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ABSTRACT

We develop a unified model, called UNISPEX, which combines
the features of both state transition formalisms and programming
language models for protocol specification. A preliminary version of
UNISPEX is presented in this report. Its main features are illus-
trated in a specification example of a simple transport protocol and
its verification capabilities are discussed, indicating the suitability
of the model to be used in an integrated system for protocol design,

validation, verification, and automatic implementation.
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I. INTRODUCTION

Much of the past research on formal techniques for protocol specification has
focussed on either the state tramsition model [Bochmann78a, Merlin79a,
West78a, Zafiropulo80a] or the programming language formalisms [Stenning76a,
Brand78a, Hailpern80a, Schwabe8la]. Both approaches have been successfully
used to model and verify different aspects of protocols. The state transition
method has proven suitable for handling the control aspects of a protocol (such
as call setup), while the programming language approach is found to be tractable
for dealing with the semantic aspects of a protocol (such as window mechanism).
Recently, much attention has been drawn to the development of unified formal
description techniques (FDTs) which combine the advantages of both systems.
Most of these formal description techniques are, however, oriented toward imple-
mentation [Bochmann8ia, Blummer8ia, Pokraka82a] and they often provide no

features for protocol verification.

In this report, we propose a unified model, called UNISPEX (UNified
SPEcification model), which support both protocol verification {including valida-
tion) and implementation. Our model is based on SPEX developed at UCLA
[Schwabe8la] and on models described by Blummer and Tenney [Blummer81a]
and by Bochmann [Bochmanna, Bochmann82a, Bochmann82bl. © However,
SPEX does not have an explicit state transition component, and so it does not
lend itself naturally to protocol validation. Blummer's and Bochmann’s models,
on the other hand, contain an explicit state transition component, but their
designs are directed toward automatic implementation of protocols, thus lacking

support for verification. Our model combines both kinds of models and so, it
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provides emphasis on verification without sacrificing the essential features for
automatic implementation. It is basically an extended finite state model, where
each transition corresponds to a program segment with many features similar to
SPEX such as interface and chennel variables of abstract data type, which
directly supports verification. In addition, the model also contains the
specification of service primitives and mapping events which provides an abstract
interface description necessary to characterize the local properties of a communi-

cation service provided by a protocol layer. SPEX does not have these features.

It is worthwhile to note that since the unified model contains an explicit
state transition component, previous work on protocol validation via reachability

analysis can be directly applied to validating protocols specified in this model.

Before discussing the UNISPEX model and its verification capabilities, it is
essential to establish some common terminology on protocol specification. We
present the model which was first introduced by Zimmermann and adopted for

the Open System Interconnection [Zimmermann78a, Zimmermann80a].

According to this model, the communication architecture of a distributed
system is structured as a hierarchy of different protocol layers, each one built
upon its predecessor. The procedure of each layer is to provide certain services
to the higher layers, shielding them from the details of how services are actually
implemented. Thus, the specification of each protocol layer consists of service
specifications, as viewed by its users and an internal protocol specification, as

regarded by its designers.

Users view a protocol as a ”black box” or machine, which provides a partic-
ular set of services in response to users’ commands presented via the user-
protocol interfaces (or service primitives), as illustrated in Figure 1. Examples of
some basic interfaces (or service primitives} for a transport service are Connect,
Disconnect, Send, and Receive. Naturally , the service primitives should not be
executed in an arbitrary order and with arbitrary parameter values. The inter-
face specification must reflect these constraints by defining the allowed sequences
of operations directly, or by making use of a "state” of the service whick may be
changed as a result of some operations. For example, Send and Receive may only

be executed after a successful Connect.
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The interface specification and the specification of the global properties of a
protocol constitute the service specification. An example of a global property of
a transport service is that the messages Received form an initial subsequence of
the messages Sent, i.e. messages are transferred in order without eorruption, loss

or duplication.

