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ABSTRACT

The Beta-spline introduced recently by Barsky is a generalization of the uniform cubic B-spline: parametric
discontinuities are introduced in such a way as to preserve continuity of the unit tangent and curvature vectors
at joints {geometric conlinuily) while providing bias and tension parameters, independent of the position of
control vertices, by which the shape of a curve or surface can be manipulated. We introduce a practical method
by which different values of each can be specified at every joint. This involves the use of & special form of
quiztic Hermite interpolation to yield values of the bias and tension at each point along a curve, the actual
position being determined by substituting these values into the equations for a uniformly-shaped Beta-spline.
We explore the properties of the resulting piecewise polynomial curves and surfaces. An important
characteristic is their local response when either the position of a control vertex or the value of a shape
parameter is altered.

There is also a conceptually simple and obvious way to directly generalize the equations defining the uniformly-
shaped Beta-splines so that each shape parameter may have a distinct value at every joint. Unfortunately, the
curves which result lack many desirable properties.
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1. Introduction

In the last decade it has become apparent that the use of straight line segments and planar polygons
to approximate carved lines and surfaces has limited the state-of-the-art in computer graphics. Even with
the most sophisticated continuous shading models, polygenal techniques generally result in visually objec-
tionable images. Mach bands are apparent at the borders between adjacent polygons, and there is always
a telltale jaggedness to polygonal silhouettes. Also, polygonal methods often require excessive amounts of
storage and the “resolution” at which a polygonal database is stored is fixed, independent of the eventual
display, as opposed to curved surface techniques in which the resulting image can be computed to what-
ever level of detail the situation demands.

Early work by Coons [Coons64a, Coons67a] and Bézier |Bézier70a, Bezier77a} introduced the use of
nonlinear parametric polynomial representations for the segmenis and patches which are stitched together
to form such piecewise curves and surfaces, establishing their viability. More recently, Riesenfeld
[Riesenfeld73a, Gordon74a] has advocated the use of B-splines to represent such polynomials on the
grounds of greater Hexibility and efficiency.

Parametric B-splines have many advantages. Among them is the ability to control the degree of
continuity at the joints between adjacent curve segments, and at the borders between surface patches,
independent of the order of the segments or the number of control vertices. However, the notion of
parametric first or second degree continuity at joints does not always correspond to intuition or to a phy-
sically desired effeet. For piecewise cubic curves and bicubic surfaces these parametric continuity con-
straints can be replaced by the more meaningful requirements of cortinuous unit tangent and curvature
vectors. Doing so introduces certain constrained discontinuities in the first and second parametric deriva-
tives. These are expressed in terms of bias and fension parameters called f1 and f2 in [Barsky81a], and
give rise to Befa-spline curves and surfaces.

The application of tension to the cubic interpolatory spline was first analytically modeled in
[Schweikert66a]. An alternative development was given in [Cline74a] and generalized in [Pilcher73a]. A
detailed derivation of the generalized form based or a variational principle is given in {Barsky82a]. The
result of this approach is a spline curve which is no longer piecewise polynomial, but piecewise ezponential;
that is, each curve segment is expressed in terms of exponential functions.

From a computational standpoint, however, pelynomial functions are much more desirable than
exponentials. For this reason Nielson developed the Nu-spline, a polynomial alternative to the exponen-
tial spline under tension [Nielson74a, Nielson74b]. It is derived in detail in [Barsky82a| from the cubic
Hermite basis functions, thereby emphasizing its relation to the conventional cubic interpolatory spline.

Unfortunately, neither of the above-mentioned interpolating spline curve representations provide
{ocal eontrol; that is, the capability of modifying one portion of the curve without altering the remainder.
Local control is inherent in the B-spline formulation [Riesenfeld73a, Barsky82b], and thus this would be a
good starting representation upon which to apply temsion. In an approach that preserved the variation
diminishing property of the B-spline scheme [Barsky82b|, Lane experimented with this idea by adding
knots to a nonuniform B-spline curve in the region of desired tension {Lane77a].

The Beta-spline, then, is a new curve and surface representation having an inherent capability to
medel tension and containing the uniform cubic B-splines as a special case. This representation general-
izes previous work on the mathematical modeling of tension insofar as it is based on the shape parameters
P1 and f.

The basic theory of Beta-splines was developed in [Barsky8la, Barsky82c]. This theory was
expressed in terms of shape parameters which could either be uniform or varying throughout the curve or
surface being defined. For the purposes of computer aided geometric design, the ability to alter shape
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parameters is particularly useful because it provides an additional means of manipulating a curve or
surface. In this paper we will extend previous work on varying shape parameters.

We begin in the next two sections with a review of pertinent terminology, notation and definitions.
In section 4 we will quickly review the fundamental definition of a Beta-spline from
|Barsky81a, Barsky82c|]. This will lead naturally to a discussion of two methods for varying the 8
parameters in a Beta-spline curve, one of which is of substantial practical interest. We will also discuss a
means of defining Beta-spline surfaces in which the shape parameters can be locally altered.

2. Preliminaries

it is usually convenient to represent a two-dimensional curve parametrically as
Q(u) = (X(u). Y(u}}

where X(u) and Y(u) are single-valued functions of the parameter u which yield the x- and y-coordinates,
respectively, of a point on the curve in question for any value of u.

Qv

mox

Although polynomials are computationally eflicient and easy to work with, it is not usually possible to
define a satisfactory curve using single polynomials for X(u) and Y{u). Instead it is customary to break
the curve into some number m of pieces called segments, each defined by a separate polynomial, and hook
the segments together to form a piecewise pelynomisl curve. The parameter u then varies between some
initial minimum value u, and some fnal maximum value uy as we move along the curve; the values of u
which correspond to joints between segments are called knofs. Usually we write a sequence of knot values
in nondecreasing order as

Ugip =1 <8, < - < Uy = Uy

so that the parametric functions X{u) and Y(u) are each composed of m polynomial segments, the first
covering the interval of u ranging from uy to u,, the second covering values from u, to up and so on.
Usually X{u) and Y(u) are required to satisfy some continuity constraints at the joints between successive
polynomial segments; if the 0** through d'* derivatives are everywhere continuous (in particular, at the
joints), then X and Y are said to be C¢ continuous.

For our purposes it will be convenient to assume that the knots are a consecutive sequence of
integers, with u; = i; this is called a uniform knot sequence.

Also, it will usually be simpler when discussing the i segment to write down X{u-u;) rather than
X(u), and we shall generally do so; the re-parametrization is easily accomplished by substitution. Thus for
the segment between u; and u;, ; we might write Y(u) = u® so that u=0 corresponds to the left end of
the segment and u=1 to the right end, rather than

Y(u) = (u-w;)* = v - 20u + uf
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There are a variety of ways in which to actually define a specific curve. We will be concerned with
techniques in which the user provides a number of contrel vertices, near which the curve is to pass. For
example:

Moving the control vertices then alters the curve. It is easiest to explain this process by considering the
definition of an individual coordinate such as Y(u), with X(u) being defined analogously. Thus Y{u) in the
previous figure looks like this when plotted against u.

Y(u)
u
u=0 u=6
Let us denote the control vertices by V; = { x;, y; ). Generically one writes
X(u) = E x; Bi(u) and Y(u) = ¥ y:Bi(u) (E1)
i i

so that Y{u), for example, is a weighted sum of the B;: (For reasons explained in section 5.5 vertices V,
and Vg appear twice in the following figure.)
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The unweighted basis functions B,{u}

In vector notation this becomes
Q) = ¥ ViB(u) = ¥ (xBu), v:B(w)) (E2)

The functions Bj{u) are called basis funclions. One generally chooses to work with some class of basis
functions because of particular properties it possesses, or imparts to the curves it can be used to define.

For example: when manipulating a curve it is often desirable that the position of each control vertex
affect only a limited portion of the curve. Such local control makes it possible to change one part of a
curve without altering other portions of the curve whose design is already satisfactory. To obtain local
control it is sufficient if each Bi{u) is nonzero only for a small range of u. (This was the case for the basis
functions appearing in the figure above.)

In summary, then, we have decomposed the problem of defining a 2D curve Q(u) into the problems
of defining individual coordinate functions X(u) and Y{u); for 3D curves we simply add a third coordinate
function Z(u), which is handled in exactly the same way as the first two. The coordinate functions are
themselves weighted sums of basis functions, where the weights are the coordinates of control vertices.
Our principle objective is to define appropriate basis functions, and to analyze the properties of those
basis functions and the curves they define.

3. Uniform Cublc B-Splines

The Beta-splines we will introduce shortly are a generalization of the ‘‘uniform cubic B-splines,” and
it is both natural and informative to begin with a brief development of the uniform cubic B-spline basis
functions.! ’

! Our definition focuses on those properties of the cubic B-splines which are most pertinent to our development of the Beta-splines.
A more general definition of the B-splines in terms of divided diflerences, from which their properties are most easily derived, may
be found in [deBoor78al. For computational purposes they are also sometimes defined directly by the recurrence relation usually
used to evaluate them [Cox72a,deBoor72al, whick is also derived in [dsBoor78a|.
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The B-spline curves which we are now considering are assembled from cubic polynomizals which have
positional, first derivative and second derivative continuity at the joints between successive segments, so
that they satisfly the equations

Qiafu) = Qiluy) (E3)
QW) = Qu) (E4)
QW) = Q) (E5)

where Q;(u) is the portion of the curve Q(u) we are defining which lies between knots u;_; and u;.

We could achieve the desired continuity if the basis functions with which we define the curve were
themselves C? continuous piecewise cubic polynomials with knots at the u;, since a weighted sum of such
basis functions will also be a C® continuous piecewise cubic polynomial. Locality can be obtained if all
but a small number of the polynomial segments defining a basis function are identically zero.

