eglobal stands for "elementary global™ and nglobal stands for
"nonelementary global'.

This, of course, is an abstract syntax of Lucid (in the sense of
McCarthy [4]), analogous to Landin's abstract syntax of ISWIM. In our
examples, (like those already given) we will use a fairly obvious concrete
linear (or, more realistically, two dimensional) representatiocn in which
terms are written using infix notation, definitions are written as equa-
tions (with the definiens on the right), and each phrase is written as a
sequence of declarations followed by a seéuence of equations, enclosed by
the keywords valof and end :f We will not give a precise definition of
the concrete syntax. Such a definition would clearly not be particularly
complex, but it can not just take the form of a context—free grammar because
of the restriction that the formal parameters in a function definition be
distinct and the restriction that no variable have two definitions in the

same phrase.

The order of the declarations or definitions in a sequence will not be
important.

Actually, in the 1981 Version, non-nullary globals must be declared also,
as nglobals. Moreover, if a variable is "inherited" through two or more
levels of phrases, it must be declared in the same way in each phrase.
(See the example on page 24.)
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3.. SEMANTICS OF LUCID

Before proceeding to the semantics of Lucid it is necessary
first to define precisely the algebra Lu(A) , the class of elementary
history functions, the operation of freezing, and so omn.

Suppose then that we are given a continuous algebra A with
signature I . The set I 4is usually considered to be a set of ranked
operation (constant) symbols but we will assume (for simplicity) that
L contains two extra symbols, namely the sort symbol U for the uni-~
verse of A and the relation symbol C for approximation in A . This
assumption allows us to consider A to be simply a function with domain
L , one which assigns to U a nonempty set, which assigns to C a
partial order on A{(U) which makes <A(U) , A(E)> a cpo, and which
assigns to each n-ary operation symbol an A C —continuous operation over
A(U) . We also assume that I contains the nullary symbols true ,
false and Q , with A{Q) the A(c)-least element of A(U), usually denoted 1.

We require that I be 'normal' in that it does not contain
the special Lucid operation symbols, which for our next purposes we take
to be the unary symbols first and next and the binary symbols gég
and jgx . This allows us to define Lu(f) to be the result of adding
these symbols to I , and to define Lu{A) to be the function H with

domain Lu{(Z) such that:



(1)

(i1)

(iii)

(iv)

11.

H(U) 4is the set of all infinite sequences of elements of A(U) ,
i.e., the set of all functions from the set {0, 1, 2, ...} of
natural numbers to A(U) (elements of H(U) will be called
A-histories or simply histories);
H(C) is the pointwise extension of A(c) , i.e., given any
A-histories « and B, <a, B> € Hi) iff <oy s Bf € Ao
for all 1 ;
for any operation symbel k in £ , H(k) is the pointwise
extension of A(k) , i.e.,

(H(R) (a, B, ¥, --»))t = A(h)(at, St’ Yoo ves)
(a function over H{U) will be called an A-history function, or
simply a history functionm);
H(first), H(n§§£), H(EQX) and H(Qﬁi) are the unary history

functions first and next and the binary functionms fby and

asa where

(a) first{a) = <a0, L
)] next{a) = <al, Oy Qgy vee
(e) fby(, 8) = <u0, BO, 8 ces>