Unlike users, protocol designers are concerned with the internal structure of
a protocol layer. They view the protocol as a set of entities (processes, modules,
stations or protocol machines) that are local to a user or users, and that commun-
icate among themselves via the services of their lower layer (see Figure 1). An

internal protocol specification, also referred to as a design specification, describes:

i) The rules governing the reaction of each entity in response to commands
from its users, to messages from other stations, and to internally generated events

such as timeouts;
ii)) The data types and message formats used by the protocol.

The internal protocol specification can be considered as an "implementation” of

the service specification, and as an abstract specification for implementers.

II. UNISPEX - A UNIFIED MODEL FOR PROTOCOL SPECIFICA-
TION

We now present a formalism for specifying protocols. Following the hierarch-
ical model of protocol systems a complete specification of a protocol (or protocol
layer) must comprise both a service specification and an internal protocol
specification of a set of interconnected Profocol Machines. The patterns of
interactions between these protocol machines (or peer entities) constitute the
layer behavior. In general, a layer may consist of several distinct types of proto-
col machines, each having its own behavior and possibly several fnstances. The
term ”protocol machine” is commonly used to refer to an instance of a protocol

machine type.

A protocol {or protocol layer) ean be completely specified in three parts: Pro-
tocol Machine part, Topology part, and Properties part. The Protocol Machine
part describes the behavior of each type of protocol machine; the Topology part

specifies the set of instances of each protocol machine type and the way the
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instances are interconnected; and the Properties part presents the desired proper-
ties of the interactions between the instances. Each of these specification parts is

discussed in the following subsections.

11.1. Protocol Machine Part

A protocol machine has some (internal) State Variables and (some external)
Interface and Channel Variables; these variables may be arbitrarily complex data
types, which may be defined using algebraic specification methods [Liskov75a,
Guttag78a, Guttag78b, Goguen78al. A protocol machine reacts to a set of
specified Events by changing some state variables and some external (i.e. inter-
face and channel) variables for each event occurrence. Thus, the behavior of a
protocol machine can be described by a finite state machine where the transitions
are regarded as events represented by program segments. Each event (or transi-
tion) has an enabling predicate associated with it. When an enabling predicate is
true, its associated event is enabled and can fire, activating the transition and the

execution of the program segment.

We present the specification of a protocol machine type in three sections:

Declaration section, Interfaces section and Events section.

II.1.1. Declaration Section

The Declaration section defines the constants, data types, (state, interface,
and channel) variables, and initial values of the variables used in the specification

of the protocel machine type.

State variables can only be accessed locally within each protocol machine.
One of these variables, called ”State”, represents the major (control} part of the
state of a protocol machine, i.e. the state of the finite state machine component.
Interface and channel variables, on the other hand, can be accessed from the out-
side - this is how a protocol machine communicates with the outside world.
Interface variables are used for communicating with other layers {via interfaces,
as we shall see in a moment) while channel variables allows communications with
other protocol machines in the same layer. Each interface or channel variable

also has a direction of flow associated with it, indicating whether data in that
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variable flows into or out of a protocol machine; if no direction is specified, data

in that variable flows in both directions.

The Initial State of a protocol machine can be specified by giving the values
of any variables at system creation time. These include the initial value of
”State”, and usually empty or zero values for internal, interface, and channel

variables.