=

bo(u} ;.-"‘/ b_1(u)
s
n B
T | T —
Yi-2 Y-y % Uit Uiz

Suppose, then, that each segment of the basis function i3 a cubic polynomial of the form
a+ bu+ cu? 4+ du®

having four coefficients. If the nonzero portion of our cubic B-spline basis function B(u} consists {from
right to left) of four such basis segments b_s(u), b_;(u), bo(u) and b,{u), then there are sixteen coeflicients
to determize. By assumption B(u) is identically zero for u < u;; and for u > uj,,, so the first and
second derivatives Bm(u) and Bm(u) are also identically zero outside the interval (ujgu;y,). The
requirement that positions, first derivatives, and second derivatives match at each knot u; then implies
that

0 = by(0)
by(1} = by(0)
bo(1) = b_{0)
boi(1) = b_o(0)
bo(1) = 0

0 = bf'(0)
bf'i(1) = bf(0)
b§'(1) = b(0)
bd(1) = bYo)
big(1) = 0

0 = b{¥(0)
b(1) = bf?(0)
b§?(1) = b(o)
b(1) = b0}
b3(1) = o

(E6)

where for simplicity each segment is individually parametrized so that u=0 corresponds to its left
endpoint and u=1 corresponds to its right endpoint. These comprise fifteen constraints. We additionally

require that

bi(0) + bo{0) + b,(0) + b0} = 0

Because by(0) = 0 this simplifies to

Do(0) + b.i(0) + bo(0) = 1

Since our knots are equally spaced, this amounts to assuming that when we add together a weighted
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sequence of basis functions Bj, each of which is a copy of B shifted so as to be centered at v;, the three
basis functions B;_;, B; and B,.,,l which are nonzero at u; sum to one. Such an assumption is sald to be a
normalizing condition and serves to define the function B(u) uniquely.

We now have sixteen equations in sixteen unknowns (that’s why we assumed that our basis function
had four cubic segments), and we may solve for the coefficients a, b, ¢ and d of the four segments
by, bg, by, and b_y comprising our basis function B. Doing so yields the polynomials

by(u)

=

u® (E7)

bo(u) = (1+ 3u+ 3u®-3a")

b_y(u) = -(1‘; (4-6u+ 3u®)

b_y(u) = ?15— {(1-3u+ 3u®-d%)

These four segments define the uniform cubic B-spline basis function; again, the term uniform means that
the knots are equally spaced. To determine a curve, we select a set of control vertices V; and use them to
define the curve

Qu) = ZviBi(“} = 2 (% Bi(u), ¥;Bi(u) ) (E8)

in which each B; is simply a copy of B, shifted so that it peaks at u = u;, and the weighting is given by
the control vertices

Vi = (xi,¥)

Notice that because the basis functions are nonzero on only four successive intervals, if v, < u < y;
then

r=+1
Qilu) = 3} Vi Bifu) = ViyBi(u) + Vi Biy(u) + ViBi{u) + Vi, Biyy(u) (E9)
r=-2
If we replace each basis function Bj(u) by the particular segment which pertains to the interval [u;,u),
then (E9) can be written as

Qiu) = f——gl Vierb{u) = Vighou) + Vigb(u) + Vibg{u) + Vi, ;bifu) (E10)

Notice that the segments of our basis function are numbered from right to left because that is the order in
which they appear when summed to form a curve: the leftmost control vertex weights the rightmost basis
segment, and so on. Equation (E10) also reflects the convenience of parametrizing each basis segment
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from u == 0 at its left end; since the basis fanctions are all translates of one another, this convention
allows us to use the same formulas in defining each basis function, and hence in computing each curve
segment.

Yiq

The four basis functions which are nonzero on the i interval

4. Uniformly-Shaped Beta-Splines
The details of what follows may be found in |Barsky81a].
The unit tangent vector of a curve Q(u) is
. le )
Tl = —Sa,
| Q%(u)]
and the curvature vector is
: T
K(u) = r{u)N{u) = k(u -“—(—)—
() = KNG = s{0) T

where «{u) is the curvature of Q at u and N(u} is 2 unit vector pointing from Q(u} towards the center of
the osculating circle at Qfu).® T(u) and K{u) capture the physical meaningful notions of the direction and
curvature at a point on the curve. It is shown in |[Barsky8la, Barsky82¢] that

K{u) = Q(u) x Q(u} x Q) (E12)
1QUu)|*
Of course, Q(u}, T(u} and K(u) are easily seen to be continuous away from the joints of a piecewise
polynomial; from the equations (E11) and (E12) it is possible to show that in order for Qfu), T{(u) and
K(u) to also be continuous at the joint between two consecutive curve segments Q;y{u) and Q;{u) of
Q(u), which we call G? or second degree geometric continuity, it is sufficient that

(E11)

Qi.ll) = Q(0) {E13)
Q1 = Qo) (E14)
aQ A1) + QM) = QM) (E15)

at every knot u, and for any f1 and f2. These equations are, by definition, less restrictive than simple
continuity of position and parametric derivatives, which is the special case in which fi=1 and f2=0.

Equation (E13) simply enforces positional continwity. FEquation (E14) requires that the first
parametric derivative vectors from the left and right at a joint be colinear, but allows their magnitudes to
differ. There is an instantancous change in velocity at the joint, but not a change in direction.

Tl?e osculating circle at Q(u) is the circle whase first and second derivative vectors agree with those of Q at uw. The curvature
w{u) is then the reciprocal of the radius of this osculating circle.
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Q- .~a g0

&(u—)/\

Equation (E15) reflects the fact that a sufficient condition for curvature continuity is that

20) = A QlY(1). However, QP(0) may have an additional component directed along the tangeat
since acceleration along the tangent does not “deflect”” a point traveling along the curve, and so does not
affect the curvature there.

Q- ~apa,

W

)
) ¥
e 2at Pe

ot P
o0 el B

Ki{u)

Let us again consider a basis function composed of four cubic polynomial basis segments, as we did
for the uniform cubic B-splines, but this time we ask that they satisfy the geometric constraints (E13),
(E14) and (E15) instead of the parametric constraints {(E3), (E4) and (E5). The equations which result are

0 = by(0) 0 = bf'0)
bi{1) = bo{0)  pibf(1) = bf(0)
bo(1) = b,(0)  Ab(1) = b(0) (E16)
b_i(1) = b(0) Aibli(1) = o)
b1} = 0 avlda) = o
0 = b{Y(0)
A1) + B2b{M(1) = bfAo)

AEBE1) + p2bf(1) = bB(0)
A1) + g2bl1) = bB(0)
AEbB(1) + g2b1) =0

To obtain sixteen equations we again require, for the same reason, that

r=+1

3} Bidu)

r=-2

I

b1(0) + bg(0) + b_4(0) + b_z(0)

i

bo(0) + b4(0) + b0} = 1

yielding a total of sixteen equations in sixteen unknowns. For any particular values of g1 and B2 these
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equations can be solved numerically (as in the DB-spline case) to obtain explicit formulae for the
polynomials comprising the basis segments. This is not, very practical, however, since we do not wani to
solve a new system every time we wish to alter one of the 8 parameters. Instead we can solve this system
symbolically, using Vaxima [Bogen77a,Fateman82a|, to obtain the following symbolic representation of
the basis segments for all values of 1 and f2.*

bn) = + {20 ) (E17)
bolu) = % { 2+ (651)u + (382+ 647’ - (28 + 2% + 281+ 2’ }

b_y(u) -2— [ (B2+ 482+ 4/1) + (68°-681)u

— 382+ 68°+ 6800 + (2024 28°+ 26 + 2f1)u’® }

batw) = = {(260) - @60 + (6802 - 280" )
where
§ = B+ 2%+ 45% + 451+ 2

Notice that if we substitute f1 = 1 and f2 = 0 into the Beta-spline constraint equations (E16) we obtain
the B-spline constraint equations (E6), and that substituting these values into the Beta-spline basis
segments (E17) we obtain the B-spline basis segments (E7). For other values of f1 and f2 the Beta-spline
basis segments fail to be C? continuwous at knots, although they do satisfy equations (E16) and are
therefore G? continuous.

Equations (E17) can, of course, be evaluated more rapidly if they are factored. Since for any
particular values of 1 and 82 they are cubic polynomials in u, forward differencing can also be used where
appropriate. The efficient evaluation of these equations is discussed in {Barsky81a, Barsky82d].

We shall refer to a Beta-spline curve whose segments are defined by equations (E9) and (E17) as a
uniformly-shaped Beta-spline in order to distinguish it from the Beta-spline curves which will be defined
subsequently.

Increasing Bi increases the “velocity’” with which we traverse a curve immediately to the right of a
joint, with respect to the “velocity” just left of the joint, thus serving to bias the curve; values in excess
of one cause the unit tangent vector at the joint {which is, of course, continuous) to have greater influence
to the right than to the left, in that the curve will “‘continue in the direction of the tangent” longer in the
rightmost segment. Values of St from ranging from one down to zero have the reciprocal effect, causing
the curve to lie close to the tangent longer to the left of a joint than to the right.

Vaxima code to solve equations (E18) has been banished to an appendix (programs P1, P2 and P3). Code referred to subse-
quently appears there as well.
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It is instructive to examine the basis functicns used to define these curves:

1.0 1.0
_/‘. \-. - . ...
L L T T T ™ T T T T
By =1 B, =0 g, =2 B, =0
1.0
B, =4

Each is computed for a distinct value of 81, which determines the change in the absolute value of the
slope at each knot. Notice that since the same basis function is used for each of X(u) and Y(u), any
continuous basis function whose first derivative is continuous except for a jump of some arbitrary value
(B1) at the knots suffices to define a curve with unit tangent continuity.

