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Abstract

In order to utilize a powerful raster graphics display system, the Ikonas RDS
2000, a set of software routines and supporting microprocessor firmware have been
developed to provide a useful interface to the hardware. These are intended to
provide support for image synthesis and highly interactive applications. The system
is organized around a segmented display file which is interpreted by a high-speed
bit-slice microprocessor. We discuss the design and implementation of this system
and look in detail at the problems which were encountered. We will also provide
recommendations for future extensions to the package.
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1. INTRODUCTION

The Tkonas RDS 2000 raster display is a powerful and complex device capable
of displaying images of high quality and of supporting highly interactive applications.
In order to utilize hardware of this complexity a considerable amount of software is
required to perform rudimentary operations and to provide the graphics programmer
with a reasonablc interface to the device. This document describes the design and
implementation a sct of software routines intended to provide such an interface,

Chapler two contains a brief overview of the hardware in order to introduce
readers unfamiliar with this device to the display architecture. Chapter three
describes a software simulator for the bit-slice microprocessor which is part of the
Tkonas system. This simulator was developed to provide a tool for debugging
firmware written to execute on the microprocessor. Chapter four discusses in detail
the design and implementation of a software package for the Ikonas which provides a
congenial and powerful interface between PDP-11 host software and the lkonas
hardware. The interface was developed in two phases. The first of these involved
the development of a basic vector drawing package based on a segmented display file.
The second phase extended the vector system to provide solid area raster capabilities.
For ecach of the two phases we discuss the major objectives of the design and
determine what routines were needed in order to meet thesc objectives. We then
describe important aspects of the implementation of these facilitics in more detail.

The development of graphics software on this scale is a non-trivial task, and
many of the difficultics encountered are of general interest. Hence, chapier five
contains a discussion of the major problems which arose throughout the development
of this interface. Various design flaws are exposed in detail and altcrnative solutions
are considered.

Chapter six conlains some general comments regarding potential enhance-
ments to the interface, device independence and recommendations for future work.
This discussion indicates the power and complexity which a graphics device can at-
tain.

Appendix A contains a tutorial in the usc of the microprocessor simulator and
appendix B provides a summary of all the interface routines. In appendix C we
discuss the differences between the newer version of the Tkonas system (the RDS
3000) and the old system (the RDS 2000). Since the interface was developed for the
2000 system these differences imply that minor modifications to the interface will be
necessary in order to utilize the RDS 3000 fully, although the existing firmware
package runs on the newer system.



2. The lkonas RDS 2000

2.1. Introduction

In order to understand much of the discussion in this document it will be
necessary to have a working knowledge of the overall architecture of the [konas RDS
2000 graphics system. In this chapter we will describe the organization of the system
as a whole and take a slightly closer lock at the two components of the system which
are most critical to the discussion here, namely, the bit-slice microprocessor and the
host computer interface. Readers already familiar with the system architecture and
the microprocessor can skip this chapter without fear of missing important concepts.

2.2, System Architecture and Terminology

As illustrated in figure | the system is organized around a central bus commonly
referred to as the Tkonas bus. This is a 32-bit data/24-bit address bus with a cycle
time of 100 nanoseconds. The image data to be displayed is stored in the frame
buffer memory, which is built from 300 nanosccond dynamic RAM chips. Under
software control this memory can be configured in one of two possible display
formats. In high resolution format the memory is a 1024 by 1024 array of picture
elements (pixels) with six bits of data stored at each pixel. In low resolution mode the
memory consists of 512 lines, referred to as scanlines, with 512 pixels across cach
scanline. In this case there are twenty-four bits of data at each pixel. Currently low
resolution format is the standard mode of operation and unless explicitly stated oth-
erwise we will assume that this mode is in effect.

The actual video signal which is fed to the display monitor is generated from the
image memory by passing the data from each pixel through the video chain. This
consists of a frame buffer controller (FBC), a 24-bit crossbar switch, three 8-bit
colour lookup tables and a digital to analog video output unit.

The frame buffer controller is responsible for reading data from the frame
buffer in the correct order and at the correct time.,

Data from the frame buffer controller is then passed through a programmable
switch, commonly referred to as the crossbar switch. This switch allows the user lo
specify which of the 24 input bits passed from the FBC are connected to cach of the
24 output bits. Note that any given frame buffer bit may go to more than one¢ output
bit, and not all such input bits need go (o any output bits.

Thesc output bits are in turn used as input to the colour lookup tables (also
referred to as colour maps). That module takes cach of the three input bytes
separately and uses them to index into three lookup tables corresponding to the red,
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Figure |. SYSTEM ARCHITECTURE

green and blue primary output colours. Each table contains 256 entries, each of
which is ten bits wide (in our case the low order two bits are always zero). The colour
lookup tables are implemented with static RAM chips and must be loaded by the
user upon system initialization.

Finally, the data output from the colour maps must be converted to analog
voltage signals that can be used to control the red, green and blue electron beams
which produce an image on the CRT. This is precisely the role of the video output
unit, which converts the three digital values given to it into analog signals, and also
generates the synchronizing signal required by the display hardware.

We will not be overly concerned here with the components of the video chain.
What we will be very concerned with is the operation of the microprocessor and, to a
slightly lesser degree, the host interface organization. We will discuss the latter first.

The host computer (in our case a PDP 11/45 running the UNIX operating
system) communicates with the Ikonas system through an Tkonas interface board
residing on the 11/45’s unibus. This interface is connected to a host inferface module
residing on the Tkonas bus. The connection between Lhe two consists of a sixteen bit
parallel data transmission cable, Since the 11/45 is a sixteen bit machine and the
Ikonas has a thirty-two bit data bus, transfers across the interface occur as pairs of
sixteen bit words.

The host is capable of reading from or writing to any of the memories or devices
on the Tkonas bus in one of two ways. Single words (32 bits) can be transferred using
the programmed 1/0 mode of the Ikonas interface. In addition, direct memory
access (DMA) transfers can be initiated for block movements of data.
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1t should be noted that although the transmission line between the host and the
Tkonas is a parallel one, it is still a bottleneck in many cases. There are three reasons
for this. The first is that two transfers ar¢ required for cach 32 bit data transfer. The
second is that the interface and the 11/45’s unibus are simply not as fast as the Iko-
nas bus. Thirdly we have the considerable overhead involved in going through the
operating system software in order to request a transfer of data. For this reason we
would like to increase the information content of the data transferred in cach direc-
tion in order to decrease the number of transfers required. We ‘can achieve this by
making good use of the microprocessor residing in the Ikonas system, which has the
added advantage of being over five times as fast as the 11/45 for the type of opera-
tions we wish to perform.

This processor is a microprogrammable bit-slice microprocessor, based on the
AM2900 family of bit-slice devices, which executes each of its instructions in 200
nanoseconds (0.2 microseconds). Each instruction is sixty-four bits wide and contains
approximately fifteen fields which control the operation of the microprocessor during
each instruction cycle. Programs are stored in the microcode memory which consists
of two banks of high speed static RAM (100 nanoseconds), each 32 bits wide. The
microprocessor is capable of reading from or writing to any of the devices on the lko-
nas bus and is also capable of generating an interrupt signal to the host computer.
The scratchpad memery shown in figure 1 is used for microprocessor data and/or
macre-instruction storage. In other words, the host computer interfaces with the
microprocessor by writing instructions and/or data into the scratchpad memory.
Similarly by reading from the scratchpad the host can receive information from the
microprocessor. Our system currently has 4K (64-bit words) of microcode storage
and 4K (32-bit words) of scratchpad memory. Either of these is capable of being
increased to a maximum of 64K.

Although it is not certain at this time, it would scem intuitive that putting
considerable intelligence into the microprocessor will mean that almost all the graph-
ics output from an application program will be targeted for the scratchpad memory.
If we want to be capable of supporting very large applications we will be forced to
make effective use of the limited amount of scratchpad memory we have; otherwise it
will quickly become a critical resource in the system.

Programming the microprocesser tends to be quite difficult compared to the
programming of conventional processors. The complicated instruction format is the
main cause of these difficulties. For this reason we would like to have some useful
software tools available to aid us with the task of programming and debugging this
bizarre device. One such tool which exists and is currently being used is an assembler
(supplied by the manufacturer). Although this helps somewhat, it still has all the
disadvantages of conventional assembly programming, together with the extra
complexity inherent in this device. A compiler for a high-level language which
produces microcode is another tool which would seem invaluable. In fact such a
compiler is currently under development and will likely sec considerable use in the
near future. An additional tool which has been developed to aid in debugging and
testing microcode is an interactive simulator for the microprocessor. In the following
chapter we will discuss the reasons for developing a simulator and look at some of the
lacilities it provides the microprogrammer,



3. The Simulator

3.1. Introduction

In this chapter we will describe an interactive simulator for the Ikonas
microprocessor which has been developed as a tool for debugging microcode. We will
start by discussing the reasons for the simulator’s development and then take a look
at the major issues involved in its design and implementation. Finally, when we have
a clear picture of the simulator’s capabilitics it will be useful to consider it’s
deficiencies, simply to point out areas where improvement may be desirable,

3.2. Motivation

There are several good reasons for wanting to simulate in software the execution
of the lkonas microprocessor, some of which are more obvious than others. One of
the original reasons, which is no longer valid, is that we wanted to begin developing
microcode before the microprocessor was delivered. The hardware actually arrived
much later than anticipated and it was convenient to be able to start writing and test-
ing microcode even though the correctness of the simulater was much in doubt before
the hardware was available for comparison. Writing a simulator, and comparing it to
the hardware, is also an excellent way of familiarizing oneself with the
microprocessor’s architecture and instruction set.

The strongest argument in favor of the simulator is that it provides a much more
convenient and controlled environment for testing microprograms than that available
with the hardware. The user needn’t resort to adding special debugging code to
programs. It is possible to display the contents of registers, single step the exccution
of a program, set breakpoints throughout the code or produce an execution trace, all
of which are impossible using the hardware. Thesc facilities lead to faster develop-
ment of microprograms because of the relative case of testing and debugging.

Another major advantage to having an interactive simulator is that several peo-
ple can be using the the simulator simultaneously, whereas the hardware will only
allow a single user at a time, which results in having the entire frame buffer system
unavailable for the duration of the test.

Expericnce gained by others in a similar position (e.g. [FIRT80}) would indicate
that simulation is definitely the right approach. In fact, the arguments in favor of it
are so strong that such a tool seems 1o be a necessity rather than simply a luxury.
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3.3. Objectives

The simulator is an inleractive program, written in C, which runs on our PDP
11/45 under the UNIX operating system. The user interfaces with the simulator
through a command language which allows him/her to control the execution of
microprograms written for the lkonas microprocessor. To gain an overall understand-
ing of the simulator and its capabilities it will be useful to consider the objectives
established for its design and then to ook at the approach taken towards achieving
those objectives in its implementation.

The main objcctives of the simulator design can be itemized as follows:

1) To maximize simplicity, the number of simulator commands
should be kept to a minimum,

2) The commands provided should be sufficiently powerful to
provide useful tools for debugging and testing.

3) The command structure should be easy to medify in order to
facilitate improvements in the user interface.

4)  The commands should be reasonably consistent in their syntax
to avoid confusion.

5} The actual simulation code should model the hardware 1o a
great degree in order (o increase maintainability and understan-
dability.

6) Efficicncy, although not a primary objective, should be
maximized throughout the implementation.

It is worth noting that processor independence does not appear as one of the
objectives. Some simulator implementations ([MEZZ79] for example) attempt to
keep the machine description separate from the simulator proper and make the simu-
lator sufficiently general to handle a range ol possible architectures. This approach
was avoided for several reasons:

A) The resultant program is likely to be much less efficient in both
space and time.

B) The implementation would be orders of magnitude more
difficult.

C) We really have no need to simulate any other processors at this
time.

In order to achieve objective 3) above, and to make life easicr in general, the
command language was implemented using Lex and Yacc. Thesc are software tools
available with the UNIX operating system. Lex is a facility for creating lexical
analyzers and Yacc (Yet Another Compiler Compiler) is an automatic parser genera-
tor. Yacc generates the parser from a formal definition of the language in the form of
structured grammar rules similar to the popular BNF notation used for syntax specif-
ication. As a result, we have a precise and structured definition of the command
language for the simulator which makes modification straightforward and aids in the
description of the language for documentation and/or learning purposes.
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Objectives 1) and 2) have been approached by defining a set of eleven basic
commands which give the user full control over the simulator. These commands are
the following:

load load an object file into microcode memory

look display contents of registers or memory

set sel the contents of registers or memory to a
given value

step enter single step execution mode

go start executing microcode

trace scl or display trace options

set_breakpoint set a breakpoint at a given microinstruction

delete_breakpoint  delete the breakpoint at a given microinstruc-

tion

list_breakpoints show microinstructions at which breakpoints
have been set

dump display all register contents

reset clear all registers, breakpoints and trace op-
tions

These appear to be sufficiently complete to provide a useful tool for the
microprogrammer. However, we realize that experience will likely uncover areas in
need of change or improvement. By designing for future modification we ensure that
such changes will not be overly difficult.

The consistent syntax required by objective 4) is almost an automatic side effect
of using structured grammar rules to define the command language. Many of the
commands share the same argument syntax or subsets thereof, thus making the
syntax of each command casier to remember.

It turns out that objective 5) is effectively free also, since having the software
parallel the hardware to a great degree is the casicst and most logical means of im-
plementation. However, it is effectively impossible to implement some features of the
hardware in the software. In particular, the parallel execution of many operations by
the hardware must be serialized by the software in a way which does not compromise
the correctness of any results. Similarly, bus and memory contention within the Iko-
nas system cannot be effectively simulated. As a result we will be unable to perform
any accurate timing measurements of program cxccution using the simulator. How-
ever, by keeping the structure of the simulator close to that of the hardware whenever
possible we will ensure that the code will be much casier to understand and thus
easier 10 maintain.
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One of the motivations for developing the simulator was to allow multiple users
and te avoid monopolization of the hardware. In order to achieve this goal the simu-
lator is able to utilize a virtual frame buffer which has been implemented as a disc
file. Thus frame buffer output generated by the simulated microcode is written into
the disc file. If the hardware is available then the ITkonas itself may be used so that
output is immediately visible on the display monitor. A simple command line eption
is used to specify that a disc file is to be used when the frame buffer is unavailable.
This type of flexibility makes the simulator a friendly and usable tool.

We appcar to have achieved the objectives stated to a great degree. Further
experience with the usc of the simulator will indicate if in fact these were wise deci-
sions,

In the next section we will look at a few items which could make the simulator
a much more powerful tool but which have not yet been implemented.

3.4. Enhancements

From the list of commands in the previous section we get an idea of the
capabilitics of the simulator for interactive debugging. These features can be
summarized as follows:

« the ability to examine and/or change the contents of registers or
memory

o the ability to single step the execution of programs

e the ability to have the contents of any registers printed after the
execution of each instruction

In effect these represent a minimal set of functions which any reasonable simulator
should be capable of performing. Since this set is, in some sense, minimal, we can
easily think of scveral facilities which could be added to make the program more
powerful.

One of the areas where change is likely to occur is in the trace facilities. More
often than not the printing of trace data after each instruction execution results in too
much output, Usually the programmer is only interested in the values printed after
certain critical points in the microcode and the rest of the output simply gets in the
way. So, why not allow him/her to specify which microinstructions are to produce
trace output upon execution? This would make the trace feature much more usable
and will probably be one of the first improvements made to the simulator.

Onc of the nicest things about many conventional debuggers, which is often tak-
en for granted, is their ability to allow the user to reference data and instructions
symbolically, usually using the names defined in the original program. The Ikonas
simulator currently has no such facility and all objects must be referenced by their
absolute address. The user interface would be enhanced enormously if such a facility
were available. But what symbols would we want to reference? Currently much of
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the microprogramming is done using an assembler language and as such we would
want to be capable of referencing symbols defined in the assembler source. However,
as mentioned earlier a C compiler is being developed to produce microcode for the
processor and this is likely to become a common means of programming this device in
the future. So in this case we would want o refer to external variables and
procedures by their names as defined in the C program. It would have been prefer-
able to have developed the compiler, assembler and simulator together so that such
compalibilities would be inherent in their design.

A featurc which could definitely be considered a luxury as opposed to a neces-
sity, but which nonetheless would prove useful, would be the ability to perform some
timing analysis of microcode execution. By this we don’t mean real exccution time
measurements. As mentioned above, this is effectively not possible due to our inabil-
ity to simulate bus and memory contention delays. Instcad, the idea would be to
count the number of times each microinstruction is executed. This would allow us to
produce, for cxample, a histogram showing which sections of code are being executed
most often and are thus candidates for optimization. This is a standard technique
used for finding problem areas of code where small optimizations can lead to large
savings in ¢xccution time. Although the implementation of such a facility would
appear 10 be quite straightforward it is likely to be utilized infrequently and as such
is not a high priority item.

The last item we will discuss as a possible enhancement regards the ability to
specify breakpoints. Currently we arc able to specify any number of microinstruc-
tions as locations where execution is to be stopped and control is to be returned (o the
user. [s this sufficient? In many cases it is. However, it is often convenient to be able
to have some other action performed by the microprocessor regarded as a breakpoint
condition. One obvious candidate is a reference (rcad or write) to a specific memory
location. Another might be when a specified register takes on a certain value. Such
facilities would certainly give the user much better control over microprograms and
as a result would make debugging easier.

We conclude by emphasizing that although the facilitics discussed above would
increase the power of the simulator greatly they would also tend to make it more
complicated to use and possibly much less efficient. The ideal would be to implement
these improvements without compromising the design objectives stated above. To do
this would require considerable skill and probably some amount of cxperimentation,
A look at how others have implemented such facilities would likely shed some light
on the subject also.

The reader is referred to Appendix A for a tutorial on the use of the simulator.



4. The Interface

4.1. Infroduction

The following sections cover the design and implementation of a software system
which provides a powerful interface with the Tkonas frame buffer system. To start,
we determine the overall objectives of the interface by defining the facilities to be
provided. We then describe in detail the design and implementation of the two
phases of the system. The first phase involves the development of a basic vector
graphics facility. The second phase extends this vector facility to provide raster
capabilities.

4.2, Objectives

The object of this exercisc is the design of a set of software routines which will
provide the user with a complete and powerful interface to the Ikonas frame buffer
system. We want to utilize the microprocessor in the Ikonas to a high degree in order
to perform output operations as rapidly as possible and also to relieve a considerable
burden on the host CPU. The first step is to define just what facilities we must im-
plement in order to provide an interface which can easily support a wide range of
applications. We will approach this task in two ways. Firstly, by considering just
what type of applications are to be supported we will see precisely whal facilities will
make their implementation straightforward. Secondly, we will look at some existing
systems to see what facilities are common. This will allow us to benefit from the
expericnce gained by others and to consider how this system might be made compati-
ble with existing standards,

Some of the most important applications we want to support are those which are
highly interactive. These are the most demanding, as far as performance is
concerned, since good user feedback is a necessary prerequisite to success for these
programs. Operations which are typical in such applications are menu selection,
object selection, dragging of menus, objects or cursors, highlighting and painting.
Qutput primitives used by such programs arc normally lines, polygons and text.

Another class of applications which we would like to support are those which
use image synthesis techniques. In this case we will need to produce shaded polygons
(possibly with anti-aliased edges), anti-aliased lines, and possibly curved lines, curved
surfaces and texture maps. Including some of the latter items may be excessive, since
we are working at a very low level and are, in fact, developing a device interface. We
also will be working in 2-dimensional space since we lack sufficient hardware at this
time to support a proper 3-D interface. Successfully implementing the full
functionality desired will likely prove impossible. What we must aim for are some

13-
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reasonable compromises which will provide a useful device for many applications and
which will be sufficiently flexible to allow other abstractions to be built on top of this
one.