I1.1.2. Interfaces Section

The Interfaces section specifies the serviee primitive, (lower layer) primitives
and mapping events for the protocol machine type. The service primitives charac-
terize the interface to the higher layer while the primitives together with the
mapping events constitute the interface to the lower layer. Activation of a ser-
vice primitive causes some change in interface variable values which, in turn,
triggers a protocol event. There may be an enabling predicate associated with a
service primitive which must be true for its activation (just as in the case of an
event - this is specified by a when statement). Similarly, changes in some channel
variable values may activate execution of a primitive provided by the lower layer;
and this happens via execution of a mapping event. A mapping event has an ena-
bling predicate which must be true for its activation, and so, it is also specified
by a when statement. Basically, we can view the specification of service primi-
tives and of mapping events as sublayers above and below the current layer,
respectively, as illustrated in Figure 2. The sublayer above the current layer pro-
vides a mapping between the services supported by this layer and the interface
variables. Likewise, the sublayer below the current layer serves as a mapping
between channel variables and the services provided by the lower layer. These
mappings are essential because the interface and channel variables are only
abstracted means though which a protocol machine communicates with the other
layers. For verification purposes, interface and channel variables are adequate;
but for implementation related objectives, these variables are too abstract, and so
service primitive effects and mapping events {which maps channel variables to
lower layer primitives) are necessary to provide sufficient refinements. These

items were not provided in SPEX.
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I1.1.3. Events Section

The Events section describes the behavior of the protocol machine type by
specifying all possible events which may oceur in the course of interactions
between this protocol machine and other protocol machine(s). Both the state
transition and the program component of the protocol machine are specified
explicitly within each event. Each event has, thus, an event name, an event

code, origin and destination states, an enabling predicate, and an effect.
Fuvent name is a unique name used to reference an event.

Event code, written as a plus or minus sign followed by a message name,
indicates whether the event is a transmission or reception of a message. A minus

»

sign ”-” indicates message transmission and a plus sign "4 ”, message reception -
the same notation has been used for labeling transitions in the finite state
machine model. Here, we have essentially restricted the scope of the events to
that which permits the execution of a single message transmission or reception.
A sequence of message transmissions and/or receptions is, therefore, considered as
a sequence of events rather than a single event. This restriction allows basically
a one-to-one mapping between an event in UNISPEX and a transition in the
finite state machine model. In fact, the corresponding transition is labeled with
the event code. Two special event codes, + OTHER and + ANY, are also used,
and they require different mappings to state transitions. Furthermore, more than
one alternate message name can be specified in an event code, meaning that one
of these message types can be received (or transmitted) for the associated event,

e.g. event code "+ X+ Y” indicates reception of either message X or message Y.

Origin and destination states are the states {e.g. values of "State”) prior to

and after the execution of the event.

Enabling predicate is a boolean function of state, interface and channel vari-
ables, which must be true to enable its associated event. The origin state is also
considered as part of an enabling predicate, i.e. ”State” must be this origin state

before the event is enabled. Enabled events may fire at any time.

The effect of an event comprises all changes in any variable values incurred
by the occurrence of the event. These changes are considered to happen simul-

taneously, i.e. every event is atomic so that all changes for an event are
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computed from the old values of the variables before the event occurs. The order
of these computations for an event is, thus, immaterial. The syntax of an event
specification is given below, where a when statement is used to specify the ena-
bling predicate and the effect of the associated event.

Events

[
<event name> [/ <event code> [/ <origin> — <destination> :
when (<enabling predicate>)
| <effect>]

Since interface and channel variables are externally visible, it is possible for
a2 higher layer to change the value of some interface variable {via executing some
service primitive) to enable an event in the protocol machine. Likewise, an event
executed in one protocol machine may alter the value of some channel variable in
another protocol machine, thereby enabling an event in the other protocol
machine. This is effectively how protocol machines exchange data and synchron-

ize their activities.

State variables, on the other hand, are not visible externally, and so, they
can be regarded as history variables, which accumulate information about the

computation.

1I.2. Topology Part

The Topology part specifies the instances of each protocol machine type and
how these instances are connected. The latter is achieved by allowing interface
variables at each instance to be connected to interface variables at other
instances. This means that connected interface variables are shared variables
between the corresponding instances. This concept and the notation used are
borrowed from SPEX.

Since channel variables are realized by interfaces with the lower layer, simul-
taneous accesses to shared (channel) variables by two events at different protocol

machine are arbitrated by some lower-layer mechanism that nondeterministically
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chooses one event to be executed first. In general, events at different protocol
machines may be enabled simultaneously, with their enabling predicates involving
some shared variables. However, in this case, only one event will actually fire
because events are atomic. Then all enabling predicates are recomputed to deter-

mine which events are enabled at that time.