1,

ai, ++e.> where i 4is the least

(@) asa(a, B) = <ay, o

i’
number for which Si = A(true) and

Bj = A(false) for all j < i

<A@, A@), A®), ...> (= H({)) .
if no such i exists

for all histories o and B8 and all natural numbers t .
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We now proceed to give the semantics of Lucid. A Iucid environ-
ment is a function from the set of variables to the set of history
functions which assigns n-ary history functions to n-ary variables. Given
a Lucid environment £ and a time s and a set w of individual variables,
the frozen environment Ei is the unique Lucid environment such that
Ei(m)() =<Em){(), EMQO, ...> for any individual variable m in w ,
and E:(ﬁ) = E(4) for any other variable { .
We now define the meaning of a Lucid term £ in a Lucid environ~
ment £ , by induction on the structure of £ ;
(i) if £ consists of the Lu(E) operation symbol Fk together with
operands uo, Wy vuay un-l » then the meaning of £ in E is
the result of applying H(R) (i.e., Lu(A)(R)) to the meaning of
the - ty in E
(ii) if £ consists of a variable ¢ together with actual parameters
Ugs Uys «oes U g then the meaning of £ in E is the result
of applying E(g) to the meanings of the uy in E ;
(111} 4if £ 4is a phrase with eglobals w then the meaning of £ in
E is o . where at any time s , @, is the meaning of result()
in E; at time s where E; is the least enviromment which
satisfies the definitions in the phrase and agrees with Ei
except possibly for the values E; assigns to the locals of £ .

Finally, given a definition d of the form

g(xo, OEIEEEE X )= as



we say that d is satisfied by E 1iff the meaning of g(xo, Xis wvns xn_l)
in £ is equal to the meaning of a in £ for any environment £
agreeing with E except possible for some of the values assigned to the
formal parameters xo, xl, ey xn-l .

A Lucid program is simply a term, the free variables of which
are called the input variables. An input to a program is simply an
asgociation of input values with input variables, and the meaning (or
"output') of the program is its value in the appropriate eanvironment.

For example, suppese that A, B and ( are the input variables of

a program; then the meaning of the program given input o , B and ¥

is its meaning as a term in an enviromment in which E(A) =a , E(B) =8
and E(C) = vy .

The above is not strictly speaking a valid definition, because
an assumption is made which is not obviously true; namely, that a least
Lucid environment E; always exists. It is possible to give a more
indirect but obviously valid definition, and themn to prove that the above

is a true statement about the meaning so defined. We will not do this

here.
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We shall approach the intuitive meaning of Lucid by first con-
sidering two languages which are special cases of Lucid, ULU and LUSWIM.

ULU is a perfectly well-defined family of languages which has
an interesting operational interpretation: the iterations within phrases
are synchronized with the iterations in enclosing phrases, which results
in the language having the flavour of a data-flow language, with the defined
functions behaving like coroutines. Unfortunately, this synchronization
means that in ULU it is not possible to define subcomputations.

LUSWIM is, in many ways, a conventional Algol-like language but
the same variable means different things inside and outside a phrase, the
inner occurrence being "frozen'. As a result, phrases can be interpreted
as defining subcomputations which return a result.

Lucid is the result of combining ULU and LUSWIM , giving a
language which is a superset of both sublanguages and is generally better
than either of them individually. The features of the twec sublanguages
do interact, but constructively, not destructively. This is a direct
result of the fact that both sublanguages are mathematically defined.

We should point out again that Lucid is not a "higher-order"
language, that is, the defined functions can neither take functions as
arguments nor return functions as results. To remove this restriction
in Lucid woéld first require the investigation of the consequences of
relaxing the restrictions that the variable result and the formal
parameters of a function definition be individual wvariables. These
consequences may net be too dire, but some complications are almost bound

to result, so this extension of Lucid is not considered in this paper.
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4. THE LANGUAGE ULU(A)

Here is a sample program+ in ULU(Q) , where @ consists of

the rationals together with the usual arithmetic operations:

valof

I =1 fby I+1 ;
J = 31, H
result = valof

nglobal &

S = J‘fgx S+ next J
¥=1fby M1

result = 3/8F
end ;

end .

