EPARTMENT
EPARTMENT

EPARTMENT

TE
E

bl
PU
PU

M
M

Q00
0000

Dynamical Sets of Points

Thomas Ottmann
Derick Wood

Data Structuring Group
CS-82-56

November, 1982




Dynamical Sets of Pointst

Thomas Ottmann

Institut fiir angewandte Informatik und Formale Beschreibungsverfahren
Universitit Karlsruhe
Postfach 6380
D-7500 Karlsruhe
West Germany

Derick Wood

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2, 3Gl

ABSTRACT

This paper initiates the combinatorial investigation of sets of
moving points, that is dynamical sets of points. In this, the first
step, we assume the points are instantiated at the same instant of
time each with some constant speed. We observe how dynamical
point sets give rise to half-lines or rays in a onedimensional higher
space time model. This in turns leads to efficient solutions for
many problems concerning 1-dimensional dynamical sets, occurring
naterally in our framework, using computational geometry tech-
niques. However, this initial investigation raises more questions
than it answers, for example is there an algorithm which determines
for a 2-dimensional dynamical set all possible point coincidences in
time better than O{n%}?

1. INTRODUCTION

By watching the traces of airplanes on radar screens air controllers pursue
their task of routing them safely. As a first approximation to this task we con-
sider the following abstract problem:

Given a collection of n points in the plane, each moving at constant speed
and direction, detect any, all, the first, ete. collisions of any two points.

We will speak of a dynamical set of points in 2-space. Here, dynamical
means that the relative positions of objects changes over time. This is in contrast

t This work was carried out under NATO grant No. RG 155,81 and Natural Sciences and Engineer-
ing Research Council of Canada Grant No. A-7700.



2 Ottmann and Wood

to the traditional notion of a dynamic set of objects which means that objects
may appear or disappear but their positions are fixed over time. There is, of
course, an obvious method of detecting all collisions for a given dynamical set of

n points in the plane. Check each of the (;) pairs of points for all possible

collisions. A fundamental question is whether or not this approach is optimal.
We are, unfortunately, unable to answer this basic question. Instead we discuss
the one-dimensional analogue of the problem and show how techniques known
from the blossoming area of computational geometry may he applied to obtain
solutions in the one-dimensional case which are better than the naive ones.

In the next section we pose a number of questions for dynamical sets of
points in l-space. In Section 3 related computational geometry problems are
discussed which then lead in Section 4 to solutions of the problems posed in
Section 2. Finally, in Section 5 we discuss our results and pose some of the many
remaining open problems,



Dynamical Sets 3

2. THE PROBLEMS

Assume that we are given a set of n objects moving either left or right at
different constant speeds in 1-space. There are a number of natural questions
which may be posed in this setting. For simplicity we assume that the objects
are points moving on the z-axis; for every point p; its starting z-value z;,
that is its distance from the origin at time 0, and its speed are known. We are
interested in the following problems,

Collision or Coincldence Problems

Assume that the collision of two points has no eflect on their speeds and
directions.
(c1) Determine all pairs of points which collide at some time in the future,

(¢2) For a given time { , determine all pairs of points which collide at time ¢ .

Anihilation Problems
Assume two colliding points anihilate each other:
(al) Determine the order of anihilation.

(a2) Determine the anihilation free objects which are left after all anihilations or
after all anihilations up to a given time ¢ .

The Problems (al) and (a2) are only two examples of basic questions which
may be posed under the anihilation assumption. Furthermore, instead of the
assumption that two calling points anihilate each other, further variants of
problems may be posed which are based on different assumptions about what
happens with two colliding points. One might recall elastic and inelastic pulses
in mechanics as examples. Thus, the next group of problems (order problems),
may be split into a variety of related problems obtained by imposing different
assumptions about what happens whenever two points collide. We will restrict
ourselves to the case that the collision of two points has no effect on their speeds
and directions.