Calligraphic display systems have been in use for many years now, whereas ras-
ter displays have yet to reach maturity. Thus considerable effort has been spent on
the design of vector display processors. We can benefit from this experience by look-
ing at some of the results of this work.

The Evans & Sutherland Multi-Picture System is currently one of the better
known and most powerful vector display systems on the market. The display proces-
sor in this system traverses a hierarchically structured display file stored in local
memory, manipulating a transformation stack, applying the current transformaticn to
coordinate data, and clipping the result to gencrate a transformed display file also
stored in local memory. A separate refresh controller then maintains the displayed
image by traversing the transformed display list thirty to sixty times a second. The
system software is designed to maintain commands within the transformed display
list in the form of picture segments which can be created, destroyed and updated
under software control [EVANS1]. This picture segmentation allows the user to
maintain an output data structure within the refresh memory which can be updated
to effect picture modifications without the need to regenerate the entire scene. This
has the effect of providing a dynamic display which can be changed at video refresh
rates. Routines are provided for creation and destruction of segments along with a
facility for appending to existing segments. The user has control over the visibility of
individual segments and whether or not a segment is to be sensitive to light pen detec-
tion. A double buffering facility is also provided to allow for higher update rates. A
limited segment structuring capability is available by allowing segments to be embed-
ded within other segments.

Newman and Sproull [NEWM?79] discuss segmentation as a means of maintain-
ing a display file which can be manipulated in order to obtain dynamically changing
pictures. Techniques for implementing the display file are discussed and ideas for
extending such a system to include raster operations are also covered. A linked list
structure is recommended, where each record in the list is a picture segment. A sim-
ple technique for enabling and disabling segments is given and addition or deletion of
segments is done with simple pointer manipulations. For stored image displays a
scheme for batching updates and regenerating the complete image upon request is
described. One can conclude from their discussion that developing a segmented
display filc based system is definitely a worthwhile effort. It seems that such a system
provides the flexibility and power we are looking for.

The Graphics Standard Planning Committee (GSPC), a former committee of
the ACM Special Interest Group on Computer Graphics (ACM-SIGGRAPH), spent
a considerable amount of effort looking at existing graphics systems in order to
develop a standard for graphics software packages. The reports made by this group
[GSPCT7, GSPC79] describe a set of functions which represent a recommended
standard package. Here again we find that a segmented display file structure for
maintaining and updating picture definitions is recommended. Although the purpose
of those reports was not to discuss implementation issues, they do give rough specif-
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ications for the functionality of each routine defined. The system they have proposed
is referred to as the "core™ system and hereafter we shall refer to it as such. Since
the core represents a proposed standard, one of the objectives of this work was to
make the system sufficiently complete to allow a core system to be easily built on top
of it. Whenever the approach here differs significantly from the proposed core
system we will briefly describe possible techniques for implementing the core
features using the facilities provided.

Thus it would seem that a segmented display file which is interpreted by a
display processor is the recommended approach to developing a powerful and dynam-
ic graphics facility. Collecting logically related output primitives in segments
provides a modular approach to picture generation and allows for fast, selective
identification and modification of the displayed image. The problem however, is that
this scheme has been developed mainly for calligraphic display systems which are
capable of interpreting the display file and updating the screen at video refresh rates
(e.g. 30 times per second). Despite this fact, many of the ideas involved can still be
applied to a raster implementation. The difficulty lies in extending the capabilities of
such a system to utilize the power inherent in a good frame buffer display.
Techniques such as colour table animation, z-buffer hidden surface removal, bit
plane manipulation, and antialiasing simply do not exist in a vector system.
Unfortunately, experience with display processors for raster systems is so limited that
there is little in the way of published results to provide ideas and/or suggestions.
Thus one of the main objectives of this project was to try and gain some experience
by implementing an interface to the Ikonas frame buffer system which provides some
of the dynamics available with a calligraphic display system and also utilizes the
power and flexibility of the frame buffer.

This system is quite similar to those mentioned above in that a segmented
display filc provides the power and interactivity that we desire. The difference in our
case is that we are working with a raster display instead of a vector display. We are
adapting these tried and true techniques (o a somewhat different display technology.

The implementation of the interface has been broken down into two major
phases. The objective of phase one was to implement a vector display system. This
system formed a framework for phase two and allowed us to overcome most of the
difficulties which were independent of the type of output being produced. Thus all of
the segment manipulation facilities and the host/microprocessor interface were
completed at the cnd of phase one. The purpose of phase two was to modify and ex-
tend the phase one system to implement the desired raster facilities. This inveolved
solving some rather difficult problems regarding dragging, highlighting and selection
(picking) of scgments. In the next section we will discuss the phase one implementa-
tion in detail.
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4.3. Phase One - A Vector System

4.3.1. Phase One Overview

[t is important to note that although we have implemented a vector display
system to run on the Ikonas, this was by no means intended to become a usable
production system. There are two main reasons for this. The first is that throughout
this phase of the implementation we kept in mind the fact that the ultimate goal was
a raster implementation. Thus we avoided spending unnecessary effort on details
specific only to the vector capabilities. The second reason is that because we are run-
ning on a raster system we must scan convert vectors in the microprocessor. Thus, we
are unable to display a large number of vectors at video refresh rates. What these two
points really mean is that this is not a good vector graphics system - but then, that
was not our objective. Our objective was a good raster graphics system.

To imitate a vector display we make use of the auto-clear feature of the lkonas
frame buffer. Turning on auto-clear instructs the frame buffer controller to clear the
display memory to zerocs as it is being read for output through the video chain. The
effect of doing this is that the frame buffer is zeroed once every thirtieth of a second.
In order to maintain a stable image on the screen we must constantly regenerate the
image and write it into the frame buffer before the start of the next display cycle.
This is effectively the same function performed by a vector display processor.

A microcode routine has been written which can generate a normal (aliased)
vector in approximately 10 usec + 1 psec per pixel. Thus we are capable of drawing
several hundred short vectors within each display cycle. This provided a reasonable
prototype system on which to base the raster implementation.

4.3.2. Phase One Objectives

Now we will look in detail at what was implemented in phase one and discuss the
reasons for the various design decisions which were made. Most of the facilities, oth-
er than the output primitives themselves, are centered around the manipulation of
segments in the display file. Thus we will tend to concentrate more on those. For now
it is sufficient to assume that the only output primitives used are move and draw
instructions.

First we must be capable of initializing the system. To do this we call the func-
tion Seglnit() which initializes the display processor and the host software. This
routine must be called before performing any segment operations.

After initialization one of the most obvious facilities necessary is the ability to
create or open a new segment in preparation for adding output primitives to it. We
decided o define a CreateSegment function, as opposed to an OpenSegment such as
that proposed in [NEWM79]. OpenSegment implies the ability to reopen an existing
segment which would have the effect of replacing the existing segment with the new-
ly opened one. As discussed in [FOLES82] such a capability can easily be built on top
of existing routines with an appropriate sequence of calls to CreateSegment,



A Powerful Interface to a High-Performance Raster Graphics System 17

DeleteSegment and RenameSegment {the latter two will be discussed shortly).
CreateSegment  provides a more concise function which leaves no room for
misinterpretation. It takes a single integer argument which represents the name to be
used in all future refercnces to this segment. It is generally agreed that integer names
are the most efficicnt and convenient means of identification and give the user
considerable freedom and flexibility.

Once a segment has been created, and the appropriate output primitives have
been placed in it, we can close the segment by calling the function CloseSegment.
This function takes no arguments and simply performs any cleaning up operations
necessary to close the currently open segment. Note that this implies that only one
segment may be open at any one time. This makes both the segment control software
and the user’s software much simpler and will rarely cause trouble since onc can
almost always arrange to generate the required images without the need for having
multiple scgments open simultaneously.

If a call to CreateSegment is made before the currently open segment is closed
we could take one of two possible courses of action. We could treat this as an error
condition and issue an appropriate message or we could automatically close the open
segment and create the new one as usual. The core system advocates the former,
whereas [INEWMT79] recommends the latter. We have decided not to treat this as an
error condition, that is to take the latter approach. This tends to provide a more
succinct facility for generating picture segments by avoiding the need for an explicit
call to CleseSegment. The semantics of this operation are quite clear and should not
cause confusion. It would be lairly straightforward to implement the error condition
by simply defining functions OpenSegmient’ and CloseSegment’ which keep track of
whether or not a segment is open and issue the error message when appropriate.

There are three major attributes commonly associated with segments which we
must allow the user to manipulate, These are visibility, highlighting and detectability
(or pickability). Visibility refers to whether or not a segment is currently being
displayed on the screen. Highlighting refers to whether or not a segment, when visi-
ble, should be displayed highlighted. A highlighted segment should, in some way,
stand out rom the others so as to attract the user’s attention. A common means of
highlighting is to simply increase the intensity of the segment. Finally, detectability
defines whether or not a particular segment is capable of being selected by a pick
operation (to be discussed shortly). It is often useful (or necessary) to be able to
defing sclectively which picture segments are detectable. For instance, a screen
displaying several menus (although not necessarily a good practice) could selectively
enable and disable cach menu by setting their detectability attribute.

In our case the highlighting of a segment is implemented by changing the colour
of the highlighted segment to a user specified value. The function

SetHighlight( red, green, blue )

defines the colour which is to be used for this purpose. The given red, green and blue
values are 8-bit quantitics which correspond (o the red, green and blue bytes of the
frame buffer memory. Higher level routines can casily be defined to allow the user to
specify the colour by other convenient means such as by providing the hue, saturation



18 P.H. Breslin and J.C. Beatty

and lightness. The default value for the highlight colour is full white. Allowing
higher level software to control this highlight colour will make it possible to ensurc
that this colour contrasts in some way with the objects being displayed.

The core system defines three separate functions for manipulating segment
attributes. In our case we define a single function

SetSegment( segment_name, aftribute )

which allows the user to turn cach attribute on or off for the given segment. Provid-
ing a single function instead of three keeps the number of function names which the
user must remember (o a minimum and will also facilitate addition of other attributes
in phase two. Furthermore, we can allow the user to set more than one attribute with
a single call to the function by allowing the attribute values to be logically-ORed
together:

c.g. SetSegment( n, NON_HIGHLIGHTED | VISIBLE };

Thus providing greater flexibility in a more succinct way. A core implementation
would simply define the appropriate functions which would in turn call the SetSeg-
ment routine.

An obvious necessity is a facility for deleting segments when they are no longer
required. The function

DeleteSegment( segment_name )

removes the given segment from the display file and releases the memory which it
occupied. Display file memory management is a fairly major issue in the design of
any display processor. In our case we use an extremely simple and straightforward
technique which will be discussed in some detail when we lock at the specifics of the
implementation. We will see shortly that there are certain conditions under which the
user will not be allowed to delete a segment. In this casc an appropriate error
message is issued and an error status is returned.

The RenameSegment function, mentioned earlier, allows the user to change the
integer name which is used to reference a particular segment. Two arguments, the
old name and the new name, must be supplied. The call will fail if a segment with the
old name does nol exist or if a segment with the new name alrcady does cxist. This
routine allows greater freedom in the choice of names by allowing them to be
changed to whatever is most convenient for the user software.

The concept of immediate visibility is an important and useful one. It is often
desirable to be able to see the output primitives appear on the screen as soon as they
are added to the current segment. Conversely, it is sometimes preferable to output all
the primitives to a given segment, without modifying the displayed image, and then
have the whole segment become visible at once. The corc system defines a SetVisi-
bility function which allows the user to control whether or not output is immediately
visible. In our case we have no need for such a function (although one could easily be
built on top) since immediate visibility can be achieved simply by setting the current-
ly open segment visible immediately after creating it. Newly created segments are
not visible by default, so in effect the current segment, like any other segment, will
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remain invisible until it is explicitly made visible. Thus we have very cican and
consistent semantics for controlling the visibility of segments without the need to
define additional functions.

Another common operation performed with segments is to move or translate
them to various locations on the screen. This also permits dragging of segments by
arranging for them to move in relation to the movements of an input device such as a
light pen or a digitizing tablet. For example, a tracking cursor can be implemented as
a segment which moves in such a fashion. The most common technique used tc im-
plement such a facility is to place an absolute move instruction at the beginning of
the segment and make all subsequent move and draw operations relative to either the
initial location or to the immediately preceding position. Then, in order to translate
the entire segment, we need only modify the coordinates of the initial absolute move
instruction. In our case when a segment is created an absolute move instruction to
the current (x,y) position is automatically placed at the beginning of the new seg-
ment. The function

MoveSegment( segment_name, abs_x, abs_y )

is provided to change the initial position of the given segment to the specified
absolute device coordinates. It is the responsibility of the user software to ensure that
the segment contains only relative move and draw primitives (both absolute and
relative primitives are provided) in order to achieve the desired effect. MoveSegment
will fail if the parameter valucs supplied will translate any portion of the segment
beyond the screen boundaries. This restriction is enforced by keeping track of the
bounding box of each segment (i.c. the minimum and maximum x and y coordinates
of the segment).

In addition to moving segments it is convenient to be able to modify the colour
of a segment. Each segment has a colour instruction at the beginning which initial-
izes the drawing colour for the segment. To modify this instruction we provide the
function

ColourSegment( segment_name, red, green, blue )

which resets the initial colour of the named segment to the given value. Provided the
user has not piaced other colour instructions in the segment this will result in chang-
ing the colour of the entire segment.

Many of the graphics systems which provide segmentation facilitics also provide
the ability to reopen an existing segment in order (o append output primitives to it.
Such an AppendToSegment function is useful in many situations, which is of course
why many systems provide it. However, the implementation of such a facility turns
oul to be non-trivial. The most overwhelming difficulty is the need to retain extra
information regarding the state of a segment at closing time in order to restore it to
the same state when reopened for appending. The core system does not provide such
a scpment extension capability and [MICH78] discusses the justification for this
design decision. We agree with this decision and thus do not provide such a facility.
The justifications are sufficient and the inherent uncleanliness of the implementation
reinforces this decision.
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Another important issue is whether or not to provide some added segment
stencturing facilities. The system, as described thus far, permits us to create and
maintain a simple set of segments containing move and draw primitives. This set can
be thought of as a lincar, circularly linked list of scgments (since this is one of the
most common display file storage techniques used). We bave not described, for
example any means of maintaining other types of structures such as a more hierarch-
ical one which may correspond more closely to an application data structure in use.
The ubiquitous paradigm of the circuit diagram illustrates the potential of such a
facility. In this type of application it is typical to find many symbols, such as resistors
or transistors, which appear many times within a single diagram. Rather than repeat
the definition of each line in such a symbol (wasting both execution time during
picture creation and display file space) it would be prefcrable to define the symbol
only once and then refer to this definition for each instance required. Thus we could
think of segments calling or invoking other segments, providing a type of "picture
subroutine™ mechanism. In the general case one would want to apply a transforma-
tion before invoking any sub-picture. This would allow even greater flexibility by
providing the ability to have scaled and rotated versions of sub-pictures repeated
upon demand. Tn fact some powerful display processors provide such facilities.

We have implemented, in this system, such a facility without any of the
transformation capabilities described above. The function

DPCallSegment{ segment_name )

adds an instruction to the currently open segment which will invoke the named seg-
ment when executed, The invocation does not include the exccution of the absolute
move instruction at the beginning of the segment and thus the origin of the invoked
segment is the current (x,y) position at the time of the call. Similarly, the colour
instruction at the beginning of the segment is not executed so that the caller can have
control over the colour of the instance. The segment specified must alrcady have
been created at the time DPCallSegment is invoked.

It is important to keep clear in one’s mind the difference between the original
definition of a segment (which may or may not be visible) and the possibly many
instances of the same segment created through invocation. A segment which on its
own is not visible, can have instances which are visible because they have been refer-
enced from visible segments.

It is also very important in this situation to ensure that the semantics of various
segment operations remain consistent and predictable. The following points define
the results of some potentially ambiguous situations.

1) Setting a segment to be highlighted will result in all visible
instances of the scgment being highlighted.

2) The subsegments called from a highlighted segment will also be
highlighted. -

3) Setting a segment to be detectable will result in all displayed
instances of the segment being detectable.

4) The subscgments called from a detectable segment will also be
detectable.
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5} Setting a segment visible only affects the single instance of the
scgment which corresponds to the original definition.

6) Similarly, translating a segment only affects the original defini-
tion.

7)  An attempt to delete a segment which is referenced by other
segments will fail.

Points 1) and 3) above indicate that we have little control over individual seg-
iment instances. This is because there is only one definition of each segment within
the display file. However, points 2) and 4) overcome this apparent shortcoming, Ba-
sically, segment instances must be controlled through their parents (the calling seg-
ments). Effectively this means that when a segment is set detectable or highlighted
the whole segment (including all referenced sub-pictures) is affected. The effect can
be thought of as being equivalent to having copied the contents of the sub-segments
into the calling segment (except that the current position and drawing colour do not
change over a segment call).

The approach taken in point 7) may seem somewhat restrictive. However, it is
the simplest and least error prone solution. The questions and ambiguities which
arise from allowing such a deletion, and the expense of performing it, justify taking
this course of action.

The segment structuring facility provides a simple and yet extremely powerful
tool for picture manipulation. The added flexibility for the user and the ability to
utilize display file storage more efficiently are two advantages which make this facili-
ty well worth the effort involved in its implementation.

The output primitives, although only mentioned briefly thus far, are obviously
the most important part of a segment since they define its content. The following set
of output primitives were provided in phase one. Each of these results in adding a
single instruction to the currently open segment.

DPAMove{ abs_x, abs_y )

Change the current position to absolute device coordinates {(@hs_x, abs_y).

DPADraw( abs_x, abs_y |
Draw a vector from the current position to the absolute device coordinates
(abs_x, abs_y). Then sct the current position to the new endpoint.

DPRMove( rel_x, rel _y )
Change the current position by adding the relative device coordinates
{rel_x, rel_y)toit.

DPRDraw( rel_x, rel_y }
Draw a vector from the current position to the current position plus the
relative device coordinates (re/_x, rel_y). Then update the current posi-
tion to the new endpoint.

DPCallSegment| segment_name }
Invoke the named segment. Its origin will be the current (x,y) position. The
current position and drawing colour are not affected by this primitive,
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DPColour( r, g. b )
Set the current drawing colour to the given colour specified as a device red,
green and blue colour. (Newly created segments have a colour primitive
automatically added to the beginning of the segment).

DPRirWaitf(}
“This function creates an instruction which causes the processor to wait for
the start of a new vertical retrace period before continuing the cxecution of
the display file. This is useful for ensuring that subsequent lines are drawn
during the video blanking period.

The pick function alluded to earlier, in reference to the detectability attribute,
is the only facility we have not discussed. A pick or selection operation allows the user
to select parts of an application data base or model which corresponds to a portion of
the displayed image. The selection is normally performed using some type of input
pointing device such as a light pen or a mouse witha tracking cursor. Most such input
devices provide only an {x, y) coordinate pair. The program must find some way to
use these coordinates to select a portion of the picture structure being displayed. This
is the purpose of the pick function. It returns the name of a segment which is, in some
sense, close to a given input point. This allows the user to relate the segment name (o
the application data structure in use.

