THE DESIGN OF MAPLE:
A COMPACT, PORTABLE, AND POWERFUL
COMPUTER ALGEBRA SYSTEM

Bruce W. Char
Keith 0. Geddes
W. Morven Gentleman
Gaston H. Gonnet

Research Report (S-83-06
April, 1983



THE DESIGN OF MAPLE:
A COMPACT, PORTABLE, AND POWERFUL
COMPUTER ALGEBRA SYSTEM"*

Bruce W. Char
Keith O. Geddes
W. Morven Gentleman
Gaston H. Gonnet

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

The Maple system has been under development at the University of Water-
loo since December 1980. The kernel of the system is written in a BCPL-like
language. A macro-processor is used to generate code for several implementation
languages in the BCPL family (in particular, C). Maple provides interactive
usage through an interpreter for the user-oriented, higher-level, Maple program-
ming language.

This paper discusses Maple’s current solution to several design issues. Maple
attempts to provide a natural syntax and semantics for symbolic mathematical
computation in a caleculator mode. The syntax of the Maple programming
language borrows heavily from the Algol family. Full “‘recursive evaluation” is
uniformly applied to all expressions and to all parameters in function calls (with
exceptions for only four basic system functions).

Internally, Maple supports many types of objects: integers, lists, sets, pro-
cedures, equations, and power series, among others. Each internal type has its
own tagged data structure. ‘“Dynamic vectors” are used as the fundamental
memory allocation scheme. Maple maintains a unique copy of every expression
and subexpression computed, employing hashing for efficient access. Another
feature relying upon hashing is the “remembering” facility, which allows system
and user-defined functions to store results in internal tables to be quickly
accessed in later retrieval, thus avoiding expensive re-computation of functions. -~

The compiled kernel of the Maple system is relatively compact (about 100K
bytes on a VAX under Berkeley Unix). This kernel includes the interpreter for
the Maple language, basic arithmetic (including polynomisal arithmetic), facilities
for tables and arrays, print routines (including two-dimensional display), basic
simplification, and basic functions (such as coef], degree, map, and divide ). Some
functions (such as ezpand, diff (differentiation), and taglor ) have a ‘‘core” in the
kernel, and automatically load external user-language library routines for
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extensions. The higher-level mathematical operations (such as ged, int
(integrate), and solve, are entirely in the user-language library and are loaded
only when called.

The approach to portability of the Maple system is also discussed. Maple
currently runs in C under Berkeley Vax/Unix, and B under a Honeywell GCOS
operating system. Maple is currently being ported to Motorola 68000 micropro-
cessor systems on ‘“Unix-like’” operating systems.

1. Motivation for Designing a New System

Maple is a language and system for symbolic mathematical computation,
under development at the University of Waterloo since December, 1980. (The
name “Maple” is not an acronym but rather it is simply a name with a Canadian
identity.) The type of computation provided by Maple is known by various other
names such as “algebraic manipulation’ or “‘computer algebra”. The Maple sys-
tem can be used interactively as a mathematical calculator, and computational
procedures can be written using the high-level Maple programming language.

With so many languages and systems already developed and being
developed, the question arises: “Why develop yet another system?”. We will
explain our motivation for developing the Maple system and the goals we are try-
ing to achieve with Maple.

The primary motivation can be deseribed as user accessibility. This concept
has several aspects. The state of the art in 1980 was such that in order to have
access to a powerful system such as MACSYMA (or Vaxima){Mos74a, Fod81a] it
was necessary to have a large, relatively costly mainframe computer and then to
dedicate it to a small number of simultaneous users. In the university setting,
this meant it was not feasible to offer symbolic computation to large classes for
student computing. In a broader context, this meant that a large community of
potential users of symbolic mathematical computation remained non-users. The
development of the MUMATH[Ric792a] and PICOMATH|[Sto80a] systems showed
that a significant symbolic computation capability could be provided on low-cost,
small-address-space microcomputers. It seemed clear that it should be possible to
design a symbolic system with a full range of capabilities for symbolic mathemat-
ical computation which was neither restricted by the small address space of the
early microcomputers nor “inaccessible to the masses’’ because of unreasonable
demands on computing resources. In particular, it seemed possible to design a
modular system whose demands on memory would grow gracefully with the needs
of the application program.

Portability was another of our earliest concerns, partly because we found
ourselves users of a computing environment in transition, and partly because it
was clear that a wide variety of computer systems would be coming onto the
market in the decade of the 1980°s. It was also recognized that ‘“‘user accessibil-
ity is greatly affected by the quality of user interface which a system provides.

Thus the primary design goals of the Maple system are: compeciness, a
powerful set of facilities for symbolic mathematical computation, portability, and
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a good user interface. These issues are discussed in more detail in the following
sections.

2. Syntax and Semantics

Part of our attempt to provide a good user interface has been to try to
design a syntax which is mathematically natural. This goal is conditioned by our
current assumption that most users will be accessing Maple from “ordinary” ter-
minals using one-dimensional ASCII input. (An interesting direction for the
future would be to address the design of a good user interface based upon more
sophisticated peripherals, building upon previous work such as [Hof79a].) Under
the current assumption, many mathematical operations are specified by the tradi-
tional function-call syntax common to many programming languages. However,
Maple's syntax is enriched with mathematical constructs such as equations, and
ranges (e.g. 1.3 ).

2.1. Sample Maple Statements
The following sample statements serve to illustrate some of Maple's syntax.

(Note that the double-quote operator ” is used as a “‘ditto”” symbol to specify the

latest expression.)

taylor{ exp(3*x#%2 + x), x=0, 4 );

145

1+ =+ 7/22% + 19/62° + ”

+ 0(z%)
sum( (5%1-3)*{2xi+9), 1= 1.0 );
10/3 {n+ 1) + 29/2 (n+1)> - 269/6n — 107/6

expand(”);
10/3n° + 49/22% - 35/6n

eqnl 1= 3#x + 5xy = 13; eqn2 := 4*x - T*y = 30; solve( {eqn.(1..2)}, {x, ¥} )
egnl: =32+ 5y =13
egn2 =41 -7y = 30

38 241

{y:_41)x_41}

limit{ (tan(x)-x)/x**3, x=0);
1/3



fibonacei := proc (n)
option remember;
if not type(n,integer) or n<C0 then
ERROR('invalid argument to procedure fibonacei’)

else
if n<?2 then n else fibonacci{n-1) + fibonaecci(n-2) fi
fi
end;
fibonacei(101);

573147844013817084101

2.2. Control Structures

Many of the control structures in the Maple language have been borrowed
from other languages. Specifically, from Algol 68 we borrowed the repetition
statement:

for <name>> from <expr> by <expr> to <expr> while <expr>
do <statement sequence> od

and the selection statement:

if <expr> then <statement sequence>
elif <expr> then < statement sequence>

else <statement sequence>
fi

From C we borrowed the break statement for breaking out of a loop, and
RETURN({expr) for returning from a procedure. The ERROR(string) construct,
similar to a feature in MACSYMA, is a special function which causes an immedi-
ate return to the top level of Maple with “ERROR: string’’ printed out as a mes-
sage. However, a procedure may be given the “errortrap” option to allow it to
“catch” an ERROR condition in it or in one of the subprocedures it ecalls -- this
is useful for error-checking in library functions, for example.

2.3. Some Semantic Features

An important semantic feature is that Maple applies full, recursive evalua-
tion of expressions as the standard evaluation rule. For example, the sequence of
statements

a:=7x;
X 1= 3;
a,

yields the value 3, not x. The quoting facility for preventing the evaluation of an
expression is to surround the expression with single-quotes, as in 'a+ b’
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Another semantic feature in Maple is the general rule that all parameters to
all functions (system-supplied or user-defined) are fully evaluated from left to
right before being passed. (Again, the quoting facility can be used to explicitly
prevent evaluation). We have allowed precisely four exceptions to this general
rule, for four specific system functions: assigned (which returns true or false
depending on whether the name passed as its argument is assigned or not), evain
(which evaluates its argument to a name), evalb (which evaluates its argument as
a Boolean expression), and remember (which is a function used to place the result
of a computation in an internal table for later retrieval). Another important
feature of Maple is the set of powerful primitive functions that are available
when writing procedures in the user-level Maple language. Some examples of
such primitive functions are degree, coeff, lcoeff (to extract the leading
coefficient), op (to pick operands from an expression), and map (to apply a pro-
cedure onto each of the operands of an expression, separately).

2.4. Types in Maple

Maple provides a {ype function for run-time type-checking. For example, if
a procedure { has a parameter x then a common construct in the procedure body
is a statement such as:

if not type(x, algebraic) then
ERROR('invalid argument to procedure ') fi

The Maple language has been designed to avoid obligatory type declarations, a
principle that we think is important if we are to have a convenient interactive
system. Furthermore, we think that the syntax and semantics which applies
when writing Maple procedures should be identical with the syntax and seman-
tics of Maple's interactive mode. Consequently, no type declarations are required
in Maple and writing type-independent Maple code comes naturally.

On the other hand the Maple language is not type-less. Every object has a
precise type and the type information is coded in the data structure. Our con-
cept of “‘objects’” and ‘‘types’ applies not only to the conventional objects such
as integers and lists, but also to mathematical objects such as sums and produets,
and to objects such as procedures and tables (arrays). As an illustration of the
concept of a procedure as an object, a definition of the function abs in Maple
could take the form:

abs :== proc {x)
if not type(x,rational) and not type(x,real} then
ERROR('invalid argument to procedure abs")
else
if x<0 then —x else x fi
fi
end;

This is an ordinary assignment statement, where the procedure definition (the
proc...end construct) on the right-hand-side is a valid Maple expression (i.e., an
object with its own data structure of type procedure }. The name abs could later
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be re-assigned any other value (of any type). It is also possible to have a pro-
cedure definition which has not been assigned to any name, as in the following
expression to reverse the left and right hand sides of a list of equations:

map( proc (x) op(2,x)=o0p(1,x) end, [a=b, c=d, e=f]).

3. Data Structures

Maple has a rich set of data structures designed into it, currently about 36
different structures. Approximately one-quarter of these data structures
correspond to programming language statements: assignment, if, read, etc. The
remaining data structures correspond to the various types of expressions, includ-
ing expressions formed using standard arithmetic and logical operators, and
structures for numbers, lists, sets, tables, (unevaluated)} functions, procedure
definitions, equations, ranges, and series. All of these structures are represented
internally as dynamic arrays (vectors}, similar to the approach taken by{Nor82aj.

3.1. Advantages of Dynamic Vectors

This approach using dynamic vectors at the machine level and a rich set of
data structures at the abstract level has significant advantages in improved com-
pactness and efficiency of the resulting system code. Firstly, in Maple there is
only one level of abstraction above the system-level objects. It is clear that in
symbolic mathematics there are many data types. The fewer and more direct the
mappings between the abstract objects and the system-level objects, the simpler
and more efficient will be the code that manipulates these objects. Secondly, we
believe that the design of data structures should be related, if possible, to the
language that describes the data objects. In our case we have a simple BNF
language with the LALR(1) property, and it is natural to relate the data struc-
tures to the productions in the language. This immediately suggests the need for
many data structures since there are many productions in the language. Thirdly,
dynamic vectors allow us, in many cases, to have direct access to each of the
components of the structure at about the same cost. This is highly desirable in
some circumstances over the sequential access required when all objects are
represented as lists. Fourthly, dynamic vectors are more compact than structures
linked by pointers. In summary, an important part of the compactness and
efliciency of Maple is due to the use of proper data structures.

3.2. Examples of Maple’s Data Representation
All of the internal data structures in Maple have the same general format:

IHeader I data 1 I data 2 | I data n l

The header field encodes the length (n+ 1) of the structure, the type, one bit to
indicate simplification status, and two bits to indicate garbage collection status.
Every data structure is created with its own length and this length will not
change during its entire existence. Data structures are typically not changed
after creation since it is not predictable how many other data structures are
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pointing to a given structure. The normal procedure to modify structures is to
create a copy and modify the copy, hence returning a new data structure.

The following are some specific examples of data structures in Maple. The
notation {<<xxx> will be used to indicate a pointer to a structure of type xxx.

Negative integer

[INTNEG | integer | integer | ... |

Here the INTNEG header includes both the tag for INTNEG and the length of
the data structure, which depends upon the size of the negative number being
represented. Each integer field of an INTNEG contains one base BASE digit.
BASE=10000 for 32-bit machines and BASE=100000 for 36-bit machines; that
is, BASE is the largest power of 10 that will fit into a half word on the host
machine.

Rational number

[RATIONAL | {<INTPOS or INTNEG> | {<INTPOS> |

The second integer is always positive and different from 0 or ;. The two integers
are relatively prime.

Sum of several terms

ISUM I 1<exp-1> I I <factor-1> l I I

This structure should be interpreted as pairs of expressions and their constant
factors. The simplifier lifts all explicit constant factors from each expression and
places them in the <factor>> entries. A term consisting only of a rational con-
stant is represented with factor 1.

Product/ quotient/power
IPROD I t<exp-1> I 1 <expon-1> l 1 <exp-2> I 1 <expon-2> I I I

This structure should be interpreted as a product of <exp-i><®Po»i> = Ration-
al number or integer expressions to an integer power are expanded. If there is a
rational constant in the product, this constant will be moved to the first entry by
the simplifier.