Naturally, connected channel variables must be of the same data type and
their direction of data flow must be consistent in the sense that and outgoing
channel variable of one protocol machine must be connected to an incoming
channel variable of another protocol machine. Furthermore, initial values of

channel variables must be consistent across their interconnections.

I1.3. Properties Part

The last part of the specification of a protocol layer is the Properties
specification. A set of predicates are given to describe the layer’s desired
behavior. Normally, these predicates relate the values of the variables in
different protocol machines, thus describing the global properties of the layer.
Local properties can also be specified by giving predicates that involve only vari-
ables at one protocol machine. Furthermore, we can view local or global proper-
ties involving variable *State” as being attached to different states in a protocol

machine.

The specified properties are actually Asserted Invariants. They hold for all
possible system behaviors (i.e. all sequences of events in the system) and must be
proven by the specifier in order to verify that the specification does indeed cap-
ture her/his intuitive understanding of the behavior of the system. Proofs for
invariants are typically by induction over all possible sequences of events in the

system.

In the next section the UNISPEXification (specification using UNISPEX) of
a simple transport protocol is presented to illustrate the ideas of the specification

model.
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II1.3. A TRANSPORT PROTOCOL AS AN EXAMPLE

The protocol example considered is based on a simple transport protocol
described by Schwabe[Schwabe81a] which provides the service of reliable full-
duplex data transfer with flow eontrol between two stations. The lower layer, i.e.
the network layer, is assumed to provide virtual circuit service, guaranteeing that
messages are delivered in order between sender and receiver without error, loss,
or duplication. So, the transport protocol is relatively simple - the subnetwork is
in fact doing most of the work. X.25 basically supports such virtual circuit ser-

vice.

The flow control in each direction of data transfer for a transport connec-
tion is provided via a simple credit {or window) mechanism, i.e. the receiver gives
explicit credits to the sender each time it has enough buffer to receive new mes-

sages.

For the sake of simplicity, only a single transport connection is considered,
assuming that the interactions (events) specified always refer to a particular tran-
sport (and network) connection not explicitly identified. The transport connec-
tion between two stations must be established before data transfer can actually
occur. Either station can initiate the conneetion and when the data transfer ses-

sion is complete either station can initiate the disconnection.
Figure 3 shows the UNISPEXification of the transport protocol.

The Protocol Machine statement indicates the beginning of the definition
of a Protocol Machine Type. There is only one type of protocol machines in this

protocol, namely TransportStation.

The Needs statement is a shorthand naming the data types which are used
in the definition of this protocol machine type, but which are defined separately

(in a library).
The State Variables at each protocol machine are:

State: represents the (control) state of the finite state machine component of the

protocol machine;

‘Sent, Received: are ghost variables to record the histories of all messages sent to
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Protocol Machine (TransportStation)
Declaration
Needs [Integer, Boolean, Side, Message, QueueOfMessage}
Type Request = [CR, CC, data, DR, DC, null]

Variables
[
State::
State: [0..5},
Sent, Received: QueueQfMessage;

Interface::
MaxRec: Integer,
Accepted: Boolean,
Credit: Integer,
MsgToSend, MsgReceived: Message,
Interface: [idle, conn, connpending, discpending),
Cmd: [conn, disc, send, receive, null};

Channel:
CreditToRec, CreditToSend: Integer
InReq, OutReq: Request,
InChannel, OutChannel: QueueOfMessage;

Inltial State
[ State ;= 0 and
Interface := idle and
Cmd :== null and
InReq := OutReq := nuli and
Accepted := false and
Sent := Receive := empty and
MsgToSend := MsgReceived := empty and
CreditToSend := 0

i

Interfaces

Service Primitives
{
Connect (SizeOfBuf: Integer)