In our case the function
PickSegment( x, y, names )

performs the desired operation. The third argument ‘names’, is actually an array in
which will be returned a set of segment names. These will be the names of all nested
segments at the time that the "closeness" criterion was satisfied (the most decply
nested segment is named first). The number of names returned is provided as the
value of the function. Note that the actual input of the (x,y) coordinates is not done
by the pick operation, These must be supplied by the caller. Thus the input operation
is completely independent of the pick operation and no assumptions are made as to
the type of input device used. The position must be given in absolute device
coordinates.

There are four techniques commonly used to perform hit detection. Many vee-
tor systems supporl a lightpen which includes special hardware for selecting the
object which is nearest the pen when a selection is made. Typically, a name register
is available which contains the name of the segment which was being generated when
the hit occurred. This technique does not apply in our case.

Systems which provide windowing and clipping hardware can implement a pick
operation as follows. First a small two or three dimensional window is defined around
the selcetion point (in world coordinates). Then the picture data is transformed and
clipped to this window (omitting display code generation). As soon as some entity is
found to intersect the window a hit is declared. This technique has the advantage of
having traced the higher level graphics data structure to the selected item. Thus
relevant information is immediately available. Unfortunately, this method is also not
applicable since in our casc transformation and clipping are taking place at a much
higher level (independent of the segmentation facilities).
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A third method is to utilize the bounding box of cach segment. By comparing
the position of a scgment’s bounding box to the sclected coordinates we can calculate
an approximate distance between the two. By selecting the segment which minimizes
this distance we solve the problem. This technique has the advantage that it is
extremely simple and easy to implement. Unfortunately, it has two major
disadvantages which preclude its use here. Firstly, it provides only an approximate
result. The bounding box of a segment is a very crude approximation to its actual
shape. Thus this technique will be cerror prone and can produce totally unexpected
results {from the users point of view). Secondly, the bounding box provides no infor-
mation about the structure of the segment at the selection peint since it would be very
difficult to keep track of the bounding boxes of individual segment instances. The
user may need to select a sub-segment and this method would have to go to great
lengths to provide a reasonable answer. In general we would only be capable of pro-
viding the outermost segment name of any structure.

The last method of hit testing is the one which is used here and is similar to the
windowing technique except that it is done at the device level utilizing the display file
instead of a higher level graphics or modeling data structure. Instead of interpreting
the untransformed display structure we interpret the transformed display file,
effectively generating output until an output primitive falls within a rectangle
surrounding the sclection point. When the hit occurs we know which segments were
executing and this information can be returned to the user. If no primitive falls within
the rectangle, then we can either try again with a larger rectangle or we can treat it
as a miss and return some such indication to the caller. The latter choice is taken here
and the PickSegment function will return a count of zero if no segment caused a hit.
The function

PickSize( width, height )

is provided to allow the user to set the size of the rectangle used during hit detection.
Thus the former action could be taken if desired.

The core system has a slightly different definition for the result of a pick opera-
tion. Since segment structuring is not provided, only a single segment name need be
returned. However, in addition to the segment name a "pick-ID"™ must be provided.
Each output primitive has associated with it a pick-1D which can be set by the user.
The pick-ID returned from a pick operation represents the ID of the output primitive
selected. This provides a finer selection capability by resolving the hit to the output
primitive instead of only to the segment level. In order to allow such a facility to be
built onto our existing system we have provided some added information which will
make this feasible. Each output primitive called returns as its value the offset into the
current segment of the generated instruction. We also provide the function

GetPickOffset()

which returns the offset into the executing segment which was reached when the most
recent pick operation was performed. A zero is returned if the last pick failed or if the
selected segment no longer exists. By mapping from offsets to pick-1D’s a core system
could provide the required facility without difficulty.
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We have fully defined the functionality of our phase one implementation. The
following section will cover in detail how these functions have been implemented on
the Tkonas system.

4.3.3. Phase One Implementation

We summarize the previous section by listing the complete set of functions
defined.

Segment Control:

CreateSegment( segment_name )

CloseSegment()

DeleteSegment( segment_name )

SetSegment( segment _name, attribute )
RenameSegment( old_name, new_name )
MoveSegment( segment_name, abs_x, abs_y |
ColourSegment( segment_name, red, green, blue )
PickSegment( abs_x, abs_y. seg_names |

Primitives:

DPAMove( abs_x, abs_y )
DPADraw( abs_x, abs_y )
DPRMove( rel_x, rel_y |
DPRDraw( rel_x, rel_y )
DPColour( red, green, blue )
DPRirWait()

Miscellaneous:

Seglnil(}

SetHighlight( red, green, blue )
PickSize( width, height )
GetPickOffset()

In this section we will look at how these functions have been implemented on the
lkonas, concentrating on the segment organization and control aspects.

One of the most important aspects of the implementation is the display file
organization, We will examine this by [irst looking briefly at the way the microcode
executes the display instructions, after which we will look closely at how display
instructions are organized into picture segments.

As mentioned carlier the scratchpad memory within the [konas is used for
host/microprocessor communication.- This memory contains all the instructions
which make up segments. The memory itself is high-speed static RAM (100
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nanosecond) which the microprocessor can read or write (32-bit words) in a single 200
nanosecond instruction cycle. It actually serves a dual purpose within the system. The
majority of the memory is reserved for storing picture scgments created by the user.
The remainder is reserved as work memory for the microcode and contains various
tables, control stacks and other state information.

The picture segments consist of instructions to the display processor which we
will refer to as macro-instructions. The high order six bits of cach macro-instruction
contains its operation code. The remaining 26 bits are free (o be used in whatever way
is most convenient and efficient for each particular operation. Most commonly this
will be either immediate data or a pointer to arguments stored elsewhere in memory.
A six bit opcode field was chosen since it was felt that a total of 64 possible instruc-
tions would be more than sufficient, while a five bit field providing only 32 may not
have been. The 26 bits remaining are more than sufficient to store a full 24-bit Ikonas
bus address or a 20-bit high resolution {(x,y) coordinate pair with room for sign bits in
the case of relative coordinates. No instructions are less than one word in length since
the memory is only word addressable. The overhead of decoding more complicated
instruction formats does not seem justified at this time.

The microcode maintains a set of macro-registers which are used by many of the
macro-instructions. These consist of a program counter register, a stack pointer, the
current (x,y) location, the current drawing colour and a status register. The program
counter contains the address of the next macro-instruction to be executed. The stack
pointer is the address of the top of a stack which is used for saving and restoring the
processor state upon segment entry and exit. The status register contains various flags
which will be discussed shortly,

Macro-instructions are executed by fetching the instruction pointed to by the
program counter register and using the opcode field as an index into a jump table
stored in RAM. Each opcode has an associated section of microcode which performs
the function required for that operation. The jump tablc contains the address of cach
of these routines and after indexing into it we simply branch to the routine. The 26-
bit data ficid is left in register zero for use by the macro-routine.

Note that we branch directly to cach microcode routine instead of performing a
subroutine call. This is done because the hardware subroutine stack within the
microprocessor is only four words deep. Thus the maximum depth of nested subrou-
tines is four. By performing a branch we allow the microcode routines to use the
maximum nesting level for their own purposes. BEach of these routines must then
terminate by performing a branch back to the start of the main instruction fetch
routine (actually a branch to location zero).

One interesting design decision was to keep the macro-registers stored in RAM
instead of using the general purpose registers within the microprocessor. There are
several good reasons for doing so despite the penalty of increased access time. The
most important of these is to facilitate debugging. We would have had to go to much
grealer lengths to arrange for the host to access the macro-registers had we decided
to use the hardware registers since these cannot be read by the host directly. Another
reason for using the RAM is that it gives the host greater control over the processor
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by allowing access or even modification of these registers (e.g. for initialization). Fi-
nally, a third reason is that each macro-routine then has access to the full set of
hardware registers instead of a restricted subset. This allows better optimization in
some of the more complicated scan-conversion routines. Because the raster imple-
mentation (phase two) does not perform constant refresh, the overhead of using RAM
for storing the macro-registers is not as critical. Scan conversion is the most time
consuming operation and thus optimizing it is more beneficial.

The data structure we have implemented to store picture segments is very
similar to that described in section 8-3 of [NEWM?79]. Because the display processor
must constantly refresh the image memory in order to maintain the displayed picture,
the display file is organized as a circular linked list of segments. Thus the processor
continually traverses this structure executing the scgments as fast and as often as is
possible.

We will look at the structure of individual segments within the display file and
see how the various segment operations affect this structure. Figure 4.1 shows the
initial state of a segment as it would exist immediately following a call to the
CreateSegment [unction.

.
Start of new ——— = No-Op
segment
Jump - » 10 next segment

in list

Move y X

Colour b g r

Push-Set status name

Pop-Jump

Free memory —————w

Figure 4.1. A newly created segment

The creation causes an effectively empty segment to be placed in the free display
memory immediately following any existing segments. Once this is done the new seg-
ment is linked into the circular list by first setting the jump instruction in the new
segment to branch to the segment which will follow it in the list and then modifying
the jump instruction in the previous segment to have it transfer to the new one. This
ensures that the new segment is added to the list with a single atomic write to the
display file which can be done by the host without interrupting the execution of the
display processor.
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We sce that when the processor branches to execute a new segment it will
exccute the ne-op instruction at the beginning and then transfer immediately to the
start of the next segment in the list. The segment contents are not executed since the
new segment is invisible, The effect of setting this new segment visible is illustrated
in figure 4.2.

Push-Jump

[ ]

Jump

Move ¥y X

Colour b g r

Push-Set status name

Pop-Jump

Figure 4.2. A visible (empty) segment

Here we find that the no-op instruction has been replaced by a push-jump to the
move instruction. The push-jump instruction pushes three words of state information
(current position, drawing colour and program counter) onto the stack and then
branches to the specified location. Now the contents of the segment are executed.
The move, colour and push-set commands arc initialization instructions for the seg-
ment. The move is an absolute move to the segment origin which was discussed in the
previous section. The initial colour instruction ensures that the drawing colour is set
appropriately before executing any output primitives. The push-set instruction pushes
a fourth word onto the stack which contains the current contents of the status register
along with the name of the segment. It will then set bits in the status register (if
necessary) according to the status bits stored with the instruction, The status register
contains three bits which are defined as follows:

Bit 0 Arc we currently performing a pick operation.
Bit 1 1s the current segment detectable.
Bit 2 Is the current segment highlighted.
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The push-set instruction is responsible for turning on bits 1 and 2 of the status register
for the current segment. 1t docs nof turn these bits off, since the current segment
inherits the status of its parents. The bits are turned off by the pop-jump instruction
at the end of the segment which restores the status register, the program counter, the
drawing colour and the current position from the stack. Restoring the program
counter results in an implicit jump to the instruction immediately following the most
recent push-jump command.

The push-set instruction performs a secondary function, which is to set the draw-
ing colour for highlighted segments. 1f the highlight status bit is on then the current
segment must be drawn with the current highlighting colour. In this case we simply
update the current colour register appropriately. The colour instruction will not
change this colour as long as the highlight bit in the status register is on.

An obvious question to raise at this point is why the push-set instruction was not
simply incorporated into the push-jump instruction. The reason for this will become
clear if we look at how the segment calling facility is implemented.

When a segment references another via the DPCallSegment primitive the
instruction inserted into the calling segment is a push-jump to the called segment.
However, we do not transfer o the very beginning of the segment since this would
cause either the push-jump or the no-op followed by the jump to be executed. Neither
of these would have the desired effect. Instead, we branch to the push-set instruction
near the start of the called segment. Avoiding the move ensures that the origin for the
called segment will be the current position at the time of the call. Avoiding the colour
instruction forces the called segment to be drawn with the colour in effect at the time
of the call, Therefore the calling segment has control over both the origin and the
colour of the sub-picture.

By executing the push-set instruction we ensurc that the status is set
appropriately for the called segment and that the correct segment name is pushed
onto the stack. 1T we had decided to incorporate the push-set with the push-jump
instruction it would have been necessary to have the segment status and name repeat-
ed at each point of call. This would clearly be undesirable. Instead, this information
exists in only one place, with the segment to which it applies. Figure 4.3 shows an
example of a segment call.

The pop-jump at the bottom of the called segment restores the state of the caller
and returns to the instruction immediately following the call.

We have seen that immediately after creation a segment is effectively complete
except that it contains no output primitives. In fact, any of the segment operations
can be applied to a segment once it has been created, even though it may not yet be
closed. This is an important point in view of the fact that we do not provide a segment
append mechanism. This flexibility makes it much easier to construct segments
without the use of such a facility. Let us now look at how the output primitives are
added to a newly ¢reated segment. Figure 4.4 shows the addition of a draw primitive
to such a segment.
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Figure 4.4. Adding an output primitive to the segment

The addition is performed by first adding an cxtra pop-jump instruction
immediately following the existing one. Once this is done we can safely overwrite the
first pop-jump with the new output primitive. This technique ensures that the seg-
ment is always consistent. The display processor can be exceuting the segment while
we are adding primitives 1o it. Since new segments are created at the beginning of the
free display file memory we can continue adding output primitives as long as free
display file memory is available.
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Any time after a segment has been created its origin can be madified by calling
the MoveSegment function. This routine simply rewrites the absolute move instruc-
tion at the beginning of the segment with one containing the coordinates of the new
origin. Similarly, the segment colour can be modified with the ColourSegment
routine. This routine overwrites the colour instruction at the beginning of the given
segment with a new one containing the new colour.

The deletion of a segment is a much more complex operation which we will look
at in detail. Te remove a segment we must first unlink it from the segment list and
then reclaim the display file memory which the segment occupied. Unlinking the
segment is quite simple and is done by modifying the jump in the segment preceding
the deleted one to branch to the segment which follows the deleted one. The difficult
part is releasing the memory occupied by the segment. In general, management of
the display list memory can be rather complex. Reclaiming unused memory and
avoiding fragmentation are the-main objectives. In our case we have avoided any kind
of complicated memory management schemes in favour of a very simple and
straightforward technique for deleting segments.

When a segment is deleted we immediately recover the memory which it had
occupied by moving all segments following the deleted one upwards in memory to
close the gap created by the deletion. A result of this operation is that several of the
jump and push-jump instructions will have been invalidated by the move. In order to
minimize the number of these jumps which will require modification all jump and
push-jump instructions operate relative to the current value of the program counter
register. Thus instead of containing an absolute target address, the jump instructions
contain a relative quantity which is added to the program counter. This means that
the push-jump instruction at the beginning of cach segment will not be invalidated by
the block move. In fact, it also means that only instructions which branch across the
gap created by the deleted segment will require modification. Note that this includes
push-jump instructions which are used to perform segment calls from within other
segments. Thus for each segment we must know what calls are made and where these
calls arc located within the segment.

To clarify the delete operation we will go through the steps involved in perform-
ing one. Note that the host software is performing all these operations through
appropriate display file manipulations.

1) Unlink the segment from the display file list.

2) Free all host storage allocated for the segment.

3) Halt the display processor.

4) Modify all jump instructions which jump over the deleted scg-
ment.

5) Set up a command to have the processor perform a block
memory move (o close the gap consisting of the deleted scg-
ment.

6) Restart the display processor (ensuring that the block move
instruction is cxecuted before any picture segments).
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Mote that the display processor must be halted in order to perform steps 4 and
5 since modilying the jump instructions leaves the display file in an inconsistent state.
Only after the block move has been performed is the display file once again correct.
By using pe-relative jumps we have minimized the number of instructions which must
be modified during step 4, thus minimizing the length of time for which the display
processor must remain halted.

The use of this very simple technique for deleting segments has allowed us to
avoid any complicated free storage management schemes and ensures that the frec
display memory is always a single contiguous block. The cost of these advantages is
a relatively expensive delete operation. However, another advantage resulting from it
is a very inexpensive allocation mechanism. Since the free memory is contiguous
there is no need to search amongst a set of free blocks for an appropriate chunk of
memory. This is often necessary with techniques which fragment the display file.

Before we go on to discuss the implementation of the pick operation there is one
important part of the implementation which should first be described. A question
which we have not yet answered is just what happens if an output primitive is called
when there is no segment currently open, Similarly we did not say precisely how the
block move instruction discussed above is transmitted to the display processor.

The core system considers it an error to call an output primitive without having
first opened a segment. In our case we do not consider it an error and instead simply
arrange for the operation to be performed immediately instead of being deposited into
a segment. With the auto-clear bit on this will cause any output to flash on the screen,
only to be immediately erased. This is not extremely useful. However, the phase two
system often operates without the auto-clear bit on and such output will remain visi-
ble uniil it is erased by some subscquent operation.

This immediate output facility provides a simple mechanism for implementing
the temporary segments used in a core implementation. The output we produce is
effectively equivalent to that which would be gencrated when outputting to a core
temporary segment.

Let’s look at how this facility has been implemented. In this case, rather than
continually executing the instructions, we want each output primitive to be executed
only once. To do this we have created what is referred to as a control segment. This
is not a true segment as described above, but instead is a sequence of instructions
placed at the beginning of the display file which provide the mechanism we require.
Figure 4.5 shows the internal structure of this control segment as it would be during
normal execution of the display list.

You can see that the structure is similar to a normal segment excepl that the
initialization instructions do not appear and the pop-jump at the end is replaced with
a jump. While in the state shown in figure 4.5 the control scgment simply branches
directly to the first segment in the display file. The last segment in the display list
always branches to the beginning of the control segment.
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Figure 4.5. The Control Segment {disabled)

To utilize this structure for immediate output we first deposit one or two instruc-
tions into the words labeled instruction I and instruction 2 in figure 4.5. When these
are written we enable the control segment for execution by replacing the noop instruc-
tion at its beginning with a jump to instruction 1. This situation is shown in figure 4.6.

Jump

Exccute contents
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Draw

Noop

Put-Noop
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Jump

Figure 4.6, The Control Segment (enabled)

To ensure that the instructions placed in the control segment are only executed
once the segment automatically disables itself after executing the two instructions it
contains. This is the purpose of the put-noop instruction. This instruction writes a
neop instruction into the pe-relative location given as its argument. In this case the
jump which enables the control segment is over-written and thus the segment reverts

to the state shown in figure 4.5.
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Before actually placing an instruction in the control segment we must ensure
that any previous instruction is completed. Currently, to do this we read the word
which enables the control segment for execution and wait for it to become a no-op
instruction. Eventually we will have the processor interrupt the 11/45 immediately
after executing the control segment. Thus we will only have to wait for this interrupt
to occur before outputting the next instruction. We cannot do this at this time since
the UNIX operating system has not yet been modified to handle these interrupts.

It should now be clear how the block memory move used in the segment delete
operation is executed. We simply place it in the control segment and enable the seg-
ment before restarting the processor. In fact, this mechanism is also used to halt the
processor by outputting a halt instruction to the control segment. Thus we have a
simple and powerful mechanism for passing instructions to the display processor for
immediate one time execution,

The control segment is also used to execute a pick operation. As mentioned
previously, the pick operation forces the processor to execute the display list search-
ing for a linc which passes into a rectangular region defined by the user. To perform
this function we have implemented the pick macro-instruction which initiates this
operation. When performing a pick we place the pick instruction into the control seg-
ment and then enable it for execution. The purpose of this instruction is to return the
names of all nested segments which are executing when a hit occurs, These names are
returned by storing them in a reserved arca of the scratchpad memory referred to as
the return stack. This list of names is terminated with a 32-bit negative one which is
not a valid segment name since names are only 16-bits in size.