Series

[SERIES | 1<exp> [ t<exp-1> [integer-1 [ .. [ .. ]}

The first expression is the ‘‘taylor’ variable of the series, the variable used to do
the series expansion. The remaining entries have to be interpreted as pairs of
coeflicient and exponent. The exponents are integers {not pointers to integers)
and appear in increasing order. A coeflicient O(1) (function call to the function
“O" with parameter 1) is interpreted specially by Maple as an “order’ term.



4. The Use of Hashing in Maple

Maple handles all table searching in a uniform way. All of the searching is
done by an algorithm which is a slight modification of direct-chaining hashing.
Although it is not obvious, the internal tables play a crucial role; they are used
for: locating variable names, keeping track of simplified expressions, keeping
track of partial computations, mapping expression trees into sequential files for
internal input/output, and for storing arrays and tables. It is immediately obvi-
ous that the searching in these tables has to be fast enough to guarantee overall
efficiency.

The algorithm used for these tables can be understood as an implementation
of direct-chaining where instead of storing a linked list for each table entry, we
store a variable-length array. This requires a versatile and efficient storage
manager, but without one, symbolic computation would not be feasible regard-
less.

The two data structures used to implement tables are:
Table entry

|HASHTAB | j<HASH> | t1<HAsH> | .. Fi<HASH> |

Each entry points to a HASH entry or it is 0 if no entry was created. The size of
HASHTAB is constant for the implementation. For best efficiency, the number
of entries should be prime.

Hash-chain entry

IHASH I key I value I I

Each entry in the table consists of a consecutive pair, the first one being the
hashing key and the second the stored value. A key cannot have the value 0 as
this is the indicator for the end of a chain. For efficiency reasons, the HASH en-
tries are incremented by 5 entries at a time and consequently some entries may
not be filled. Keys may be any integer or pointer which is representable in one
word. In many cases the key is itsell 2 hashing value (two step hashing).

4.1. The Simplification Table

All simplified expressions and subexpressions are stored in the simplification
table. The main purpose of this table is to ensure that expressions appear inter-
nally only once. Lvery expression which is entered into Maple or which is inter-
nally generated is checked against this table, and if found, the new expression is
discarded and the old one is used. This task is done by the simplifier which
recursively simplifies (applies all the basic simplification rules) and cheeks against
the table.

The task of checking for equivalent expressions within thousands of subex-
pressions would not be possible if it was not done with the aid of a “hashing”
concept. Fvery expression is entered in the simplification table using its signa-
ture as a key. The signature of an expression is a hashing function itself, with
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one very important attribute: it is order independent. For example, the signa-
tures of the expressions a+ b+ ¢ and ¢+ a+ b are identical; the signatures of ax*b
and b#*a are also identical. Searching for am expression in the simplification
table is done by:

- Simplifying recursively all of its components;

- Applying the basic simplification rules.

- Computing its signature and searching this signature in the table. If the
signature is found then we perform a full comparison {taking into account that
additions and products are commutative, etc.) to verify that it is the same
expression. If the expression is found, the one in the table is used and the
searched one is discarded.

The number of times that we have to do a full comparison on expressions is
minimal; it is only when we have a “collision” of signatures. Some experiments
have indicated that signatures coincide once every 50000 comparisons for 32-bit
signatures. {Notice that the signatures are still far from uniform random
numbers). The resulting expected time spent doing full comparisons is negligible.
Of course, if the signatures disagree then the expressions cannot be equal at the
basie level of simplification. :

4.2. The Partial Computation Table

The partial computation table is responsible for handling the option
remember in function definitions in its explicit and implicit forms. Basically, the
table stores function calls as keys and their results as values. Since both these
objects are data structures already created, the only cost (in terms of storage) to
place them in the table is a pair of entries (pointers). Searching these hashing
tables is extremely efficient and even for simple functions it is orders of magni-
tude faster than the actual computation of the function.

The change in efficiency due to the use of the remembering facility may be
dramatic. For example, the Fibonaeci numbers computed with

f := proc(n)
if n<2 then n else f(n-1)+ f(n-2) fi end;

take exponential time to compute, while

f := proc(n) option remember;
if n<2 then n else f(n-1)+ f{n-2) fi end;

requires linear time.

Besides the facility provided to users, the internal system uses the partial
computation table for diff, taylor, expand, and evalr. The internal handling of
expand js straightforward. There are some exceptions with the others, namely:

- diff will store not only its result but also its inverse; in other words, if
you integrate the result of a differentiation the result will be “table-looked up”
rather than computed. In this sense, integration “learns’ from differentiation.

- taylor and evalr need to store some additional, environment, information
(Degree for taylor and Digits for evalr). Consequently the entries in these cases
are extended with the precision information. If a result is requested with less
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precision than what is stored in the table, it is retrieved anyway and “rounded”.
If a result is produced with more precision than what is stored, the table entry is
replaced by the new result.

- evalr only remembers function calls; it does not remember the results of
arithmetic operations.

Arrays are implemented using internal tables, with the address of the
(simplified) expression sequence of indices used as the hashing key. (Note that
since simplified expressions appear only once, we can use their addresses as keys.)
Sinee arrays are treated just like tables at the internal level, dense and sparse
arrays are handled equally efficiently.

5. Compact Size as a Design Goal

The kernel of the Maple system (i.e., the part of the system which is written
in the systems implementation language) is kept intentionally small -- for exam-
ple, it occupies about 100K bytes on a VAX. The kernel system inclides only
the most basic facilities: the user programming language interpreter, numerical,
polynomial and series arithmetie, basic simplification, facilities for handling tables
and arrays, print routines, and some fundamental functions such as coeff, degree,
subs (substitute), map, iged (integer ged computation), leoeff (leading coefficient of
an expression), op, divide, imodp/imods (integer modular operations using
positive/symmetric representation), and a few others. Some of the fundamental
functions have a small ‘““core” coded in the kernel and an interface to the Maple
library for extensions. The interface is general enough so that additional power,
such as the ability to deal with new mathematical functions of interest to a par-
ticular user, can be obtained by user-defined Maple code. Some examples of
functions which have such a ‘‘core” and a user interface are diff, expand, taylor,
type, and evalr (for evaluation to a real number). Other functions supplied with
the system are entirely in the Maple library, including ged, factor, normael (for
normalization of rational expressions), int, and solve.

The compactness of a system is affected by many different design decisions.
The following points outline some of the design decisions which have contributed
to the compactness of the Maple system.

1.  The use of appropriate date structures. As we have pointed out in section 3,
an important factor in compactness is the design of a rich set of data struc-
tures appropriate to the mathematical objects being manipulated, with a
direct mapping between these abstract structures and the machine-level
“dynamic arrays’”. This data structure design avoids the introduction of an
intermediate ‘“‘artificial” level of structure such as lists. One level of com-
pactness is thus achieved because the number of pointers is reduced com-
pared with a linked-list representation. Significantly, another level of com-
pactness is achieved because the code required to manipulate these data
structures is generally shorter than the code which must deal with a list
representation.
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The use of a viable file system. By having an efficient interpreter and by
placing much of the code for system functions into the user-level Iibrary,
Maple has the property that “you only pay for what you use”. Writing
functions in the user-level Maple language has the additional advantages of
readability, maintainability, and portability. This necessarily depends upon
having a file system that (at least through efficient simulation) has some
desirable properties such as a tree-structured directory system and variable-
length records. It may have been unreasonable a decade ago to make such
assumptions about the file system, but these assumptions are {or will be)
satisfied by many current and future mainframe and micro computer sys-
tems.

Avotding a large run-time support system. Providing an “integrated pro-
gramming environment” or a large run-time support system can lead to
non-trivial memory requirements. For example, Franz Lisp on Berkeley
Unix starts off at almost 500K bytes. We view Maple as just one of many
software tools that a user may employ to solve problems, regardless of which
system it may be used on. We see no need to provide all of these tools
within Maple itself, not only because they greatly increase the problems of
porting without providing any greater algebraic computation power, but also
because many computing environments will allow their native software tools
to be easily connected to Maple (say, as communicating processes) once
Maple has been ported to that environment. For example, Unix
EMACS|Gos81a] can invoke Maple as a subprocess on Berkeley Unix, pro-
viding some screen managing and editing facilities for Maple. Thus we do
not view the basic Maple system, which provides minimal programming sup-
port (e.g., only a simple trace package and no editor), as lacking a program-
ming environment. Rather, we see Maple as being easy to integrate into an
environment chosen by the user. We cerfainly think that having a good
user/programming interface to Maple is important. Indeed, we look forward
toward developing a ‘‘personal algebra machine” in the near future. How-
ever, we envision this kind of work as building upon the basic Maple system
rather than building more into it.

A policy of treating matn memory as a scarce resource. We believe that this
point of view is important if we are to achieve the goal of providing a sym-
bolic computation system to ‘“the masses’’. Because we have adopted such a
point of view, we are constantly concerned about which functions belong in.
the Maple kernel and which funections can be supplied as user-level code in
the Maple library. Since we have an efficient mechanism to retrieve Maple
functions from the library, and an efficient interpreter, we are not forced to
abandon computational power for the sake of compactness.

The choice of the BCPL family of systems implementalion languages. Imple-
menting Maple in systems languages from the BCPL family has helped us to
achieve the compactness goals outlined in the above points. These languages
typically produce relatively compact and efficient object code, thus contri-
buting directly to the goal of treating main memory as a scarce resource.
The support of “‘dynamic arrays' in the implementation language allows the
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creation of compact data struetures for the higher-level objects. Further-
more, an implementation language in the BCPL family typically has a run-
time library that is small, selectively included, and yet provides the desired
functionality.

Although the availability of inexpensive memory and hardware support for
large address spaces makes it possible to design a programming system which has
all of its routines contained within a large (virtual) main memory, we consider
such a design to be inefficient both on mainframe timesharing systems and on the
arriving generation of inexpensive but powerful microprocessor systems. It will
continue to be true, in our view, that a more efficient design can be achieved by
treating main memory as a scarce resource. Maple’s design with a relatively
small kernel interfacing to an external library takes the latter point of view.

8. Computational Power through Libraries of Functions

Another goal of the Maple system is to provide a powerful set of facilities for
symbolic mathematical computation. In other words, we are not willimng to
achieve compactness by sacrificing the computational power of the system. Thus
while the number of functions provided in the kernel system is kept to a
minimum, many more functions for symbolic mathematics are provided in the
system library, to be loaded as required. The functions in the system library are
written in the high-level Maple programming language and are therefore readily
accessible to all users of the Maple system. A load module for each library pro-
cedure is stored in ‘‘Maple internal format™ which is a quick-loading expression-
tree representation of the procedure definition. When a library function is
invoked, its load module is read into the Maple environment (if not already
loaded) and the expression tree is interpreted by the Maple interpreter.

Since run-time loading of compiled code is not (yet) a portable feature for
BCPL-family languages on most systems, the execution speed of the system is
seen to depend on the interpreter for the Maple language. Maple's interpreter is
relatively efficient; for example, an experiment performed by running the tak
function[Gri82a] shows Maple’s interpreter to be about four times faster than
Vaxima’'s interpreter on that particular benchmark. Consequently, the tradeoff
between ‘“‘user-level” and “system-level” code is not as great in Maple as in other
systems. When a critical function has been identified as causing a serious degra-
dation in execution time, it has been moved into the compiled kernel system®. -
Undoubtedly, there would be some gain in execution speed if all of the Maple
functions were coded entirely in the compiled kernel but the resulting loss of
compactness, and hence of user accessibility, outweighs such gains in execution
speed.

This was done, for example, with the function for polynomial division which was first placed in the system Ii-
brary and then !ater moved into the kernel. On the other hand, some functions such as solve and int have been
moved from the kernel out to the system library without causing a significant degradation in performance.
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7. Portability

As part of the general goal of “user accessibility”, the Maple system is not
tied to one operating system, nor to one programming language. Maple is
intended to be portable across several languages, descendants of BCPL. To
achieve this level of portability and to have a single source code (multiple copies
are viewed as a disastrous scenario) we use a general purpose macro-processor
called Margay. Our current Margay macros define a language very similar to B
or C except for the places where the languages differ, where we do one of the fol-
lowing:

(i) Write a new macro which can be easily mapped onto every language. (Most
of the time the macro will have some additional information which may be
redundant for some languages but used by others). This is possible since the
whole internal maple is relatively small (5500 lines) and we are willing to
modify the code to improve portability.

(ii} Avoid using a particular feature if it is too peculiar to a single language.

(iii) Avoid, whenever possible, constructs that may be ambiguous across different
languages.

The macro-processor is used not only as a way of providing a higher level of rea-
dability of the source code, as M6 was used with Altran [Hal71a], but also as a
way to make Maple portable across several languages.

Maple is currently running under the GCOS operating system on a
Honeywell 66/80 (110K words maximum address space) and under Berkeley Unix
on VAX 11/780’s. We have begun experiments porting to C on various operating
systems on MCG8000-based microcomputers, such as Xenix, Unisoft Unix, and
the WICAT opcrating system. We have plans to port Maple into other BCPL-
derivative languages in the near future, such as the locally-developed languages
WSL[Bos&0a| and PORT[Mal82a).