Order Problems

{O1) For given time ¢ , determine the sorted order of points at time ¢ .

(02) For given time ¢ and object z : what is the rank of z at time ¢ ?

(O3) For given rank and time ¢ : what is the element with that rank at time
t?

(O4) For given time ¢ : what is the leftmost andfor rightmost object at time
67

Each of the above problems has a natural translation into a problem in 2-
space (space-time}:



4 Ottmann and Wood

Each point p; has a starting position z; and a space-time orientation
6; , 0< 4; <180°, which is uniquely determined by its speed v, , that is 4,
is the slope of the trace of point p; starting from z; with speed v; , cf. Figure
1.

time

Figure 1

In the space-time model the above problems concerning moving points on a
line become problems concerning half lines (or rays) in the plane:

Two half lines L, and L, intersect if and only if their corresponding
points p; and p; collide. Similarly, the anihilation problems lead to the
problems of determining the ‘‘earliest’” intersection points of two half lines.
Finally, the sorted order of the intersection points of the half lines with a
horizontal line at ¢ = {, gives the sorted order of the n points at time ¢, .

In the next section we will discuss these problems concerning half lines in
the plane in a slightly more general setting.



Dynamical Sets 5

3. HALF LINES IN TWO-SPACE

Two lines in the plane (considered as infinite in two directions) intersect if
and only if they are not parallel, i.e. if and only if their slopes are different.
Thus, in order to determine all pairs of intersecting lines in a given set of =n
lines in 2-space it suffices to sort them by their slope. This is an O{nlogn)
task. It yields the equivalence classes of parallel lines in the given set and, thus,
all non-intersecting pairs of n given lines in the plane in time O(nlogn) .

On the other hand, all k intersecting pairs of n given line segments in
the plane can be computed in time O{(n+ k)logn) and space O{n), cf. [BO|
and [Br]. It is still an open problem whether or not the time bound is tight, or
whether it may be improved to, say, O{nlogn + k) as is the case when all line
segments are either vertical or horizontal. (This time bound is in fact optimal in
this case.)

The Half-Line Intersection Problem is to determine all pairwise intersections
of n given half lines. Intuitively one might expect the complexity of this
problem to be somewhere in between the complexity of the intersection problem
for lines (which is easy) and the intersection problem for line segments (for which
the available solution is not known to be optimal). We feel, however, that the
Half-Line Intersection Problem is closer to the intersection problem for line
segments,

Assume that n half lines in the plane are given by their respective starting
points in the plane and by their slopes with respect to the positive z-axis. Let
us first consider the special case resulting from the problems of Section 2 where
all n starting points are an one line, and where all half lines are infinite in only
one half plane. We may assume without loss of generality that all half lines start
on the positive z-axis and are directed into the upper half plane as in Figure 1.

Let A and B be two such half lires and let the starting point of B be to
the right of the starting point of A. Then, A and B intersect if and only if B is
steeper than A. Hence, the problem of determining all intersecting pairs of n
half lines (as in Figure 1) can be solved as follows: Represent each half line by a
point (z,0) in 2-space where z is the starting point on the =z-axis and
0 <6 < 180° is the slope of the half line. Reporting all intersecting pairs of
half lines now reduces to the

All-Polnts Dominance Problem:

For each point A = (z,0) report all points B = (z', ') dominated by
A,thatis z! <z and 0/ < 4.