The pick instruction first turns on the pick bit in the status register and then
performs the equivalent of a push-jump instruction which branches to the first seg-
ment in the display list. Since the pick bit is turned on the processor performs hit
testing during line generation. This involves executing a special version of the line
generator only when both the pick status bit and the detectable status bit are both on.
If no hit has occurred after tracing the complete display file then we return to the
control segment and thus back to the pick instruction. At this point the pick instruc- -
tion knows that the pick failed becaunse the pick status bit is still turned on. In this
case we restore the processor status from the stack (pushed when the operation was
initiated) and write a 32-bit minus one to the first word of the return stack. Thus the
return stack will be empty when the host reads it.

If a hit does occur while tracing the display file the hit testing routine copies the
segment names from the processor stack to the return stack. The pick status bit is
then turned off to indicate that a hit has occurred. Instead of continuing the scan of
the display file we immediately return at this point by first setting the stack pointer
to point to the single stack frame which was pushed by the pick operation and then
transferring to the pop-jump routine. This has the effect of restoring the processor
state and returning to the instruction which immediately follows the pick instruction
within the control segment.

The pick instruction along with the hit testing version of the line generator
provide the complete microcode support for the pick operation. It was decided that a
separate line generator which performs hit testing should be used in order to avoid the
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overhead of testing the pick status bit during cvery pixel output operation. Instead we
need only test the bit before drawing cach vector and if it is on we simply transfer to
the other line generator. Although this is a fairly simple technique it does provide the
functionality required and has the advantage that it is relatively easy to implement.

4.3.4. Phase One Summary

We have developed a basic vector graphics facility with picture segmentation
capabilities. The scgment manipulation facilities along with the structuring
capabilities provide an effective tool for supporting interactive programs which do not
require simultancous display of a large number of vectors. The purpose of this phase
of the project was (o provide a software base for the sccond phase. We have success-
fully achieved this purpose by [u:lly implementing the facilities described in section
4.3.2. In the following sections we will consider what enhancements are required in
order to utilize the flexibility of the frame buffer system and to take advantage of its
frame storage by performing incremental updates instead of constant refresh.

4.4. Phase Two - Raster Extension

4.4.1. Phase Two Overview

There are several factors which make the implementation of a vector system
inherently easier than implementing a solid area raster system. We will discuss some
of these differences and then consider how to overcome the problems which they
reveal.

Two important points define the major differences between the vector and raster
systems, and also lie at the heart of the problems which we must solve. The first is
that with a vector system, because we are constantly refreshing the displayed image,
picture modifications are immediately visible. When solid area scan conversion is
included we simply cannot (with cxisting hardware) update the frame buffer fast
cnough to maintain a stable image. Thus we are forced to perform incremental
modifications to the picture. This technique takes advantage of the frame coherence
property of images. In other words, very often the difference between one frame and
the next is minimal, and thus performing an update as opposed to redrawing the
complete frame will almost always be more efficient.

The sccond property which distinguishes the vector system from a raster one is
the existence of hidden lines and objects. On a vector system essentially everything is
visible since there are no solid faces to obscure the view of an object. This is not true
on a raster system. The ability to generate solid arcas of output means that we arc
able to obscure or overwrite other objects on the display. This fact can lead to
complications for various segment operations such as highlighting and picking.
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In the following sections we will isolate several areas in which problems arise,
due mainly to the differences mentioned above. We will discuss these as they appear
and attempt to determine a reasonable solution in most cases. In the next chapter we
will look at these problem areas in more detail in order to obtain a more complete
understanding of the issues at hand.

4.4.2. Phase Two Objectives

The points mentioned in the previous section completely define our needs for the
phase two implementation. Namely, we must avoid performing unnecessary scan
conversion and we must provide a feasible and usable facility for controlling the
relative priorities (back to front ordering) of the objects being displayed. We will
discuss the latter first.

One of the most common means of defining the ordering of output primitives is
to simply use temporal ordering. In other words, more recent output overwrites exist-
ing objects, and segments are maintained in the order in which they are created. The
difficulty with this method is that the user is unable to alter the order conveniently.

A better technique would be to allow the user to assign a priority to cach seg-
ment, whereby higher priority items will appear on top of (i.e. in front of) lower
priority ones. By providing a means to alter these priorities the user can alter the
relative visibility of the objects being displayed.

We have decided to utilize such a priority mechanism, but instead of assigning
an explicit priority to a scgment we will define the segment name (an integer) to be
its priority. This makes it unnecessary to separately siore the priority of segments
and allows for casy priority manipulation via the existing function RenameSegment.
This scheme was suggested in [NEWM79] and provides precisely the functionality
we require. The ordering of primitives within a segment remains strictly temporal
and thus cannot be altered in any way.

How to efficiently control the updating of the image is a somewhat more
complicated matter. In general we want the displayed picture to accurately reflect
the contents of the display file at all times (immediate non-retained output excepted).
The most obvious way of doing this is to update the frame buffer only when the visi-
ble contents of the display file are altered. We also want to be capable of only updat-
ing those regions of the screen where the changes are localized. This will make the
updates considerably more efficient by minimizing the amount of scan conversion
performed. The problem is precisely how to achieve these goals.

We can start by looking at the various display file modifications which will
result in a visible change to the image. The following list defines this set of opera-
tions:

1) Setting a segment visible.

2) Setting a segment invisible.

3) Deleting a segment (visibly equivalent to 2).

4) Adding output primitives to an open and visible segment.
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5) Highlighting a segment.

6) Dec-highlighting a segment.
7) Moving a segment.

8) Changing a scgment’s colour.
9) Renaming a segment.

This set of operations can be separated into two classes: those which add some-
thing to the display and those which remove something from the display. Moving a
segment is the only operation which clearly belongs in both of these classes. We will
look at these two cases separately.

Let us first consider how to add something to the displayed image. At first one
would think that we need only arrange to output the addition to the frame buffer.
However, doing so does not take segment priorities into account. Upon adding or
redrawing an itcm, any overlapping objects of higher priority must be redrawn so that
the correct back to front ordering of objects is maintained.

Removal of an object from the display is slightly more intricate, since we are
unwilling to erase and redraw everything. We must arrange for the object to be paint-
ed over with the background colour and then cause everything which overlaps the
affected area to be redrawn. Thus objects which were previously hidden will become
visible and higher priority objects damaged by the erasure will also be correct.

The critical parts of these two operations, as far as the implementation is
concerned, are determining which segments overlap the affected region (after first
determining just what the affccted region is) and how to paint over the segments to
be removed. Once we have determined precisely how to update the image we should
then consider precisely when to update the image. Should all updates be performed
immediately upon display file modification or should we give the user control over
precisely when, or even how, to perform the updates? Existing graphics packages,
when outputting to a storage tube device, do not perform removals from the screen
untit the user calls the function Update which erases the screen and redraws the
entire display file. This allows many screen updates to be batched together to avoid
excessive redrawing. However, the main reason for using this technique is the inabil-
ity to perform sclective erasure and the expense of redrawing (usually the device is a
remote terminal communicating over a serial interface). In our case these restrictions
do not apply. We are able to perform selective erasure and the screen updates
proceed considerably faster. However, this does not mean that such a mode of opera-
tion will not be useful under particular circumstances.

Another motivation for not performing automatic updates is simply that the
user may not want (or need) them. Because of the flexibility inherent in the Ikonas
frame buffer system there are a variety of tricks and techniques the user may be
utilizing, for which automatic updates are inappropriate. In any case, we should not
make assumptions as to how the user wants the system to behave. On the other hand
there is likely to be a large class of applications where higher level software does not
want to bother with controlling the screen updates. In these cases automatic updates
are desirable.
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For these reasons we will define two modes of operation for the segment
software, denoted manual and automatic. The lunction

SetMode{ mode )

will be used to set the mode of operation. While in automatic mode the interface will
perform all display file modifications immediately, In manual mode no screen
updates will be performed untess explicitly requested by the user through calls to
functions which we will discuss shortly. Thus we will be capable of supporting appli-
cations which require strict control over the displayed image and also those which
simply want the screen to reflect the contents of the display file at all times.

The question is precisely how these automatic screen updates are to be
performed. We need to be capable of erasing individual segments and redrawing
selected segments upon demand. One method of erasing segments is to redraw the
entire segment using the current background colour as the segment’s drawing colour.
This method has the advantage that it affects only the area of the display covered by
the segment. A second method is to utilize the bounding box information maintained
by the host to erase the rectangle which bounds the area of the display covered by the
segment. This method has the advantage that it is faster to perform the erasure but
has the disadvantage that, in general, it overestimates the size of the segment. A
third option which we immediately rejected is to erase the entire display and redraw
all visible segments.

Assuming that we have crased a segment using one of the two feasible methods
mentioned, we must now determine which of the still visible segments have been
damaged by the erasure. With the first method this information is not at all easily
determined. We have no easy way to determine that the output of one segment
overlaps that of another. However, the second technique suggests a simple scheme
which can be used. We again use the bounding box approximation to test which seg-
ments overlap the erased rectangle by comparing the bounding box of all visible seg-
ments with that of the erased segment. Using this technique will often result in
unnecessary screen updates due to the error involved in using the bounding box as an
approximation to the shape of the segment. However, the overlap tests are extremely
simple and, as mentioned above, we see no simple alternative. Since we will be using
the bounding box to perform the overlap tests there is no advantage to erasing the
segment by redrawing it in the background colour. Therefore we will erase a segment
by overwriting its bounding rectangle with the current background colour. This
background colour may be set by calling the function

SetBackground| red, green, blue )

which (in automatic mode) will immediately redraw the entire display with the new
background colour.

Optionally, we could use the approach taken in [BRAMBSI] for erasing seg-
ments. In this case it was decided to simply redraw the segment in "erase mode" and
not bother to correct the image by redrawing damaged segments. The user would
determine when it is necessary to restore the proper image by asking for the entire
display to be regenerated. Because we are able to draw objects relatively quickly we
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have decided not to take this approach. Using the manual mode of operation it
should be possible to simulate this type of action if necessary.

The following defines the operations which will be performed after a display file
modification in automatic mode.

1) Any scgment which is to be removed from the display will first
have its bounding box filled with the current background colour
and then all segments whose bounding boxes overlap this erased
one will be redrawn in priority order.

2) Any higher priority segments whose bounding rectangle
overlaps that of a segment which was redrawn will also be
redrawn. These will be redrawn in priority order $o as to result
in a correct image,

Note thal when we redraw a segment because it overlaps an affected area of the
display we must process this new segment as in case 2 above. Thus the affected re-
gion on the display tends to grow outwards in a recursive fashion. We are assured
that this process will eventually terminate since we are only redrawing segments of
higher priority than the originally affected one. At first glance one would think that
this scheme could even result in having some segments redrawn more than once. This
would be true if we were redrawing on the fly. However, instead of actually redraw-
ing these segments upon demand we simply flag them as needing to be redrawn,
Then, when we have determined the complete set of affected segments, they are all
drawn in priority order. We may end up flagging segments more than once, but when
we are done cach such marked segment is scan converted only once.

Nested segments pose a minor problem with certain update operations which
affect all instances of a segment, such as highlighting. In such a case we must
arrange for all visible instances of the affected segment to be redrawn. To do this we
must redraw all visible segments which reference the affected one. This is potentially
a very expensive operation.

The Update function mentioned above is also available, This routine erases the
entire display to the current background colour and then redraws the entire display
file. In automatic mode this routine will likely be used to remove immediate non-
retained output from the display. However, this function will probably be used more
often in manual moede than in automatic mode.

Before looking at the screen update facilities for manual mode we will look at
the new display file primitives provided to generate the solid areas which we have
been discussing. The most common and most useful output primitive available on
raster systems is the polygon. The primitive function

DPPoly( n_vertices, x_array, y_array |

will add a polygon instruction to the current segment or, if no segment is open, will
outpul the polygon immediately. The first argument is the number of vertices on the
polygon and the remaining two arguments are arrays containing the x and the y
coordinates of the vertices respectively. This polygon will be drawn with a constant
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colour using the current colour. We will see in the next section that there are certain
restrictions on the type of polygons which may be output and the ordering of the
vertices. However, these restrictions are not unreasonable and should not provide
problems for higher level software.

Constant colour polygons are useful in many circumstances. However, we have
indicated that we would like to provide support for image synthesis applications by
providing shaded polygon output. Thus we define two additional polygon primitives.
The first,

DPrgbPoly( n, x_array, y_array, reds, greens, blues )

will generate a Gouraud shaded polygon. The first three arguments are the same as
those for DPPoly. The three new arguments are also arrays which contain the red,
green and blue components of the colours associated with each vertex of the polygon,
A Gouraud shaded polygon has a specific colour bound to each vertex and when
drawn into the frame buffer the colour is interpolated between each vertex and along
cach horizontal span across the polygon.

The other polygon primitive is
DPnormPoly{ n, x, y, normals_x, normals_y, normals_z )

which will generate a Phong shaded polygon. Phong shading is similar to Gouraud
shading except that instead of interpolating colour between vertices we interpolate
three dimensional surface normal vectors. A lighting model is then used to calculate
the actual colour at each pixel using the normal vector at that point. Eventually
facilities will exist whereby the user can supply an appropriate microcode routine to
be called to compute the colour from the normal.

In many applications rectangles are used extensively. For this reason we provide
a rectangle primitive:

DPRectangle( dx. dy }

The two arguments, dx and dy, define the diagonal of the rectangle as a vector
relative to the current position. Thus, in general, this primitive will be preceded by a
move or a draw to one corner of the rectangle. The rectangle will be drawn in the
current colour. Providing a separate primitive for rectangles instead of advocating
use of the polygon primitive allows us to use a much more efficient algorithm
optimized for the scan conversion of rectangles. For some applications this improved
performance will be significant.

One of the most useful hardware facilities in the frame buffer is a write mask
register which allows the user to selectively enable or disable each of the bit planes of
the image memory. To utilize this hardware feature we provide an output primitive
to set this register to a specific value:

DPSetMask( mask_value |

The argument is a 32-bit value from which the low order 24 bits are used to set the
mask register. A one bit in the mask register enables writing to the corresponding bit
plane, while a zero disables writing.
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To ensure that the mask is initialized properly and to provide added flexibility,
each segment will have a set-mask instruction added to its initialization sequence.
This will set the mask to the value which is in effect when the segment is created. To
modify this initial mask instruction we provide the function:

MaskSegment( segment_name, mask_value )

Thus we have a facility for controlling which bit planes an individual segment is
written into.

One of the most serious drawbacks to the use of raster display systems is the
aliasing artifacts which appear in the form of jagged vectors and polygon edges. We
can ecliminate these artifacts to a certain degree by using antialiasing techniques
when outputting vectors and polygons. Unfortunately, due to the complexity of
antialiasing polygon edges they are presently unavailable. However, we do provide
antialiased vectors, which generally appear considerably smoother than their aliased
counterparts. The user can request that any segment be drawn with antialiased vec-
tors by setting the new segment attribute of line mode. Thus the function call

SetSegment( n, AA_LINES')

will cause segment n to be drawn with antialiased vectors. To revert to normal vec-
tors we would use the attribute value FAST_LINES.

It is also possible to arrange for all lincs 1o be antialiased (including immediate
non-retained output) by performing the function call

SetMode( AA_LINES |

This overrides the individual segment line modes. Specifying FAST_LINES in the
SetMode call reverts the processor fo the normal mode of operation.

Some serious problems, which were not foreseen, arisc as a result of using
antialiased vectors. These are due mainly to the way in which antialiased vectors are
drawn. We will briefly cover the technique used and then look at the particular
problems which result.

Antialiased vectors are drawn using algorithm Al from [GUPTS81]. This algo-
rithm models pixels as overlapping circles whose radii are the distance between
adjacent pixel centres. A vector is considered to be a line with width equal to this
radius. At any one point on the line we consider the vector to be overlapping the pixel
closest to its centre and the two adjacent pixels on each side of the centre onc. By
maintaining a measure of the vertical distance between the centre of the nearest pixel
and the centre of the actual line we can compute an approximation to the area of the
pixel which the line overlaps. A lookup table is actually used to determine the
relative intensity of each pixel from this vertical distance. When outputting the
colour to the frame buffer we must mix the new line colour with the existing colour
stored in the frame buffer since in general the line overlaps only a portion of the
pixel. Thus the new pixel intensity becomes

(I * New_Colour} + ({1.0 - I} * Old_Colour)

where | is the intensity (overlap area) for the pixel.
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Using this antialiasing has resulted in two unforeseen difficuities. The less seri-
ous of the two is due to the fact that the output lines arc actually three pixels in
width. This means that a segment containing such vectors can actually be two pixels
larger than an aliased version of the same segment. This affects our bounding box
computations since the lines can actually extend beyond the computed rectangle.

The more serious difficulty is due to the colour blending which is performed
when writing into the frame buffer. The segment updating mechanism described
above depends on being able to simply redraw a segment in order to update a possibly
damaged version within the display memory. Thus, segments will often be redrawn
over the top of previous instances of themselves. With the antialiased vectors, how-
ever, this cannot be done with impunity since the algorithm depends on the existence
of the correct background colour in the frame buffer. An antialiased vector must
have its background redrawn before the line itself can be redrawn. This means that
the normal automatic updates will not correctly handle these antialiased vectors. In
the next chapter we will discuss these and other problems further and consider some
viable solutions.

Just because we ne longer need to perform constant refresh on the frame buffer
system this does not mean that we never want to do so, since the dynamics implicit in
phase one are often very desirable. Hence it is convenient to be able to specify that
a particular segment be constantly refreshed. Such a segment might, for example, be
acting as a tracking cursor or perhaps as a paint brush. Also, it is sometimes desir-
able to have the entire display file operate in constant refresh mode, as it did in phase
one.

To provide precisely these capabilities we have introduced a new segment
attribute which may be passed to the SetSegment routine, and a new operating mode
for the SetMode routine.

SetSegment( n, REFRESH )

causes segment n Lo be executed during cach pass through the display list. Specifying
NON_REFRESH returns the segment to the normal update mode. Similarly the
function call

SetMode( REFRESH )

causes the entire display file to be constantly redrawn into the frame buffer. Again,
specifying NON_REFRESH halts this process. 1f while operating in automatic
update mode a change is made to a refreshed segment then the normal screen update
operation is not performed. Similarly, if the entire display file is being refreshed then
no automatic updates are performed. We avoid doing updates in these cases mainly
because they are likely either unnecessary or their results will not be well defined, Tt
is assumed that when operating in this mode the user knows what (s)he is doing.

Now we will look at the facilities which must be provided to support the manual
mode of operation. To determine our requirements in this respect we will first itemize
the sct of operations which are deemed necessary. Once we have a set of required
operations we will define appropriate functions for performing them.
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The two most immediately obvious operations necessary are the erasing and
redrawing of scgments. As discussed above, an erasure causes a segment’s bounding
rectangle to be cleared to the current background colour. A redraw simply causes a
given segment to be rewritten once into the frame buffer. There is a need to perform
update operations identical to those performed in automatic mode. Thus we have the
ability to redraw all segments which overlap a given segment’s bounding box, or only
those of higher priority which overlap.

The update function described earlier operates identically in manual mode. In
addition we provide a facility for redrawing the entire display file once, without first
erasing the screen, and also a facility for redrawing all segments of higher priority
than a given segment. This latter operation is useful for updating the display after a
segment modification when it is felt that the overlap testing would be overly
expensive or that they would end up redrawing everything anyway.