When (Interface = idle}

[
Interface := connpending;
Cmd := conn;
MaxRec := SizeOfBuf

]

Disconnect()
When (Interface 1= discpending)

“Interface ;= discpending;
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Cmd := disc
]
Listen (SizeOfBuf: Integer)
When (Accepted = false)
l Accepted := true;
MaxRec = SizeOfBuf

DoNotListen()
When {Accepted)
[

Accept := false
]

Send (DataMsg: Message)
When (Interface = conn and Cmd = null)
I
Cmd := send;
MsgToSend := DataMsg
]

Receive (DataMsg: Message)
When (Interface = conn and Cmd = nult)

[

Cmd = receive;
When (Cmd = null)|DataMsg := MsgReceived]
]
]

Primitives

ToNet (Type: Request; CreditS, CreditR: Integer; Msg: Message);
FromNet (Type: Request; CreditS, CreditR: Integer; Msg: Message)

!

Mapping Events

MsgSend
When (OutReq != null or Credit != 0)
[
ToNet (OutReq, CreditToSend, Credit, MsgToSend);
MsgToSend := empty;
OutReq == null;
Credit := 0
!
MsgReceive
When (InReq = null
and FromNet (Type, CreditS, CreditR, Msg))
|

InReq := Type;

CreditToRec := CreditS;

CreditToSend := CreditToSend + CredltR
MsgReceived := Msg
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Events

ConnReq [-CR/ S0 — St
When (Cmd = conn and OutReq = null)
(
- Cmd = null;
OutReq := CR;
CreditToRec := MaxRec;
Credit := MaxRec

]

ConoRemConf [+ CC, + CR/ S1 — §3:
When (InReq = (CC or CR}))

Interface := corn;
InReq = null

ConnRemReq f+ CR/ 50 — §2:
When {InReq == CR and Accepted)

Interface :== connpending;
InReq := null

]

ConnConf [-CC/ 52 — 83
When (OutReq = null)

CreditToRec := MaxRec;
Credit := MaxRec;
Interface :== conn;
OutReq := CC

DataSend /-dataf $3 — $3:
When (Cmd = send and CreditToSend > 0
and OutRequest = null}
l

Sent := Add(Sent, MsgToSend);

OutChannel ;= Add(Outcchannel, MsgToSend});
OutReq := data;

CreditToSend :== CreditToSend -1;

Cmd := nuil

DataRec /+ data/ 83 — S3:

When {Cmd == receive and InReq = data)

f
Received := Add(Received, MsgReceived);
InChannel := Remove(Inchannel);
MsgReceived := Front(InChannel);
CreditToRec :== CreditToRec + 1;
Credit := Credit + 1;
Cmd := null;
InReq = null
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]
DiscReq /-DR/ {80,51,52,53} — S4:
When (Cmd = disc)
i
Cmd = null;
QutReq := DR

]

DiscRemConf /+ DC, + DR/ S4 — S0:
When (InReq == (DC or DR})
I

Interface := idle;
InReq := null

DiscRemReq /+ DR/ (50,51,52,83) — S5:
When {InReq = DR and Accepted)

[

Interface := dispending;
InReq := null
|

DiscConf /-DC/ 55 — S0:
When (OutReq = aull)

[

Interface := idle;
OutReq := DC
|
]

Topology
[

Instances::

Station: Array(side) of TransportStation;
Connections::

Station(i).OutReq <--> Station(OppositeSide(i)).InReq;

Station(i).CreditToSend <—~> Station(OppositeSide(i}). CreditToSend;
Station(i}.OutChannel <--> Station{OppositeSide(i)).InChannel

]

Properties

CreditToSend 2> 0 and CreditToReceive > 0;
Sent = Append(Received,InChannel);
Length{InChannel) < MaxRec

] N

Flgure 3 A simple transport protoco! in UNISPEX A
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or received from the other station, respectively, by this station - they are

used for conveniently stating the properties of the protocol.