8. Notes on Software Development

Maple development started on a Honeywell system in B when the project
began in 1980. When Waterloo acquired a VAX in 1981, we ported Maple to C.
At that time, we were forced to demonstrate portability between languages and
operating systems out of necessity, since Maple had to continue to work on the
Honeywell for student use.

8.1. Choice of BCPL-derivatives as implementation language

While Maple's behaviour is based as much on our coding of algorithms and
data structures as on our choice of implementation language, it seems clear to us
that a general-purpose system based on a BCPL-family language can be compact,
yet have reasonable performance on interesting problems. The software tools
available (parser-generators, execution profilers, ete.) have made the implementa-
tion process proceed in a timely fashion with a small staff. While we don’t think
any final conclusions should or can yet be drawn about the relative merits of Lisp
or BCPL-family languages as vehicles for symbolic systems, we do suggest that
the choice of system implementation languages now seems less limited than in the
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early '70s when the last generation of algebraic systems were being designed.
Our approach towards portability is of course tied to the health and propagation
of BCPL-family languages, but we feel this is assured, at least for the next few
years, given the interest of the larger computer science community in such
languages. We feel that our approach frees us to concentrate on providing alge-
braic computation power, as opposed to worrying about machine code generators,
portable subsets, or porting programming environments.

8.2. Breadboarding

Our mode of operation up to this point is akin to “breadboarding” an electr-
ical design, in that we can observe real, not merely theoretical, performance over
a long period of time, and yet be in a position to make possibly incompatible
changes in a timely fashion. The compactness of the Maple kernel is what makes
breadboarding feasible for us, in that someone modifying the kernel must deal
with only 5500 lines of code. As a consequence of this approach, version 1 of the
Maple system is almost unrecognizable as a predecessor of version 2, although
version 3 {currently under development) is characterized mainly by added facili-
ties rather than by fundamental design changes compared with version 2.

We do not claim to have worked out all of the design and implementation
issues facing us. Maple has changed since the inception of the project, not only
through the introduction of additional features, but also through incompatible
changes made because we changed our minds. Nevertheless, we have willingly
subjected the system to significant usage at every stage of its development. The
first version of the Maple system was running within a week of the first discus-
sions on its design, with significant “‘real-world” problems solved using it within a
month. Hundreds of students at Waterloo have already used Maple in undergra-
duate and graduate classes *. We are continuing to operate in a2 mode where
there is a short time period between ideas and their implementation, with the
result that the practical, real, applications of “great ideas’ are soon found, and
the “‘great ideas that are not-so-great” are modified or discarded. In this, we are
grateful for the flexibility of our academic environment (and students!), and for
the vigour of workers in algebraic manipulation of the past decade who have pro-
vided us with a wealth of implemented algorithms and applications problems that
are obvious tests for Maple.

To some extent, the breadboarding approach means that we have had to
proceed slowly on the design of “large features” such as user-directed -
simplification, but we think that by tying the design of Maple closely to its
implementation and usage we have gained invaluable experience and feedback.
Furthermore, we think that doing so has kept uws from designing beyond our
immediate capacity to remain faithful to maintaining efficiency and portability.

¥ N - 3 .
Maple is used in an undergraduate data base class (its support of sets and tuples was used for 4 relational

data base package}, as well as courses in algebraic maniputation. It has alse been used for “real” formula mani-

pulation by some of our departmental colleagues, and as ar algebraic calculator by students on a casual basis.
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9. Conclugions

We expect several more cycles of building, using, and learning for Maple.
Nevertheless, we believe that our accomplishments so far affirm the validity of
our approach towards data representation and manipulation, towards portability,
and towards making algebraic manipulation generally available. David
Stoutemyer once said that one way to make computer symbolic math economi-
cally feasible for the masses would be to encourage the University of Waterloo to
develop a compact “WATALG” system [Sto79a]. With the Maple system, we
have taken up the spirit of that challenge.
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PREFACE

The design and implementation of the Maple system are currently in progress. This
manual is a working document for the project. The version of the Maple system which
has been completed at the time of publication of this second edition of the manual
(December 1982) is version 2.2,

The Maple project was first conceived in the fall of 1980 as the logical outcome of
discussions on the state of symbolic computation at the University of Waterloo. The
authors wish to acknowledge many fruitful discussions with colleagues at the University
of Waterloo, particularly Morven Gentleman, Michael Malcolm and Frank Tompa. It
was recognized in these discussions that none of the locally-available systems for symbolie
computation provided the environment nor the facilities that should be expected for
symbelic computation in the 1980's, We concluded that since the basic design decisions
for current symbolic systems such as ALTRAN, CAMAL, Reduce, and
MACSYMA|[Hal71a,Bou71a, Hea7la, Mar71a] were made more than ten years ago, it
wotld make sense to design a new system from scratch taking advantage of the software
engineering technology that has become available since then, as well as drawing from the
lessons of experience.

Like other algebraic manipulation systems, Maple's basic features (e.g. elementary
data structures, inputfoutput, rational number arithmetic, and elementary simplification)
are coded in a systems programming language for efficiency. For users, there is a high-
level language with an Algol68-like syntax more suitable for describing algebraic
algorithms. An important property of Maple is that most of the algebraic facilities are
defined using the high-level user language. The basic system is sufficiently compact and
efficient to be practical to use in a present-day time-sharing environment while providing
a useful array of facilities. To this basic system can be added successive levels of
‘function packages’, each of which adds more facilities to the system as may be required,
such as polynomial factorization or the Risch integration algorithm. The modularity of
this design should allow users latitude in selecting which algebraic facilities they wish to
have.

The basic system is written in a language belonging to the BCPL/B/C family. The
Margay maero processor{Joh83a] is used to generate versions of the source code in B {for
Honeywell TSS) and C (for the Vax UNIXt system). It is anticipated that very high level
use of Maple (e.g., the Risch integration algorithm) will be impractical in a heavily-used
time-sharing environment. Such use will be more practical on a dedicated microprocessor
with one or more megabytes of main memory. Current plans are to use a Motorola
68000-based microsystem for the first implementation on dedicated hardware.

1UNIX is a Trademark of Bell Laboratories.
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1. INTRODUCTION

Maple is a mathematical manipulation language. (The name can be said to be
derived from some combination of the letters in the preceding phrase, but in fact it was
simply chosen as a name with a Canadian identity). The type of computation provided
by Maple is known by various other names such as ‘algebraic manipulation’ or ‘symbolic
computation’. A basic feature of such a language is the ability to, explicitly or implicitly,
leave the elements of a computation unevaluated. A corresponding feature is the ability
to petform ‘simplification’ of expressions involving unevaluated elements.

in Maple, statements are normally evaluated as far as possible in the current
‘environment'. For example the statement

a:=1;

assigns the value 1 to the name a. If this statement is [ater followed by the statement
xi=a+ b

then the value 14 b is assigned to the name x. Next if the assignments
b= -1; f:= sin(x};

are performed then x evaluates to 0 and the value 0 is assigned to the name [. (Note that
sin(0) is automatically ‘simplified’ to 0). Finally if we now perform the assignments

= 0; g:= sin(x};

then x evaluates to 1 and the value sin{1) is assigned to the name g. (Note that sin(1)
cannot be further evaluated or simplified in a symbolic context, but there is a facility to
‘evaluate to real’ which will yield the decimal expansion of sin{1) to a number of digits
controlled by the user).
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2. LANGUAGE ELEMENTS

2.1. Character Set

The Maple character set consists of letters, digits, and special characters. The
letters are the 26 lower cage leilers

a,b,e,doefghijklimnopqgzsteywxys:
and the 26 upper case letters
A,B,CDEFGHILJILKLMNOPQR,STUVWXY,Z
The 10 digits are
0,1,23,4,56,7,8,9

and the 25 special characters are

blank [ left bracket
; semicolon |  right bracket
colon { left brace
==  equal }  right brace
+  plus *  grave accent
~  mious ' single quote
*  asterisk : ”  double quote
[ slash < less-than
! exclamation >  greater-than
period - underscore
, comma Q@  at-sign
( left parenthesis #  sharp

) right parenthesis

leaving the following ASCII characters as yet unused:

$ dollar | vertical bar
&  ampersand %  percent
tilde ?  question mark
\  back slash * circumflex
2.2, Tokens

The tokens consist of keywords, operators, strings, natural integers, and
puacteation marks.
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The keywords are the following reserved words:

break
elif
for
od
quit
then

by do done
else end fi
from if local
option options proc
read save stop
to while

The operators consist of the binary operators

-+

the unary operators

not

addition; set union
subtraction; set difference
maltiplication; set intersection
division

exponentiation

less than

less than or equal
greater than

greater than or equal
equal

not equal

logical and
logical or

assignment

concatenation; decimal point
ellipsis (more generally, ...* )

unary plus {prefix)
unary minus (prefix)
factorial (postfix)
logical not {prefix)

decitnal point {prefix or postfix)

» two or more consecutive periods are patsed as an ellipsis.
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and the nullary operators

» last expression
penaltimate expression
before penultimate expression

now

(Note that three of the operators are reserved words: and, or, not ).

The simplest instance of a string is a letter followed by zero or more letters, digits,
and underscores. Another instance of a string is the at-sign (@) followed by zero or more
letters, digits, and underscores. More generally, a string can bé formed by enclosing in
grave accents any sequence of characters (except a grave accent). In ail cases, the
maximum length of a string in- Maple is 499 characters. A string is a valid name (e.g. a -
variable name or a function name) but the user should ot indiscriminately use names
involving the at-sign (@) since such names are used globally by the Maple system. A
Maple string is also used in the sense of a ‘character string’, usually by eaclosing a
sequence of characters in grave accents. ’

A natural integer is any sequence of ome or more digits. The basic constants in
Maple (integers, rational numbers, and reals) are formed from the natural integers using
operators. The length of a natural integer (and hence the length of integers, rational
numbers, and reals) is arbitrary {i.e. the leagth limit is system dependent but generally
much larger than users will encounter).

The punctuction marks are

; semicolon comma

! single quote [ left bracket

: grave accent ] right bracket

{ teft brace ( left parenthesis
} right brace ) right parenthesis

The semicolon is used to separate statements and the comma is used to separate
expressions in an expression sequence {as in a function call or in specifying a list or a set).
Enclosing an expression in a pair of single quotes specifies that the expression is to be
unevaluated. The grave accent is used in forming strings. The left and right parentheses
have their familiar uses in grouping terms in an expression and in grouping parameters in
a function call. The left and right brackets are used to form subscripted names. The left
and right brackets are also used to form lists and the left and right braces are used to
form sets.
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2.3. Blanks, Lines, and Comments

The blank is a character which separates tokens, but is not itself a token. Blanks
cannot occur within a token but otherwise blanks may be used freely. The one exception
to the free use of blanks is when forming a string by enclosing a sequence of characters
within grave accents, in which case the blank is significant like any other character.

Input to the Maple system comsists of a sequence of statements separated by
semicolons. The system operates in an interactive mode, executing statements as they
are entered. A line consists of a sequence of characters followed by <return>>. A single
line may contain several statements or it may contain an incomplete statement (ie. a
statement to be completed on succeeding lines), or it may contain several statements
followed by an incomplete statement. A statement will normally be recognized as
complete only when a semicolon is encountered, except in the cases of the quit statement,
the break statement, the if ... fi construct and the do ... od construct. When a line is
entered, the system evaluates (executes) the statements (if any) which have been
completed on that line.

When a sharp (#) is encountered, it and all subsequent characters on the line are
constdered to be a comment. The comment is echoed by the system.

2.4. Files

The file system is an important part of the Maple system. The user interacts with
the file system either explicitly by way of the read and save statements, or implicitly by
specifying a function name corresponding to a file which the system will read in
automatically.

A file consists of a sequence of statements either in ‘Maple internal format’ or in
‘user format’. If the file is in user format then the effect of reading the file is identical to
the effect of the user entering the same sequence of statements. The system will display
the result of executing each statement which is read in from the file. On the other hand,
if the file is in Maple internal format then reading the file causes no information to be
displayed to the user but updates the current Maple environment with the contents of the
file. Maple assumes that a file will be in Maple internal format when its file name ends
with the characters ‘.m’' . For example, some typical names for files in user format are:

temp
‘flibfsrc/ged”

while some typical names for files in internal format are:

‘temp.m’
*flibfged.m*

(Note that file names involving characters such as '/’ or '." must be enclosed in grave
accents in order to be interpreted properly as <name>s).
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The contents of a file in user format are written into the file either from a text
editor external to Maple or else from Maple by using the save statement (no ‘.m’ suffix in
the file name). The contents of 2 file in Maple internal format are written into the file
from Maple by using the save statement {*.m’ suffix in the file name). Either type of ftle
may be read into a Maple session by using the Maple read statement. Some Maple
functions are not part of the basic Maple system which is loaded in initially, but rather
reside in fles in the Maple library. When one of these functions is invoked in Maple, the
cotresponding file is automatically read into the Maple session in Maple internal format.
{See section 7 — Library Functions).
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3. STATEMENTS AND EXPRESSIONS

3.1. Types of Statements

Thete are nine types of statements in Maple. They will be described informally
here. The formal syntax is given in section 4.2.