Since there are no global variables, the meaning of the outer
phrase is the value of result in the least environment El satisfying
the three definitions in the phrase. It is easy to see that El(I) is
the history <1, 2, 3, ...> and El(J) is the history <3, 6, 9, ...> .
The value of El(resu1t) is the value of the inner phrase in the environ-
ment E1 , Which is the value of result in the least enviromment E2 .
differing from El only in the values of the locals (S, ¥ and result )

of the inner phrase, which satisfies the definitions in the inner phrase.

t In this and subsequent papers, we use fby for followed by and asa
for QS sogn as
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Thus EZ(J) is <3, 6, 9, ...>, EZ(S) is <3, 9, 18, ...> , EZ(N)
is <1, 2, 3, ...> and Ez(resu1t) is <3, 4.5, 6, ...> . Thus the
meaning of the program is <3, 4.5, 6, 7.5, ...>

Notice that what the inner phrase is doing is maintaining a
running average of the values of J . We can use this inner phrase as

the body of function called Avg , as we do in the following example:

valof

nglobal J ;

Avg(X) = valof

nglobal X ;
8 =X iEX S+ next ¥
N =1 fby B+l
result = S/
end ;
M= Avg(S) asp I eq 10 ;
I =1 igx I+1
result = Avg((s-)%) asa T eq 10 ;

end .

Since this program has a free variable 5 , we can only talk
of the value of this program in an enviromment £ which gives a value
to S . Let us suppose that E{5) is some history G . In the inner
environment, Avg will be the "running average" function, so that

is the comstant history which is everywhere the average of the first
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ten values of E(S) , that is, the average of o, through © Since

0 9 °
the value of result will be the average of the first ten values of

(S—M)Z , we see that the value of the program in € will be the constant
sequence which is everywhere equal to the variance {the second moment about
the mean) of the first tenm values of § in E .

Probably the best way of viewing the previous program in an oper-—
ational way is to consider Avg as a coroutine, with two invokations,
Avg(8) and Aug((S-M?z) . These invokations are considered as running
from time 0 , but only the value of Avg(S) at time 9 and the value of
Avg((S—M)z) at time 9 are "used". The coroutine activations have to be
considered as running from time 0 so that they can keep running sums of
S and (S—M)2 until they are needed at time 9 .

Suppose we wished to generalise this program to compute arbitrary
higher moments about the mean. We would need a function PFow where
Pow(X, N) gives us the running W~N-th powers of the values of X . We

might try to define this as follows:
Pow(X, N} = valof

nglobal X,¥ ;

I=0fby +1
P=1fby XP ;

result = P asa T eq ¥ ;

end .
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Now, Pow{(5, 2) dis <25, 25, 25, ...> and Pow(6, 3) is <216, 216, 216, >

but if, say, the value of 4 is <1, 2, 3, ...> then the value of
Pow(4, 2) is <2, 2, 2, ...> ! Moreover, the value of Pow(5, 4) 1is
<5, 5, 5, ...> and the value of Pow(5, 4+1) 1is <L, 1, L, ...> ; if
the second argument N 1is changing with time, the variable I in the
definition of Pow is chasing a moving target!

Similariy, if we tried to generalise the variance program to
give the variance of the first N wvalues of the history X , we would
get rubbish if & wvaries with time.

The reason for zll this is that in ULU globals have the same
meaning inside a phrase as outside and so phrases are synchronised with their
environments. We can have no subcomputations in ULU (but we can have
one computation following another, as in the variance example). We have
nesting of scope but we can not have nesting of computations, i.e., there

are no subloops.



19.

5. THE LANGUAGE LUSWIM(A)

The reason that the definition of Pow is considered to be
wrong is that we expect it to work pointwise., If A had an explicit
exponentiation operator, say + , then, according to LufA) , if «
and B are histories otB would be <a0¢80, alﬁBl, ...> . This is
exactly how we would expect Pow to work, but in ULU it clearly
doesn't,

The root of the problem is that phrases are not defined
pointwise. The value at time t of a phrase, in which G appears as
a global, depends on the value of (¢ not just at time t but at other
times as well. For example, at any time t , the phrase computing the

average of the first t+l wvalues of x depends on = xl I

0 ’

as well as z, - This is exactly what we wanted in the "average'

t-1

example, but it is disastrous in examples like the one to compute the
N~th power of x .