The g2 parameter serves to control ténsion in the curve: altering the value of 82 moves the joint
between Q;(u) and Qu) along a vector which passes through the i'® control vertex. For example,
increasingly positive values move this joint towards V; and flatten the curve.
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1.0

Notice that as g2 increases the peak of the basis function approaches one and the “‘tails” of the basis
function, lying in the leftmost and rightmost intervals of its support, approach zero. More generally, the
curve itself converges to the control polygon as B2 goes to infinity, as well as interpolating the control
vertices.

This behavior is predictable from equations (E17). As f2 is increased, the basis segments converge
to :

by{u)
by(u)

bi(u) = 1-(3u®-2v%)

0

l

(3u® - 2v®)
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bofu) = 0

If we let t=(3u? - 2u®), it i3 easy to see that in the limit we obtain a curve which varies linearly
between each successive pair of control vertices.

81 also serves, to some extent, as a “‘biased’’ tension parameter. If for any value of g2 we allow fi
to become arbitrarily large then the basis segments converge to

by{u) = 0

bo(u) = O

b_y{u) = (3u-3u®+ u¥)
bo(u) = 1-(3u-3u®+ v¥)

If these are weighted by Vi, ,, Vi, Vi; and V;_, to define the i'® segment Q;(u) then this segment of the
curve converges to a straight line between V;_; and Vi_; as f1 increases.

v v v, v V. v
+1 ......... +2 1.5 .1. ....................... 2 +s
B,=1 i B,=10 B, =1000 | B,=10
+ c~————mm | |+ ke +
v, v, v, v, v, v,

If A2 has the value zero and we allow 1 to approach zero then we obtain symmetrical behavior:
bya) = u®
by{u) = 1-u®
by{u) = 0
bofu) = 0

In this case Q;{u) is, in the limit, a straight line runring from V; to V;, ,. However, if f2 is nonzero then
as A1 approaches zero the basis segments converge to

bifu) = ﬂ2-14-2 20

be) = = {2+ 3mut- 2+ 2)u )
° B+ 2 )
by(u) = ,%IT {ﬁ24352u2+ 28zud }
bofn) = 0

Thus as §1 approaches zero Q;(u) does not, in general, apptoach a straight line untess A2 is zero.
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v V. v, v v v,
4 *\\_,,2 +° + __‘\\,,_2 +°

ﬂ1 = 0,01 3 B, = 10 . ﬁ.l = 0.00000014 82 = 10 .

3! ; :

+ +___.-—'/.‘. + +."-.___..—-——.—’.’./+
Vo Vs V4 Va V3 V4

Bi and $2 may be altered, independent of the control vertices, in order to change the shape of the
curve. In the curves we have been discussing a single value of f1 is used for the entire curve, and
similarly for 2. We would prefer, if possible, to specify distinct values of g1 and f2 at each joint. Before
discussing how this can be done, we indicate briefly how uniformly-shaped Beta-spline surfaces can be
constructed from uniformly-shaped curves.

4.1. Surfaces

The formation of uniform Beta-spline surfaces is a natural and straightforward generalization of the
uniform Beta-spline curves. We want to form our surface as a weighted sum of basis functions, as in (E8),
but now X, Y and Z must be functions of two independent variables:

Quy) = 3 VyBifuy) = 3 ( x;Bijluv), viBi(wv) 7;Bijuy) ) (E18)

ij i

For weights we again use the x-, y- and z-coordinates of what is now a two-dimensional array of control
vertices called the control mesh or conirol graph. In order to obtain locality we would like the new basis
functions B;;{u,¥} to be nonzero only for a small range of u and v. An easy way to arrange this is to let
Bi;(u,v)=Bj(u)Bj(v), where Bju) and Bjfv) are simply the univariate basis functions (E17) which we
developed for the Beta-spline curves. Since each i3 nonzero omnly over four successive intervals, if
1, <u <y and yy; < v <y we can rewrite (E18) as

Qfuy) = ?2 :i_:" Visrir s Bir 0) By olv) {E19)

If we rewrite this in terms of basis segments instead of basis functions and adopt the convention that the
portion of Q{u,v) defined by this set of values for u and v is denoted by Q ;(u,v), then we can write

Qufuy) = 3 3 Vieoseubifa)bify) (E20)

r=-2 g—=-2

so that Q; ;(u,v), the i,j® patch, is completely determined by sixteen control vertices. The separability of
B;;(u,¥) into Bj(u} and Bj{v) can be useful. For example, we can expand (E20) as

Qijuyv) = (E21)

[ Vigjer bofu) + Vg bofu) + Vigep blu) + Vi bofu) ] byfv) +
[ Vie; bafu) + Viy, bafn) + Vi bfu) + Vi bolu) ] bolv) +
[ Vigja bofu) + Vigga bafn) + Vi belu) 4+ Vi bofu) | boylv) +

[ Vigjz bou) + Vig, biu) + Vije bolu) + Viegje bofu) | boy(v)
From this it is clear that if we fix u at some arbitrary value between 0 and 1 then we can write (E21) as

Qijulv) = Woby(v) + W_ b (v) + Wybg(v) + Wby(v)

where
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W, = Vigjp: bofu) + Vigng bafu) + Vi bolu) + Viggge bofu)
W, = Vip; bo{u) + Vi bofu) + Vi blu) + Viy;  bsfu)
W, = Vig baolu) + Vi bal) + Vi bylu) + Vieapy boyfu)
W, = Vi, byu) + Vigye byu) + Vi bolu) + Viggie bo(u)

Thus Q;;u(v) is simply the uniformly-shaped Beta-spline curve segment defined by the ‘“‘control vertices''
W, W_, Wy and W,. It is not hard to see that Q;;, 1(v), in the next patch “‘up”, is given by

Qijr1alv) = W_by(v) + Wob,y(v) + W, bo(v} + Wyby(v)
where
W, = Vigjzobo(u) + Vigpoba(u) + Vijabo(u) + Viyjeobi(u)

This is simply the second segment in a uniformly-shaped Beta-spline curve defined by the "control
vertices'” W, W_,, W, W, and W,. It follows immediately that this curve is G? continuous. Since a
completely analogous argument can be made with respect to u by factoring the b,(u) out of (E20) instead
of the by(v), the uniformly-shaped Beta-spline surface we have defined is G? continuous along lines of
constant u and v. '

Uniformly shaped surfaces: A2 is 0 on the right and 25 on the right.

5. Interpolating Distinct §'s

Let ar and a2 be the values of f1 and f2 to be associated with the joint between Qi ;(u) and
Q{u). We would like to use the basis segments given by equations (E17), making f1 and f2 functions of
u in such a way as to interpolate between the a1's and o2’s at each end of a segment while preserving G?
continuity of the curve.

Let us consider the following derivative with respect to u of a representative term of {E17),®
c[B(u)]Pu®
122
where ¢ is a constant. Its first parametric derivative is

cqfuPut | ep[BulPt Au)u® _ c[Au)l’ #u)ul
u) &u) Hu)*

(E23)

5 We will use B(u) rather than Ai(u) or fz(u) when the argument applies to both and no confusion can occur because producis of A1
and f3 do not arise. Similarly, a; will be used to represent both a1; and az;
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where

Hu) = felu) + 2} + 4Bi()]® + 451a) + 2

M) = FOu) + 6]au)] Au) + 8pi(u) Al (u) + 4510 (u) (E24)
Examination of (E23) and (E24) reveals that the second and third terms of (E23) involve products with
G1l5(u) or A2(0{u), while the first term of {E23) would constitute the complete parametric derivative if f1
and f2 were not functions of u. H we were to compute f1{u) and F2(u) by interpolating between the ay;'s

and a2/’s in such a way as to cause f11(u) and £20(u} to be zero at each joint then equations (lE14) would
held and G! continuity would be preserved.

Similarly, the second parametric derivative of (E22) is

m, n-2
c{n-1}n[fu) ~u (E25)

é(u)
c [Aa)l™ Eu)u" - 2e[Au) 8(u)’u?
&(u)? 8(u)?
2em[Au)™? A%u) 8¥(u)u®  2en[s(u)]™ fVu)um?
&) By
o em[B" A e(mol)m Al FV ()
é(u) Hu) _
4 Zemo ™t A )t
&u)

where
fu) = @) + &M’ A () + 8pi(u) Mit(u)
+ 4pO@) + 12 A0NE + 8 H0)
Again, only the first term of ([25) lacks a product with at least one of S10)(u), 20(u), F1®)(u) or f2)(u),
and the first term would constitute the complete second parametric derivative if i and Sz were not

functions of u. Thus arranging that all four derivatives have the value zero at joints should be sufficient
to preserve G2 continuity of the curve. This is easily accomplished in the following manner.

Suppose that we use a polynomial H{a;_,,o;;u) to interpolate between @, and a;.