We should clarify just how the existing software should behave while in manual
mode. In general the rule should be that no changes are made to the image unless
they are explicitly requested through calls to the update routines. This obviously does
not apply to refreshed segments, or while in refresh mode. Thus calls to segment
manipulation routines result in the required modifications to the display file, but do
not result in modifications to the image itself. This mode of operation gives the user
considerably more control over the display. The price which must be paid for this
control is some added overhead for interfacing and whatever complexity is added to
user programs.

As with automatic updates nested segments add a level of complexity to the
problem. Some segment modifications must be reflected in all instances of the given
segment (e.g. highlighting). To handle this situation we must provide a facility for
updating the parents of a given segment. The simplest way to do this is to provide a
single routine which returns the names of all segments which reference a given seg-
ment. Once the user has this list of names the existing update routines can be used to
manipulate the appropriate parent segments.

We will now define the set of functions which are provided to perform the opera-
tions discussed above.

BoxErase( segment_nane )
This routine will erase the bounding box of the given segment to the current
background colour,

DrawSegment( segment _name )
Causes only the given segment to be drawn once into the frame buffer. The
segment must be set visible and must not be in refresh mode.

BoxUpdate( segmeni_name, mode )
1f mode is ALL then all segments which overlap the bounding rectangle of
the given segment will be redrawn in priority order.

If mode is PRIORITY then only segments of higher priority than the given
one which overlap the bounding box will be redrawn,

Note that these will be proper priority updates so that any segments which
are redrawn will also have higher priority overlapping segments redrawn,
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GetParents( segmeni_name, parents, all }
In the given array parents will be returned the names of all segments which
reference the given one. If @/ is true then this will include all ancestors,
otherwise only direct parents are returned. The value of the function is the
number of parents which were returned.

UpdateFrom( segment_name |
This routine causes the given segment and all segments of higher priority to
be redrawn into the display memory.

In order to redraw the display file without first erasing the display we have sim-
ply added an argument to the Update function which specifies whether or not the
display is to be erased first. A non-zero value will perform the erasure while a zero
will bypass it.

This set of functions provides a straightforward and powerful facility for
supporting the manual mode of operation. Future experience utilizing these facilitics
will likely point out desired capabilities which are not yet provided. Thus it would be
wise to continually monitor the needs of the user population and revise the support
software occasionally to meet these needs and to improve the quality of the interface.

One area which we have neglecied 1o cover in phase one and as yet in phase two
is the area of inquiry functions. We bring these up at this point because such func-
tions are likely to be used extensively in manual mode, even though they are likely to
be useful in many other cases as well. The GetParents function described above is an
example of a routine which belongs to this class. In general these functions provide
information about the state of the system at any time but do not have any cffect on its
state. We supply the following additional inquiry functions:

GetChildren( segment_name, children, all )
This function is an analog to the GetParents routine. In the array children
is returned the descendent segments of segment_name. If all is true this
includes all children’s children, otherwise only direct descendents will be
reported. The value of the function is the number of children returned.

GetValue( which )
This function is used for returning single integer values which are global to
the system. The following choices are available for the argument which:

- HIGH_SEGMENT return the largest (highest priority) segment name
currently defined.

- LOW_SEGMENT return the smallest (lowest priority) segment name
currently defined.

- FREE_MEMORY  return the number of words of free display file
memory available.

GetColour( red_addr, green_addr, blue_addr )

Return the current drawing colour.

GetMask( mask_addr )

Return the current mask register setting.
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GetPosition{ x_addr, y_addr }

Return the current device coordinates.

GetStatus( segment_name )
The function value returned is the status of the given segment. Bits in this
word can be tested with the following manifests to determine the
corresponding information:

VISIBLE HIGHLIGHTED
PICKABLE AA_LINES
REFRESH

These are the same manifests which are used in calls to the SctSegment
routine.
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Again we should emphasize that further experience in using this interface will

4.4.3. Phase Two Implementation

indicate what additional inquiry functions are necessary. Having the system adapt to
the user’s needs in this respect is again desirable.

We summarize the previous section by listing the set of new functions which

have been added to the interface.

Primitives;

DPPoly( n, x_coords. y_coords )

DPrgbPoly( n, x_coords, y_coords, reds, greens, blues |

DPrormPoly( n, x_coords, y_coords, x_norms, y_norms,

Z_norms |
DPRectangle( dx, dy )
DPSetMask( mask )

Manual Mode:

BoxErase( segment_name )
DrawSegment( segment_name )
BoxUpdate( segment_name, mode |
UpdateFrom( segment_name )
Updatef erase )

Inquiry:

GetParents( segment_name, parents, all |
GetChildren{ segment_name, children, all )
GetValue( which )

GetColour( red_addr, green_addr, blue_addr )
GetMask( mask_addr )
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GetPosition{ x_addr, y_addr )
GetStatus( segment_name )

Others:

SetMode( mode )
SetBackground( red, green, blue )
MaskSegment( segment_name, mask )

We will discuss only those aspects of the implementation which directly relate to
the raster facilities. Thus we will mainly be concerned with the screen update opera-
tions and the raster display primitives.

One of the most important parts of the implementation is the development of a
scheme whereby we can easily arrange for a segment to be drawn once and only once
into the frame buffer. Tn order to support refreshed scgments we want to also be able
to continually redraw scgments as we did in phase onc, only now on a scgment by
segment basis. We also need to be capable of running in refresh mode, wherein the
entire display list is constantly redrawn.

A relatively simple scheme for performing each of these tasks has been
developed by placing some added intelligence into the push-jump instruction and by
defining a new bit in the status register. As in phase one the processor continually
traverses the circular list of segments. However, in this case the push-jump at the
beginning of cach visible segment doesn’t necessarily perform its normal function.
Two bits have been utilized in the unused upper half of the push-jump instruction.
These are referred to as the painted bit and the force bit. The painted bit is on if this
segment has been painted into the frame buffer. The force bit is on if this segment is
o be continually refreshed. The new bit in the status register is called the draw-all
bit. Now, the push-jump instruction actually performs the push-jump only when at
lcast one of the following three conditions is true:

1) The draw-all bit in the status register is on.
2) The force bit is on.
3) The painted bit is not on.

If any of thesc conditions is satisfied then the instruction performs the push-jump as
before and the contents of the segment are executed. However, before doing so it
first turns on the painted bit so that the next time we traverse the display list the
segment is marked as painted.

With this scheme we are able to perform all the desired functions mentioned
above. A scgment can be redrawn exactly once by turning off its paintcd bit. A seg-
ment can be constantly refreshed by turning on its force bit, and we can enter full
refresh mode by setting the draw-all bit in the status register. By turning on the
draw-all bit for a single display list cycle we can redraw everything once in order to
perform a screen updatc operation. This operation is performed by placing an
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instruction in the control segment which turns on the draw-all bit and then branches
to a segment in the display list {usually the first one, but not necessarily). Upon com-
pletion of the list (since the control segment has not yet been disabled) we return to
the same instruction which then turns the draw-all bit off and terminates normally.

In order (o output the segments in the correct priority order, the display file is
kept sorted by segment name. Thus higher priority segments will be scan converted
after lower priority ones and will appear in front of them. The RenameSegment func-
tion manipulates the segment links within the display file to maintain this ordering.

A problem arises when we wish to perform a priority update which redraws a
sclected set of segments. We must ensure that the segments are drawn in priority
order, but we have no way to reset all the painted bits in a way which will ensure this
ordering. Thus when repainting multiple segments we must first halt the display
processor, then reset the appropriate painted bits and restart the processor at the
beginning of the display list. This task is simplified by the fact that the mechanism
for halting and restarting the processor is already in place for the segment delete
operation. Under normal circumstances this temporary pause will not produce a visi-
ble effect on the display since we will not be performing constant refresh.

The facilities described above allow us to easily redraw segments upon demand.
What we now need is a facility for erasing segments on demand. We need to be ca-
pable of erasing an arbitrary rectangle to the current background colour. To do this
we have set up a special "erasc scgment" at the beginning of the display list which
contains a single rectangle command. This scheme is similar to the control scgment
mechanism for executing immediate commands. To erase a segment we update the
origin and the rectangle instruction within this scgment and then use a push-jump
instruction which branches to the erase segment from the control segment. Using a
push-jump ensures that the erasure does not affect the current state of the processor.
We are also able to take advantage of the set-mask instruction to erase only those bit
plancs occupied by the segment in question. The overlap tests will check if two seg-
ments actually occupy different bit planes, in which case the test will fail since the
two segments do not really overlap.

This scheme now allows us to easily erase the bounding rectangle of a segment
to any colour and with any mask sctting. The erase scgment is also used to clear the
entire display in preparation for regenerating the image.

Three new instructions have been implemented to produce the three types of
polygon output. One of the important differences between these polygon instructions
and all other instructions encountered thus far is the fact that they have more than
one argument and the number of these is variable. In order to place such an instruc-
tion into an open segment the interface first allocates n+/ words of display file
memory, where # is the number of arguments. In the first word allocated we place a
jump instruction to branch over the n words which follow. These are used to store the
vertex information for the polygon. Then, as before, we output the polygon instruc-
tion by first placing a new pop-jump instruction in the next available word and then
overwriting the previous pop-jump with the new command. The polygon instruction
itself contains the PC-relative address of the arguments. Figure 4,7 shows the state of
a segment immediately following the addition of a polygon.
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Figure 4.7. A Polygon lnstruction Added to a Segment

For immediate non-retained output we allocate memory for the arguments from
a block of words reserved for precisely this purpose. Once the arguments have been
output the polygon instruction is executed in the normal fashion via the control seg-
ment.

Since the program counter register always contains the address of the word
immediately following the instruction currently executing, we could have avoided the
Jjump instruction which branches over the polygon arguments by [letching these via
the program counter and incrementing this register by the number of argument words
found. However, this technique forces us to place the arguments immediately after
the polygon instruction in memory. This would complicate the immediate output
facility considerably. The ability to have the arguments stored anywhere in memory
is likely to be extremely useful for future versions of the interface. We will touch on
this point again in chapter six when we consider possible enkancements to the
interface.

The format of the arguments is dependent on the type of polygon being pro-
duced. For a constant colour polygon the data is simply a list of vertex coordinaltes.
A Gouraud shaded polygon will have cach vertex coordinate followed by a single
word containing the red, green and blue colour for the vertex. Phong shaded polygons
have two words following each vertex. The first contains the x and y coordinates of
the normal vector and the second contains the z coordinate in the upper half of the
word. Each of these is a sixteen bit quantity. All vertex coordinates are given relative
to the current position so that segments can still be translated without problems. The
polygon instructions do not modify the value of the current position.
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Since the number of arguments is variable there must be some way for the
processor to determine when the end of the vertex list has been reached. To do this
we turn off the high order bit of all but the last vertex coordinate. The processor
must regenerate this sign bit by propagating the next lower one. This technique
minimizes display file memory usage by avoiding the use of a special word to
terminate the list.

Scan conversion of polygons is a fairly complex operation. In general it is
necessary to maintain a sorted list of polygon edges and scan these from top to bottom
generating the horizontal polygon spans on the way. To do this in microcode would
be a considerable task. Fortunately there are ways to simplify the problem by reduc-
ing it to an easier case.

One such scheme which we have decided to utilize is triangulation. Instead of
drawing arbitrary polygons we draw triangles by breaking each polygon down into a
set of triangles. This is done by taking the highest vertex of the polygon as an anchor
point and using successive pairs of vertices along with the anchor point te obtain a set
of triangles. An example of the triangles generated by this scheme can be seen in
figure 4.8. Of course this limits the type of polygons which can be handled properly.
They must be "almost" convex (able to be triangulated in the above fashion) and the
vertices must be ordered consecutively around the outer border. For convenience the
first vertex in the list passed to the interface must have the maximal y coordinate.

Figure 4.8. Triangulating a Typical Polygon

Drawing triangles is inherently easier since at any point during the scan conver-
sion there are only two edges currently active, and we are ensured that there will only
be a total of three edges. The scan conversion operates by first setting up the infor-
mation necessary to draw the two edges which meet at the top of the triangle. Then
we begin to draw down each edge, stopping at each scanline to fill in the horizontal
span between the two edges. When either edge terminates it is simply replaced by the
third edge of the triangle. Thus a fixed amount of memory is required to maintain
the edge information and no complicated data structures need be maintained by the
microcode.
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Rectangles have been implemented with a one word instruction containing the
relative coordinates of the vector which defines the diagonal of the rectangle. The
current position defines one corner of the rectangle and the diagonal vector defines
the other. The scan conversion proceeds in the obvious fashion by drawing horizontal
spans starting at the current position and working (owards the opposite corner.

We will now look at how to handle the picking of rectangles and polygons. As
with vectors we want to be able to determine whether a given polygon or rectangle
enters the specified hit rectangle. To do this properly we need to perform the hit
testing at each output point on the surface. This can be very expensive to perform
considering the number of pixels in a typical polygon. To integrate this testing into
the polygon scan conversion would mean that at each output operation we should test
to see if we must perform hit testing. This will impact the performance of the scan
conversion considerably. It is also questionable whether performing the hit test at
each pixel will be sufficiently fast to provide good response in all cases.

In order to avoid this expense we have implemented a compromise solution on
an experimental basis. The idea is to utilize the existing hit testing line generator for
polygons and rectangles as well, To do this, during a pick operation, we scan only the
borders of the sub-triangles of each polygon using this line generator. For rectangles
we scan the outline and the diagonals. Thus, in general, we are only covering a small
percentage of the surface when testing for the hit. This gives us the speed we desire
but has the disadvantage that we can miss the pick window even though it is
positioned over the surface. The technique also has the advantage that it is relatively
straightforward to implement, although in the next chapter we will see that there is a
much better solution.

At this point we should point out a problem which the pick operation has re-
garding the priority mechanism. The phase one pick operation worked on a first hit
basis. By this we mean that the first segment in the display list which enters the pick
rectangle is taken as the sclection for the pick operation. With the priority
mechanism in place and with the existence of hidden objects this first hit algorithm
may be undesirable. This technique will select the rear most object within the hit
rectangle since these are the first ones tested. As such therc is a good chance that the
selected object will be hidden by higher priority segments. It scems much more
natural for a user to select an object which is visible than one which is hidden.

Thus it would be preferable if the pick operation selected the front most object
first. For this reason we have modified the phase two pick operation to do just that.
There are two obvious means of implementing this change. The first is to traverse the
display list in reverse order and still operate on a first hit basis. Adding the facilitics
for a reverse traversal would involve adding backward segment links, This could be
done by either adding extra instructions to each scgment for performing the reverse
jumps or by packing both the forward and the backward branch addresses into the
jump instructions which link the segments. The former technique would have the
disadvantage of increasing the amount of display file storage allocated to each seg-
ment. The latter scheme would complicate the jump instruction encoding and decod-
ing considerably. Both ideas would result in increased overhead [or segment creation
and dcletion.
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The other alternative is to traverse the entire display file, in the normal back to
front order, and operate on a last hit basis. This is the alternative which was chosen.
Thus when a hit occurs we no longer stop immediately but instead continue execution
of the display list after first copying the segment names to the return stack arca.
After one complete pass of the display file the return stack will either be cmpty or
will contain the last hit detected.

Obviously this technique is more expensive since the entire display list must be
traversed before we obtain the desired result. This further justifies the technique
used for handling polygons and rectangles. It has, however, allowed us to simplify the
microcode for the pick instruction somewhat. Since we no longer wish to terminate
on the first hit there is no need to push the processor status on the stack before start-
ing the operation. Previously this push was used to return to the instruction
immediately following the pick instruction as soon as a hit occurred. Instead the pick
instruction now initializes the return stack to empty, turns on the pick status bit and
branches to the beginning of the display list. When the entire display list has been
traversed we will return to the pick instruction in the control segment. At this point,
since the pick status bit is on, the pick instruction simply resets this bit and returns.

Switching to antialiased vectors has been implemented by utilizing another bit
within the status register which indicates that vectors are to be drawn antialiased.
Each segment is able to set this bit via the push-set instruction near the beginning of
the segment, To arrange for all vectors to be drawn antialiased we turn on this status
bit at the outermost level using the control segment, Since status register bits are
never explicitly turned off by a segment this has the desired overriding effect. The
bit is turned off by using an instruction which explicitly sets the status register to a
desired value.

4.4.4. Phase Two Summary

We have developed a powerful raster extension to the phase one system which
has achieved the objectives stated in section 4.2 to a great degree. The fast scan
conversion routines combined with the segment manipulation and picking facilities
provide excellent support for highly interactive applications. The smooth-shaded
polygon facilities, and the ability to generate fast antialiased vectors, greatly facili-
tate image synthesis applications.

It should be emphasized that the immediate output feature of the interface me-
ans that almost any graphics system will be able to utilize this interface as a back end
output utility. The segment facilities need not be used and thus can be ignored when
convenient.

Although this has proven to be a powerful utility we have managed to make a
few mistakes along the way. In the next chapter we will look at these and consider
what we would have done bad we had the foresight to anticipate them. Apppendix B
contains a summary of all interface routines.



5. Problems and Solutions

5.1. Introduction

In the course of our phase two implementation we have encountered several
problems. Some of these we were able to overcome with little difficulty; others we
were not. The purpose of this chapter is to summarize these difficulties and consider,
with the benefit of hindsight, what should have been done to solve them in those cases
where we were unable to do so. Implementors of similar systems and hardware
designers should benefit from a clear understanding of these issues.

We will look at the following five topics individually:

- Picking - Highlighting
- Segment structuring - Dragging
- Antialiasing

For each of these topics we will first review the problems posed and look at how our
interface has approached the solution. We will then summarize the alternatives avail-
able to try to determine an optimal solution.

5.2, Picking

Two difficulties were cncountered in implementing the pick operation. The first
involved the order of traversal through the display list and the second was how te
properly handle polygons and rectangles during a pick operation. It was determined
that a pick operation should select the front most detectable object within the hit
window. Since the display list is ordered back to front for scan conversion we would
have to traverse the list in reverse order to conveniently obtain the front most object.

Our solution in this case was to have the pick operation continue scanning the
display list until it had made one complete pass. At this time the hit data would con-
tain the last hit found (if any) which would be the front most object as desired. This
technique has a serious efficiency disadvantage since it must traverse the entire
display file and process possibly many hits before terminating,

Polygons and rectangles were handled by utilizing the line picking function to
traverse the borders of the subtriangles within a polygon and by traversing the outling
and diagonals of a rectangle. This technique has an excellent speed advantage but
has the serious disadvantage that large polygons and rectangles can be completely
missed even when the hit window is directly over the object.

-53-
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The only alternative we see for the ordering problem is to traverse the display
list in reverse order. This would allow the operation to terminate on the first hit with
the desired result. The difficult part is how to perform such a traversal. The obvious
solution is to maintain a doubly linked display list. However, one should be aware of
the ramifications of doing this. Because of the push-jump/pop-jump mechanism this
scheme would require an added push-jump and jump instruction for each segment.
This is a non-trivial increase in memory usage when we consider how little memory
we have altogether. Alternatively we could pack forward and backward branch ad-
dresses into the jump instructions which link the segments. This would result in a
more complicated instruction encoding and decoding operation for the jump instruc-
tions. There would also be added overhead for the segment deletion and creation
operations. However, it is possible that the added flexibility of the double links would
provide other benefits which are unforeseen at this time.

It is not clear that a doubly linked list would be a definite advantage. Other
schemes such as pointer reversal would be overly complicated for microcode imple-
mentation and thus error prone and inefficient. Tt scems that in our case the solution
we have used is quite reasonable. This method can be optimized somewhat by culling
out segments with preliminary tests of some sort. The bounding boxes are an
excellent candidate for such a filtering operation. The pick operation would then scan
only those segments which passed the preliminary tests.