What is required is some way of ensuring that the value of a
phrase, in enviromnment E , at time t depends only on the values of
the globals at time t . We can ensure this by freezing E at time t:
given a sequence o and a2 time t , we define at to be the sequence
<at N at s ut » «-+> 3 then the value the frozen environment Et assigns
to nullary variable & 1is E(G)t . The value of the phrase at time t
is then the value at time t of result in the least environment,

differing from Et only in the values of the locals, which satisfies

all the definitions in the phrase.
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LUSWIM(A) 4is the language obtained by using this pointwise
interpretation of phrases.

Here is an example of a simple LUSWIM program:

valof
I=1fbyrT;
5=11fby 5+ pext M ;
M = valof
eglobal I ;
K=1 iﬂ! K1
P =1 fby I:P ;
result = P asa K eqg I ;
end ;
result = S asp T eq 6 ;
end .

This program has no global variables, so the difference between ULU

and LUSWIM is not apparent until we consider the inner phrase, which
has global variable I , which is indicated as an "eglobal", meaning it

is frozen, as described above. In the (single) environment E inside

the outer phrase, the value of I clearly is <1, 2, 3, ...>. The
value of M in E 1s determined separately at each time step. EGM)O

is the value of result at time 0 in E' where E' 1is the environment
obtained by freezing E at time 0 and then choosing values for

K, P and result which satisfy the definitions in the inner phrase.



21.

Clearly E'(P) is <1, 1, 1, ...> and E'(result) is <1, 1, I, ...> .
E(M)l is the value of resulit at time 1 in E" where E" is the
environment obtained by freezing E at time 1 and then chcosing values
for the locals. So E"(P) is <2, 4, 8, ...> and E'{(result) is

<4, 4, &4, ...> . Continuing this process, we see that E(M) is

<1l s 22 , 33 y ++-> + The value of the program at any time will be

i L S AT T A L

In LUSWIM then, a single outer enviromment, like E in the
example, does not determine a single inner environment, but rather a
sequence of enviromnments, like E' , E" etc. , ome for each outer time
step.

Although the mathematical semantics of LUSWIM is more compli-~
cated than that of ULU , simpler and more conventional operational
interpretations are possible. Function evaluation as well as evaluation
of phrases can be thought of as subcomputations which take place while
the enclosing computation is suspended. TFunctions without global variables
can be thought of like data functions, while functions with global

variables are like Algol function procedures whose globals have different

values at different times.
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It is apparent that these are two very different ways of adding
iteration to Lucid, both potentially useful, and both having natural if
radically differing operational semantics. It seems very unlikely that
one is the right interpretation and the other the wrong one; in fact it
is easy to iImagine programs which (operaticnally speaking) use both
coroutines and nested computation. An example would be a coroutine which
computes a running HN-th moment (average of N-th powers) but uses an
inner, nested loop which computes the #N-th power in a subcomputation.

Clearly the two 'facilities' should be combined in the same
language, but it is not immediately obvious how to do this. The two
languages are superficially very different in the way they give a meaning
to a phrase. In ULU the entire value of the phrase is determined all
at once in terms of the entire values of the globals, whereas in LUSWIM
it is put together instant by instant in terms of the instantaneous values
of the globals. The difference, however, is not as great as it seems, once
it is realized that the ULU semantics can also be given in a pointwise
manner: the value of a ULU phrase in an enviromment E at time t is
the value of result at time t in the least environment satisfying the
definitions in the phrase and differing from E at most in the values
assigned to the locals. This definition, of course, makes it clear that
the difference between ULU and LUSWIM is that, on each time step,
LUSWIM freezes the values of the globals before determining the inner

environment. In ULU , the inner environments corresponding to different



23.

times are all the same. To combine the two semantics of phrases we can
simply allow both sorts of globals, ngiobals and eglobals, one of which
(the eglobals) consists of variables which are subject to freezing in-
side phrases., In this way it should be possible to mix up elementary
and nonelementary variables in definitions almost at will.