H®(1)=0

We have six constraints, since we would like
Hlo g, e0) = o,y

H{oy,051) = o
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H(l){ai—bax;o) = 0
HY (¢ y,051) =

H oy 050) =

o o @

H o y,0551) =
This suggests the use of a fifth degree polynomial (which has, of course, six coeflicients). If
H(opp,au) = a+ bu-+ cu?+ du®+ eu? + fof
then the above equations take the form
Hloy,000) = oy = 2
H{o001) = oy = a+ b+ c+ d+ e+ 1

HY(e,20) = 0 = b

H(ey.,051) = 0 = b+ 2¢ + 3d + de + 5f
H(a,,000) = 0 = 2¢
H® o o) = 0 = 2c + 6d + 12e + 20f

It is straightforward to obtain the polynomial
Au) = H{ei,opu) = opy + 10(a-oig)u® - 15{eai ) u* + 6{ooiy)
= oy + (- )[100° - 15w + 60f) (E26)

which satisfies these equations; this is, in fact, a special case of quintic Hermite interpolation. By the
argument given above, the use of (E26} to interpolate f1 and Sz in (E17) preserves G? continuity of the
curve. (This fact is verified directly by Vaxima program P4.)

u=i—1 u=i

H(a.b,u) = a + (b—a)[10u*—15u*+6u°]

It is, of course, possible that the derivative terms appearing in {E22) and (E25) might sum in such a
way as to yield G continucus curves even though the derivatives were nonzero; we have not ruled this
out for all other interpolation schemes. However, it is not hard to produce examples which demonstrate
that neither linear interpolation, nor cubic Hermite interpolation, nor even quintic Hermite interpolation
for constant but monzero derivatives works. Thus C? continuity of Si{u) and fz(u) is not sufficient to
ensure G? continuity. (Program P5 computes a counter-example establishing this fact.)

We shall refer to the curves whose segments are defined by equations (E9) and (E17), where fi(u)
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and p2(u) are interpolated by equation (E26}, as confinuously-shaped Bela-splines.

5.1. Locality

Just as for the uniformly-shaped Beta-splines, each basis function is nonzero only over four
successive intervals. Since each control vertex is used to weight a particular basis function, moving a
control vertex will alter only the four corresponding curve segments. These are, of course, consecutive.

The effect of altering an « value is more localized still. The « value at a particular joint determines
how the corresponding £ parameter is interpolated ovet the segments which meet at that joint, so that
only two curve segments are changed.

5.2. Bias

The following figure illustrates a few of the eflects which can be obtained by altering at’s.

v,
1_5

Although the resulting curves are often visually satisfying, their extreme locality with respect to changes
in the shape parameters can necessitate “kinks” if there are large differences in the o values for
consecutive control vertices. A modest reduction in the size of the jumps ameliorates the effect.

v,
438
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5.3. Tension

Sinee this scheme interpolates the o;, the discussion of tension in [Barsky81a, Barsky82c] is equally
applicable here:

Qil0)-Vi = Qi1}-V; = i((:—;i::%))
is the vector from the i control vertex to the joint between Q y(u) and Q;{u), where
C = 2a1fVi) + 4an{ay+ 1}V + 2V,
¢ = 201+ 41 + 4oy, + 2

Altering a2; merely changes the length of this vector: values approaching -¢ ‘‘push” the joint arbitrarily
far away from V;, while large positive or negative values draw the joint arbitrarily close to V;. Hence o2;
serves as a tension parameter, just as for uniformly-shaped Beta-spline curves.

Again, wildly disparate values of g2 for adjacent control vertices can produce unsightly kinks. These can
be removed, if that is desirable, by smaller adjustments in neighboring 5 values, as shown below.

v A/ \/
+1./-4—._.+2 +5
=100} :

8,6

ﬁf”1

+
VO

For comparison with earlier figures we give some examples of continuously-varying basis functions.
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1.0 1.0
o
_/ .""-.
- T T T T T ¥ T L) T
g,=1.12,41 £,=0 g,=1 #,=0,5,25,100,0

Because each point on a continuously shaped Beta-spline curve also lies on the uniformly shaped
curve defined by the same control points and the values of 1 and f2 at that point on the continuously
shaped curve, a2 values can be used to locally force a curve to converge to the control polygon if they are
increased arbitrarily.

5.4. Convex Hull

Like the uniformly-shaped Beta-splines, continuously-shaped Beta-spline curves pessess a convex
hull property in that the i'"" segment lies within the convex hull of control vertices Vi, Vi, Viand Vi,
so long as #1 and f2 are nonnegative. The argument, as we shall see, i3 straightforward. Recall that since
each basis function is nonzero over four intervals,

Qi(u) = Vigh{u}+ Viyb_{u) + Vibglu) + Vi b(u) (E27)

Now for any given value of u, At{u) and f2(u) yield some particular value of g1 and B2. By simply
summing equations (E17) we see that for every such g1, f2 and u

by(u) + bofu) + bu) + bofu) = 1

Next we must verify that these basis segments are nonnegative for all u in the interval [0,1]. If we rewrite
equations (E17) in the form

by(u) = [ 2y }

S

{
be(u) = {2ﬂ12u2(3—u] + 2fu(3-u?) + f2u’(3-2u) + 2(1-u®) }

bin) = + (2p0u((1-u)(2-u)+ 1) + 2020307+ 2)

+ 2f1(u®-3u+2) + pz(2u’-3u*+ 1) }

bafn) = + (2o (1-up )
where
F= P+ 2P0+ 452+ 4P+ 2

for $12>0, f2 >0, and u¢[0,1], it is easy to see by inspection that by(u}, by(u), and b_5(u) are nonnegative.
For b_j(u), elementary consideration of the zeros of the derivatives 3u(u-2), 3(u-1){v-1) and Bu(u-1) of
w-3u’+ 2, w-3u+2, and 2u°-3u+1 yields the same conclusion. Since St and A2 are actually
interpolated by (E26), it is necessary to show that

Blu) = o + (a-ei4)[100® - 15u* + 6u°] > O
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if @3>0, ¢; >0, and ue(0,1]. Consider
ﬂill)(“) = 30{a;-ap;)u*(1-u)
Clearly the slope changes sign only at u=0 and u==1. Since

o+ o
Blo8) = ==~ 2 0 if 4y, e 20,

Bi(u) must be nonnegative on [0,1] so long as the o; are nonnegative.

Hence so long as e; > 0 and o2; > 0, Q;(u) lies within the convex hull of V; 5, V;;, V;and Vi, ,.

5.5. End Conditions

A properly defined curve segment is the sum of four weighted basis functions, as in equation (E27).

Thus m+ 1 control vertices Vg, -+ -V, can be used to define m-2 segments, which we index as
Qa{u), - -+ ,Qn (u). The Beta-spline curve then begins® at
1
Q) = o {2a1§’V0+ (60)-2a13-2)V, + 2V, }
v
3 Vo3
V2 ........... *t. + " \Y
+ - . »+ m—2
V1 (Qz(u} Qm_1(u)> v
+
VG+ + Vin

Thus the curve does not, in general, begin at a control vertex, or even at a point along the line segment
from V; to V,. In order to obtain better control of the beginning of the curve, one therefore often treats
the ends of the curve specially.

Let Q(u) be a continuously-shaped Beta-spline with f1==a1; and f2=c2; at the joint between the
i'® and i+ 1* segments. Let R{u) be a uniformly-shaped Beta-spline curve defined by the same control
vertices, but with p1=a1 and f2=oa2; throughout. By the definition of Q{u) we must have
Q(u)=R{u), Q¥ (u)=RM(u) and Q®(u)=R(u) at the joint in question. Hence the analysis of end
conditions in {Barsky81a] applies immediately to the continuously-shaped Beta-splines. For convenience
we summarize these results.

¢ A Double First Vertex. We define an additional segment at the beginning of the curve by
Qi{u) = Vy[bo{u)+ by(u)] + Vibolu) + V,by(u)

Q,{u) begins at a point lying along the line segment from V, to V;, at which point it is tangent to
that line and has zero curvature.

o A Triple First Vertex. We define two additional segments at the beginning of the curve by
Q) = Volb_y(u)+ by{u) + by(u)] + Viby(u)
Q{u) = Vylb(u}+ byf{u)] + Vibglu) + Vyby(u)

8 The termizal point of the curve is analyzed in an exactly analogous manner, and we therefore omit explicit treatment of it.
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The curve then begins at Q,(0) ==V, and the first segment of the curve is a short straight line. The
behavior of the second segment Q ,(u), which has a double first vertex, is described above.

The analysis of double and triple vertices is equally applicable on the interior of a curve. Triple interior
vertices are particularly interesting since they result in a cusp:

a single vertex, g,=0 a double vertex, 8,=0 a iriple vertex, ﬁ2=0
+ ., LN
+ v+ + + + b4
+ + + + + +

This cusp is not a viclation of G? continuity because, or at least in the sense that, the first parametric
derivative vector has the value (0,0) at the joint that coincides with the interpolated control vertex where
the cusp occurs, so that the unit tangent vector is not defined. Multiple vertices give a tension-like effect,
and it is instructive to compare the effect of repeating a vertex with the effect of altering Sz there:

a single vertex, g,=5 a singte vertex, 8,=25 a single vertex, f,=—3
+ - +
+ / R + Yo + /_ s
+ + + + + +

An alternate way of controlling the beginning of a curve i3 to automatically define a phantom verfex
V., and a corresponding initial segment

Qu(u) = V. b(n) + Vobi{u) + Vibg(u) + V, by{u)

in such a way as to satisfy some requirement. We may ask that:

Q,(0) interpolate some furnished point (generally resulting in nonzero curvature);

Q,(0) interpolate Vy (at which point the curvature is then zero);

Q{Y(0) have some specified value (generally resulting in nonzero curvature);

Q{2(0) have some specified value (generally resulting in nonzero curvature);
. Q[E)(O) be zero, Tesulting in zero curvature at Q{0).

All of these techniques involve extending the curve by one or two segments at either end. This implies
the existence of additicnal joints and associated o values. Hence the sequence of control vertices is
extended in order to specify behavior at the ends of the curve, and additional o1 and o2 values must be
specified as well. These may take any nonnegative value without affecting the behavior described above.
In practice it is probably easiest simply to replicate o values as well as vertices.

The curves we have discussed so far are open curves, which is to say that the two endpoints do not,
in general, coincide. A GZ-continuous elosed curve whose endpoints do meet and which is GZ-continuocus



Varying the Betas in Beta-splines 23

there as well is obtained if the first three control vertices are identical to the last three and the same
values of A1 and B2 are used at the join between the beginring and the ending of the curve.