For proper picking of rectangles and polygons it is really necessary to scan the
entire surface performing the hit test at each output pixel position. We at least need
to scan the surface with a grid smaller than the size of the hit window. Generating
such a grid is definitely out of the question. The technique which was used allowed us
to utilize the existing line generator for hit testing. This made the implementation
very straightforward and has a definite speed advantage since we are scanning only a
small percentage of the surface in question. In essence we have traded the resolution
of the hit testing for speed of execution and implementation.

Ideally all ontput to the frame buffer should be routed through a single
microcode routine. This would allow an arbitrary operation to be performed when
writing the pixel and we needn’t have any knowledge of the particular scan cenver-
sion process in progress. If a pick operation were being performed we would do the
hit test instead of actually outputting a point. This technique has other advantages
which we will discuss later. The disadvantage to this scheme is the severe efficiency
penalty which must be paid. Typical fast scan conversion routines have inner loops of
only a few microcode instructions (i.c. less than one microsecond). Adding a cali to a
general output routine within such a loop would slow it down by several orders of
magnitude.

Optionally we could implement special hit testing versions of the output subrou-
tines within the pelygon scan conversion routine and perhaps a hit testing version of
the rectangle routine. This is basically the technique which was used for the line
generator, Obviously this results in a considerable increase in the size of the
microcode and would require more effort in implementation. However, microcode
memory is not yet a scarce resource, What is more important in this situation is the
increased complexity of the microcode, which decreases its maintainability.
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It is our feeling that using a single output routine for processing all frame buffer
writes is the correct technique to be used. The expense incurred is well worth the
power and code simplifications which are gained. In subsequent sections we will
discuss some of the other advantages which such a scheme would provide. A question
which remains to be answered is whether performing a pick operation which tests
each output pixel from a complicated display file would be fast enough to provide
reasonable response. In this case some type of culling mechanism would be extremely
beneficial and traversing the display file in front to back order may prove to be a
necessity.

5.3. Highlighting

Highlighting on a system as flexible as a good raster display can be done with
any of a number of techniques. Some which come immediately to mind are the
following:

a) performing an exclusive-or operation to change the colour of an
object.

b) redrawing the object to be highlighted in a specific highlight
colour (as was done in this case).

c) blinking the object at some frequency.

d) drawing some type of indicator which points out the object in
question.

¢) increasing the intensity of the object (difficult to do for highly
saturated drawing colours).

f) decreasing the intensity of the object (can be an unexpected
cffect)

g) some combination of these techniques.

Besides determining how to highlight an object, we ran into the difficulty of
highlighting hidden objects. In general when an object is highlighted it must be
redrawn into the frame buffer. The question is whether or not to maintain the priority
ordering of the objects displayed in this case. Hiding an object which is highlighted
defeats the purpose of highlighting it {which is to bring the object to the users atten-
tion). For this reason it was decided to have highlighted objects come to the forefront
by not performing the overlap update after redrawing such an object. This makes the
selected object immediately visible as expected. Upon de-highlighting we restore the
proper priority ordering of the image.

The above technique for handling the overlap problem appears to be quite a
reasenable solution, The actual method used to perform the highlighting itsclf may
be subject to debate. Highlighting a Gouraud shaded object with this technique will
produce a constant coloured object. This effect may be undesirable because of the
lost shading information. Fer Phong shading it may still be rcasonable since the
colour of the object will change but the shading will not. This technique has the
advantage that the user is able to control the highlighting by specifying the colour
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which is to be used. Thus it will be possible to ensure that the highlighting colour
contrasts sulficiently with the objects currently being displayed.

The optimal solution in this case would be to provide more than one highlighting
technique. Since the interface is meant to be a general tool, having a choice in this
respect would allow us to adapt better to individual applications.

Again we find that routing output through a single routine would provide
greater flexibility and simplification. We could eusily arrange to perform an
exclusive-or operation or somc type of intensity modification when performing
highlighting. Thus the highlighting checks are localized within the single routine and
the individual scan conversion routines needn’t worry about it.

5.4. Segment Structuring

We have found that being able to call other segments from either within a scg-
ment or via the immediate output facility is an invaluable capability. In general this
facility was not very difficult to implement and we recommend doing so to implemen-
tors of similar systems. Hopefully the techniques used and the discussion herein will
be a useful aid.

The only difficulty encountered with this facility occurs when we are not in a
refresh mode of operation. Certain segment modifications affect all instances of a
given segment while others only affect the original. Those which do affect all
instances are the operations which modify the status of the segment set by the push-
set instruction. These include highlighting, line mode and detectability. Detectabil-
ity is not a problem since changing it does not produce a visible effect.

In refresh mode we find that modifications of these attributes are immediately
visible since all visible instances arc being constantly redrawn. When not in refresh
mode we must explicitly arrange for all instances of a given segment to be redrawn.
In general this means that all visible parents of the segment must be redrawn. Unless
the parents of a segment are immediately known this information can be ¢xpensive to
obtain. In our case the necessary information is not available and an exhaustive
search through all segments is required to locate those segments which reference a
given one.

The obvious alternative in this case is to maintain, with each scgment, a list of
all referencing segments, This means added space and time overhead in the host
software. It must be determined whethcer this overhead is worth the advantage gained
in having the parents of a segment immediately available. In our case, due to the
limited address space available on the 11/45 (64K), it was decided that reducing
memory usage was of higher priority. On a machine with a larger address space this
would not represent a problem.
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5.5. Dragging

One of the most useful facilitics available to interactive programs is the ability
to move segments around on the display. This allows for the implementation of cur-
sors, brushes, moving menus ctc. Unfortunately we are only able to drag these
objects in real time utilizing the refresh mode facilities in combination with the Tast
vectors. When not in refresh mode the overlap updates must be performed to main-
tain the correct image on the display. These updates are not sufficiently fast to prop-
erly perform dragging, and the redrawing of overlapping objects produces an objec-
tionable flickering effect.

In many applications it is possible to utilize the refresh mode to drag objects
using a few selected bit planes while storing the static portion of the image in the
remaining image planes (e.g. [SING82]). However, this technique is cumbersome
and requires explicit control by the user software. There is a need for 4 more general
dragging facility with a simpler interface to user programs.

Ideally we would be able to specify that a particular segment is to be used for
dragging and the interface would make the appropriate arrangements for doing so.
But dragging of raster objects is not that simple. If we are willing to drag only objccts
consisting of vectors then this may be possible. But what if a request was made to
drag a smooth-shaded object constructed with polygons? This is effectively impossi-
ble using refreshing techniques with our existing hardware,

There are alternatives to dragging objects which provide equivalent functionali-
ty. In general though we must restrict ourselves to aliased vectors which can be
drawn quickly. We may also need to reserve some bit planes in which the dragging is
to take place, By setling the mask register to enable only these planes and turning on
the clear bit in the frame buffer controller we can drag refreshed scgments. I we
wish to drag polygonal objects then we could instead drag a vector version of the
samc segment. In this case a segment status bit which forced polygons to have only
their boundaries drawn would be extremely useful, Such a capability would not be
difficult to implement, Alternatively we could use other techniques such as dragging
a rectangle which represents the bounding box of the selected object.

The exclusive-or operation is an extremely uscful one in computer graphics,
mainly because its effects are reversible. Exclusive-oring a binary value with all one
bits results in a reversal of all bits in the number. Performing this operation again
returns the original value. We could use such a double exclusive-or operation to move
items around in the frame buffer non-destructively. A major advantage is that no
extra memory is required and thus a dragging facility can be implemented without
having to sacrifice other memory within the system. The problem with this technique
is the unpredictable colours which result from the operation,

Again we find ourselves in a situation where there is a conflict between provid-
ing a general facility which is easy to use and making assumptions as to how the user
will want the interface to behave. In this case it is felt that the interface should not
provide a general dragging lacility which attempts to handle all cases in a reasonable
fashion. This would be an extremely difficult task. Instead the interface should be



58 P.H. Breslin and J.C. Beatty

sufficiently flexible to allow several dragging abstractions to be built on top of it. We
have achieved this purpose to a reasonable degree, but it is clear that considerably
more can be done to improve this aspect of the design.

5.6. Antialiasing

Aliasing is one of the most important issues in raster graphics today. The desire
to produce realistic and aesthetically pleasing images forces us to use antialiasing
techniques. Unfortunately these techniques are not as simple as we would like them
to be,

The antialiased vectors which have been implemented are the source of the most
serious problems encountered. The two problems mentioned previously are the exten-
sion of the bounding box and the inability to redraw these vectors on top of them-
selves. The bounding box problem is caused by the fact that these vectors are more
than one pixel in width. This means that the computed bounding rectangle may be
slightly smaller than the segment itself. Fortunately, this problem is minor and can
be handled by extending the bounding box of any segment whose line mode is
antialiased by one pixel on cach side.

A more serious problem is caused by the fact that antialiased lines are actually
mixed into the frame buffer. The colour stored for the line is a proportional fraction
of the colour already stored in the frame buffer and the colour of the line. This me-
ans that antialiased vectors cannot be redrawn aver the top of previous instances of
themselves since this would result in an incorrect celour mix along the line. In order
to obtain the correct image we must first redraw the background on which the line is
drawn, As mentioned before, the automatic screen update facilitics depend on being
able o redraw segments with impunity. Thus when antialiased vectors are brought
into the picture the updating facilities break down and will often generate incorrect
vectors,

We have not attempled a general solution to this problem. The only way to
avoid it with the existing facilities is to utilize the manual modc of operation. Even
then the solution is cumbersome and inefficient. If we were to attempt to perform the
proper screen updates by redrawing the background whenever antialiased lines were
used we would find that the affected arca of the serecn grows much farther than be-
fore because more segments would require redrawing. In many cases it will be more
efficient to simply redraw the entire display, avoiding the complicated overlap tests.

Fortunately, a solution to the problem does exist. This solution has not been
implemented since it will require a complete reorganization of the processor
microcode, It was felt that rather than attempting a complicated fix it would be
preferable to report the necessary changes and have them incorporated into a later
version along with solutions to some of the other problems. This would allow a new
version to be implemented properly, thus providing a much cleaner and more main-
tainable interface. We will see below that the solution to this problem provides other
benefits which will improve the performance of the system,
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The trick in this case is to use two dimensional clipping to draw only that part
of the output which falls within a specified viewport on the display. Thus we would
set this viewport to be the bounding box of a segment to be updated. Then when
redrawing overlapping segments only the portion of the segment which actually lics
inside the bounding rectangle will be drawn. When antialiased vectors are involved
we need only arrange to regencrate the entire rectangle and no segments will be
redrawn on top of themselves. This will involve only a small amount of extra over-
head compared to the normal updates. If the clipping is implemented properly (i.e.
line and polygon clipping) then this technique will improve performance since the
amount of scan conversion will be decreased. The overlap checks are also simplified
since the affected area of the display will no longer grow beyond the originally affect-
ed rectangle.

Another important advantage involves the technique used to perform hit testing.
If we were to set the clipping area to the current hit rectangle and regenerate the
entire display, then as soon as an output point was generated we would have a hit.
Again if all output was transferred through one routine then we could casily process
the hit at this point. This would greatly simplify the picking operation and efficiently
solves the problem discussed in section 5.2 regarding picking of rectangles and
polygons.

This clipping will prove to be very useful to higher level software as well. 1t will
be much easier to manipulate multiple viewports or windows on the display. Many
interactive applications require precisely this type of operation.

As mentioned above though, implementing this facility requires a complete
overhaul of the microcode software. An inefficient alternative is to have all output to
the frame buffer piped through a single routine (as discussed above) and perform the
clipping there by only allowing writes which are within the current viewport. This is
obviously an undesirable alternative since we would still need to scan convert all seg-
ments, and the viewport testing would simply slow everything down.

The complexity involved in performing line and polygon clipping forces us to
shy away from an assembly language implementation. It would seem wisc at this
point to recommend the use of a higher level language to generate this portion of the
microcode. It would be preferable to interface to assembler routines to perform scan
conversion since most of these already exist. Utilizing a higher level language will
make the resulting system more maintainable and less error prone, We do not sce any
other feasible solutions to this problem.

There is another serious deficiency in the implementation of the antialiasing
which has not yet been discussed. This deficiency involves the vector endpoint posi-
tioning. The whole purpose behind performing vector antialiasing is to obtain a more
accurate line by positioning the vector with sub-pixel resolution. However, in our
case the endpoints of each veetor are given as device coordinates. This means that
these endpoints are forced 1o lie on pixel centres although intermediate points on the
line are not. As a result we get aliasing artifacts which show most readily as errors in
the slope of vectors.
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Accurate endpoint positioning is not difficult to perform, provided we have the
necessary sub-pixel information. In order to provide this information the interface
should be modified to pass higher resolution coordinates to the display processor.
Most graphics packages use high resolution coordinates anyway, so this should net
pose a problem to higher level software.

5.7. Summary

We have looked at some of the key areas of the interface and determined which
issues require considerable thought in both their design and implementation. These
issues have been brought to light through the actual design and implementation of
this interface. In many cases we were able to provide reasonable solutions to the
problems involved. In other cases we were forced to compromise or were unable to
provide a solution at all. The important point, however, is that we now have a clearer
understanding of these issues and are thus better equipped to handle them in future
systems.

In the next chapter we will consider just what direction should be followed for
future versions of the interface. We will also discuss more general aspects of the
system which might be changed and consider some enhancements which might be
incorporated.



6. General Comments and Conclusions

6.1. Enhancements

In this section we will discuss several items which may be considered potential
enhancements to the frame buffer interface. Some of these are potentially very use-
ful while others may be useful only in very rare instances. In any case it is important
to look at these, if only to provide a seed from which new ideas can grow.

In considering some of these enhancements we naturally run into the
phenomenon referred to as the "wheel of reincarnation" [MYERG8]. We want to
increase the power of the display processor so much that it eventually becomes desir-
able to move the expensive scan conversion operations o another processor in the
output pipeline. This was the criginal purpose of the existing processor. Thus we
wish to reincarnate the display processor in a different form.

However, since we have only a single processor to work with, we are forced to
limit the functionality of the system by reaching some compromise solution for the
division of labour between the host and the display processor. One such solution is
the interface already presented in this document, The ideas which follow attempt o
shift the dividing line towards the host by increasing the functionality of the interface
or by increasing the power of the display processor.

The first enhancement which will be considered regards the transformation of
scgments. It was mentioned previously that some powerful vector display processors
allow an arbitrary transformation matrix to be applied (o cach segment. In our case
the only such capability is translation. For a two dimensional system such as this one
it would be nice to to be able to specify a rotation or scale factor to be applied to a
segment or segment instance. This would increase the functionality of the system
enormousty.

The implementation of such a facility is non-trivial. It would be necessary to
maintain a transformation matrix and a stack for pushing and popping matrices. The
current transformation would be applied to all lines and polygons prior to performing
clipping. Ideally this transformation and clipping would be performed with floating
point values and operations. However, implementing floating point operations in
microcode would be extremely difficult and expensive. Thus it would be preferable
to utilize high resolution integer coordinates for all operations and then scale these to
device resolution when necessary.

Once we have this transformation and clipping facility in two dimensions it is
natural to want to extend this to a three dimensional system. This would provide us
with an cffectively complete graphics package cxecuting in microcode. The question
to be answered in this case is how much speed must be sacrificed in order to provide
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these capabilitics. A complctely two dimensional system should be capable of pro-
viding quite rcasonable performance. However, a three dimensional system has
considerably greater overhead and as such would be much slower. This task is aided
somewhat by the availability of a hardware matrix multiplier on a newer model of the
frame buffer system.

Another facility which is potentially useful is the ability to edit the contents of
a segment. This would allow modilication of scgments without the need 1o recreate
them. However, complications arise duc to the variable length of instructions. 1 we
were to allow any instruction in a segment to be replaced by any other, then it may be
necessary to grow the segment. Our feeling is that it would be simpler and safer to
recreate the scgment,

An alternative is to only allow the arguments to each instruction within a seg-
ment to be modificd, Thus it would be possible to alter the position of vectors and/or
polygons which are embedded in the scgment. This capability would support opera-
tions such as rubber band lines and dynamically changing polygons. The ability to
modify scgment calls would allow complete sub-pictures 10 be changed upon demand.
Despite these abilities this facility would be usceful in rare circumstances and thus is
not a high priority itent.

Many raster display systems on the market today support a low level operation
commonly referred to as a BitBlt which stands for hit houndary block transfer (also
known as RasterOp [NEWM79]). This operation allows a rectangular portion of the
display memory to be copied or moved to a destination with a choice of functions (o
be performed using the source and destination image data. Thus we have

destination = F( destination, source )

where F is usually a logical operation on the source and destination data. The use-
fulness of the BitBlt has becn demonstrated by the many systems which utilize it (e.g.
[THAC79]). This alone is sufficient justification for providing it within this system.

What is not clear at this point is just how such operations would [it into the
segmented display file scheme. Using these operations would usually mean that the
displayed image no Jonger reflects the contents of the display file. This is not to say
that they cannot be used. Commonly used BitBlt instructions could be stored in scg-
ments for casy access and execution. By moving a segment it may be possible to drag
a BitBlt across the screen in order to perform some type of painting operation. With
some thought it seems likcly that many more uses can be found for such a primitive.

Another primitive which could be added to increase the power of the processor
is one for generating curved line scgments. Such a facility would provide exccllent
support for applications which display curved lines and/or surfaces. A forward
differencing algorithm would be used for efficient scan conversion. This facility
could also be used to provide circles and other conic section primitives.

Many images constructed with polygon primitives depict solid objects or por-
tions thereof It is typical in this situation for vertex poinis to be sharcd by several
polygons. However, within the display file we lind that each vertex must be stored
explicitly with cach polygon primitive. It is common to find that higher level graph-
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ics software stores vertex information separately and has the polygons referencing
this data indirectly through pointer variables, In most cases this saves considerable
storage and provides a much more flexible data structure.

Thus it is logical to provide a similar data structuring capability for the dispay
file. It should be possible to deposit vertex information in the display file and then
have the polygen primitives reference this data indirectly. Perhaps this vertex data
could be stored in special "data segments" so that it can be conveniently referenced
by the user and deleted when no longer needed. In any case this facility would
improve the flexibility of the interface and can potentially save considerable display
[ile storage.

A technique which is commonly used to provide instantancous transitions
between successive frames in a sequence is double buffering. This technique can be
done in two ways, depending on the display method being used. On a vector display
with constant refresh we would maintain two independent display lists within the
display file. Switching frames would then be done by changing the display list which
is currently being used for refreshing the screen. Picture modifications are then
applied to the list which is not being displayed. Once these modifications are
completed we exchange the roles of the two display lists.

On a raster system instead of splitting the display file into two halves we would
split the image memory. Thus half of the available bit planes would be used to store
one image and the other planes would store the sccond image. Selectively displaying
each image could be done with either the colour lookup tables or preferably with the
crossbar switch. While one image is being displayed all display file modifications are
applied to the other bit plancs.

Neither of these two methods would be casy to implement. It is not clear that a
vector double buffering scheme is needed for this system. However, the raster facili-
ty would definitely be an asset for cxperimentation with animation and/or interactive
techniques. To implement such a facility we must be capable of writing the same
data into two different sets of bit planes. It turns out that performing this type of
operation would be much easier if we had a second crossbar switch which allowed us
to reroute the bits which are being written into the frame buffer. However, since we
don’t have one we must simulate the operation in software. If all output is routed
through a single routine {as previously advocated) then we can perform the switch
there through the appropriate bit manipulations and with the aid of the write mask.
An important part of the design of such a facility would be providing a succinct
mechanism for synchronizing the frame switching and the display file updates.