3.1.1. Assignment Statement
The form of this statement is
< name>> ;= <expression>

and it associates a name with the value of an expression.

3.1.2. Expression

An <expression>> is itself a valid statement. The effect of this statement is that
the expression is evaluated.

3.1.3. Read Statement
The statement
read <expression>

causes a file to be read into the Maple session. The <expression>> must evaluate to a
<name> which is a valid file name in the host system. The file name may be one of two
types as discussed in section 2.4. A typical example of a read statement is

read “fu/dmackenzflib/f.m"
where the grave accents are necessary so that the <expression>> evaluates to a

<name>.

3.1.4. Save Statement
The statement

save <expression>

causes the current Maple environment to be written into a file. The <expression> must
evaluate to a <name>> which is a valid file name in the host system. If the file name
ends with the characters ‘.m’' then the environment is saved in Maple internal format,
otherwise the environment is saved in user format.

3.1.5. Selection Statement

The selection statement takes one of the following general forms. Here <expr> is
an abbreviation for <expression> and <statseq> stands for a sequence of statements.



8 Geddes, Gonnet, and Char

if <expr> then <statseq> fi

if <expr> then <atatzeq> else <statseq> fi

if <expr> then <statseq> elif <expr> then <statseq> &

if <expr>> then <statseq>> elif <expr> then <statseq>> else <statseq> fi

Wherever the construct ‘elif <expr> then <statseq>' appears in the above forms, this
construct may be repeated any number of times to yield a valid selection statement. The
sequence of statements in the branch selected (if any) is executed.

3.1.8. Repetition Statement

The syntax of the repetition statement is as follows, where <expr> and
<statseq> are as above,

for <name>> from <expr> by <expr> to <expr> while <expr>
do <statseq> od

where any of ‘for <name>', ‘from <expr>', ‘by <expr>’, ‘to <expr>’', or ‘while
<expr>' may be omitted. The sequence of statements in <statseq>> is executed zero or
more times. The ‘for <name>' part may be omitted if the index of iteration is not
required in the loop, in which case a ‘dummy index’ is used by the system. If the ‘from
<expr>' part and/or the ‘by <expr>>' part are omitted then the default values ‘from 1’
and/or ‘by 1' are used. If the ‘to <expr>>' part andfor the ‘while <expr>’ part are
present then the corresponding tests for termination are checked at the beginning of each
iteration, and if neither is present thenm the loop will be an infinite loop unless it is
terminated by the execution of the break statement (see section 3.1.7), or the quit
statement {see section 3.1.8), or by the execution of a return from a procedure (see section
5.5).

3.1.7. Break Statement
The syntax of the break statement is

break

and it causes az immediate exit [rom the innermost repetition statement within which it
oceurs. It is an error if the break statement occurs at a place which is not within a
repetition statement.

3.1.8. Quit Statement
The syntax of the quit statement is any one of the following three forms:
quit '
done
stop

The result of this statement is to terminate the Maple session and return the user to the
system level from which Maple was entered. (In the Vax umniX azd Homeywell TSS
versions of Maple, hitting the break finterrupt key twice in rapid succession will also exit
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from Maple).

3.1.9. Empty Statement
The empty statement is syntactically valid in Maple. For example

a == 1:; quit

is a valid statement sequence in Maple consisting of an assignment statement, the empty
statement, and the quit statement. Of course since bianks may be freely used, any
number (including zero) of blanks could appear between the semicolons here yielding a
syntactically identical statement sequence.

3.2. Expressions

Expressions are the fundamental entities in the Maple language. The various types
of expressions are described informally here. The formal syntax is given in section 4.2.

3.2.1. Basic Constants

The basic constants in Maple are integers, rational numbers, and reals. A <natural
integer> is any sequence of one or more digits of arbitrary length (i.e. the length limit is
system dependent but generally much larger than users will encounter). An integer is a
<natural integer> or a signed integer (i.e. -+ <natural integer> or —<matural
integer>). A rational number is of the form

<integer> [ <npatural integer>

{(Note that a rational number is always simplified so that the denominator is unsigned,
and it will also be reduced to lowest terms).

An <unsigned real> is one of the following three forms:

< natural integer> . <natural integer>
< patural integer> .
. < natural integer>

A real number is an <unsigned real> or a signed real (i.e. + <unsigned real> or
—<unsigned real>>). The evalr function is used to force an expression to be evaluated to
a real number (if possible). The number of digits carried in the ‘mantissa’ when
evaluating reals is determined by the value of the global name ‘Digits’ which has 10 as its
initial value. Note that the current version of Maple displays real numbers with very
small or very large magnitudes using the notation Real{mantissa,characteristic) which
corresponds to the internal data structure. For example, evalr{exp(-10)) yields
Real(4539992971,-14) which represents the number

4530992971 + 10+#(-14)
while evalr(exp{~2)) yields 1353352832 .
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3.2.2. Names

A <name> in Maple has a value which may be any expression or, if no value has
been assigned to it, then it stands for itself. A <name>> is usually a <string>, which in
its simplest form is a letter followed by zero or more letters, digits, and underscores (with
a maximum length of 499 characters). Note that lower case letters and upper case letters
are distinct, so that the names

2 G new_term New_Term x13a x13A
are all distinet. Another type of <string>> is formed by the at-sign (@) followed by zero
or more letters, digits, and underscores. Names beginning with the at-sign are used as
global variable names by the Maple system and therefore should not be used
indiscriminately by users.

A <string> can also be formed by enclosing in grave accents any sequence of
characters (except the grave accent). The following are valid strings (and hence names)
in Maple:

“This is a strange pame:® *2D° ‘-1
The grave accents do not themselves form part of the string so they disappear when the
string has been input to Maple. For example, if o has the value 5 then the statement

‘n-1" := n-1;
will yield the following response from Maple:
n-1:=4

The user should beware of misusing this facility for string {name) formation to the point
of writing unreadable programas!

More generally, 3 <name> may be formed using the concafenation operalor in one
of the following three forms:

<name>> . <natural integer>
<name> . <string>
<name> . { <expression> )

Some examples of the use of the concatenation operator for < name>> formation are:
v.5 pao a2} VN.(i-1)) rij

The concatenation operator is a binary operater which requires a <name>> as its left
operand. Its right operand is evaluated and then concatenated to the left operand. For
example if n has the value 4 then p.n evaluates to the name p4, while if n has no value
then p.n evaluates to the same pn. Similarly if i has the value 5 then a.(2*i) evaluates to
the name al0. As a final example if N4 has the value 17 and i has the value 5 then
V.(N.(i-1)) evaluates to the name V17, while V.N.(i-1) evaluates to the name VN4
{assuming that N has no value).

Another type of <name>> in Maple is a subscripted name which takes the form
<name> | <expression sequence> | .

For example, the following are valid <name>s in Maple:
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a[3,1,5]; al-4}; afl];

i=2 j:=1 alii];
and all of the names listed here may be used in the same Maple session. The subscripts
appearing in a subscripted name must evaluate to integers in order to form a valid
<name>. This construct is a special case of the concatenation construct. For example,
if i and j evaluate to integers then the name ai,j] is precisely equivalent to the following
name formed using Maple's concatenation operator:

a‘nl-.i'.f‘j.ql‘
Therefore for the case of single subscripts, the constructs

ai, fori=12...,n

afi] ,fori=1,2,...,n
are equally general. However when using two or more subscripts the subscripted names
bave advantages. For exampleifi =1, j =27, m = 12, and o == 7 then

afi,i}; a[m,n];
evaluate to the distinct names a[1,27] and a12,7| while

a.ij; a.m.m;
both evaluate to the single name a127. Finally note that since a[1,27], for example, is a
valid name it follows that the construct

af1,27}(5]
is also valid. In general, subscripted names may be freely combined with additional
subscripts, and with the concatenation construct, as desired.

{Note that arrays are not defined in the present version of Maple. A definition of an
array data structure is currently under discussion and is expected to be introduced in
version 3.0 of Maple.)

3.2.3. Sets and Lists
A get is an expression of the form

{ <expression sequence> }
and a list is an expression of the form
| <expression sequence> ] .

Note that an <expression sequence>> may be empty so that the empty set is represented
by { } and the empty list is represented by { ]. A set is an unordered sequence of
expressions and the user should not assume that the expressions will be maintained in any
particular order. (The Maple system will use a particular ordering that is convenient
from the implementation point of view). A list is an erdered seq e of expressions so
the order of the expressions will be the order specified by the user. For example, if the
user inputs the set {x,y,y} the system might respond with the representation {y,x} while
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il the user inputs the list [x,y,y] them the representation used by the system will be
precisely this list.

3.2.4. Algebrale Operators
There are nine algebraic operators:
”’ "' ”nni !’ + r .' ’ hed

The nullary operator ” has as its value the latest expressicn, the nullary operator *” has
28 its value the penultimate expression, and the nullary operator ””” has as its value the
expression preceding the penultimate expression. The unary operator ! is used as a
postfix operator and it denotes the factorial function of its operand. + and — may be
used as prefix operators representing unary plus and unary minus. The latter five
operators all may be used as binary operators, representing addition, subtraction,
multiplication, division, and exponentiation, respectively.

The operators +, —, and * have a different semantics when their operands are sets,
in which case they denote set umion, set difference, and set intersection, respectively. For
example, if the following statements are executed: )

setl = {x+y,x, y}; set2:= {y, y-x};
3 :== set]l + set2; b :== setl - set2; ¢ :== setl * set2;

then the value of a is {y, x, y-x, x+¥}, the value of b is {x, x+y}, and the value of ¢ is
{r}-

The order of precedence of all operators is described in section 3.2.9 below.
However, any expression may be enclosed in parentheses yielding a new valid expression
and this mechanism can be used to force a particular order of evaluation.

3.2.5. Relatlons and Logical Operators

A new type of expression can be formed from ordinary algebraic expressions by
using the relational operators <, <=, >, >==, =, <>. The semantics of these
operators is dependent on whether they occur in an algebraic context or in a boolean
context.

In an algebraic context, the relational operators are simply ‘place holders’ for
forming equations or inequalities. Additioa of equations and multiplication of an
equation by a constant are fully supported in Maple. In the case of adding or subtracting
two equations, the addition or subtraction is applied to each side of the equations yielding
3 new equation. In the case of multiplying an equation by a constant, the multiplication
is distributed to each side of the equation. Other operations on equations can be
performed, using the ‘expand’ function as required. No operations on inequalities are
curreatly supported in Mapie.

In a boolean context a relation is evaluated to the value ‘true’ or the value ‘false’.
In the case of the operators <, <=, >, >== the difference of the operands must
evaluate to a constant and this constant is compared with zero. In the case of either of
the reiations



MAPLE User' s Manual 13

opl = op2
opl <> op2
the operands can be arbitrary algebraic expressions.
More generally, an expression can be formed using the fogical operators
and
or
not
where the first two are binary operators and the third is a unary (prefix) operator.

In Maple, the names ‘true’ and ‘false’ have special meanings when they occur in
boolean contexts but they are ordinary <name>s which may be freely manipulated.
Any arbitrary expression may be used in a boolean context and if the expression does not
evaluate to either the value of 'true’ or the value of ‘false’ then a semantic error will be
reported. Note that since ‘true’ and ‘false’ are ordinary names, it is possible to assign
values to them. For example, a user could assign

true ;= 1; false := 0;

and thereafter expressions which previously evaluated to ‘true’ or ‘false’ will evaluate to
‘1' or ‘0'. Normally users will leave the names ‘true’ and ‘false’ unassigned so that their
values are their own names.

3.2.8. Ranges
Yet another type of expression is a range which is formed using the ellipsis operator:
<expression> .. <expression>

{the operator here can be specified as two or more consecutive periods). The ellipsis
operator simply acts as a ‘place holder’ in the same mamner as when the relational
operators are used in an algebraic context.

Two common uses of ranges are in Maple's built-in functions sum and int. For
example, in the function call

sum{i**2, i = 1..0)

the sum function interprets this to mean that the lower and upper limits of summation
are 1 and n, respectively. Similarly, in the function call

int(exp(2#x), x = 0..1)

the integration function interprets this as a definite integration with lower and upper
limits of integration 0 and 1, respectively. The range construct is also used by Maple’s
built-in function op, which extracts operands from an expression. For example, if

a = [x,y,z,w];

then op({2,a) yields y, op(3,a) yields z, and op(2..4,a) yields the expression sequence y,z,w
{which might be formed into a new list as [op{2..4,a)] since an <expression sequence>> is
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not itself a valid <expression> in Maple}. A final example of the use of 2 <range> is
the construct

<name> .| <range> )

which is a generalization of the mame-formation construct using the concatenation
operator. This construct produces an <expression sequence>> which, as we have noted,
is not itself a valid < expression>> but it can be used wherever an <expression
sequence>> is valid. For example,

print{p.(1..5))
is exactly equivalent to

print(pl1,p2,p3,p4,p5) .