V[8,=25] + V,[8,=25] Vo[8,=25] + V,[B,=25]

Vygr VolB,=10]
+Vy

Although it may appear in this figure that the join near V is a cusp, by zooming in on the join we can
see that in fact curvature continuity is maintained.

Again, the arguinents establishing these results appear in [BarskySla] and the details have therefore
been omitted.

5.6. Evaluation

Using factorizations given in [Barsky81a| and {Barsky82d], the Beta-spline basis segments (E17) can
be evaluated in 28 multiplication/divisions and 21 addition/subtractions. If a single point on Q(u) is to
be determined, the evaluation of the right hand side of (E9) in d dimensions then requires 4d
multiplications and 3d additions. The total cost for evaluating a point on a uniformly-shaped 2D Beta-
spline curve is therefore 36 multiplication/divisions and 27 addition /subtractions; a 3D uniformly-shaped
Beta-spline curve requires 40 multiplication/divisions and 3¢ addition/subtractions.

For a continuously-shaped Beta-spline curve, equation (E26) can be evaluated in 6 multiplications
and 4 addition/subtractions if it is factored into the form
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H(ai—hai»u) = i + [al_aj-l)[10+ [ﬁu—lS)u]u3

Since both f1{u) and P2(u) must be computed, both H(e1; j,a1;,u) and H{e2; j,02;,u) must be evaluated.
However, since [10+ (6u-15)ulu® need only be evaluated once, the total cost of interpolation is 7
multiplications and 6 addition/subtractions. The additional cost for a single evaluation by this technique
of a continuously-shaped Beta-spline curve, beyond that required to evaluate a uniformly-shaped curve, is
therefore about 20%.

More often we wish to evaluate a sequence of points along each segment in order to render a curve.
If we compute these points by repeatedly evaluating the basis functions as described above, then a
uniformly-shaped 2D Beta-spline segment can be evaluated at r values of u in 16+ 20r
multiplication /divisions and 14+ 13r addition/subtractions while its 3D counterpart requires 16+ 24r
multiplication /divisions and 14+ 16r addition/subtractions. The corresponding cost to evaluate a 2D
continuously-shaped Beta-spline curve is 36r multiplication/divisions and 2+ 31r addition/subtractions,
while in 3D the cost is 41r multiplication/divisions and 2+ 34r addition fsubtractions. The difference
between the evaluation of uniformly- and continuously-shaped Beta-spline curve results from the need to
re-evaluate the coeflicients of the polynomials forming the basis segments, owing to the fact that g1 and
B2 are no longer censtant, as well as from the cost of actually performing the interpolation
[Barsky81a, Barsky82d].

It instead we first sum the terms in equations (E10) so as to compute the coefficients of X{u) and
Y(u), and then use Horner's rule (nested multiplication), then the evaluation of a 2D uniformly-shaped
Beta-spline segment at r points requires 49+ 6r multiplication/divisions and 38+ 6r addition/subtractions
while the 3D curve requires 65+ 9r multiplication /divisions and 50+ 9r addition fsubtractions. A modified
version of this algorithm which computes continuously-shaped Beta-spline curves requires 55r
multiplication /divisions and 2+ 48r addition/subtractions in 2D and 75r multiplication/divisions and
2+ 63r addition /subtractions in 3D.

A third alternative is to use forward differencing techniques. For large values of r the evaluation of
a 2D uniformly-shaped curve in this way is almost a factor of 17 faster than the evaluation of a
ecntinuously-shaped curve using Horner’s rule, although it is subject to cumulative roundoff error. While
in principle forward differencing is applicable to the continuously-shaped Beta-splines as well, in fact it is
impractical since each coordinate is the quotient of an 18" and a 15" degree polynomial. Where cost is a
crucial factor it may be desirable to fix f1 at one and manipulate f2 alone. Doing so significantly reduces
the expense of evaluating equations (E17) after interpolating f2; each coordinate is then the quotient of an
8 and a 5 degree polynomial.

There are other possibilities. The basis functions of a uniformly-shaped Beta-spline are translates of
one another, and need only be evaluated for the first segment drawn if they are saved and reused. In the
case of continuously-shaped Beta-splines, each joint is associated with distinct values of 81 and S2, so that
in general each basis function has a different shape and must be individually evaluated.

Altering an existing curve can be done much more efficiently. If a control vertex is moved then only
four segments of the curve must be recomputed, since the basis function which the vertex weights is
nonzero en only four successive intervals. Since the vertex is usually moved several times in succession, it
is advantageous to save the basis segments as they are first evaluated to avoid recomputing them.
Mereover, the portions of the computation for each segment which are actually dependent on the vertex
which is being moved may be segregated from those portions of the computation which are not, and which
therefore need not be recomputed.

Altering an o parameter necessitates recomputing only two intervals, although all of the basis
segments in each must be re-evaluated.
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5.7. Surfaces

Continuously-shaped Beta-spline curves can be elegantly generalized to define surfaces which
preserve G continuity at the boundaries between adjacent patches. The gencralization we shall present
allows the user to specify a bias and tension parameter at each corner of a patch; of course, patches which
share a corner make use of the same o values at that corner. The technigue is to generalize the
univariate interpolation formula (E26) to a bivariate formula in such a way that:

o the a values at the four corners of a patch are interpolated;
& two patches which share an edge will have the same g values along that edge;
e the first and second partial derivatives of 81(u,v) and B2{u,v} across a patch boundary will be zero.

This last property will allow us to ignore (at boundaries) all but one of the terms which arise in
computing the partial derivatives of a Beta-spline surface in which fi{u,v) and fe(u,v) are allowed to
vary, so that the properties of a uniformly-shaped Beta-spline surface will be inherited by our
continuously-shaped surface.

Thus our first consideration is to develop a bivariate interpolating formula. It is at least plausible
that we would like lines of constant u or of constant v on a continuously-shaped surface to be
continuously-shaped curves. Along such curves we would then expeet f1 and f2 to vary as they do along
continuocusiy-shaped Beta-spline curves. For convenience let us write equation (E26) in two pieces as

5 = 10u® - hu* + 6uf
H{opg,apu) = (1-s)oiy + se
and along the top and bottom boundaries of the patch interpolate the o values

———
®i1,j @i

CTRYE S

i1
with our customary formula to obtain

op = Mo japu) = (I-g)o;+ say

opo = Hleppj, opu) = (L-shapy, + sej,

This yields values of « at parametric distance u from the left edge along the top and bottom of the patch.
To interpolate in the v direction across the interior of the patch it is natural to again use the formula

Hf ooy, i v) = (1-t) enor + barigy
with

t = (10v® - 15v! + 6v°
Substituting, we obtain the desired bivariate interpolation formula

Bulwv) = (1-s)(1-t)eigjq + s{l-tlogjy + (1-8)teiy; + ste; (E28)
with

s = 100° - 15u* + 6u°

t = 10v® - 15v? 4+ 6v°
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{We emphasize that s and t are used here for notational convenience.) f; ;(u,v) has some rather attractive
properties:
e it interpolates oy, @, @ioyjand o5
« along any of the four borders of a patch it reduces to the univariate interpolating formula (E26);
¢ the first and second partial derivatives of A, ;(u,v) with respect to v for v=0and v=1 (i.e. across a
vertical patch boundary) are zero, as are the first and second partial derivatives with respect to u for
u=0and u=1.

Now let us define a continuously-shaped Beta-spline surface patch Q;; by equation (E20) except
that we let g1 and 2 be functions of u and v, using equation (E28)} to interpolate between o values
associated with the corners of each patch. To simplify the notation we shall actually discuss Q,, and
Q 3, which are defined by the control vertex mesh

Vou Vg Vo Vg,

Vozg Vig Viz Vi,

Voz Vg Vi Vi,

Vo. Vi Vo Vg,

Voo Vi Voo Vi
(The generalization for an arbitrary patch is straightforward.) Since the b {u) and b,(v) are now functions
of Ai(u,v) and p2(u,v), we write equation (E21) for Q5 a8

Qz.a{“"’) = . (E29)
[ Voubo(Buon) + Vigb (i fau) + Vi bolBrfau) + Vo by(8yfu) | bilfrBev)  +
[ VosboalBbou) + V4 b_y(B1.8zu) + Voab(B,85u) + Vazbi(51,85u) | bolBs,B25v)  +

[ Voobo(Bubzn) + Vigby(Bufsn) + Vaabo(885u) + Vaobi(fufein) | balfrfzav)  +
[ VoubofBrfan) + Vyiby(Bufaiun) + Vo bol(B,fau) + Vi bi(6y,82u) | boolfy,Bziv)
Q. is similarly defined by
Qpfuy) = ' (E30)

[ Vaab.alBuBa) + Vigba(Bubon) + Vagbalfufon) + Vosbulfufum) | bi(8,8v)

[ VozboolBr,8u) + Vigby(B180u) + Voabo(frfzu) + Vapbi(Bsu) | bolByBoiv)

[ Voiba(fr b} + Vb fBufain) + VoibolBy,fsn) + Vi bi(B1,85:0) [y B, Paiv)

[ Voobo(B0zu) + Vioby(Bbou) + Vaobo(BL82u) + Viobi(fy,Bu) | ool 82iv)

We shall discuss the behavior of these patches at their common (“horizontal”) boundary, which is

Q3(u,0) and Qyzz(u,1). (The argument for commen “vertical” boundaries is analogous, and is therefore
omitted.) A

First, of course, we must verify that the curves Q43(u,0) and Q@ 4{u,1) are actually identical. For
any fixed u we may rewrite (E29) and (E30) as

Quat(¥) = Wioobo(v) + W_ b (v) + Wybg(v) + Wiby(v) 7 (E31)
and

Qioplv) = W_b(v) + Wob (v) + Wibg(v) + Wyb(v) (E32)
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where
W, = Vo bu) + Vi b,y{u) + V,bou) + Vjby(u) (E33)
W, = vu'ah_g(ll] + vl,ab-l(“) + Vagbg(u] + V3, by(u)

2
|

= Vysbo(u) + Vizbyfa) + Visbe(u) + Vi, bi{u)
W_; = Vo bo(u) + Vypbyfu) + Voybolu) + Vg byfu)
W, = Voeboofu) + Vigh (u) + Vyebo(u) + Viobyfu)

As we have seen, along the common border 8;5(u,0) and £, ;(u,1) both reduce to H{8;,,8;z;u). Hence the
p1 and gz which appear in (E29) and (E30) are identical, so that (E31) and (E32} are simply two
successive segments on a uniformly-shaped Beta-spline curve. Hence Quu(1)=Qp(0). Hence
Q,2(u,1) =Q5(e,0), as desired.