Another facility which is similar to the double buffering discussed above in that
it also splits the available bit planes into two buffers is a z-buffer visible surface algo-
rithm. In this case a portion of the frame buffer memory is used to store the actual
image while the remaining bits arc used to store the depth (z coordinate) of the
corresponding image pixel. Now before writing new data into the frame buffer we
first compare the z coordinate of the new pixel with that of the old one. The new
pixel (along with its z value) is only written if it is closer than the existing one. Again
a single output routine would perform this comparison and update operation.
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Note that this operation requires three dimensional coordinates even though we
may not be providing a three dimensional interface. Tt also means that we must
interpolate the z coordinate along vectors and across polygons during scan conversion.
In the absence ol any other hidden surface algorithm in higher level software the z-
buffer technique is an effective and simple alternative. However, one should be
aware of some of the drawbacks to using this technique. It is not possible to use
antialiasing together with the z-buffer technique. Also, a reasonable number of bits
must be allocated in order to provide sufficient resolution in z to produce correct im-
ages (typically at least sixteen bits are required). This means that we must sacrifice
a considerable amount of image memory to use this scheme. This is also true of the
double buffering scheme discussed above.

The last enhancement we will discuss involves the use of the crossbar switch and
the colour lookup tables. Until now we have effectively ignored these two modules
and the interface does not use them in any way. The idea here would be to provide
primitives for writing to them. Consider a scgment containing instructions to set the
crossbar switch to a particular configuration. By executing this segment we could
perhaps be exchanging the current buffer to be displayed in a double buffering
system. Or perhaps a sequence of such instructions would be displaying an animation
sequence where individual frames are stored in separate bit planes.

Setting the lookup tables is not as easy since cach of these is 256 words long. A
sequence of instructions to set the complete table, one word at a time, would consume
a considerable amount of display filc storage. No feasible alternative is obvicus at
this time. However, such a facility is still desirable. It increases the flexibility of the
system and it seems likely that such a feature would be used, although probably not
often.

We can imagine a system with all the capabilities described here which would

. . . 3 .
certainly provide an extremely powerful interface to the hardware. Other higher lev-
el capabilities would be built on top of the interface thus creating even more
functionality. Development of powerful interactive programs would become a
straightforward task when aided by the many tools available. Such a software base is
a necessary prerequisite to a useful and comfortable graphics programming environ-
ment,

6.2. Device Independence

Device independence is a software trait long sought after by designers of graph-
ics systems. Some of the questions we would like to consider in this section are the
following:

e To what extent is the existing interface device independent?
* How can this independence be improved and at what cost?
* Do we really want device independence at this level?
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From the user’s point of view the existing interface is more device independent
than onc would at first think. All the segment manipulation operations are effectively
device independent since they are dealing with the abstract concept of the picture
segment which represents some portion of the displayed image.

There are two main areas where device dependence is visible to the user. The
first is the units which arc used to specify coordinates and colours. The second is
when the interface provides facilities to utilize specific features of the hardware such
as the write mask register on the lkonas.

As lar as the device coordinates are concerned, we have already stated that high
resolution coordinates should be used in order to allow for proper antialiasing and
extra precision during transformations. The device independence gained in this case
comes for free. The colour specification, however, is a different matter. It is quite
often necessary to use device specific values in order to ensure that the desired colour
table entries are accessed. Thus, in this case, we require a device independent
abstraction which retains the necessary control over the hardware.

It is taken for granted that device independence is a desirable trait in graphics
software. However, the fact remains that somewhere along the line we must commit
ourselves to the particular device in use. It is also true that sometime in the future we
will want to port the interface to other devices. But since the system is tailored to the
custom instruction set which has been developed for the Ikonas, this task may not be
as easy as one would think. Thus externally we have a reasonably device independent
interface. However, internally the system is quite device specific. Attempts to modi-
fy the system to be internally device independent will likely decrease performance
and increase the size of the code, Both of these effects are undesirable.

Thus it secems that we are at a level in the software which divides the device
independent and the device specific parts. Those portions of the interface which still
appear device specific to the user can be improved by designing some reasonably
general abstractions for the operations involved. Provided these do not impact
performance or code size considerably they should prove bencficial.

6.3. The Boitom Line

Now that we have completed our implementation, analyzed our mistakes and
extrapolated possible future goals, the question comes down to just what should be
done next. 1t’s easy to discuss all the wonderful bells and whistles which we would
like to have, but it’s another thing altogether to create them. What we would like to
do here is to supply a set of recommendations which can serve as feasible specilica-
tions for the next version of the interface. We want to correct the mistakes which
have been made and improve the quality of the system with a realizable amount of
effort.

Perhaps the best way to approach this task is to first list those items discussed
which are not deemed necessary for immediate inclusion. The first and foremost of
these is the third dimension. Fully implementing a 3D system is a major task and
cannot be done without careful analysis and design. [t will no doubt be true that even
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with the availability of a 3D system there will still be considerable demand for a
strictly two dimensional interface without the efficiency penalty incurred by the 3D
system. The design of the 3D system should take this fact into account. Nonetheless,
it may be a good idea to allow for the inclusion of the third coordinate within the
display file at this time. This will make future expansion much easier as well as
allowing for the addition of features such as the z-buffer algorithm.

The z-buffer algorithm itself is also deemed unnccessary at this point. The
drawbacks to using this scheme make it wiser (o spend the effort on implementing a
proper visible surface algorithm in higher level software,

The segment editing facility is a feature which scems inherently unclean and as
such undesirable. 1t would require that the user maintain detailed information about
the contents of segments and the editing interface would be difficult to design so as to
be simple to use. However, one editing facility which can be implemented without
these disadvantages is the modification of segment calls. The ability to change sub-
pictures or symbols without having to recreate entire segments seems like a very
powerful and useful capability. its implementation should be very straightforward
and the user interface can be designed to be very easy to use.

No need has yet been observed for crossbar switch and colour table primitives
and thus these should be avoided for now. Similarly the double buffering scheme can
actually be considered a luxury. The operations necessary Lo do double buffering can
be performed with the existing lacilities, although somewhat less efficiently.

Finally the data structuring facilities for polygons should be left for a later date.
Considerable thought and analysis should go into such a feature so as lo provide a
facility which adapts well to the needs of the user community.

Well, what does this lcave us with? The lollowing list defines the features which
are recommended for immediate inclusion in the interface:

2D transformations

2D clipping

BitBIt primitive

Curved line segments
Segment call modifications

e & 0 & 0

In addition to these items the functionality of existing output primitives would
be increased with the ability to choose a logical operation to be performed between
the new and old data when writing into the frame buffcr. These benefits will be
derived from the decision to route all frame buffer output through a single routing.
“This one routine will look after highlighting, hit detection, weighted average updates
for antialiasing, colour calculations for Phong shading and the logical operations
mentioned above. Eventually it will also perform double buffer writes and z-buffer
updates. This routine should be optimized for its most common use, which will be
straight output.
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It is recommended that the transformation and clipping portions of the
microcode be developed using the C compiler which is available for generating
microcode. This will make the implementation erders of magnitude easier and will
result in a more maintainable system. The scan conversion processes should remain
in assembler language for efficiency. For the reasons already discussed high resolu-
tion coordinates will be used for all raster addressing. The microcode will likely nced
to work with a fixed point arithmetic scheme in order to allow for fractional scaling
and to maintain sufficient precision.

Each segment should have a transformation associated with it which the user
can modify at any time. The current transformation should be pushed onto a stack
upon segment entry and popped after the segment is executed. In addition the user
should be able to perform a transformation at any time. Proper design of these
facilities will allow for easy implementation of three dimensional versions. After
transformation all lines and polygons will be clipped to the current viewport. Once
clipped they can be passed to the scan conversion routines.

Antialiased vectors must have their endpoints positioned properly in order to
avoid aliasing artifacts. The automatic mode updates previously discussed will utilize
the clipping to update only those areas of the display which were affected by changes.
Caution will have to be exercised here in order to avoid anomalies when a portion of
an antialiased vector lies inside the update rectangle and the remainder lies outside.
The critical point in this situation is where the line crosses a clipping boundary and
the regencrated part meets the original. Consider such a vector which approaches the
clipping boundary at a very acute angle. Since the line is actually more than one
pixel wide the antialiasing algorithm will attempt to draw outside the clipping area.
In this case the point where the vector meets the clipping boundary is actually an
endpoint of the vector. Thus the endpoint pesitioning code will have to handle this
case properly.

Another capability which has not been mentioned is the ability to draw vectors
of various widths. These are often very useful and should probably be implemented.
Similarly, polygon antialiasing should be looked at more closely.

Obviously the pixel output routine is an excellent candidate for implementation
in hardware. How this would be done on the existing hardware is not clear. However,
hardware designers should note that such an intelligent update port is an extremely
useful feature on a high performance frame buffer display. Work done by others on
just this type of enhanced frame buffer indicates that this is definitely a good
approach to increasing the power and speed of the system [CROWSI].

There is another subtle point regarding the lkonas architecture which is worth
noting. Since the system is organized around a central bus all data transfers must
compete for access to the bus. The microprocessor is constantly utilizing the bus to
read instructions from the display file (stored in the scratchpad memory) and when
scan converting primitives into the frame buffer memory. Similarly the host
interface is accessing the display file in order to perform the required modifications.
Since the host interface has priority over the microprocessor, the microprocessor will
often have to wait during a display file update. One way of improving this situation
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would be to provide a separate memory port into the display file memory for the host
interface, In this situation there would still be contention for the scratchpad memory
but the scan conversion processes would not be slowed down by the display file
updates. Just how much would be gained by such a modification is not obvious.
These problems become even more critical when we consider placing more processors
on the Tkonas bus.

The design and implementation of the above recommendations will be a consid-
erable amount of work. However, we feel that it should be realizable as major project
for one person. [t is also felt that these changes are necessary in order to provide a
robust and usable software base for graphics programmers.
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8. Appendix A - Simulator Tutorial

A program to simulate the Ikonas bipolar microprocessor and sequencer has
been written in the language C and currently runs on the PDP 11/45 under the Unix
operating system. (It is assumed that the reader has a working knowledge of the Lko-
nas frame buffer system and microprocessor/sequencer including memory organiza-
tion and addressing modes.) This program allows onc to debug microprograms in a
controlled environment which is much more convenient than running on the actual
hardware. The purpose of this document is to describe how to use the simulator by
deseribing each of the simulator commands and giving examples of their use.

The simulator is an interactive program which allows the user to view and modi-
fy the contents of the microprocessor registers, the sequencer registers and/or the
contents of the static or dynamic RAM memories in the system. For microprogram
execution the simulater provides facilities for single stepping instructions, setting
breakpoints and producing trace output after each instruction execution.

Modes of Operation

When using the simulator you will be in one of two possible modes of operation.
The normal mode is indicated with the character “>>" as the terminal prompt and is
the mode you will be in upon first entering the simulator. Hereafter this mode will be
referred to as command mode. The other mode of operation is single step mode. This
mode is indicated by the string “step:” as the terminal prompt. Single step mode can
be entered by typing the command “step™ while in command mode. To return to
command mode from single step mode type ‘g or “quit”. To leave the simulator type
‘q’ or “quit” at the command mode level. Unix commands can be entered at any time
while in the simulator by typing the character ‘" followed by the Unix command you
wish to execute. We will now discuss the simulator by going through a sample ses-
sion, during which we will try to outline all the features of the simulator.

The Simulator

Throughout the following, terminal output will be shown indented. Input exam-
ples will be any text following one of the simulator prompts (> or “step:”).

The command to start the simulator is *“/u/ikonas/bin/iksim [+d] [+0]”. The
“+d” option indicates that you want the frame_buffer to be simulated with a disk
file. In this case the program will attempt to create a file under the current directory
called “frame_buffer”. If it can not create this {ile then you're out of luck. If it
successfully creates it then the terminal will respond with

T1-
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fb: frame_buffer
reset.
>

at which point you may begin using the simulator.

The “+0” option again indicates that you wish to use a disc file as the frame
buffer but that this is an old file which already exists and is calted “frame_buffer”.
The contents of this file will remain as is and will represent the current contents of
the frame buffer memory. This file in fact should be a frame buffer file created by a
previous simulator session since its format and size are predefined by the simulator.
Upon successful opening of this file the terminal will respond as above. If it doesn’t
find the file it will attempt to create it as if the “+d” option had been specified.
Another thing to note is that these files are rather large (2048 blocks or 1 megabyte)
and should not be left around if not needed. In fact upon exiting the simulator you
will be asked if you would like to keep this file. Any response which does not start
with the letter ‘y’ is considered a ‘no’.

1f neither the “+d” nor the “+0” option are specified on the command line then
the actual Ikonas frame buffer will be used. This means that the lkonas must be
powered on in order to use the simulator and any output to the frame buffer should
be visible on the monitor. In this case the terminal should respond with something
like:

fb: /dev/ike
reset.
>

No initialization of the Ikonas system is done by the simulator so you should make
sure the frame buffer controller registers have been initialized before starting to use
the simulator.

One of the first things you might try is typing the character *?” followed by a
carriage return (all commands should be followed by a carriage return and hereafter
this will be assumed). The 2’ will simply print out a list of the valid commands and
their abbreviations as follows:

>?
The following are all the valid commands.
Capital letters indicate allowed abbreviations.
DUMP
Look
Set
Trace
STep
RESET
GO
LOAD
Set_Breakpoint, Delete_Breakpoint, List_Breakpoints
Quit



A Powerful Interface to a High-Performance Raster Graphics System 73

If you are in step mode a *? will produce this:

step:?

While in step mode simply hitting a carriage return will
execute a single instruction.

If an integer is input the processor will start executing
instructions stopping when the given number of instructions
has been executed, when a breakpoint is encountered or
when an error is encountered.

Typing ‘g’ or ‘'quit’ terminates step mode.

Before we can test any microcode we will have to arrange for the code te be
loaded into the microcode memory. To do this we use the ‘load” command. The load
command takes a single argument which is the full pathname of an object file pro-
duced by the Ikonas assembler. Currently the full pathname must be entered (i.e. the
name must start with a */’). For example:

>load [usr/doc/graphics/ikonas/iksim/sample.obj
last address loaded = $004f
>

The actual addresses loaded and the starting address for loading are defined in the
object file and are specified to the assembler with the “ORG™ pseudo operation. The
file specified above is available for you to experiment with. The original assembler
source for it is in the file /usr/doc/graphics/ikonas/iksim/sample.asm.

Now, the command mode level is similar to sitting in a text editor except that
instead of text we have microcode. There is a current line (or address) which refers to
a microcode instruction. The current line (hereafter referred to as dot) can be
displayed by typing .. Each microinstruction is displayed in hexadecimal and is then
disassembled into Ikonas assembler mnemonics. Simply hitting carriage return in
command mode will display successive microinstructions. Typing a number will
display the instruction at that microcode address. Whenever a value is to be supplied
to the simulator the default base is 10. Hexadecimal values can be entered by
preceding the value with the character ‘$° (e.g. $F4C3) and octal values can be
entered by adding a leading zero (e.g. 0777). Microinstructions can also be refer-
enced as offsets from dot (e.g. “.+57 or “.-$f2”). It is often convenient to look at
larger sections of code all at once. To facilitate this you may display the next 20
microinstructions by simply typing ‘>’ or the previous 20 by typing ‘<, where next
and previous are relative to the current value of dot. The valuce of dot is always set to
the most recently displayed address. The following examples will illustrate these
features:

>,

$000: $00032000, $02100082 LDUDR

> <carriage return>

$001: $10011832, $00100000 RIMM Bl PR BD

> <carriage return>

$002: $02031801, $00820002 RAl PR ALUMAR CCMEMAC JMPDF
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>.+6
$008:
>$47
$047:
><
$033:
$034:
$035:

$045:
$046:
$047:
>0>

$000:
$001:
$002:

$013:

P.H.

$02010000, $00920008
$00010d4d, $00100043
$0007098a, $0152004c
$00032000, $01320038
$12150dd2, $00100002
$00032000, $01320049
$12150dd2, $00100002
$00010d4d, $00100043
$00032000, $02100082
$10011832, $00100000
$02031801, $00920002

$00070482, $00100000

Breslin and J.C. Bealty

INCRS ALUMAR CCMEMAC JMPDF

RA13 B10 RPS BD
RAIQ B12 RMS
CCNEG JMPDF
RIMM B14 RPS

CAR1 CCZERO JMPDF

BD CARHO ALUMAR

CCNEG JMPDF

RIMM Bl14 RPS BD CARHO ALUMAR

RA13 B1i0 RPS BD
LDUDR
RIMM Bl PR BD

RA1 PR ALUMAR CCMEMAC JMPDF

RA2 B4 SMR CAR1

$014: $00032000, $0122001b NCCNEG JMPDYF

Now that we know how to display microcode memory, let us consider the other
memories in the system and the various registers within the processor. To access
these we use the ‘Look’ command (abbreviated as “I'). The first argument to the look
command is the name of the object to be displayed. If the object is actually memory
then the appropriate address(es) must also be specified. The objects which can be
referenced with the look command along with their valid short forms are the follow-

ing:

Object

registerN

[arguments]

(0 <= N <= 15)

g_register

mar
mdr
mpc

loop_counter

ce

stack i

frame_buffer x [,] ¥
scanline y

scratchpad  addr [~ addr]
colour map addr
microcode addr

y_bus

write_mask

Abbrevialion [arguments]

rN

qr

lc

b x [,] ¥

scan y

gpad addr [- addr]
cm addr

me addr

y

wm



A Powerful Interface to a High-Performance Raster Graphics System 75

Let’s sec how these actually work by trying a few:

>l register0

RO: $00000000

>look rl15

R15: $00000000

>1 ecc

CC: False

>1 fb 230 500

Frame Buffer 230, 500 = $00000000
>1 spad $f0

$2080 $0f0: $00000000
>1 gq_register

Q: $00000000

>

Often its nice to be able to see the contents of all the registers at the same time. For
this reason we have the “dump” command which simply prints out the contents of the
16 general purpose registers, the Q register, the memory address register (mar), the
memory data register (mdr), the microprogram counter (mpc) and the loop counter

(e,

>dump

ROO: $00000000, RO1: $00000000, RO2: $00000000, RO3: $00000000
R0O4: $00000000, RO5: $00000000, RO6: $00000000, RO7: $00000000
RO8: $00000000, RO9: $00000000, R10: $0000000C, R11: $00000000
R12: $00000000, R13: $00000000, R14: $00000000, R15: $00000000

Q: $00000000, MDR: $00000000, MAR: $00000000, LC: $0000, MPC: $0000

In case you hadn’t noticed all the data values output by the simulator are printed
in hexadecimal. There currently is no facility to change this output format to, say,
octal. Perhaps someday this will be done, but until then I guess you could say we're
hexed.

In order to change the values of the various objects mentioned above we can
utilize the “set” command (or "'s” for short). The arguments to set are almost the
same as for look. The exceptions are “scanline”, “y_bus” and “scratchpad” with a
range of addresses “addr - addr”; these cannot be used with the set command. All
other cases are allowed - you must, of course, specify the new value which the object
is to have afier specifying the object. Let's look at some examples.