3.2.7. Unevaluated Expressions
An expression enclosed in a2 pair of single quotes is called an unevaluated ezpression.
For example, the statements
a=1; x'=a+ b;
cause the value 14 b to be assigned to the name x while the statements
am=1; x:="a+ b’

cause the value a+ b to be assigned to the name x. The latter effect can also be achieved
(if b has no value} by the statements

am==]; x:='a + b;

The effect of evaluating a quoted expression is to strip off (one level of) quotes, so in
some cases it is useful to use nested levels of quotes. Note that there is a distinction
between ‘evaluation’ and ‘simplification’ (see section 6) so that the statement

X =2+ 3% .

will cause the value 5 to be assigned to the name x even though the expression appearing
here is quoted. This is because the ‘evaluator’ simply strips off the quotes but it is the
‘simplifier’ which transforms the expression 2 + 3 into the constant 5. Simplification can
be avoided in a case like this by using two levels of single quotes:

x="2+ 3
in which case the result of evaluating the right hand side will be the unevaluated
expression '2 + 3’ which will be [eft unchanged by the simplifier.
A special case of ‘unevaluation' arises when a name which may have been assigned
a value needs to be unassigned, so that in the future the name simply stands for itself.

This is accomplished by assigning the quoted name to itself. For example, if the
statement
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x ="x";

is executed, then even if x had previously been assigned a value it will now stand for
itself in the same manner as if it had never been assigned a value.

3.2.8. Procedures
Another valid expression in Maple is a procedure definition which takes the form

proc { <nameseq>> ) local <nameseq>>; options < nameseq>; <statseq> end

where the ‘local <mameseq>>;' part andfor the ‘options <nameseq>>;" part may be
omitted, and where <nameseq> stands for a {possibly empty} sequence of <name>s.
This construct has some similarities with the concept of unevaluated cxpressions, but in
this case it is more generally a <statseq> (i.e. a sequence of statements) which is
unevaluated. Note that the keywords ‘proc’ and ‘end’ serve a purpose similar to the
single quotes in unevaluated expressions {except that evaluation of this expression does
not cause these keywords to be stripped off). An example of a procedure definition is

max := proc (a,b) if a>b then a else b B end

which is syntactically an assignment statement where the <expression> on the right
hand side is a procedure definition.

A procedure is invoked by using the syntax
<name> [ <expression sequence> )

which is another instance of an expression. For example if max is defined as above then
the expression max{1,2) causes a procedure invocation in which the ‘actual parameters’ 1
and 2 are substituted for the ‘formal parameters’ a and b, respectively, and then the
‘procedure body' is executed yielding the value 2 in this case. The syntax of a procedure
invocation may also be used in cases where the <name>> has not been assigned, in which
case the tesult is an unevaluated function, such as sin(x) or exp(x**2). (A more general
discussion of procedures will be postponed until section 5).

3.2.9. Precedence of Operators .

The order of precedence of all unary and binary operators is listed in the following
table. from highest to lowest binding strengths. In parentheses it is stated whether the
operators are left associative, right associative, or non-associative.
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(teft associative)

! (teft associative)

b (non-associative)

./ (left associative)

+, - {left associative)

- {non-associative}

<, €=, >, >=, =, <> (non-associative)
not (right associative)

and (left assaciative)

or (left associative)

o= (non-associative)

Thus the concatenation or decimal point operator ‘.’ has the highest binding strength and
the assignment operator “=' has the lowest binding strength. Note that the
exponentiation operator '##' is defined to be nom-associative and therefore as*b¥*c is
syntactically invalid in Maple. (The user must use parentheses to state his intentions).

The evaluation of expressions involving the logical operators proceeds in an
intelligent manner which exploits more than the simple associativity and precedence of
these operators. Namely, the left operand of the operators ‘and’ and ‘or’ is always
evaluated first and the evaluation of the right operand is avoided if the truth value of the
expression can be deduced {rom the value of the left operand alone. For example, the
construct

it d<>0 and f(d}/d > 1 then...f

will not cause a division by zero because if d==0 then the left cperand of ‘and’ becomes
false and the right operand of ‘and’ will not be evaluated.

3.3. Sample Maple Session

This section presents a sample interactive session using the Maple system. Maple is
initiated on the Vax UNIX system by issuing the command 'fu/maple/bin/maple’ and is
initiated on Honeywell TSS by issuing the command ‘maple/maple’. In the following
presentation of the Maple session, all lines containing itali¢c characters are user input lines
and all other lines are sysiem responses. Each user input line must be terminated by
<return>>.
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# Initiate the Maple system using the command
# fufmaplefbinfmaple  if on Vaz UNIX,
# maplefmaple  if on Honeywell TSS.

I\./%II
'{1 \JMPLE 7' Version 2.2 December 1082

L R

# Integers, rational numbers, and reals.

254 + 5250+02989;

527994974

st

6

SiL;

720

L+ 1[4+ 116 + 1]64 + 1/256;

341/256

evalr(”);

1.33203125000

a = (50 + 3#x50) | 2¥+90;

a ;= 4547832457858487115869580437 /618970019642600137449562112
evalrfa);

7.3474196060

Digits := 40;

Digits :== 40

evalr{aj;

7.3474196060154781089322604350878881161323

evalr(a, 60);
7.347410606015478108932260435087888116132378478690193035482091

b= 2¥x30;
b ;= 1237940039285380274899124224
a¥*b;

. 9095664915716974231730160874
# Nomes, including the concatenation operalor.

g=152 G:=4
g = 52

G:=1

9*G;

208
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Jorito 5 do p.i = i¥22 0d;
pl:i=1

p2:== 4

p3:=9

p4 :== 16

p5:==125
print(p.{1..5));

1 4 9 16 25
z:= 888; z.:= 'z
x = 333

X=X

## Sets and lists.

setl ;= {z, 2ey+ 1]8}; oet2 = {24, z};
setl 1= {x,2*¥y+ 1/3}

set? 1= {x,z-4}

getl + get2;

{x,2—4,2%y+ 1/3}

gebl ¥ get?;

{x}

setd ;= getl - setZ;

set3 = {2*¢y+ 1/3}

setd * gel8;

listl := [z, 2ey+ 1[8); list2 ;= [z-4, zf;
listl := {x,2*¢y+ 1/3|

list2 ;== {z-4,x|

new_list -= [opflistl), opfliste)f;
new_Jist :== |x,2*y+ 1/3,2-4,x|

# Polynomials and rotional functions.

pr=g¥e_z -2
p = x**2-x+ (-2}
g /== (2+ 1) #42;
g = (x+ L)»»2

LI
*y

= (xsa2-x+ (-2 (x+ 1)#2
ezpandfr);

x#o4-+ xeo3-uxaud-Sex+(-2)
8= pf g

3 1= (x**2-x+ {-2))*(x+ 1)e=({-2)
normalfs);

(x+ (-2)}/(x+1)

o=
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res;
(x*#2—x+ (-2))++2

# Eguations.

egnl ;= S#p + 5¥q = 18;
eqnl ;= 3*p+ 5*q=13
eqn? ;= f¥p - T¥g = 80;
eqn?2 1= 4%p-T*q=30
Sreqn? - 4 ¥eqnl;
-41%q=38

qg.= 38/{"41);

q = -38f41

eqnl;

3*p+ {-190/41)=13

p = (18 + 180}41)]8;

p == 24141

egnl; eqn?;

13=13

30=30

solvef {54z + 10%y = 97, z-y =12}, {20} };
{y=37/15x=217/15}

# Unevaluated expressions and procedures.

a; b;

45478324578584871 15869580437/.6189700196426901374495621 12

1237940039285380274899124224

fi= "% *fa+ 5]
f ;== b*{a+5)
f.

15285365112143875606234781994
maz = proc {a,b) if a> b then o else b fi end;

max ;= proc {a,b)if param(2)<param(1)} then param(1) else param(2) fi end

mozfa,b);
1237940039235380274899124224
maz(25/7, 525(149);

25(7

19
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#integers can be arbitrarily long. Here i one that almost fills one screen
# on o typical video terminal. Recall from above that 8! fi.e. 61) ta 720
# g0 the following statement yieids the same result as 720! .

Sl

26012189435657951002049032270810436111915218750169457857275418378508356311569473
82240678577958130457082619920575892247259536641565162052015873791984587740832529
10524469038881188412376434119195104550534665861624327194019711390084553672727853
70993456208555867 193697740700037004307837 589974206767840169672078462806292290321
07161669867260548938445514257193985499448939594496064045132362140265986193073249
36977047760606768067017649166940303481996188145562519559256691883082551494294759
65372748456246288242345265977897377408964665539924359287862125159674832209760295
05696699927284670563747137533019248313587076125412683415860129447566011455420749
58095256354306828863463108496565068277155209625679084523570255218622235813001670
08345234432368219357931847019565107297818043541738905607 27 4280485839959197280217
26612291298420516067579036232337699453904191475175567557695392233803056825308599
97744167578435281591346134039460490126954202883834710136373382448450666009334848
44407119312925376946573543373757247722301815340326471775319845373414786743270484
57983786618703257405938924215709695994630557 521063203263493209220738320923356309
923267504401701760572026010829288042335606684308988871029738079757801305604957634
28386830571906622052911748225105366977566030295740433879834715185526028053338663
5713910104633641976909739743228599421983704697910995630338960467 5889865795711176
$56667003015674815311594398004362539939973120306649060132531130471902889849185620
37666601644687911252491937544258458950003115616829743046411425380748072817233759
55380661719801404677935614793635266265683339509760000000000000000000000000000C00
00000060006000000200000000000000600000000000000000000000000000000000000000000000
0000600000000000C00C000CC00000000000000000000C0CC00000C000000000000

quit
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4. DATA TYPES AND FORMAL SYNTAX

4.1. Data Types

Every expression in Maple is represented internally by an expression trce where
each node is a particular data type. While some data types are strictly for internal use,
most of the data types corresponding to expressions are accessible to the user and can be
tested for via the type function. The user can examine the components of such a data
type by using the op function. Im this section we discuss the data types that are
accessible to the user. For a more detailed description of the internal data types, see
gection 6.

4.1.1, Integer

An expression is of type ‘integer’ if it is an (optionally signed) sequence of one or
more digits of arbitrary length {i.e. the length limit is system dependent but generally
much larger than users will encounter). The ‘op’ function considers this data type to
have only one operand, so if n is an integer then the value of op(n), and also the value of
op(l, n), is the integer n.

4.1.2. Rational Number

A rational number (called type ‘rational’) is represented by a pair of integers
(numerator and denominator) with all common factors removed and with a positive
denominator. Like integers, rational numbers are of arbitrary length. The ‘op’ function
considers this data type to have two operands, where the first operand is the numerator
and the second operand is the deaominator.

4.1.3. Real Number

An expression of type ‘real’ is a number represented externally as a sequence of
digits with a decimal point (e.g. 1.5, 15000., .15). Real numbers are represented
internally by a pair of integers (the mantissa and the characteristic), which represent the
number mantissa X 10°Aerecterisie  Thyg op(150.1) yields the expression sequence 1501, 1.
Arithmetic with real numbers is performed via the evalr function. The number of digits
carried in the mantissa when evaluating reals is determined by the value of the global
pame Digits which has 10 as its initial value. Note that the current version of Maple
disptays real numbers with very small or very large magnitudes using the notation
Real(mantissa,characteristic) which corresponds to the internal data structure. For
example, evalr{exp(-10)) yields Real(4539992971,-14) while evalr{exp(-2)) yields
.1353352832 .

4.1.4. Name

An expression is of type ‘mame’ if it is a <string> as defined by the Maple
grammar. For example, if x has not been assigned a value then x is of type ‘name’ and
opfx) has the value x.
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4.1.5. Expresslon Sequence

There is an internal data type in Maple for an <expression sequence>, which is a

q of <expression>>s separated by commas. An <expression sequence> is not, by

itself, a valid <expression>> but it occurs in many places as a componeént of an
<expression>. There is no type name known to the type function for this data type.

When the op function is used to extract parts of an expression, the result is often an
expression sequence. For example,

a = [x,y,2,%]; op{a);

yields the expression sequence x,y,z,w. An important special case of an <expression
sequence>> i3 the null expression sequence and there is a global name in Maple, NULL,
whose value is the null expression sequence. The value of the global name NULL is
equivalent to the value of the operation op{] |}.

4.1.8. Set and List

Two more data types are the ‘set’ and the ‘'list'. Each of these types consists of a
sequence of expressions and if expr is an object of either of these two types then op{expr)
yields the expression sequence. The external representation of a set uses braces *{’, '}’ to
surround the expression sequence and the external representation of a list uses brackets
‘' ‘|’ to surround the expression sequence.

4.1.7. Addition, Multipllcation, and Power

An expression can be composed using the algebraic operators +, —, », [, *». Such
anr expression is of type “+ °, type **°, or type “#»'. Thus the expression a - b is of type
4+ and op(a - b) yields the expression sequence 2, -b. Similarly the expression afb is of
type “** and op(a/b) yields the expression sequence a, bs#{~1). Of course, b*»(-1} is an
example of an expression of type ‘#s*. The representation used for these algebraic
expressions is often referred to as sum-of-products {orm.