Tangent and curvature continuity between patches follow similarly if we apply the argument used
earlier. Recall that the partial derivatives of Si{u,v} and S2(u,v} with respect to v for v=0and v=1 are
zero. If we fully expand equations (E29) or (E30), a typical term has the form

c[A1(u,v]” [ A2(u,v)]" uP v*
[Be(u,v)] + 2[Bi(u,v)]® + 4[Biluv)]* + 4[Bufuv)] + 2
If we then compute the first partial derivative of this term with respect to v we find, after repeated

application of the product, quotient and chain rules, that the only resulting term which does not contain a
product with at least one of

d d
™ Bi(uyv)  and I Baluy)
both of which are zero, is

cq|B8t(u,v)]™ [f2(u,v)]" P vE?
[Be(u,v)] + 2[B(u,v)P + 4[81{u, V)] + 4{m(uv)] + 2

This is exactly the derivative which would have been obtained if 51 and f2 had not been functions of v.
Therefore the first partial derivative of (E29) with respect to v, for any u and v =0, is exactly

QL0 = W_bJ(0) + W,biHo) + W, bf}0) + W,b{!{0)

and the first partial derivative of {E30} with respect to v, for any u and v =1, is exactly
Q1) = W_bG)1) + W_bil{1) + W,yb{1) + W;b{1)

These are simply the derivatives of two successive segments of a uniformly-shaped Beta-spline curves for
particular values of f1 and 2, and we already know that such a curve has tangent continuity at its joints.
Hence our surface has tangent continuity along its “horizontal” boundaries. The same argument works,
mutalis mutandis, for the ‘“‘vertical’’ boundaries as well, and generalizes to arbitrary patch boundaries, so
that our surface is everywhere G! continuous.

An analogous argument suffices to establish curvature continuity.

G? continuity can also be directly verified using Vaxima by evaluating the Beta-spline constraint
equations if (E28) is used to compute the values of f1 and f2. The algebra involved is, however, rather
extensive...
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Continuously shaped surfaces: Sz is D except where indicated.

6. An Obvious Simpler Alternative - Which Doesn’t Work

While the interpolated Beta-splines have many of the nice properties of the uniformly-shaped Beta-
splines, the parametric functions X(u) and Y{u) which result are quotients of 18 and 15" degree
polynomials. An obvious question is whether @G? continuity, with local control of shape, can be obtained
with Jower degree polynomials. There is an obvious way to achieve this; unfortunately, the curves which
result have some undesirable properties.

Suppose that we associate distinct o1; and a2 with each joint by directly inserting them into
equations (E16); we obtain the following equations for the basis function Bj(u) which is centered at u=1.

0 = b,(0) 0 = YD)
by(1) = bg(0) a1 b{(1) = b{"(0)
bo(1) = b.,(0) e1;b(1) = b{0) (E34)
bafl) = bof0)  exy (1) = b0}
bo(1) = 0 a1, bP(1) =0

0 = bfY(0)
a2, b1) + a2, b{(1) = bI(0)
atFbi(1)} +  ezbf(1) = bi(0)

a1 b1 + az b)) = bE(0)
a1 b)) + oz, ,bU(1) =0

This is straightforward. The normalizing equation, however, is a problem. We might hope to obtain basis
functions possessing the convex hull property, as we did for the uniformly-shaped Beta-splines, by asking
that the sum of the basis segments at each joint be 1. But consider an arbitrary joint:
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B B B

_l.......u'_-..T_....::!'.._, ol v..«::-.‘...r...:«.....'_.
Uz Yz Ui Yy Yer Mgz Uns

b,_,_"o(u,). bL_,(u]) and bt-1,-z(“t) are circled

If the basis functions which are nonzero at the knot u; sum to 1 then, much as before, we have

bis 10(0) + bia(0) + biy5(0) = 1
In the case of uniformly-shaped Beta-splines, since the basis functions are all translates of one another,
biy 10{u) =big(u) and by (u)=b; s(u} so that we could write '

bio(0) + bia(0) + by o(0) = 1 (E36)

and, in fact, there was no need to identify the basis segments with a particular basis function since they
were all identical. Since we are now associating distinct § values with each joint we no longer expect that
the basis functions will be translates of one ancther, and this substitution no longer makes sense. Indeed,
there is a distinct version of equation (E35) for each knot u;, so that all of the basis fumctions
corresponding to a sequence of &1 and a2; values are defined by an interlinked system of equations.
While these can, of course, be solved each time we altered an «;, the resulting basis functions would not
change locally in response to a change in the value of a particular «, and this is undesirable.

‘We might as well, then, continue to use equation (E36) because the basis segments which result will
satisfy the convex hull property for a curve segment defined by four successive basis functions having the
same « values.

Program P3 may be used to solve the representation of equations (E34) (created by program P6) and
(E36). The resulting basis functions have the following form.

bulw) = + { l2t]w ) , (E37)

1
biolu) = n {[2t1] + [Batatlu + [3azi+ 2e1d)) e’

+ [ts-2(azy+ 202, + a1 )| u? }

: .
bia(w) = + {[(a2i+l+ 2018 1+ dath  + 201, )ta-ant] + [antgu
- [Bleziy+ 2atd  + 2015, )t + 3attgu?

+ [2{oz 1+ a1+ 2an ) e+ asitg] u® }

1
bon) = - { [2adit] - Bagitlu + Padite? - 2adu’ )
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whete
t, = o220+ 4012+ Bani+ 4] + orfy[fon+ Bead+ 8
+ o1d [Boz+ 16017+ 2an+ 8] + angy[ta+ 8?4 16+ 8§
t, = oz[2az+ 40P+ 8o+ o) + an? 4o+ a3+ 16212+ 8at)
+ ey 8o+ Balf+ 24l + 16ay] + [fon+ 81+ 8y
.= [o2ip 1+ 2ty (o g+ 1P te— oz + 2(atia+ e
. =

ay+ 1

and § iz simply the sum of the constant terms of by, by and b_, (as is apparent from the normalizing
equation).

Although these equations are somewhat complex, they do define cubic polynomials, so that forward
differencing can be used to evaluate them efficiently. Unfortunately the curves they define have a rather
fatal flaw.

As one would guess from the preceding discussion, this techmique does not yield basis function
which uniformly sum to one. To see that this is so, recall that any particular segment is given by

Qi) = Vigho aziy,0on,, ool 02,0l U )
+ Vigb( a2jaf, 02,0k, 0290tz U )
4+ Viby( a0ty 0220l 02 3,0lis U )
+ vi+lbl( aziy0,0ljp g, 0244 3,043, 02y £,Q¥jpq, U )

where we have explicitly indicated the dependencies of each basis segment on a values. If for some
particular set of a values the basis segments sum to one, then by altering any one of a2, 1,3, G2is4 0T
@l;, 4 we may alter one of the basis segments without altering any of the others, and thereby cause the
sum to differ from one.

Hence the curve segments defined by this technique need not lie withia the convex hull of their
control vertices. A consequence of this is that the curves defined in the usual way by equations (E9) and
(E37) are not translation independent, and the effect of altering an « value depends on where the joint in
question is located. The following figure illustrates this fact.

(1,3.5) (5.3.5) (9,3.5) {~9,~8.5
+ + + + .

;=6 g=100

. . =1 i .

qua‘ . ﬂ1 :.B' 9 §2=°'

B + + N +
(9,0) (-9,—10) (-5,~10) +10)
1st Quodrent 3rd Quodrant (same data transiated)

The easiest way to understand this phenomenon is to examine the effect of increasing f2 on the basis
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functions.

It happens, for example, that if the « values at joints u;, and v, ; are identical then the basis function
Bj(u) is completely independent of az;; increasing e2; in such a situation “pushes” B;_j(u) and By, ;(u} left
and right, respectively, as in the above figure, and the sum of the basis functions at u; is less than one.
When the basis functions are weighted by vertex coordinates, increasing f2 then reduces the weight given
to Vi, and Vi, , “pulling” the joint toward the origin. Since translating the control vertices generally
changes the relative direction of the origin, the result obtained by altering A2 depends on the position of
the joint in the coordinate plane - a highly objectionable characteristic which probably makes these curves
impractical.

7. Conclusions

Though the continuously shaped Beta-splines are more expensive to compute than their uniformly-
shaped brethren, they provide the first means of locally controlling the bias and temsion in a cubic
polynomial spline. This is an important feature in computer aided design applications. Although the
continuously-varying Beta-splines are, in principle, rather high degree polynomials, they are naturally
factored into tractable pieces. Indeed, they are interesting exactly because they provide a useful and
convenient way of controlling higher than cubic piecewise polynomial curves.
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Appendix

Program P1 - CreateSegs

/t
Create cubic polynomial representations of the four segments forming
a (de Boor) basis function. Then compute their first and second
derivatives as well. The segments are numbered from right to left
because in summing to form a curve the rightmost segment is weighted
by the leftmost contrel point.