An inspection of Bentley's divide and conquer algorithm [B] for solving the
All-Point ECDF Problem shows that it can easily be modified such that it yields
the answer to the All-Points Dominance Problem in time O(nlogn + k) where
k is the size of the answer. Hence, determining all & pairs of intersecting half
lines of a given set of n half lines in the plane is also an O(nlogn + k) task if
the given lines are as in Figure 1. This is certainly optimal. Unfortunately, we
are unable to solve the (unrestricted) Half-Line Intersection Problem with the



6 Ottmann and Wood

same time bound. We are only able to reduce the Half-Line Intersection Problem
to the above special case and the problem of reporting all intersecting pairs of n
given line segments in the plane. Let us briefly explain the reduction: Let n
half lines with arbitrary starting points in the plane and arbitrary slopes be given.
Let z and z,, be the smallest and largest z-value, respectively, of a starting
point of a half line facing to the right, that is with slope -90° < § < +90° ,
(respectively facing to the left, that is with slope 90° < § < 270° }. Figure 2
shows an example:

Figure 2

All intersections which occur to the left of the vertical line =z = z.;,
(respectively to the right of z == z,; ) can be determined as in the special case
discussed above where all starting points are on one line. Thus, it remains to
report all intersections in the region z;, € z < Ty, . Using the algorithm for
line segments in the plane, the latter task can be solved in time
O{(n + k)logn) where k is the number of intersections found in the region
Tpin S8 S Ty -

This argument shows that the Half-Line Intersection Problem is at most as
difficult to solve as the line segment intersection problem but no more efficient
solution is known to us.

Next we discuss the anihilation problem in terms of half lines, again in a
slightly more general setting: Given a set H of n half lines with starting points
on the z-axis or in the upper half plane with slopes in the range
0 < ¢ < 180° . The sequence § of anihilation points for H and the set ; of
half lines left over after all anihilations have occurred are defired by the
following algorithm: Initially, H, is the given set H of n half lines and the
sequence S of anihilation points is empty.



Dyanamical Sets 7

begin
Determine the intersection point p of two half lines, L and L' with
minimal distance from the z-axis, let p be the next element of §;
replace Ho by H\{L,L'}

end;

An example is depicted in Figure 3:

Figure 3

The sequence of anihilation points is:
S = L,NLs LsNLy, LiNL,
The set left over after all anihilations is:
Hy, = {LT,Ls}

We will now show how to use the sweep line paradigm to compute the sequence
S of anihilation points and the set H, left over after all anihilations {cf. [BO] and
[SH}). A horizontal line is swept bottom to top through the set of starting points
of half lines and the anihilation points in sorted order according to their distance
from the z-axis. Let L be the set of all half lines which are cut by the sweep
line and have not yet been anihilated. As in [SH) and [BO] the sweep line
imposes a total order on L, hence we can refer to adjacent half lines with respect
to this order.

Initially L contains exactly the half lines starting from the z-axis. For
any two adjacent half lines L; and L; in L we compute their intersection



8 Ottmann and Wood

LinLy; . I LinLjs¢, that is if L; and L; intersect, their
intersection point L; N L; is entered into a priority queue @ according to its
y-distance from the z-axis. @ contains at most n elements and may be
organized such that the operations cztraction and insert both can be carried out
in time O(logn).

Starting with the above specified initial values of L and @ we repeat the
following steps until all starting points of half lines have been considered and @
has become empty: The next halting position of the sweep line is

(a) either the next starting point of a half line
or
(b) the first element of Q ,

depending on which is nearer to the z-axis.

In case (a) simply insert the respective half line into the structure L,
compute the intersection with the elements in L which become immediate
neighbors of the newly inserted half line and insert the intersection points into ¢).

In case (b) report the first element of @, say p = L; N L; , as the next
anihilation point (in the sequence S); remove L; and L; from L and delete
also all those intersections from @ which involve L; or L;. (Assuming that
each half line in L refers to the at most two intersections with immediate
neighbors stored in @ these deletions can be carried out in time O(logn) also.)
Finally, the half-lines which became adjacent in I after the removal of L; and

L; are checked for intersection and any intersection points are inserted into Q.