The Interface Variables at each protocol machine are:

Accepted: indicates whether this station is willing to accept a connection or

disconnection request from another station;

MazRee: is an integer indicating the maximum number of messages that this sta-
tion can receive from the remote station before delivering to its user (i.e.
the window or the maximum number of messages that the remote station
can send before receiving an acknowledgement or credit) - it is initialized
during connection establishment to the size of the of the receive buffer, as

given by the user;

Credit: is an integer indicating the number of additional credits or extra messages
that this station can receive - it is incremented by one each time a mes-
sage is delivered to the user and is reset to zero after its value is conveyed

to the remote side;

MsgReceived, MsgToSend: are message received and message to be sent, respec-

tively, by this protocol machine;

Interface: indicates the state of the interface {connection) between the protocol
machine and its user, which can be one of {idle, conn, connpending,

discpending};

Cmd: is a buffer used by the user to indicate a conneet, disconnect, send, or
receive request to the protocol machine, thus triggering an event in the

protocol machine - it can be one of {conn, disc, send, receive, null}.

The Channel Variables known for this protocol machine are:

CreditTolRec, CreditToSend: are integers indicating the number of messages that
this protocol machine is capable of receiving and transmitting, respec-

tively;

InReq, OutReq: are buffers used to indicate the reception or transmission, respec-
tively, of a (control or data) message by this side to the other side (proto-
col machine) - they can be one of {CR, CC, data, DR, DC, null}, where
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CR = Connect Request, CC = Connect Confirmation, DR = Disconnect

Request, and DC = Disconnect Confirmation;

InChannel, OutChannel: are queues of messages that are to be received and that
have been sent, respectively, by this station, representing the full-duplex

channel connecting this station to the other station.

The protocol provides to the higher layer a set of Services Primitives,
which can be invoked by the user in the form of procedure calls. Execution of a
service primitive causes some change in interface variables, which ftriggers a pro-

tocol machine event.

The Connect primitive tries to establish a transport connection. In our sim-
ple model, it has a parameter, SizeOfBuf, which gives the size of the receive
buffer, i.e. the maximum number of messages the user is capable of receiving. (In
more general cases, this call would have two additional parameters, a local and a
remote transport address, and each transport address may participate in more

than one transport connections.}

The Disconnect primitive is to terminate a transport connection, leading the

interface {and the protocol machine) back to the idle state.

The Listen and DoNotlisten primitives announce the user’s willingness and

unwillingness, respectively, to accept a connection request from the remote end.

Send primitive is invoked by the user to transmit a data message on the
transport connection. This primitive and the Received primitive can only be
activated when the state of the interface is connected, i.e. the station is in the

data transfer state.

The Recefve primitive indicates the user’s desire to accept a data message on

the established transport connection.

The interface of a transport station to the network layer is via two primi-
tives ToNet and FromNet, each having four parameters: the packet type, chosen
from the set {CR, CC, data, DR, DC}; the number of sending credits remained,;
the number of additional receiving credits; and the message data, which is

“empty” when the packet is not a data packet.
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The Mapping Events MsgSend and MsgReceive provide a mapping
between the channel variables and the network primitives. MsgSend maps chan-
nel variable QuiReq and interface variable MsgToSend to primitive ToNet, and
MsgReceive maps primitive FromNet to channel variable InReq and interface

variable MsgReceived.

The Events known at each protocol machine are:

ConnReg
which is enabled by a conneet request from the user. Its effect is to

activate the transmission of a Connect Request {CR) packet.

ConnEemConf
which is enabled by the reception of a Connect Confirmation (CC) or Con-
nect Request (CR) from the remote user. Its effect is to lead the station to

the DateTransfer state (state 3).

ConnRemReq
which is enabled when a connect request is received from the remote user
and the local user is willing to accept the connect request. Iis effect is to
lead the station the RemoteReg state (state 2).