The language which results from combining LUSWIM(A) and ULU(A)

in this way is the language Lucid(A) .

The set of LUSWIM programs is syntatically a subset of the set
of Lucid programs. The semantics of LUSWIM is determined by specifying
that this inclusion hold semantically as well, in other words, the
meaning of a LUSWIM program is its meaning considered as é Lucid program.
it is apparent that this definition of LUSWIM conforms with the informal
one given earlier because in a LUSWIM program all the globals of a phrase,
being elementary, are frozen inside the phrase. Similarly, the meaning of
a ULU program is its meaning considered as a Lucid program; since all the

globals of a ULU phrase are nonelementary, none will be frozen.
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6. OPERATIONAL INTERPRETATIONS OF LUCID

We will illustrate possible operational views of Lucid by
locking at several examples of Lucid programs.

The first example combines the two forms of iteration. The
phrase has one nonelementary 'inmput' (free) variable X and the

program's value at time t dis the 10th moment of the first &+l

values:
valof
nglobal X ;
S =P fby S+ next P ;
X¥ =X
P = valof
eglobal xx ;
Y=1fby 7xX;
I=0fhyI+1;
result = ¥ asa 7 eq 10 ;
end ;
J=1fby s+ 1
result = 5/7 '
end .

The declaration eglobal XX allows the inner phrase to freeze
each particular value of X in order tec compute the 10-th power of
that particular value. XX 1is necessary because we camnnot say eglobal ¥
in the inner phrase, Using XX as nglobal instead of eglobal
ingide the inner phrase would give a completely different result. iIn

general the value of the altered phrase



25.

vaiof
nglobal XX ;
Y =1 fby ¥+XX ;
I=0fbyIr+1;
result = ¥ asa T eq 10
end

at any time is the value of the product of the first 10 values of XX :
If this phrase were used in the previous program, the program's value
would also be, at any time, the product of thé first 10 values of X .
In writing the above program we could, if we wanted, define a
function Pow and just 'call' it to give the 10-th power of X . This

program

valof
nglobal ¥ ;
S=Pfby S+ next P ;
P = Pow(X, 10) ;
N=1fbyN+1;
result = 5/W ;
Pow(B,K) = valof
eglobal B,X ;
¥ =1 fby B.Y
I=1fyI+1;
result = ¥ asa. I eq K ;
end ;
end

has the same wvalue.



The examples just given used both kinds of iteratiom, but

separately: the outer phrase had only a nonelementary variable as

its global and could be though of as a ULU phrase, while the inner

one had only an elementary variable as its global and could therefore

be thought of as an ordinary LUSWIM phrase. Here is an example

where the features are combined in one (the inner) phrase. The pro-

gram computes the running variance of its input variable X , i.e.,

its value at time ¢t

valof

end .
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is the variance of the first t+l1 wvalues of X :

nglobai ¥ ;

Avg (V) = valof

nglobal V;
§=V by s+aextv,
I=1fbyr+1;

result = $/T ;

end ;
M= Avg(X) ;
result = valof
nglobal x ;
eglobal M ;

result = dvg((X - ) H

end ;
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The outermost phrase is a pure ULU phrase because its oanly
global is nonelementary, and the same is true of the phrase defining
the function Avg (whose value is the running average of its argument).
The second inner phrase, however, is quite different: one of its globals
is the elementary variable M , but the other is the nonelementary
variable X . The result is that the value of X inside this phrase
is always its frozen outer value, whereas that of X depends on the
inner time.