4.1.8. Serles .

The ‘series’ data type in Maple is a special data type which represents an expression
as a (truncated) power series in one specified indeterminate. This data type is created by
a call to the taylor function. For this data type, the Oth operand is defined to be the
name of the indeterminate, the 1st, 3rd, . . . operands are the coefficients (generally
expressions), and the 2nd, 4th, . . . operands are the corresponding exponents. The
exponents are ordered {rom least to greatest. Usually, the final pair of operands in this
data type are the special ‘order’ symbol O{1) and the integer n which indicates the order
of truncation. {Note: The print routine displays the final pair of operands using the
notation O(x#*n) rather than more directly as O(1)*x**n, where x represents the Oth
operand). However, if the series is known to be exact then there will be no ‘order’ term
in the seties. An example of this occurs when the ‘taylor’ function is applied to a
polynomial whose degree is less thaa the truncation degree for the series.
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4.1.9. Equation and Inequallity

An expression of type ‘equation’ (also called type ‘=") has two operands, the left-
hand-side expression and the right-hand-side expression. An equation is represented
externally using the binary operator ‘=’.

There are three internal data types for inequalities, corresponding to the operators
'<>' ‘<’ and ‘<=". Inequalities involving the operators ‘>' and ‘>>==" are converted
to the latter two cases for purposes of representation. Correspondingly, only three names
are known to the type function for inequalities: *<>", *<", *<=". Like an equation an
inequality has two operands, the lefi-hand-side expression and the right-hand-side
expression.

4.1.10. Boolean Expression

The simplest cases of Boolean expressions are the < name>s érue and false®,
Equations and inequalities {formed using the relational operators =, <>, <, <=, >,
>=} are also treated as Boolean expressions if they appear in a ‘Boolean context’. More
complicated Boolean expressions can be built out of these simple expressions with the
logical operators and, or, and not. The built-in function evald can be called with a
Boolean expression as argument in order to cause the expression to be evaluated as a
Boolean. For example, the equation a = b is an algebraic equation if it appears alone
but evalb(a = b} will evaluate this equation as a Boolean. However, an equation or
inequality will be recognized as being in a Boolean context if it appears in the 'while part’
of a repetition statement or in the ‘if part' of a selection statement. In addition to the
type names for equations and inequalities, the following type names are also known to the
type function: “and", ‘or’, ‘not" .

4.1.11. Range

An expression of type ‘range’ {also called type °.."} has two operands, the left-hand-
side expression and the right-hand-side expression. A range is represented externally
using the binary operator ‘..' which simply acts as a place-holder.

4.1.12. Procedure Definition

A procedure defipition in Maple is a valid expression and its type is called
‘procedure’. The external representation of a procedure definition is

proc ( <nameseq> ) local <nameseq>>; options <nameseq>; <statseq> end

The internal data structure represents each < nameseq> in the order shown above
followed by the statement sequence < statseq>>. Since <statseq> is not a valid
expression in Maple, this part of the data structure is not retrievable by the op function.
There are three operands defined for the op function applied to this data structure: the
first operand is the < nameseq> of formal parameters, the second operand is the

*true and false are just Maple names that the system returns as the result of Boolean evalustion. Users can
use true and false just like any other name, but to be safe it is best to avoid assigning values to these names.
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<nameseq> of local variables, and the third operand is the <nameseq> of option
names. Therefore, if

f := proc {a,b)
local ¢;
options remember;
¢ = afb;
if type(c, integer) then ¢ else FAIL f
end;
then
op{1.f); ) yields ab
op(2,1); yields ¢
op(3,1); yields remember
op{f); yields a,b,c.remember

4.1.13. Unevaluated Function Invocation

A function invocation takes the form
<name> { <expression sequence>> )

and if <name> is undefined then the result is an unevaluated function invocation, called
type ‘function’. Typical examples of the type 'function’ are sin(x), exp(x*+2), g(a b}
where none of sin, exp, and g has been defined. For the op function applied to this data
type, operand 0 is defined to be the <name>> of the function and the remaining operands
are the elements of the <expression sequence>. For example,

op(0.g(a, b)) yields g
op(1,g(a,b)k yields a
op(2.g{a,b)); yields b
op(gfa.b)}; yields ab

4.1.14, Unevaluated Factorial

The factorial function is invoked in the form <expressica>! and il <expression>
does not evaluate to an integer then the result is an unevaluated factorial, called type ™"
For the op function applied to this data type there is only one operand defined and its
value is the <expression>.

4.1.15. Unevaluated Concatenation

An expression which consists of an unevaluated concatenation is said to be of type
. Normally, the concatenation operator is evaluated to form a name but an example
of an expression of type *." would be the unevaluated expression 'a.i' . In the current
version of Maple, if the name 'i’ does not evaluate to an integer then the expression alif is -
another example of type *." (i.e. an unevaluated concatenation}.

e
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This section presents the BNF grammar which describes the syntax accepted by
Maple. In the following grammar, where a sequence of symbols is enclosed in a pair of
"§* symbols it indicates that this portion of the statement is optional. Where empiy
occurs in the grammar, no symbol is required. A Maple session consists of a <statseq>,
which is a sequence of statements separated by semicolons. ’

<st.nts§q> jl=

<stat> =

<statseq> 3 <stat> | <stat>
<exp>
<pame>> 1= <exp>
read <exp>
save <exp>
§for <pame> § §from <exp>§ §by <exp>§
§ while <exp> §
do
<statseq>
od

break

quit
emply

<Lexp> i= <Lexp> or <exp>

| <exp> and <exp> |

| <exp> < <exp> |
| <exp> > <exp> |
| <exp> <> <exp> |

| <exp> .f <exp>

<exp> + <exp>
<exp> -~ <exp>
+ <exp> |
<exp> ® <exp> |
<exp> *8 ZJexp>

If <exp> then <statseq> <elsepart>

[ #Boolean ezpressions+f
not <exp>

<exp> <= <exp>
<exp> >== <exp>
<exp> = <exp>
[ #range sequence#/

[ xalgebraic czpressionasf

- <exp>
<exp> [ <exp>

tdone or stop can be used as synonyms for quit . In the Vax uNDx and Honeywell TSS versions of Maple, hit-

ting the break/interrupt key twice in rapid succession will also exit from Maple.

tActually, two or more consecutive periods are permitted.

§ to <exp> §



<expeq> =
<explist>> =

<name> =

< nameseq>

< elsepart>

< natural>

Zdigit> ==
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} proc { § <nameseq> § } [ #procedure definitionsf
§ local <nameseq> 3§
§ options <nameseq> ; §

< statseq>
end
| <natural> . <natural> [ # real numberaef
| <natural> . | « <naturai>
| <natural> [ #unsigned iniegersf
| { <expseq> } / 'aet#,
| [ <expseq> | | siistaf
| <name> | wvariable namesf
| <exp> ! [ #factorialsf
] ( <exp>) | tparenthesized ezpression+f
| ' <Lexp> ' [ #unevaluated ezpression #f
1 <name$ ( <expseq> ) [ Hunction call#f
| * | #previously computed expressionasf
[ »n | nnn
<explist> | empty
<explist> , <exp> | <exp>
<Zstring> | <name> . [ <exp> )
<name> . <string> | <name> . <natural>

| <name>> [ <expseq> |
= <nameseq> , <string> | <string>

== fi | else <statseq> fl
| ellf <exp> then <statseq> <elsepart>

n= § <natural> § <digit>

o|1]2]3]4|5|8[T|8]9
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<string> = <letter> § <alphanumeric> §
| @ § <alphanumeric> §
| * <charstring> *

§ <alphanumeric> § <digit>
§ <alphanumeric> §

< alphanumeric> n= § <alphanumeric> §  <letter>
|
|
<letter> u= [ #*Any lower-case or upper-case lefter a-z or A-Z.#f

< charstring> = <anychar> § <charstring> §

<anychar> = [ *Any character in the supported character gef. ¥f
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5. PROCEDURES

5.1. Procedure Definitions

One instance of an expression in Maple is a procedure definition, which has the
general form

proc { <nameseq> ) local <nameseq>>; options <nameseq>; <statseq> end

Such a procedure definition may be assigned to a <name>> and it may then be invoked
using the syntax

<name> ( <expseq> ).

When a procedure is invoked the statements in <statseq>> are executed sequentially (and
some of the names have special semantics as described below). The value of a procedure
invocation is the value of the last statement in < statseq>> that is executed.

It is possible in Maple to define and invoke a procedure without ever assigning the
procedure definition to an explicit <name>>, as in the following example:

proe (x) x**2 end;
"(2);

where the value of the procedure invocation ”(2) is 4. Another example of using a
procedure definition without a name is when a simple function is to be mapped onto an
expression, as in:

a:=11,2,3,4,5;
map( proc (x) x*s2 end, a );

which causes each element of the list ‘a’ to be squared, yielding the new list [1,4,9,16,25].

The keywords ‘proc’ and ‘end’ may be viewed as brackets which specify that the
<statseq> i3 to remain unevaluated when the procedure definition is evaluated as an
expression.  The simplest instance of a procedure definition involving no formal
parameters, no local variables, and no options can be seen in the following definition of a
procedure called max:

max :== proc () if a>b then a else b i end
Executing the statements
a = 25/7; b= 525/149; max();

yields 23/7 as the value of the procedure invocation max({). This procedure is making use
of the names ‘a' and ‘b’ as global names. In Maple, all names are global names unless
otherwise specified. One instance of non-global names is the case of formal parameters
which are specified within the parentheses immediately following the keyword ‘proc’. A
more useful deiinition of the above procedure max cam be obtained by making the names
‘a’ and ‘b’ formal parameters:
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max :== proc (a,b) if a>b then a else b fi end

This procedure may now be invoked in the form max(exprl, expr2) where exprl and
expr2 are expressions. For example, max(25/7, 525/149) evaluates to 25/7. The names
'a’ and ‘b’ are now local to the procedure, so that if these names have values external to
the procedure the external values neither effect, nor are affected by, the invocation of the
procedure.

5.2. Parameter Passing

The semantics of parameter passicg are as follows. Suppose the procedure
invocation is of the form

<name> { <exprl>, <expr2> .., <expra> ).

Firstly, <name>> is evaluated and let us suppose for now that it evaluates to a procedure
definition with formal parameters

<parl>, <par2> ,..., <parn> .

Next, the acfual parameters <exprl> .., <exprn>> are evaluated in order from left to
right. Then every occurrence of <pari> in the <statseq> which makes up the body of
the procedure is substituted by the value of the corresponding actual parameter
<expri>. It is important to note that these parameters will not be evaluated again
during execution of the procedure body. (The consequences of this fact are explained in
section 5.4 below). In terms of traditional parameter passing mechanisms used by various
computer languages, Maple's parameter passing could be termed ‘call by evaluated name’.
in other words, all actual parameters are first evaluated (as in ‘call by value') but then a
strict application of the substitution rule is applied to replace each formal parameter by
its corresponding actual parameter (as in ‘call by name’).

It is possible for the number of actual parameters to be either greater than, or less
than, the number of formal parameters specified. If there are too few actual parameters
then a semantic error will occur if (and only if) the corresponding formal parameter is
referenced during execution of the procedure body. The case where the number of actual
parameters is greater than the number of specified formal parameters is, on the other
hand, fully legitimate. Maple allows an alternate mechanism for referencing parameters
within a procedure body; namely, the special name ‘param’ when used as a function call
such as

param(i)

references the i-th actual parameter. For example, the above procedure max could be
defined without any specified formal parameters as follows:

max := proc (} if param(1) > param{2} then param(1) else param(2) fi end

This procedure may now be invoked exactly as before with two actual parameters and
the semantics are identical to the previous definition. The user will notice that, when
displaying procedure definitions, the current version of Maple uses the 'param’ syntax for
specifying formal parameters even il the user specified formal parameter names. For
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example, if the input to Maple is
max :== proc {3,b) if a>>b then a else b fi ead;
then the response from Maple is
max :== proc {a,b)if param(2)< param(l) then param(1) else param(2) fi end

(where, as a minor point, note also that Maple chooses to represent inequalities using the
‘<’ relation rather than the ‘>’ relation). There is no restriction against having extra
actual parameters appear in a procedure invocation; if they are never referenced they are
simply ignored (but they will be evaluated).

In addition to the special name ‘param’' there are two other special names that
Maple understands within a procedure body: ‘nargs’ and 'paramseq’. The value of the
name ‘nargs’ is the number of actual parameters (i.e. the number of arguments) with
which the procedure was invoked. The value of the name ‘paramseq’ is the expression
sequence

param(1), param(2) ..., param{nargs)

of the actual parameters with which the procedure was invoked.