ConnConf
which is enabled when the station is in the RemoteReq state. Its effect is

to transmit a connection confirmation (CC).

DataSend
which is enabled when the conneetion has been established and there are a
send request from the user and enough credits for the message to be sent.
Its effect is to transmit a data message to the remote side and decrement
the number of credits for sending data messages.

DataRec
which is enabled when the connection has been established and there are a
receive request from the user and a data message available at the station

to be delivered to the user. Its effect is to deliver the received message to

the user and allows an extra receiving credit.

DiscReq
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which is enabled whenever the user issues a disconnect request. Tts effect

is to transmit a Disconnect Request (DR) packet.

DiscRemConf
which is enabled by the reception of a Disconnect Confirmation {DC) or
Disconnect Request (DR) from the remote user. Its effect is to lead the
station back to the Idle state {state 0).

DiscRemRBeq
which is enabled when a disconnect request is received from the remote
user and the local user is willing to accept the disconnect request. Its

effect is to lead the station the RemoteDisc state (state 5).
DiscConf

which is enabled when the station is in the RemoteDisc state. Its effect is

to transmit a Disconnect Confirmation (DC}) packet.

The Topology part indicates that the protocol layer consists of two stations
{data type Side has two values), each being an instance of the TransportStation
protocol machine type. Furthermore, the channel variables CutReq, Credit-
ToSend, and OCutChannel at each side are connected to the channel variables

InReq, CreditTo Rec, and InChannel at the opposite side, respectively.

The Properties part asserts three invariant properties. The first property
simply says that the number of sending credits and the number of receiving
credits are nonnegative. The second property states that all messages sent by
this side to the opposite side have been received in order except for possibly those
last messages which are still in transit in the channel. The last property asserts
that the number of messages in transit in a channel does not exceed the window
size (i.e. the maximum number of credits allowed). The two last properties can
be combined to state that the messages sent by ecach side do not lag the messages

received by the opposite side by more than the window size.
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IV. VERIFICATION OF PROTOCOLS MODELED IN UNISPEX

Protocol verification consists of validation against general syntactic proper-
ties and proof of correctness of the semantic properties. In our previous work we
have dealt with validation of protocols via reachability analysis, and decomposi-
tion [Vuong®la, Vuong82a, Vuong82b, Vuong83a]. Our approach as well as
many other validation approaches [Zafiropulo80a] require that protocols be
specified in terms of finite state diagrams. The UNISPEXification of a protocol
contains an explicit state transition component which can be extracted from the
specification and translated easily into the state diagram form. The state
diagram representation gives an overview {the control structure) of protocols and
allows the applications of those validation techniques to verify the general proto-
col properties. We now discuss the systematic translation of linear

UNISPEXifications into the familiar state diagram representation.

IV.1. Translation into State Diagrams

Via <origin>, <destination>, and <event code>, an UNISPEX event
can be directly translated into a transition (arrow or arc) of the corresponding
state diagram. The origin and destination states of the event are the origin and
destination states of the transition, and the event code is the label of the transi-
tion, indicating a message reception or transmission. When <origin> of an
event is & list of states rather than a single state, this event is mapped into
several transitions (or arcs) with the same label, namely <event code>. Each of

these transitions is drawn from one of those origin states to the destination state.

Figure 4 shows the state diagram for the UNSPEXification of the transport
protocol in Figure 3. Notice that event DiscReq is translated into four arcs with
label -DR, drawn from states 0,1,2,3 to state 4. Similarly, event DiscRemReq is
mapped into four arcs with label 4+ DR, drawn also from states 0,1,2,3 to state 5.
A list of states for <origin>> is a convenient notation in UNISPEX. It allows
hierarchical state diagram specification such as the one used in the CCITT X.25
and X.75 specification. So, two separate hierarchical state diagrams can be
drawn for the transport protocol: one for the connection termination phase, con-

taining the last 4 events; and the other for the connection establishment phase,
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containing the first 6 events. Furthermore, the nested structure can be easily
recognized through the hierarchical specification via <origin> as list of states.
Thus, protocol decomposition based on nested structured can be directly applied
to a UNISPEXification to yield two (internal and external} components, as shown

in Figure 5 for the transport protocol example.