For the example depicted in Figure 3 we show the values of L and @ at all
halting positions yq,y;, * *+ of the sweep line. The elements of @ are listed in
sorted order according to their distance from the z-axis.

i
o

Ly Ly LgLs Ly
L,NnL,

Yo
L
@

f

¥y = y-value of (LoN Ly):

report L,N L, as first anihilation point
L =1LgL;sL,;

Q=29

¥, = starting y-value of L,:
L o= [,LgLsL,
Q@ =LiNLy

yp = starting y-value of Lg:
L =L, LgLsLg Ly
Q = LsMLg L NLg



Dynamical Sets

Y4 == starting y-value of L
L =LyLyLsLs Lol
Q=L;NLe, L iNL,LiNLg

y5 = y—value of (LsNLg)

report LsNLg as second anihilation point
L = Ll,L.‘,Lg,Ly

Q@=LyNLyLiNLg

ys = y-value of (L NLy)

report L N L, as third anihilation point
L=Lg L,

Q=29

I now contains the half lines left over after all anihilations.

The correctness of the above algorithm immediately follows from the
observation: At any time, that is at any halting position of the sweep line, the
intersection with minimal y-distance from the sweep line between any two half
lines currently cut by the sweep line must occur between two half lines which are
adjacent in L . Because all intersections between half lines which are adjacent
in L have been computed and are stored in @ , the intersection with minimal
y-distance from the sweep line appears as the first element in @ .

Furthermore, from the remarks for implementing the above algorithm
(which we gave already) it should be clear that it can be carried out in time

O(nlogn) and space O(n).



10 Ottmann and Wood

4. MOVING POINTS ON A LINE

In this section we discuss solutions of the problems posed in Section 2 by
using the results of Section 3.

The collision problem {c¢1) clearly ean be solved in time Ofnlogn + k)
where & is the size of the answer because it can be reduced fo the All-Points
Dominance Problem.

Problem (c2) has a trivial solution: In order to determine all pairs of points
which collide at time ¢ calculate the positions p{" of points p; at time ¢ for
i=1,..,n. By sorting p,-('],...,p,f” we obtain the desired answer in time
O(nlogn + k). However, a natural question arises for problem (c2); Assuming
that there will be r queries of this kind, can the answers be found in less than

r
O(r-nlogn + Y, k) time? The following improvement is obvious: First,
i=1
compute all k collisions by the algorithm for solving problem (e1) (this takes
O(nlogn+ k) time and Ofn) space). Second, sort the k collision points by
time, requiring O(klogn) time and O(k) space. After this preprocessing, r
r
queries of the kind (c2) can be answered in time O{ r ‘logn + Y, ki ).
i=1

Next we discuss the Anihilation Problems. In the time-space model these
problems reduce to the problem of computing the anihilation sequence § and the
set Hy left over after all anihilations for a given set of n half lines in the plane.
As we have seen in Section 3 this takes time O(nlogr) and space Ofn}).
Hence, the same time and space bounds hold for the anihilation problems (al)
and (a2). This is even true, if we assume that not all points {moving on 3 line)
are already present at time O but some may arise at later times - however with
a known starting position and known speed. If we want to compute the
anihilation-free objects up to a given time ¢ , it is sufficient just to stop the line
sweep at that time in order to obtain the desired answer.

It is obvious that the order of anihilation cannot be computed in less than
O(nlogn) time and O{n) space; thus, the solution for problem (al) is optimal.
The same does not hold for problem (a2). It might be possible to compute the set
of anihilation-free objects in less than O(nlogn) time, for we have only the
trivial lower bound Of{n) for this problem.

In order to solve the Order Problems it is clearly sufficient to determine the
relative ordering of the n given points at a given time ¢ and then to raise the
queries involved in problems {O1}-(04) with respect to that ordering.