As an example of the use of the name ‘nargs’, let us generalize our procedure max
so that it will be defined to calculate the maximum of an arbitrary number of actual
parametera. Consider the following procedure definition:

max == proc ()
result := param(1);
for i from 2 to nargs do
if param(i) > result thea result := param(i)
od;
result
end;

With this definition of max we can find the maximum of any number of arguments,
Some examples are: :

max(25/7, 525/149); yields 25/7
max(25/7, 525/149, 9/2); yields  9/2
max(25/7); yields 25/7
max(); causes an error

where the latter case is an example of a procedure being called with too few actual
parameters. If we wish to change our definition of max so that the procedure invocation
max() with an empty parameter list will return the null value then we may check for a
positive value of nargs in a selection statement as in the following definition of max.
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max :== proc (}

if nargs > O then
result := param(1);
for i from 2 to nargs do

if param(i) > result then result := param(i) f

od;
result

]

end;

The user will notice that, when displaying procedure definitions, the current version
of Maple prints the function call param(0} in place of the special name ‘nargs’ and it
prints the function call param(-1) in place of the special name 'paramseq’. This is a
reflection of the internal implementation, but if the user creates the function call
param({0) or param(-1) a semantic error will occur.

5.3. Local Variables and Options

The mechanism for introducing {ocal varigbles into a Maple procedure is to use the
‘local part’ of a procedure definition. The 'local part’ must appear immediately following
the parentheses enclosing the formal parameters, and its syntax is

local <nameseq>;

The semantics are that the names appearing in <nameseg> are to be local to the
procedure. In other words, this can be viewed as causing a syntactic renaming of every
occurrence of the specified names within the procedure body. As an example, let us
reconsider the latest definition of max appearing above. There are two global variables
appearing in the proccdure definition which we would almost certainly want to make
local: result and i. This is effected by the following version of the procedure definition.

max :== proc ()
locat result, i;
if nargs > O then
result := param{1});
for i from 2 to nargs do
if param{i) > result then result ;= param(i) i
od;
result
fi
end;

The user will notice that, when displaying procedure definitions, the curreat version of
Maple uses a function syntax of the form loc(i) for the various local variables that have
been specified just as it uses the param(i) syntax for all formal parameters. The use of
the loc(i) function calls is a reflection of the internal implementation, but the user is not
able to refer to local variables in this way.



32 Geddes, Gonnet, and Char

Thete is a facility to specily options for a procedure by using the ‘options part' of a
procedure definition. The ‘options part’ must appear immediately after the ‘local part’
and its syntax is either of the following two forms:

option <nameseq>>;
options < nameseq>>;

The only <name>> that is currently recognized as an option is the name ‘remember’.
The semantics of specifying ‘option remember’ or ‘options remember’ as the options part
of a procedure definition are as follows. After executing the procedure and obtaining the
value of a particular procedure invocation, the Maple system makes an entry in a table
called the partial computation table which associates the result with that particular
procedure invocation. If there is ever another invocation of this procedure with actual
parameters that have the same values then the Maple system will immediately retrieve
the result from the partial computation table. In this way, it is possible to aveid
redundant executions of procedures that may be very costly. (See also the remember
function in section 7).

5.4. Assigning Values to Parameters

Let us now consider an example of a procedure where we may wish to return a
value into one of the actual parameters. Recall that the integer quotieat q and the
integer remainder r of two integers a and b must satisfy the ‘Euclidean division property’

a=shq+r

where either r == 0 or abs(r) < abs(b). This property does not uniquely define the
integers q and r, but let us impose uniqueness by choosing

q = trunc{a/b)

using the built-in Maple function trunc. The remainder r is then uniquely specified by
the above Euclidean division property. (Note: This choice of q and r con be
characterized by the condition that r will always have the same sign as a). The following
definition of the procedure ‘rem’ returns as its value the remainder after division of the
first parameter by the second parameter, and it aiso returns the quotient as the value of
the third parameter (if present).

rem :== proc (a,b,q)
local quot;
quot := trunc{a/b);
if nargs > 2 then q :== quot f;
a - quot*b
end;

The procedure rem as defined here may be invoked with either two or three parameters.
[n either case the value of the procedure invocation will be the remainder of the first two
parameters. The quotient wiil be returned as the value of the third parameter if it
appears. At this point recall that the semantics of parameter passing specify that the
actual parameters are evaluated and then substituted for the formal parameters.
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Therefore, an error will result if an actual parameter which is to receive a value does not
evaluate to a valid name. It follows that when a name is being passed into a procedure
for such a purpose it should usually be explicitly quoted (to aveid having it evaluated to
some value that it may bave had previously). The following statements will serve to
illustrate.

rem(5, 2); yields 1

rem(5, 2,'q'); > yields 1

q; yields 2

rem(-8, 3, 'q’); yields -2

qQ; yields -2

rem(8, ~3); yields 2

rem(8, 3, q); yields System error (in evalname)

The latter error message arises because the actual parameter q has the value -2 from a
previous statement, and therefore the value -2 is substituted for the formal parameter q
in the procedure definition yielding an invalid assignment statement. The solution to this
problem is to change the actual parameter from q to 'q’.

When values are assigned to parameters within a procedure, a restriction which
must be understood is that parameters are evaluated only once. Basically this means that
formal parameter names cannot be freely used like local variables within a procedure
body, in the sense that once an assignment to a parameter has been made that parameter
should not be referred to again. The only legitimate purpose for assigning to a parameter
is so that on return from the procedure the corresponding actual parameter has been
assigned a value. As an illustration of this restriction, consider a procedure get_factors
which takes an expression expr and, viewing it as a product of factors, determines the
number n of factors and assigns the various factors to the names fi fori=1,.., n. Here
is one attempt at writing a procedure for this purpose.

get_factors ;= proc (expr,f,n)
local §;
if type{expr, **’) then
n :== nops(expr);
foritondo
£.i := op(i,expr)
od
else
ni=1;
.1 :== expr
fi
end;

If this procedure is invoked in the form
get_factors(x#y, 'f', 'number');

the result is ‘ERROR: upable to execute for statement'. What has happened is that the
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third actual parameter is a name (as it must be because it is to be assigned a value witkin
the procedure} and when execution reaches the point of executing the for-statement, the
limit n in the for-statement is the name ‘number’ that was passed in. The point is that
the formal parameter n is evaluated only once upon invocation of the procedure and it
will not be re-evaluated. A general solution to this type of problem is to use local
variables where necessary, and to view the assignment to a parameter as an operation
that takes place just before returning from the procedure. For our example, the following
procedure deflnition follows this point of view.

get_factors ;= proc (expr,l,n)
local i, nfactors;
if type(expr, "+°) then
nfactors := nops(expr);
for i to nfactors do
L.i :== op(i,expr)
od
else
nfactors := 1;
f.1 := expr
fi;
n == nfactors
end;

Another solution to the problem in this example is to change the limit in the for-
statement to the operator 7, which will yield the desired value. This leads to the
following procedure definition.

get_factors := proc {expr.[,n}
local i;
if type{expr, “*°) then
n :== nops(expr);
forito” do
L.i := opfi,expr)

od
else
n:==1;
.1 :==expr
fi
end;

5.5. Error Returns and Special Returns

The most common return from a procedure invocation occurs when execution ‘falls
through' the end of the <statseq> which makes up the procedure body, and the value of
the procedure invocation is the value of the last statement executed. There are three
other types of returns from procedures.
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An error return occurs when the special function call
ERROR( <string> )

is evaluated. This function call causes an immediate exit to the top level of the Maple
system and the following error message is printed out:

ERROR: <string> .

An explicit return occurs when the special function call
RETURN( <expseq> )

is evaluated, This function call causes an immediate return from the procedure and the
value of the procedure invocation is the value of the <expseq> given as the argument in
the call to RETURN. In the most common usage <expseq> will be a single
<expression> but a more general <expseq> (including the null expression sequence) is
valid. It is an error if a calf to the function RETURN occurs at a point which is not
within a procedure definition.

A fail return occurs when the special name
FAIL

is evaluated. The effect of evaluating this name is to cause an immediate return from the
procedure. The value of the procedure invocation is the procedure invocation itself, as an
unevaluated expression. It is an error if the name FAIL occurs at a point which is not
within a procedure definition. The effect of FAIL can alse be achieved by the construct

RETURN( '<name>>(paramseq)’ }

where <name>> is the name by which the procedure was invoked.

As an example of a procedure which includes an error return and a fail return,
consider the function ‘max’ which is supplied in the Maple library. The latest definition
that we developed in section 5.3 for the function ‘max’ has a property which makes it
unacceptable as a library function. Namely, if a user calls this function with an
argument that does not evaluate to a constant, such 2s in max(x, y) where x and y have
not been assigned any values, then the result is an error message from the Maple system:
‘ERROR: cannot evaluate boolean’. This error results from attempting to execute an if
statement of the form

ify>x then . ..

where x and y are indeterminates. Since this call to the function ‘max’ may have
occurred from a procedure nested several levels, the resulting error message will not be
very informative to the user. In order to improve this situation, type-checking should be
done within the ‘max’ function and appropriate action should be taken if an invalid
argument is encountered. The [ollowing code from the Maple library shows how this can
be done using the FAIL return facility, so that the result of the function call max({x, y)
will be the unevaluated function max(x, y). This code also shows the use of the ERROR
return facility to return an error message if the function is called with no arguments.
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max ;= proc {)
local i, M, p;
if nargs == 0 then
ERROR('function max called with no parameters’)
else
M :== param(1);
for i to nargs do
p :== param(i);
if not type(p, rational) and not type(p, real) then FAIL fi;
iIM<pthen M:=p#f
od;
M
fi
end;

5.8. Boolean Procedures

It was noted in section 3 that the names ‘true’ and ‘false’ may be freely
manipulated as names even though these names have a special significance when they
arise in a Boolean context. It follows that Boolean procedures may be written like any
other procedures. As an example of a Boolean procedure, consider the following
definition of a function called ‘member” which tests for list membership.

member := proc (element, 1)
local i;
false; for i to nops(l} while not ” do
evalb( element = opfi, 1) } od;

end;

Some examples invoking this procedure follow.

member( x*y, {1/2, x*y, x, ¥} ); yields true
member( x, [1/2, xy] }; yields false
member({ x, []); yields false

A few points about this procedure should be noted. Firstly, note that the equation
element = opli, 1)

is to be evaluated as a Boolean expression and therefore it is necessary to apply the
function ‘evalb’ to it. Otherwise, this expression would be treated as am algebraic
equation. Secondly, note the use of the nullary operator " in the while-part of the loop to
refer to the ‘latest expression’. Alternatively, this could be coded with the use of another
local variable but in this case it seems preferable to use the " operator. Finally, it should
be noted that the Gnal ” appearing in this procedure would be redundant in some
contexts but is necessary here. If it were left out then the value of the procedure
invocation would be the value of the last statement executed, which would be the value
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of the for-loop. This value will be null in the case where ‘l' is the empty list, but the
correct value to return in such a case is ‘false’ rather than the null value, However, the
value of " is never updated by a nuill value and this fact is exploited in the above
procedure definition.

5.7. Reading and Saving Procedures

It is usually convenient to use a text editor to develop a procedure definition and to
write it into a file. The file can then be read into a Maple session. For example, the max
procedure might be written into a file named fu/gahill/max . In a Maple session the
statement

read “fu/gahill/max’;

will read in the procedure definition. Since this procedure is in ‘user format’ Maple will
echo the statements as they are read in. Once the procedure is debugged it is desirable to
save it in ‘Maple internal format' so that whenever it is read into a Maple session the
reading is very fast (and mo time is spent displaying the statements to the user). To
accomplish this one must use 3 file with a name ending in the characters ‘m’ . Within
Maple the ‘user format’ file is read in and then Maple's save statement is used to save the
file in ‘Maple internal format’. For example, suppose that we have saved our procedure
definition in 2 file named /u/gahill/max. If we then enter the Maple system and execute
the statements

read “/u/gahilt/max’;
save “fu/gahill/max.m’;

we will have saved the internal representation of the procedure in the second file. This
file may be read into a Maple session at any time in the future by executing the
statement

read */u/gahill /max.m";

which will update the current Maple environment with the contents of the specified file.
(It is often convenient to place the ‘save’ statement at the end of the ‘user format’ file so
that simply reading in the file will cause it to be saved in ‘Maple internal format'). The
user will quickly discover the time-saving advantages of saving procedure definitions in
‘Maple internal format’.

A special case of reading procedure definitions in ‘Maple internal format' can be
accomplished using the built-in function readlib. Specifically, the function invocation
readlib{pname} will cause the the following read statement to be executed:

read ** . libname . poame . “.m"

where ‘libname’ is a global name in Maple which is initialized to the pathname of the
standard Maple system library on the host system. For example, on the UNIX system the
value of ‘libname’ is *fu/maple/flib/". (The value of libname’ on any host system can be
determined by entering Maple and simply displaying its value). The complete pathname
being specified in the above read statement is a concatenation of the values of ‘libname’,
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‘pname’, and the suffix ".m", which couid alternatively be specified by
cat(libname, pname, “.m’) .

In order to specily this concatenation using only Maple's concatenation operator '.' it is
necessary to concatenate these values to the null string ™, because the left operand of
Maple’s concatenation operator is not fully evaluated but is simply evaluated as a
<name>>. (See section 3.2.2.)