Other extensions with special values being assigned to <origin>, <destina-
tion>, and <event code> also require special treatment. If <origin> is ANY,
the associated event will be translated into several transitions, one for each state.
IF <destination> is SAME, the destination state will be the same as the origin
state. Thus, {ANY — SAME} will be translated into several self-loop transi-

tions, one for each state of the protocol machine.

It is worthwhile to note that errors detected in the validation of a state
diagram specification may not necessarily all be errors in the original UNISPEX
version. In fact, since context information of an event is ignored during the
translation to a state diagram, an event which may be disabled under certain
conditions, may be allowed to occur in the state diagram representation. Like-
wise, if we provide the event priority capability in UNISPEX, i.e. each event has
a priority attribute so that simultaneously enabled events can be arbitrated
according to their priority, then it is possible that one of several events” in
UNISPEX gets translated inaccurately to any of several transitions” in the state

diagram representation.

IV.2. Proof of Correctness

Once a protocol (layer) has been designed and specified, the protocol
designer may seek a proof of correctness in order to increase her/his confidence
that the specification does indeed capture her/his understanding of the protocol.
This proof is done by induction on the sequences of events of the entire system
and can be carried out in a top-down manner so that a global property is proved
by assuming that the local properties at each protocol machine hold. Each local
property, in turn, can be understood from the assertions on each service primi-
tive, which may be shown from the assertions associated with each protocol

event. At the lowest level, given an entry assertion for an event, its exit
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assertion (after the event is executed) can be proven from the entry assertion, the
enabling predicate, and the eflect of the event. This can be done by hand simula~
tion or reliably by the machine. Several systems have been develop to aid the
verification process. Usually, a verification condition generator is used to gen-
erate theorems which must be proved in order to verify the specification. The
proofs often require ingenious assertions introduced at intermediate steps so that
an interactive theorem prover based on deduction and extensions for subgoaling,

matching, and rewriting would be useful to aid proving theorem.

Schwabe [Schwabe81b] gives the rules to translate any given protocol
SPEXification into an algebraic data type specification which can be verified
using the rewriting rule capability of the AFFIRM system. Similar rules can be
defined for UNISPEX to allow the verification of a protocol UNISPEXification to
be carried out using existing automated systems such as AFFIRM
[Thompson8la] INA JO [Eggert80a], GYPSY [Good81a), and SPECIAL
[Silverberg80a]. A brief comparative description of these syétems can be found in
[Cheheyl81a, Sidhu81la).

In addition to protocol verification, i.e. verification of global properties of
protocols that we have discussed, another kind of desirable verification is service
verification (or satisfaction}), which involves proving that the profocol specification
and the service specification behave the same way when observed through their
interface variables. So, a user may design her/his system using the service
specification with the confidence that when the service is realized by the protocol

in the actual system, there will be no undesired or unexpected behavior.

The third kind of verification is to show that a certain program satisfies a
protocol specification. This kind of verification is essentially the same as service
verification. The difference is that a different lower level language is used for
specifying the program in contrast to the same language being used for both ser-

vice and protocol specifications.
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V. SUMMARY

Aiming at an integrated system for protocol specification, synthesis,
verification, and automatic implementation, we have introduced a unified model
which uses both finite state transition diagrams and programs for specifying pro-
tocols. We have presented the features of the specification model and illustrated
these features in a specification example of a transport protocol. Validation and

verification issues were also discussed.

Although further experience with modeling real-life protocols and exposure
to different existing computer tools for protocol verification are needed in order
to develop such an integrated system and to define completely the features of the
model, we believe that most features of the unified model presented herein, are of

general validity and applicability.
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