Y

pely(a,b,c,d) := a + b*u + c*u"2 + d*u"3;

seg0do (u) poly(k00,k10,k20,k30) };
seg0dl (u) diff( segpdOf{u}, u ) );
seg0d2 (u) diff( seg0dl(u), u) )

seqgldQ (u) :
segldl {u) :

= "' ( poly(k0l,kl1,k21,k31) )
= "' ( diff( segldO(u), u ) };
= *'( diff( segldl(u), u ) };

segqldz(u)

seg2d0{u} := ''( poly(k02,k12,k22,k32) };
seg2dl (u) := *'( diff{ seg2d0{u), u ) );
seg2d2(u) := "'( diff{ seg2dl{u), u ) );
seg3do (u) '*{ poly(k03,k13,k23,k33) );

= 3
seq3dl (u) := '*{ diff( seg3d0(u), u )
seg3d2(u) ;= '*( diff( seg3dl(u), u )
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Program P2 - CreateEQ for Constant 5t and f2

/*
Create the constraint equations appropriate for a constant value of betal
and beta2 throughout the curve. It ls assumed that CreateSegs has already
been invoked to create the polynomial segidj.

*/

eq[ 11 : seg0d0(l) = 0;

eq[ 2] : segldd(l) = seq0d0(0);

eq[ 3} : seg2d0(l) = segldd(0);

eq[ 47 : seg3d0(l} = seg2d0(0);

eql 5] : seg3d0(0} = 0;

eg{ 6] : betal * seg0dl{l) = 0;

eql( 7] : betal * segldl{l) = seg0dl(0);

eg{ 8] : betal * seg2dl (1) = segldl(0};

eq{ 9] : betal * seg3dl (1) = seg2dl(0};

eq[l10] : betal * 0 = seg3dl{0) ;

eqfl1l] : betal”2 * seqg0d2(l) + beta2 * seq0dl(l} = 0;

eq[l2] : betal”™2 * segld2{l) + beta2 * segldl(l) = seg0d2({0);

eq[13] : betal”2 * seg2d2{l) + beta2 * seg2dl{l) = seqld2(0);

eq(14] : betal™2 * seg3d2(l) + beta2 * seg3di{l) = seg2d2(0d);

eq[151 : betal”2 * 0 + beta2 * 0 = seq3d2(0) ;

eq[l6] : seg0dl (0) + segld®(0) + seg2d0 (0} + seg3dC(0} = 1;

for i:1 step 1 thru 16 do egli] : ratsimp( lhs{eq(i]) - rhs(eq(il) = 0 };

save(equations,eq);
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Program P3 - SolveEQ

/ﬂr
Solve the 16 equations placed in eglist for the 16 unknowns in xlist using
the standard linear equation solver. A transcript of the computation is
written into the file “transcript”. It is assumed that CreateSegs and
CreateEQ have been exacuted previously in order to create the eguations in
eglist. A distinct version of CreateEQ is used for differing constraint
eguations,

*/

writefile(transcript);
showtime:true;
eqglist:

[ eql 11,eq[ 2),eql 3},eq[ 4],eq[ S5).eql 6),eq{ 7],eq{ 8],

eqf 9],eqll0],eq[11],eq(12],eq[13),eq(14]),eq{15],eqfl6] 1;

xlist: [ k00,k10,k20,k30, kO1,kil,k21,k31, k0D2,k12,k22,k32, k03,k13,k23,k33 1:
answer:linsclve(eqlist,xlist);
closefile{);
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Program P4 - Verlfy P3 for Interpolated 5's

’* :
Use the Beta-spline basis segments which are derived for constant betal
and beta2, but use quintic Hermite interpolation to vary betal and beta2
between alphal and alpha2 values at each joint. The first derivatives of
‘betal and beta2 wrt u at the left and right of each segment are set to 0.
verify that the resulting curves satisfy the Beta-spline constraint

. equations, and that the basis segments sum to one for all u.

*/
Hermite(pl,p2,u) := pl + 10%*(p2-pl)*u”™3 - 15%(p2-pl}*u”4 + 6*(p2-pl)*u”5;
batch("DefineSegs.v");

Curve( Vﬂ vi,v2,v3, als,alf, a2s,a2f, u ) :=
L

(

V0 * Seg0( als,alf, a2s,az2f )
+ V1 * Segl{ als,aif, a2s,a2f )

V2 * seg2{ als,alf, a2s,a2f )

V3 * Seg3{ als,alf, a2s,a2f )

+ +

1:

dlcurve( vo,v1,v2,v3, als,zlf, a2s,a2f, u) :=
1y 1£E( Curve( vo,vi,v2,v3, als ,alf, a2s,a2f, u ), u) };

d2Curve( VO0,Vi,v2,V3, als,alf, a2s,a2f, u ) :=
'v( @iff( dicurve( vo,v1,v2,Vv3, als,alf, a2s,a2f, u ), u) )

)i
/i
Vverify that the curve which results when interpolating betal(u) and beta2{u)
does, in fact, yield continuous unit tangent and curvature vectors. If so
each of the next three expressions should evaluate to 0.
t/ °
ratsimp(
Curve( VL,V1,V2,V3, alml ,alcc, azml ,a2cc, 1)
- Curve( v1l,v2,V3,VR, alcec,alpl, a2cc,a2pl, 0 )
Vi )
r;tsimp(
alcc*diCurve({ VL,V1,V2,V3, alml,alcc, a2ml ,a2cc, 1)
- dlCurve( vi,vz,v3,VR, alce,alpl, a2cc,a2pl, 0 )
Y
ratsimp(
alecc*alcc*d2Curve{ VL,V1,V2,V3, alml ,alce, a2ml,a2cc, 1)
+ azcc*dlCurve{ VL,V1,V2,V3, alml,alcc, azml ,a2cc, 1)
- d2Curve( v1,v2,v3,VR, alcec,alpl, a2cc,a2pl, 0 )

)i

/* verify that the basis segments sum to one for all values of u */
ratsimp(
Seg0(allft,airgh,a2lft,a2rgh,u) +
Seql(allft,alrgh,a2lft,a2rgh,u) +
Seg2(allft,alrgh,a2lft,a2rgh,u) +
Segi(allft,alrgh,a2lft,a2rgh,u)

35
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Program P4 - Verify P3 for Interpolated £'s

/*
Use the Beta-spline basis segments which are derived for constant betal
and beta2, but use gquintic Hermite interpolation to vary betal and beta2
between alphal and alpha2 values at each joint. The first derivatives of
betal and beta2 wrt u at the left and right of each segment are set to 0.
Verify that the resulting curves satisfy the Beta-spline constraint
equations, and that the basis segments sum to one for all u.

*/
Hermite(pl,p2,u} := pl + 10*(p2-pl}*u”3 - 15*(p2-pi)*u”4 + 6*(p2-pl)*u”5;
batch("DefineSegs.v");

Curve( V0,V1,V2,V3, als,aif, a2s,a2f, u ) :=
1

V0 * Seg0( als,alf, als,a2f }
+ V1 * Segl( als,alf, a2s,a2f }
+ V2 * Seq2( als,alf, a2s,a2f )
+ V3 * Segld( als,alf, a2s,a2f )

)i

dlcurve( vO,V1,v2,V3, als,alf, a2s,az2f, u) :=
Yo diff{ curve( VO,V1,V2,Vv3, als,alf, a2s,a2f, u ), u) );

d2Curve( V0,V1,v2,v3, als,alf, a2s,a2f, u ) :=
*'{ diff{ dlCurve({ VvO,V1l,v2,V3, als,alf, a2s,a2f, u), u) };
yi

/t
verify that the curve which results when interpolating betal(u) and betaz(u)
does, in fact, yield continuous unit tangent and curvature vectors. If so
each of the next three expressions should evaluate to 0.
*/
ratsimp(
Curve( VL,V1,V2,V3, alml,alcc, a2ml,a2cc, 1}
- Curve{ v1,v2,v3,VR, alcc,alpl, a2cc,a2pl, 0 )
)i
ratsimp{
alcc*dlCurve( VL,V1,V2,V3, alml,alce, a2ml,az2cc, 1)
- dlCurve( v1,v2,V3,VR, alcc,alpl, a2cc,a2pl, 0)
)i
ratsimp(
alcc*alce*d2Curve( VL,V1,V2,V3, alml,alcec, az2ml,azcc, 1)
+ aZcc*dlCurve( VL,V1,V2,V3, alml,alcc, a2ml,a2cc, 1)
- d2Curve( v1,v2,V3,VR, alcec,alpl, a2cc,azpl, 0 )

yi

/* Verify that the basis segments Sum to one for all values of u */
ratsimp(
Segl(allft,alrgh,a21ft,a2rgh,u) +
Segl(allft,alrgh,a2kft,a2rgh,u) +
Seg2(ailft,alrgh,a21ft,a2rgh,u) +
Seg3(alift,alrgh,a2lft,a2rgh,u)
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Program P5 - C? Continuity of bi{u) and b2(u) does not imply G? continuity

/*
Use tha Beta-spline basis segments which are derived for constant betal
and beta2, but with quintic Hermite interpolation to vary betal and beta2
between alphal and alpha2 values at each joint. The first and second
derivatives of betal and beta2 wrt u at the left and right of each segument
are set to dlu and d2u, This computation then demonstrates that for some
particular alpha and coordinate values the left and right first derivative
vectors at a joint are not colinear.