This leads to a variety of solutions depending on how many relative
orderings have been precomputed. Let us discuss a few cases in more detail:
First we may not precompute any relative ordering at all and proceed as follows:
Store the initial ordering, precompute the & = O(n?) order changes, sort and
store them according to increasing time: The first task takes time
Of{nlogn + k), the second O(klogn), and the necessary amount of storage is
O(n + k) . We may assume that we have direct access to every point via its
name to every element in the ordering via its rank;



Dynamical Sets 11

Rank:

Relative
Position:
of Point

Name
of
Point

If we now want to solve one of the order problems for a given time ¢ we
start with the initial ordering and carry out all interchanges up to and including
time ¢ . Observe that each single interchange operation takes constant time
because we assume we have direct access to each point via its name. Thus,
performing the interchange operations up to and including time ¢ takes time
O(k) where k, < k= O(n? is the number of interchange operations between
time O and time f . It yields the relative ordering of the n points at time ¢
in a structure as described above. It should be clear that each of the questions
(02), (03), and (O4) can now be answered in constant time,

Let us summarize: Using preprocessing time Of{(n + k)logn} we have
built a structure which allows us to solve all order problems in time O(k) at
worst. On the other hand we may precompute the relative ordering of the n
given points after each interchange, thus, building & = O{n? structures as
described above, and store them according to increasing time. This will consume
space O(kn). However, in order to solve an Order Problem for a given time ¢
it is sufficient to determine the structure reflecting the relative ordering valid at
time ¢ . This can always be done in time O{logk) = Of{logn).

Clearly, there is a great variety of other possibilities available for solving
the Order Problems in between these two extremes of either precomputing no
relative ordering or precomputing all different relative orderings between time
t =0 and time ¢ ==o00: We may precompute each r-th different relative
ordering, where r is in the range 0<r <k, and additionally store for each
precomputed ordering the at most k/r interchanges of points occurring up to
the next precomputed otdering. In order to obtain the ordering at a given time
t we determine the precomputed ordering for the largest time ¢, preceeding ¢
and update that ordering by carrying out all interchanges between time ¢; and

¢t . This leads to a solution for the Order Problems using space 0(%-11 + k)

and time 0(log%+ r). As an example let r ==logyn, then the Order

Problems require time O(logn) and space Of ). We have not

log n
differentiated the treatment of the different Otder Problems, since the above
techniques directly carry over to the case where we assume that any two colliding

points anihilate each other.



12 Ottmann and Wood

Under the non-anihilation assumption, much simpler solutions may be
obtained as well: In order to solve problem {04), for example, we can compute
for any given time ¢ the positions of all points at time ¢ and then determine
the point with minimum {respectively maximum) z-value. This yields a solution
to problem (04) in time and space Ofn) .



Dynamical Sets 13

6. DISCUSSION

We have raised more questions than we were able to answer. In particular
we do not know whether or not the technique of treating the one-dimensional
case (namely to translate problems for dynamical sets of points in 1-space into
computational geometry problems in 2-space) ultimately will lead to solutions of
the basic problems for dynamical sets of points in 2-space which are better than
the naive ones. :

As a byproduct we have obtained a natural motivation for problems
concerning half lines in the plane which have not beea considered before and
which are of interest in their own right. Unfortunately, the most important
question has been left open: Is it possible to detect all £ intersections of a given
set of half lines in the plane faster than in time O((n + k)logn)? The reader is
invited to solve this simple stated problem. ,



14 Ottmann and Wood

6. REFERENCES

[B] Bentley, J.L.: Multidimensional Divide-and-Conquer. Communications of
the ACM 23 (1980), 214-229.

[BO] Bentley, J.L. and Ottmann, Th.: Algorithms for Reporting and Counting
Gieometric Intersections. IEEE Transactions on Computers C-28 (1979},
643-647.

[Br] Browa, K.Q. Comments on “Algorithms for Reporting and Counting
Geometric Intersections”. IEEE Transactions on Computers C-30 (1981),
147-148.

|SH} Shamos, M., and Hoey, D.J.: Geometric Intersection Problems.
Proceedings of the 17th Annual IEEE Conference on Foundations of
Computer Science (1976), 208-215.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