The value of this 'mixed' phrase at time 2, for example,
depends on the value of M at time 2 only, but on the values of X at
times 0, 1, and 2 . If the value of X begins <6, 8, 10, ...> then
the value of M begins <6, 7, 8, ...> and the value of the phrase at
time 2 is ((6 - 8)2 + (8 - 8)2 + (10 - 8)2)/3 which is 8/3 , as required.
A mixed phrase is used because this (admittedly naive) algorithm implements
directly the definition of variance which requires that the present
average be subtracted from all previous values.

There are two conceptually different ways of giving an operational
interpretation to 'mixed' phrases with both elementary and nonelementary
globals. One way is to consider such a phrase as 'basically' an ordinary
LUSWIM phrase which has additional special (nonelementary) variables which
can be thought of as being 'restarted' at the beginning of every subcomputa-
tion. The phrase just discussed can be understood in this way, as can the

phrase defining <eprime din the program
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valof
P = ﬁgx nxprime (P)
nxprime () = valof
eglobal @ ;
N=g+1 IEZ N+ 1
result = ¥ asa <sprime(N};
~end ;
isprime (M) = valof
nglobal P ;
eglobal ¥ ;
resu1t=P22M,@§gP22MorMmod Peg 0
end ;
result = P
end

whose value is the sequence <2, 3, 5, ...> of all primes. The function
igprime can be thought of as testing its argument for primeness using a
simple loop which runs through all the primes starting with the first and
checks whether one whose square is less than ¥ actually divides ¥ .
The other way of viewing a mixed phrase 1s to consider it as a
parameterised set of ULU phrases, with each "freezing" of the global
elementary variables yielding a ULU phrase. For example the following

program
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valof
eglobal ¥ ;
nglobal X ;
S =P igx S+ next P
P=X4+0N;
I=1 igl I+1;
result = $/T ;
end

has as its . value at time t the N-at-time-t-th moment of the values of
X up to time t (assuming the data function + is expomentiation).

The variable &N is the parameter, and each numeric value of ¥ yields
an ordinary ULU phrase. In an environment in which #N is constantly

2, the phrase is equivalent to the ordinary ULU phrase

valof
nglobal x ;
8 =P fby 5+ next P ;s
P=Xx+42;
I=1fpyI+1;
result = 5/I ;
end .

In an environment in which N 1is constantly 3, it is equivalent to an
ordinary ULU phrase which computes the third moment. In an environment

in which the value of ¥ changes irregularly with time between 2 and 3,
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the phrase can be considered as sampling the appropriate outputs of two
different simultaneously running 'coroutines' computing running 2nd and
3rd moments respectively.

The same interpretations can be applied to functions , the
definitions of which use both elementary and nonelementary globals in

phrases. For example, given the definition

Mom2(X, M) = valof
nglobal X ;

egiobal ¥ ;

§ =1 fby S+ next T s
T = (x - #?
I=1fbyI+1;
result = S/T ;
end ;

the value of Mom2(A, N} (in an appropriate enviromment) at time t
is the 2nd moment of the first t+1 values of A about the value of
N at time t . This function can be understood as an ordinary
Algol-like function except that its special first argument is restarted
every time the function is called.

1t is, of course, possible to use two different viewpoints of
the same object. We could, for example, alsoc regard MomZ as an

ordinary ULU function with a parameter M , so that

Mom2(4, 0)
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is the running second moment, and

Mom2 (A, Avg(al})

is the running variance. (Mom2(4, Avg(A)) can be viewed as a possibly
infinite set of simultaneously running coroutines, one for each different
value of the running average of 4 . The value of Mom2(4, Avg(A)) at
time t is the value, at time t , of the coroutine corresponding to

the running average of 4 at time t .)
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7.  CONCLUSION

The operational interpretations may be of help in visualising
the "running" of Lucid programs, but an actual implementation may work
completely differently. In fact the Lucid interpreter works im a
"demand driven" manner. The interpreting algorithm handles all Lucid
programs but is quite involved. We feel that it is useful, when writing
Lucid programs, to have simple and intuitive operational ideas, even if
each such cperational view is limited to describing a particular subset

of Lucid programs.
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