*/

writefile("outl0");
ttyoff:true;

Hermite(pl,p2,u} :=

*ut2 /2
/2

{ 10%({pl-p2) + 10*d¢lu + d2u ) * u’3
( 30*{pl-p2) + 30*dlu + d2u ) * u”
( 6*(pl-p2) + 4*dlu ) *u”

e+
[+
~N
=

[
-

batch(*DefineSegs.v");
curve( v6,vl,v2,v3, als,alf, a2s,a2f, dlu,d2u, u ) :=
]

* Seqg0( als,alf, a2s,a2f )
+ * Segl( als,alf, a2s,a2f )
+ v2 * Seg2( als,alf, a2s,a2f )
+ * Seg3( als,alf, a2s,a2f )
Vi

dlCurve( v0,vl,v2,v3, als,alf, a2s,a2f, dlu,d2u, u Yy o=
1r( diff( Curve( v0,vl,v2,v3, als,alf, a2s,a2f, diu,d2u, u )}, u ) };

/* Declarations... */
array( 1sd, 2 );
array( rsd, 2 });
array( 1d, float, 2 );
array{ rd, float, 2 );:
ttyoff : false;
typeset : true;

/* Compute the left and right derivatives at a joint - NOTE that alcc = 5 */
dllEt(vl,v2,v3) :=

ve(ratsimp( dlCurve( v0,vl,v2,v3, alml,5, a2ml,2, 5,3, 1) });
dirgh(vl,v2,v3} :=

Vi (ratsimp( dlCurve{ vi,v2,v3,v4, 5,alpl, 2,azpl, 5,3, 0 ) )}

/* Evaluate the 1lst derivative at this joint for the particular points
*% (-2,4}, (-3,2), and (1,1) */

1sd{l] : ratsimp( dl1ft( -2, -3, 1) };
1sd[2) : ratsimp( d11ft{ 4, 2, 1) );
rsd[l] : ratsimp( dlrgh{ -2, -3, 1} };
rsd{2] : ratsimp{ dlrgh( 4, 2, 1} );

/* Turn these into genuine floating point values and normalize the results to
*+* yield unit tangent vectors (which are not identical...). *

1d(1] : float{ 1sd(1] };
14f2] : €loat( 1sdf2] ):
rda{l1] : float( rsd[l] );
rd[2]1 : float( rsd[2) ):
lbot : sgrt( 1df{1172 + 1d[2172 );
14(11 : 1d(1] / lbot;
1d02] : 1d(2) / lbot;
: rbot : sqrt( rd{1]172 + rd[2]172 );
§ rd{1] : rdfl] / rbot;
rd(2] : rd(2] / rbot;
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/**ti*ti.*'ﬁﬁ*ﬁ‘t'*ﬂii*’t'tl'tlk*it**ﬁi*ttik*ﬁ*tk*i*iii**t*tiﬁt*.*'*kttﬁl*t***k*/

/t

Perform the same computation, except use zeros for dlu and d2u.
*/
dllfe(vl,v2,v3)

''"(ratsimp{ diCurve( v@,vl,v2,v3, alml,5, a2ml,2, 0,0, 1) }):
dlrgh(vl,v2,v3}) :=
''(ratsimp( dlCurve{ vl,v2,v3,v4, 5,alpl, 2,a2pl, 0,0, 0 ) )};

/* Evalutate the 1st derivative at this joint for the particular points
& (~2,4), (-3,2), and (1,1) */
1sd8[1] : ratsimp{ allft( -2, -3,
1sd[2] : ratsimp{ dllft( 4, 2,
rsd[1l] : ratsimp{ dlrgh( -2, -3,
rsd[2] : ratsimp( dlrgh{ 4, 2,

et bt e

)
}
)
H

et

/* Turn these into genuine floating point values and normalize the results to
** yield unit tangent vecters (which ARE identical...). */

14(1] : fleoat{ 1lsd[1l] );

1d[2] : float{ 1sd[2] );

rd[l] : float{ rsd(1] );

rd[2] : float{ rsd[2] };

lbot : sqrt( 1d[1172 + 1d[2]72 );
1d{1] : 1d([1]1 / lbot;

14[2] : 1d[2] / lbot;

rbot : sgrt( rdlij"2 + rd[21°2 );
rd{1] : rd{1] / rbot;

rd{2] : rd{2] / rbot;

/l!ttﬁﬁRtR!***ti*lit*t**tl*t*lt*l**t*i*til*tl*‘tﬁit*iﬁ***.t't!!t*!*itl*t*ﬁ*t*ﬁl/

/* Finally, check the Hermite interpolating formula for correctness. */
ratsimp(Hermite{a,b,0));
ratsimp(Hermite(a,b,));
dlHermite(a,b,u} := *"( d
ratsimp(dlHermite({a,b,0)}
ratsinmp(dlHermite(a,b,1))
d2Hermite(a,b,u} = *'( d
)
)

ff(Hermite(a,b,u),u) );

ff{dlHermite(a,b,u) ,u} );
ratsimp(d2dHermite(a,b,0)
ratsimp(d2Hermite{a,b,1)

closefile{*outld"};
typeset : false;
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Partial output from Program P5

{c22} /+ Compute the left and right derivatives at a joint - NOTE that alec = 5 */
d1ift(v1,v2,v3) ==
"(ratsimp( d1Curve( v0,v1,v2,v3, alml,5, a2mt,2, 5,3, 1) ));

147v3 + 9528v2-9675v1

dufi{vl,v2,v3) = 0038 {d22)
(c23) d1rgh(v1,v2,v3) :=
"(ratsimp( d1Curve( v1,v2,v3,v4, 5,alpl, 2,a2p1, 5,3, 0} ));
4635v3 + 117240v2-121875v1
— 2
dlrgh(vl,v2,v3): , 59938 (d23)
{c24) /* Evaluate the 1st derivative at this joint for the particular points
** (-2,4), (-3,2), and (1,1) */
* * * (omitted material) * * ¥
{c32) Ibot : sqrt( 1d[1]°2 + M[2]"2);
0.3075669231657496 (da2)
(c33) 1d[1] : 1d{1] / Ibot;
-0.4224425847634948 (d33)
(c34) 1d[2] : 1d[2] { Ibot;
—U.906389685829631é (d34)
(¢35) rbot : sqrt( rd]1]"2 + rd[2]"2);
7 3.846588867538818 {d33)
(¢36) rd[1] : d1] / rhot;
-0.3841125214514973 (d36)
(c37} rd[2] : rd|2] [ rbot;
—0.9232862886798293 (d37)
(cB8) [Hxssknkkrbxkdbhwrh bk sss pers ERERREEREEEER R [
/t
Perform the same computation, except use zeros for d1u and d2u.
*/
drift(vl,v2,v3} ;= .
"(ratsimp( d1Curve{ vO,v1,v2,v3, alm},5, a2m1,2, 0,0, 1) }};
d1ift(v1,v2,v3) := Sv3+ 72v2-TovL (d38)
187
(c39) d1rgh(v1,v2,v3) :=
"{ratsimp( d1Curve( v1,v2,v3,v4, 5,a1pl, 2,a2p1, 0,0, 0) ));
dlrgh{vl v2,v3) := 15v3+ 360v2-375v1 (d39)

187
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* * * (omitted material} * x *
(c48) ibot : sqre( 1d[1]"2 + 1d[2]"2 );

0.8848283054045568
(c49) 1d[1] : 1d[1] / Ibot;

~0.3807498052542948
(c50) 1d}2] - 1d[2] / lbot;

—0.924678098474716
(c51) rhot : sqre( rd[1]°2 + rd[2]"2 );

4.424144032022784
(¢52) rd[1] : rd[1] / rhot;

—0.3807498052542948
(¢53) rd[2] : 2d[2] [ rbot;

~0.924678098474716

(d48)

(¢49)

(d50)

(d51)

(d52)

{d53)
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Program P8 - CreateEQ for Varying fi and /2

/‘r
Create the constraint equations for varying beta-splines, That is,
distinct values of betal and beta2 are allowed at each joint. The
naming scheme is as follows. The peak/center of the (de Boor) basis
function 1is represented by the suffix "cc"; the joint one knot to
its left 1is represented by the suffix "ml"™; the joint one knot to
its right is represented by the suffix "pl"; and so on, "al" stands
for alphal and a2 stands for alpha2. By convention the term “alphai®
is used to represent a value of betai at some fixed value of the
parameter u.

*/

eql 1] : seg0d0{l) = 0;

eq( 2) : segld0{l) = seq0d0{0);

eq[ 31 : seg2d0({l) = segld0{0);:

eq 4] : seg3do(l) = seg2dn(0);

eq{ 5] : seg3do(d) = 0;

eg{ 6] : alp2 * seg0dl{l} = O;

eg[ 7] : alpl * seqgldl{l) = seg0dl(0};

eq] 8] : alcc * seq2dl{l) = segldl{0);

eq( 9] : alml * seg3dl{l) = seg2dl(0);

eq[10] : alm2 * 0 = seg3dl{0) ;

eg{11] : alp2”2 * seg0d2(i) + a2p2 * seg0dl(l) = 0;

eq(12] : alpl™2 * segid2(l} + a2pl * seqgldl{l) = seqg0d2(0);

eq[13] : alec™2 * seg2d2(1} + a2cc * seg2di(l) = segld2(0);

eq[l4] : alml"2 * seg3d2(l) + a2ml * seg3dl(l) = seg2d2(0);

eq[15] : alm27°2 * 0 + a2m2 * 0 = seg3d2(0} ;

eq[l6] : seqg0d0 (0) + segld0(0) + seg2d0d(0) + seg3d0(0) = 1;
for i:1 step 1 thru 16 do eg[i) : ratsimp{ lhs(eq[i)) -~ rhs{eq[i]) = 0 };

save(equations,eq);
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