>0

$000: $00032000, $02100082 LDUDR
»set me . $£3520051 $10000000
$000: $f3520051, $10000000 B2 SLNML LSO CARZ LRESRD DFIKD DFIKA
>1 ro

RO: $00000000

»s r0 $IFFFEFFF

RO: $Ffffefff

>1 spad 0

$2080 $000: $00000000

>»>s spad 0 4

$2080 $000: $00000004
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Note the use of dot to specify the microcode address in the first set command above.
In fact anywhere a microcode address is required in a simulator command a dot
expression may be used.

To actually run a program we usc the “go” command. This command causes
the simulator to begin executing microcode starting at the microinstruction indicated
by the current setting of the microprogram counter (mpc). 1f a microcode address is
given along with the go command then the mpc is preset (o this address before start-
ing. The program will continue exccution until one of the following events occurs:

e A serious execution error occurs.
e A breakpoint is reached.
e An interrupt from the terminal is received.

When execution stops you will be left at command level.

As you probably know already the use of breakpoints is one of the standard and
most useful techniques for debugging programs. The simulator has three commands
for manipulating breakpoints. They are “set_breakpoint”, “deletc_breakpoint™ and
“list_breakpoints” {abbreviated “gh?, “db” and “Ib”  respectively). Both
delete_breakpoint and set_breakpoint require a single argument consisting of the
microcode address at which the command is to take effect. The list_breakpoint
command has no arguments. Let’s try these out:

>5

$005: $00032000, $01520002
> <carriage return>

$006: $02031000, $00920006
> <carriage return>

$007: $86032040, $00100000
> <carriage return>

$008: $02010000, $00920008
>sb .

>sb $15

>1b

Breakpoints are set at the
$008: $02010000, $00920008
$015: $000118c2, $00100000
>go

breakpoint hit at $0008
>db $15

>1b

Breakpoints are set at the
$008: $02010000, $00920008

CCZERO JMPDF
PS ALUMAR CCMEMAC JMPDF
B2 IKBR IKRD

INCRS ALUMAR CCMEMAC JMPDF

following instructions:
INCRS ALUMAR CCMEMAC JMPDF
RAZ B6 PR BD

following instructions:
INCRS ALUMAR CCMEMAC JMPDF

Another useful feature for debugging code is the ability to trace the contents of
critical registers during program execution. Such a facility is provided within the
simulator by the “trace” command (abbreviated *“t”). With this command we can
ask to have any of the internal registers printed after the execution of each



trace '?' : OFF

trace_settings

trace_object

register_object :

>t ?

The syntax for the trace command is as follows:

trace_settingss=

‘+' trace_object
‘-' trace_object

register_object
y_bus

microcode

io

registerN
g_register
mar

mdr

mpc
loop_counter
ce

Nothing is being traced right now.

>t +r0 +mpc +y
>t ?
Trace registers:

RO

MPC

Y_BUS
>gO
RO: $00000000 MPC: $0001 Y_BUS: $00000002
RO: $00000000 MPC: $0002 Y_BUS: $00020000
RO: $00000000 MPC: $0003 Y_BUS: $00000000
RO: $00000000 MPC: $0004 Y_BUS: $000003fe
RO: $00000000 MPC: $0005 Y_BUS: $03fe0000
RO: $00000000 MPC: $0006 Y_BUS: $03fe0000
RO: $00000000 MPC: $0007 Y_BUS: $00000000
Execution interrupted
>t -r0 +r2
>t ?

Trace registers:
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microinstruction, In addition, we can trace the value of the y_bus, the microinstruc-
tion addressed by the the microprogram counter (mpe) or input/output operations.
The value of the y_bus is useful especially for ALU operations which do not store the
results in a register. The printing of the next microinstruction to be executed,
although somewhat verbose, allows you to easily follow the flow of control within the
program. Turning on the [/O trace will produce a single line of output showing the
address and data for the operation. This will only be produced for memories in the
system other than the frame buffer memory itself (c.g. the scratchpad).

(Turn on trace)
(Turn off trace)

Thus we turn on the tracing of an object by saying “trace +object” and turn it off
with “trace -object” or “trace off” to turn off all trace output. Typing “trace 7 will
produce a list of all objects currently being traced. Lets look at some examples:
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R2

MPC

¥Y_BUS
>po
R2: $00000002 MPC: $0008 Y_BUS: $00080000
R2: $00000002 MPC: $0009 Y_BUS: $00080008
R2: $00000002 MPC: $000a Y _BUS: $08080808
R2: $00000002 MPC: $0005 Y_BUS: $00120000
Execution interrupted

The next command we want to discuss is the “siep” command (abbreviated
“st™). The step command places you into step mode, which allows you to single step
the execution of microcede. While in step mode, simply typing a carriage return
causes the simulator to execute a single instruction. If you enter a positiver number
N then it will start executing code and stop after N instructions have been executed.
Most of the other commands are still valid while in step mode s¢ you can still display
and modify the contents of registers and memory, and the trace facilities are still
available. Again some examples will illustrate these points:

»st

step:t +mc

step: <carriage return>

$001: $10011832, $00100000 RIMM Bl PR BD

step: <carriage return>

$002: $02032000, $021003fe ALUMAR LDUDR

step: <carriage return>

$003: $1001187e, $001003fe RLIMM B3 PR BD

step:5

$004: $100119£2, $00100000 RIMM B15 PR BD

$005: $001bO5f3, $021000ffF RMAR B15 SMR CARH1 LDUDR
$006: $00005893, $0132000b RMAR B4 PR RLFBD CCNEG JMPDF
$007: $10013092, $001000ff RIMM B4 RAS BD

$008: $00010c91, $00100000 RBHR B4 RPS BD

step:1 mar

MAR: $00000000

step:q

>

As with the go command if you specify a microcode address with the step command
(e.g. “step 43") then the MPC will be set to the given address so that execution will
begin there.

Finally there is a command which allows you to clear all the microprocessor
registers, remove all breakpoints and turn off all trace output. The “reset” command
is intended to be used when one wants to download a new microprogram and start
from scratch. Note that this command does not clear the memory contents, so be
forewarned.

Well, that covers just about everything. Hopefully this set of commands will
provide a simple yet powerful debugging facility for microprogrammers. The
attached command summary will be a useful quick reference for those just getting



A Powerful Interface to a High-Performance Raster Graphics System 79

used to the simulator. This summary can be found in the file
/ust/doc/graphics/ikonas/iksim/summary. This tutorial can be generated with the
command "nroff /usr/doc/graphics/ikonas/iksim/tutorial®.

Iksim Command Summary

The following is the syntax for each of the valid simulator commands.
Lower case symbols are non-terminals and are expanded below.

<carriage_return> {display next microinstruction)
up (where up is any number of ‘~' characters)
microcode_addr
show_code
microcode_addr show_code
w2r
GO [microcode_addr]
STEP fmicrocode_addr ]
TRACE A
TRACE OFF
TRACE trace_settings»
LOOK at_it
SET something
LOAD PATHNAME
RESET
DUMP
LIST_BREAKPOINTS
SET_BREAKPOINT microcode_addr
DELETE _BREAKPOINT microcode_addr
v unix_command
at_it : object
i Y_BUS
{ SCRATCHPAD low_addr ‘-' low_addr (a range of addresses)
{ MICROCODE microcode_addr
something : object bits_32
i MICROCODE microcode_addr bits_64
object : register_object
. STACK Index (0 <= index <=3, 0 == TOP)
{ FRAME_BUFFER ¥ [y
! SCANLINE v
1 COLOR_MAP map [,] entry
1 SCRATCHPAD low_addr
| WRITE_MASK
show_code HER-4 (Next 20 microinstructions)

AR (Previous 20 microinstructions)
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trace_settings

trace_object

register_object

bits_32

bits_64

microcode_addr

The step command
syntax applies:

step_mode

5

most_other_comma
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[
(]

trace_object
trace_object

(Turn on trace trace)
(Turn off trace trace)

register_object
Y_BUS
MICROCODE

10

REGISTER NUMBER
Q_REGISTER

MAR

MDR

MPC
LOOP_COUNTER

cc

NUMBER
NUMBER
NUMBER

Yy
Lt

NUMBER [, ] NUMBER

'+" NUMBER

NUMBER

places you in step mode. While in step mode the following

<carriage return>
NUMBER
most_other_commands
ot

{Execute single instruction)
(The number of instructions to execute)

nds includes the following:
reset

trace
list_breakpoints
set_breakpoint
delete_breakpoint
ook

set

dump

load

*1* unix_command



A Powerful Interface to a High-Performance Raster Graphics System 81

The following are valid abbreviations:

register = r
q_register = qr
y_bus =y
step = st
trace =t
frame_buffer = fb
colour_map = cm
scratchpad = spad
microcode = mc
scanline = scan
write_mask = wm
list_breakpoints = 1b
set_breakpoint = sbh

delete_breakpoint = db



9. Appendix B - Interface Summary

All routines callable by user software return some indication of success or
failure. In most cases a failure will return the value zero. This includes output
primitives which normally return the offset of the primitive within the segment (zero
is an invalid offset). If a segment is not open successful calls to output primitives re-
turn 1 (also an invalid offset). 1f no other value is to be returned from a function then
a value of one is returned to indicate success. If zero is a valid value which can be
returned under normal conditions then a minus one is returned to indicate failure.
Errors which are considered relatively serious will result in an appropriate error
message on the standard error output file in addition to the error return status. No
errors are considered fatal in that they would result in program termination.

In the following, arguments whose type is not explicitely given are of type int.

CloseSegment()
Close the currently open segment and return one. If no segment is open
then return zero,

ColourSegment( name, r, g, b )
This routine modifies the colour instruction at the beginnig of the namcd
segment by overwriting it with a new one containing the given rgb value.

CreateSegment( nane )
Create a new segment with the given name (priority). Il a segment is
currently open then close it first. Errors: The given segment already exists.
Cannot create new segment (normally due to Jack of display file memory).

DeleteAll()
This routine deletes all segments and erases the display.

DeleteSegment| name )
Delete the given segment. This means unlink it and release it.

GetPickOffset()
Return the offset into the most recently picked segment of the output
primitive which caused the hit.  If the last pick failed or if the picked seg-
ment no longer exists we fail and return zero.

MaskSegment( name, seg_mask )

long seg_mask;
This routine modifies the set mask instruction at the beginning of the
named segment by overwriting it with a new one containing the given
mask value.

83
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MoveSegment( name, x, y |
Translate the given segment by changing the absolute move instruction at
the start of the segment. The move is only allowed if it does not translate
the segments bounding box outside the sereen coordinates.

PickSegment( x, y, names )

int *names;
This routine starts a pick operation which results in determining the the
name of the first segment to pass through a box of some device dependent
size surrounding the given x, y coordinates. We return the complete stack
of nested segment names in the given array names. The maximum number
of names which will be returned is 20 since this is the maximum depth of
the segment stack in the microcode. The number of nested segment names
returned is given as the resulting value of this function.

PickSize( width, height )
Set the width and height of the rectangle used during hit detection.

RenameSegment( oldname, newname )
Rename the segment called oldname 1o newname. This means it must be
unlinked and re-inserled since the lists are kept sorted by mamec. Errors:
oldname does NOT exist or newname DOES exist.

Seglnit( download, verbose )
Initialize the Tkonas interface package. The Tkonas device must already be
opened via a call 1o the routine Tk_open. If download is true then the
microcode will be downloaded into the microcode memory. I verbose is
truc then the downloading will be accompanied by an appropriate output
™essage.

SetBackground( r, g, b))
Set the background colour. If not in manual mode then perform a complete
screen update,

SetHighlight(r, g, b))

Set the colour which is used to draw a “highlighted” segment.

SetMode{ mode )
This routine manipulates the mode of operation of the interface. We can
turn anti-aliasing on or off or put the processor into constant refresh mode.
Switching between manual and automatic mode is also done from here,
Onc of the following manifests should be used for the argument mode:
REFRESH, NON_REFRESH, AA_LINES, FAST_LINES, MANUAL,
AUTOMATIC

SetSegment( name. attribute )
This routine sets {or resets) certain segment atiributes. The following
manifests should be used as attribute values and can be ORed together to
set more than one at a time: PICKABLE, NON_PICKABLE,
HIGHLIGHTED, MNON_HIGHLIGHTED, VISIBLE, INVISIBLE,
REFRESH, NON_REFRESH, AA_LINES, FAST_LINES

Update( erase }

Redraw everything. I erase is truc then crase the screen [irst.
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DPADraw( x, y )
Output an instruction to draw a vector from the current postion to the given
absolute device coordinates.

DPAMove( x, v )
Qutpul an instruction to change the current position io the given absolute
device coordinates.

DPCaliSegment( name )
This routine adds a command to the current segment which will call the
given segment, sort of like a subroutine call, If the segment does not exist
or if the call would result in a recursive call sequence we return zero. If
everything is OK we return one.

DPColour{ r, g, b )

Output a change colour command.

DPIdlef)
Qutput an instruction which places the display processor in an idle loop.
This routine is meant 1o be used only for system debugging.

DPPoly( n, x_coords, y_coords )

int x_coords[], y_coords(];
This routine outputs a command to draw the given polygon. The given
arguments x_coords and y_coords are pointers to n coordinates. The
polygon is drawn in the curvent colour. All vertices are specified as
coordinates relative to the current position and the first vertex must have
the highest y coordinate.

DPRDraw({ dx, dy |
Outpui an instruction to draw a vector from the current position to the
given position which is specified relative to the current position in device
units.

DPRMove( dx, dy )
Output an instruction to change the current position to the given
coordinates which are specified relative to the current position in device
units.

DPRectanglefl dx, dy )
Output an instruction which will scan in a rectangle whose diagonal is
defined by the current position and the current position plus the relative
coordinates given. The rectangle is drawn in the current colour.

DPRirWaitf)

Output a command to wait for vertical retrace period.

DPSetMask( mask )

fong mask;
Qutput a sei-mask command 1o the dispiay processor, Only a 24-bit mask is
set right now. The high order 8 bits will be set to ones by the processor.
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DPStop()
Output an instruction which causes the display processor fo idle by setting
the program counter register to zero.  This routine is meant to be used
anly for system debugging.

DPnormPoly( n, x_coords, y_coords, x_normals, y_normals,
z_normals )

int x_coords(], y_coordsf];

int x_normals[], y_normals{], z_normals(};
This routine outputs a command to draw the given polygon. The given
arrays are pointers to # coordinates and surface normals. The polygon will
be shaded by interpolating the normals between vertices and computing a
calour from this normal. All vertices are specified as coordinates relative to
the current position and the first vertex must have the highest y coordinate.

DPrgbPoly( n, x_caords, y_coords, reds, greens, blues )

int x_coords[], y_coords{];

int reds[], greensf], blues{];
This routine outputs & command to draw the given polygon. The given
arrays arc pointers 1o 2 coordinates and colours. The polygon will be shaded
by interpolating the colour between vertices. All vertices are specificd as
coordinates relative to the current position and the first vertex must have
the highest y coordinate.

GetChildren{ name, children, all )

int children(],
In the array children will be returned the names of all segments which are
called by the given segment nane. If afl is truc then we return all children,
which includes the children’s children, atherwise we only return immediate
descendents. Note that the list will not contain unique names. If a segment
is called twice then it will appear twice in the list. The array must be large
enough 1o hold the children returned; otherwisc something will be
clobbered. The user must have an idea of the nesting level of scgments and
the number of scgments called from the given one. Returns minus one upon
failure.

GetColour( red, green, blue )

int *red, *green, *blue;
Return the current drawing colour through the given red, green and blue
pointers.

GetMask( mask_addr }

long *mask_addr;
Return the curreni value of the write mask register through the given
pointer

GetParents( name, parents, all )

int parents/}[;
This routine scarches for segments which reference the given segment and
returns (in the array parents) the names of all segments found, 1f all is true
then we return all ancestors, otherwise we only return immediate parents.
The array must be large enough to hold the parents returned; otherwise
something will be clobbered. The user must have an idea of the nesting lev-
¢l of segments and the number of segments calling the given one. Returns
minus one upon failure.
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GetPosition! xp, yp )
int *xp, *yp;
Return the current device position through the given pointers.

GetValue( which )

int which;
This routine returns a single integer value. The value returned depends on
the value requested with the argument which. The following manifests can
be used to obtain specific information: HIGH_SEGMENT: returns the
largest segment name defined thus far. LOW_SEGMENT: returns the
smallest scgment name defined. FREE_MEMORY: returns the number of
words of frce display file memory available. Returns minus one upon
failure.

BoxErase( segment |
This routine erases the bounding box of the given segment to the current
background colour. The system must be in manual mode before calling this
routine.

BoxUpdate( segment, mode )
This routine causes the bounding box of the given scgment to be updated
by redrawing segments which overlap it, If mede is ALL then all overlap-
ping segments are updated, and if mode is PRIORITY then only the given
segment and higher priority segments are updated. The system must be in
manual mode before calling this routine.

DrawSegment( segment )
This routine causes the given segment to be redrawn into the frame buffer.
The system must be in manual mode before calling this routine.

UpdateFrom( segment |
This routine causes the given segment and all segments of higher pri.:rity to
be redrawn. The system must be in manual mode before calling this
routine.



10. Appendix C - RDS 3000 Conversion

The new model of the lkonas system is almost identical to the old 2000 system.
In fact the interface is capable of running without any problems on the new model.
However, some modifications to the interface are necessary to allow full exploitation
of the new system. There is really only one difference which seriously affects the
interface. This is the increased amount of image memory in the system. The new
model has 32 bits of pixel data in low resolution format instead of only 24, This fact
has serious consequences for some of the firmware macro-instructions. Currently the
“set drawing colour’” and “set write mask™ instructions are onc word instructions with
the normal six bit opcode and a 24 bit immediate data field containing the drawing
colour or wrile mask respectively. These instructions must be modified to have a 32
bit operand due to the extra image memory, Note that this implies that these instruc-
tions must then occupy more than one word. The easiest way to do this is to store the
immediate data in the word immediately following the opcode. The microcode
routine for these instructions would then use the program counter register to obtain
the immediate data and then increment the program counter by onc (o have it point
to the next instruction instead of the immediate data, Note that this wastes the 26
bits in the first word of the instruction. This is almost unavoidable since the memory
is only word addressable. The host software which writes instructions into the display
file must also be modified to handle these new instruction formats.

Other differences between the two systems appear in the video chain. The
crossbar switch now takes 34 input bits and maps thesc (o 34 output bits. The output
bits consist of the normal red, green and blue channcls along with eight overlay
planes and two colour map page bits (refer to the hardware reference manual for
details). Also the colour tables now have 10 output bits per channel instead of 8 due
to the addition of 10 bit digital to analog converters in the video output module.
Fortunately though, the interface needn’t worry about these differences since there
are currently no primitives for accessing thesec modules. We mention them here sim-
ply for completencss.

One difference which does not imply modification, but instead allows possible
enhancement, involves the use of the microcode memory. The 2000 system did not
allow the host or the microprocessor to write to the microcode memory while the
microprocessor was exccuting. On the 3000 this is not truc. This means that any
microcode memory which is not being utilized strictly as microprogram storage may
be utilized as scratchpad memory. This is potentially useful for applications which
require very large display files.
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The following technical reports are in preparation by members of CGL and will be
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Singh, Beatty, Booth & Ryman
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CS-82-43  Frame Buffer Animation
MacKay & Booth
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Goetz & Beatty
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(CS-82-46 Picture Creation Systems
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CS-82-47  Anthropemorphic Programming
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CS-82-49  Varying the Betas in Beta-splines
Barsky & Beatty

Reports in stock are forwarded free of charge. A nominal fee is charged for out of
stock items. For an up-to-date listing of available reports, please write to
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