The readiib function is more general than this. If it is called with two arguments
then the second argument is the complete pathname of the file to be read, and the first
argument 'poame’ is the procedure name which is to be defined by this action. Thus the
following two function calls are equivalent:

readlib('r)
readlib(’f’, ** . libname . ‘f.m")

but if the procedure definition for '’ is not in the standard Maple system library then the
second argument is required to specify the correct file. (Even more generally, the readiid
function can be called with several arguments in which case all arguments after the first
are taken to be complete pathnames of files to be read, and the first argument is a
procedure name which is to be defined by this action). The definition of the readlid
function involves more than just the execution of one or more read statements. This
tunction will also check to emsure that after the filles have been read, ‘pname’ has been
assigned a value and this value is returaed as the value of the readlib function. In other
waords, the read/id function is to be used when the purpose of the read is to define a
procedure named ‘pname’ {and some other names may or may not be defined at the same
time}.

The most commeon application of the readlib function is to cause automatic loading
of files. For this purpose, the value of ‘pname’ is initially defined to be an unevaluated
readiid function, as in one of the following assignments:

pname :== 'readlib('pname’)’;
pname ;== 'readlib('pname’, filename}’;

where the single quotes around the argument ‘pname’ are required to avoid a recursive
evaluation, Then if there is subsequently a procedure imvocation pname(...), the
evaluation of ‘ppame’ will cause the readlib function to be executed, thus reading in the
file which defines ‘pname’ as a procedure, and the procedure invocation will then proceed
just as if ‘pname’ had been a built-in function in Maple. Indeed, this method is precisely
how the names of Maple's system-defined library functions are initially defined so that the
appropriate files will be automatically loaded when needed. (For example, enter Maple
and display op{'gcd’} to see what the name 'ged’ is defined to be and readlib('ged’) will be
the response).

For completeness, the following is a definitior in Maple code of Maple's built-in
function readlib.
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readlib := proc (pname}
loeal i, errmsg;
errmsg ;= ‘wrong number (or type) of parameters”;
if nargs==0 or not type(pname, name) then
print(‘In function readlib;*); ERROR(ercmsg)
fi;
pname = 0;
if nargs==1 then
read = . libname . pname . ".m
else
for i from 2 to nargs do
if not type{param(i), name) then
print{'In function readlib;’); ERROR (errmsg)
else
read param(i}
fi
od
&;
if op(pname) = 0 then print(™ . pname . :*);
ERROR(‘ineflective readlib’) f;

0

pname;

”

end;
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8. INTERNAL REPRESENTATION AND MANIPULATION

6.1. Internal Organization

Maple appears to the user as an interactive ‘“‘calculator”. This mode is achieved by
immediately executing any statement which is typed at the user level. It is in this
context where we can define Maple as a perser-driven program. The parser is effectively
the main program; its task is to read input, parse statements and call the statement
evaluator each time a statement is input.

The parser accepts the Maple language which has been kept simple enough to have
the LALR(1) property. The parser, being the main program, retains control throughout
the session. For each production which is successfuily reduced, it creates the appropriate
data structure. Additionally the reduction of the nonterminal <stat> produces a cail to
the statement evaluator, the main Maple evaluator. Maple will read an infinite number
of statements; its normal conclusion is achieved by the evaluation {not the parsing) of the
<quit> statement. Thus it is possible to write a statement like:

il <condition> then quit f;

which will terminate execution conditionally.

The initialization phase is normally called before the parser. In some sense we may
say that both initialization and parser are at the topmost level of control. This is
particularly true for some parsers, like yacc, which provide a “canned” main program
whose only task is to call sequentially the initialization, parser, and possibly a finalization
routine.

The internal functions in Maple can be divided into four distinct groups.

{1) Evaluators. The evaluators are the main functions responsible for evaluaticn. There
are five types of evaluations: statements (done by evalstat); algebraic expressions
{eval}; boolean expressions {evalbool); name forming (evalname), and real arithmetic
(evalr). Although the parser calls only evalstat, thereafter there are many
interactions between the evaluators. For example, the statement

it a>0 then b.i ;= 3.14/a f;

is first analyzed by evalstat which cails evalbool to resolve the if-condition. Once
this is done, say with a true result, evalstat is invoked again to do the assignment,
for which evalname has to be invoked with the left-hand-side and eval with the
right-hand expression. Finally evalr will be called to evaluate the result. Most of
the time the user will not directly invoke any of the evaluators; these are invoked
automatically as needed. In some circumstances, when a different type of
evaluation is needed, the user can directly call evalr, evalbool {evalb for the user),
and evalname (evaln).

(2) Algebraic functions. These are functions which are directly identified with a function
available at the user level, and are commoanly called “basic”. Some examples clarify
this immediately: taking derivatives (diff), picking parts of am expression {op},
dividing polynomials (divide), finding coefficients of polynomials (coeff), series
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computation (taylor), mapping a function (map), substitution of expressions (subs,
subsop), expansion of expressions {expand), finding indeterminates (indets), ete.
Some functions in this group may migrate to the Maple level (Maple library) and
vice versa due to tradeoffs between size and efficiency.

(3) Algebraic service functions. These functions are algebraic in nature, but serve as
subordinates of the functions in the above group. Most frequently these functions
cannot be explicitly called by the user. Examples of functions in this group are: the
arithmetic (integer, rational, and real) packages (const, consti) the basic simplifier
{simpl), printing (print), the series package (polyn), the set-operations package
{sets), retrieval of library functions (retrieve), ete.

(4) General service functions. Functions in this group are at the lowest hierarchical level;
ie., they may be called by any other function in the system. Their purpose is
general, and not pecessarily tied to symbolic computation. Some examples are:
storage allocation and garbage collection (storman), table manipulation {(hash,pc),
internal input/output {put), non-local returns, and various error handlers.

The flow of control within the basic system is not bound to remain at this fevel. In
many cases, where appropriate, a decision is made to call functions writien in Maple and
residing in the library. For example, most uses of the function expand(...) will be handled
by the basic system; however, if an expansion of a sum to a power greater than 4 is
required, the internal expand will call the external (Maple library) function “expaflarge*
to resolve it. Functions such as diff, evalr, taylor, and type make extensive use of this
feature. (For example, the basic function diff does not know how to differentiate any
function; ali its knowledge resides in the Maple library at pathnames ‘diff/ <function
name>"). This is a fundamental feature in the design of Maple as it permits flexibility
(changing the library), personal tailoring (defining your own handling functions),
readability (the source is in Maple code and available to all users), and allows the system
to remain small by unloading unnecessary functions from the basic system.

6.2. Internal Representation of Data Types

The parser and some basic internal functions are responsible for building all of the
data structures used internally by Maple. All of the internal data structures have the
same general format:

IHeader I data 1 I data 2 I l data n I

The header field encodes the length (n+ 1) of the structure, the type, one bit to indicate
simplification status, and two bits to indicate garbage collection status. The data items
are normally pointers to similar data structures; the few exceptions to this rule are the
terminal symbols.

Every data structure is created with its own length, and this length will not change
during its entire existence. Furthermore, data structures should not be changed during
execution since it is not predictable how many other data structures are pointing to a
given structure. The normal procedure to modify structures is to create a copy and
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modify the copy, hence returning a new data structure. The only safe modifications are
those done by the basic simplifier which produces the same value, albeit simpler. [t is the
task of the garbage collector to identify unused structures.

In the following figures we will describe the individual structures and the constraints
on their data items. We will use the symbolic names of the structures since the actual
numerical values used internally are of little interest. The symbol } <xxx> will indicate
a pointer to a structure of type xxx. In particular we will use, whenever possible, the
same notation as in the formal syntax (section 4.2).

Logical and

IAND I t<exp> I t<exp> I

Asgignment statement

[assiGN [ t<name> | t<exp> |

The <name>> entry should evaluate to a valid name, which is one of the following data
structures: NAME, CATENATE, LOCAL, or PARAM.

Break statement

Concatenation of a2 name

[CATENATE I t <name> I t<exp> I

The <name>> entry is treated as in ASSIGN. The <exp>> entry must evaluate to a
nonnegative integer or to a name to be successful. There are two exceptions: if <exp>
is an EXPSEQ the entry is taken to bhe an array reference (the content of the EXPSEQ
being the indices}, and if <exp> is a RANGE the entry is a generator of an EXPSEQ
{e.g. 2.(1..2) generates al,a2).

Equation or test for equality

[EQuaTiON [ t<exp> | t<exp> |

This structure, together with all of the relational operators, has a double interpretation:
as an equation and as a comparison.

Expression sequence

[ExPsEQ [ t<exp> | t<exp> | .. ]

An EXPSEQ may be of length 1 (no entries); this empty structure is cafled NULL.
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Factorial

[FacToRIAL | t<exp> |

This data structure will be replaced by a function call (identical to factorial(...)) in
version 3.0 of Maple. The parser and the printing routine will still handle the
mathematical notation {with the ! symbol}.

For-while loop statement

lF‘OR I 1t <name> ! t<from> l t<by> I t<to> I t < while-cond> l t <statseq> I

The entries for <from>, <by>, <to>, and <while> are general expressions which
are filled with their default values, if necessary, by the parser. The <name> entry
follows the same rules as in ASSIGN except that a NULL value indicates its absence. A
NULL value in the <to> expression indicates that there is no upper limit on the loop.

Fortran function
FORTRAN ] 7]

Not implemented for production yet.
Function call

[runcTioN T 1<name> | t<expsea> |

This structure represents a function invocation (as distinct from a procedure definition
which uses the PROC data structure). The <name>> entry follows the same rules as in
ASSIGN, or it may be a PROC definition. (The parser will not generate this structure
with a PROC definition for the <name>> entry, but this may happen internally). The
<expseq>> contains the list of parameters.

If statement

[IF I 1 <if-condition > I 1 <statseq> I T<statseq>l

The parser generates a NULL third entry for the if-then-fi statement, and generates an IF
entry for the if-then-elif... statement.

Not equal or test for inequality

[INEQUAT [ t<exp> | t<exp> |

Same comments as for EQUATION.



44 Geddes, Gonnet, and Char

Negative integer

I[NTNEG I integer linteger []

Integers are tepresented in base BASE (BASE=10000 for 32-bit machines and
BASE==100000 for 36-bit machines). Each entry contains one “digit”. A normalized
integer contains no additional zeros. The integers are represented in reverse order; i.e,,
the first entry is the lowest order "digit”, the last is the highest order ‘‘digit”. BASE is
the largest power of 10 such that BASE? can be represented in the host-machine integer
arithmetic.

Positive integer

[INTPOS I integer | integer [ I

Similar to INTNEG.

Less or equal relation

[LEssEQ [ 1<exp> [t<exp>]

Similar to EQUATION. The parser also translates a ‘‘greater or equal” into a structure
of this type, interchanging the order of its arguments.

Less than relation

[LEssTHAN | 1<exp> | t<exp> |

Similar to EQUATION. The parser also transiates ‘‘greater than” into a structure of this
type, interchanging the order of its arguments.

List

rLlST I t <expseq> I

Occurrence of a local variable
LOCAL | integer

This entry indicates the usage of the <integer>th local variable. This structure is only
generated by the simplifier when it processes a function definition. LOCAL entries
cannot exist outside functions.
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Identifier

INAME] { <assigned-exp> ‘ string I string l 1

The first entry contains a pointer to the assigned value (if this identifier has been assigned
a value) or 0. The string entries contain the name of the variable.

Logical not

Logical or

IOR l 1 <exp> I t<exp> l

Occurrence of a parameter variable
PARAM

Similar to LOCAL, but using the parameters of the function.
Rational number

[RATIONAL [ 1<INTPOS or INTNEG> | 1<INTPOS> |

The second integer is always positive and different from 0 or 1. The two integers are
relatively prime.

Series

EERIES I 1<exp> I 1 <exp-1> I integer-1 I I l

The first expression is the “‘taylor” variable of the series, the variable used to do the
series expansion. The remaining entries have to be interpreted as pairs of coefficient and
exponent. The exponents are integers (not pointers to integers) and appear in increasing
order. A coeflicient O(1) {function call to the function “O” with parameter 1) is
interpreted specially by Maple as an “order” term.

Power

[PowER T t<exp> | t<exp> |

1f the second entry is a rational constant, this structure is changed to a PROD structure
by the simplifier.



46 Geddes, Gonnpet, and Char

Procedure definition

IPROC | { <nameseq> I { <nameseg> IT<nameaeq> rt<stataeq> l

The first <nameseq>> is an EXPSEQ of the names specified for the formal parameters.
The second corresponds to an EXPSEQ of the names specified for the local variables and
the third to the options specified. The < statseq>> points to the body of the function.

Product/quotient/power

lPROD I {<exp-1> [t(expon-l> l l I

This structure should be interpreted as pairs of expressions and their {rational) exponents.
Rational or integer expressions to an integer power are expanded. If there is a rational
constant in the product, this constant will be moved to the first entry by the simplifier.

Range

[RANGE | 1<exp> | 1<exp> |

Read statement
[READ | t<exp> |

The expression should evaluate to a name (string).
Real number

lHEAL I f <integer> I { <integer> I

The real number is interpreted as the first integer times 10 powered to the second.
Save statement

The expression should evaluate to a name {string).
Set

I SET I 1 <expseq> I

The entries in the <expseq> are sorted in increasing address order. This is an arbitrary
order, but is necessary for sets. (Any other arbitrary, but consistent, order could serve.)

Statement sequence

[STATSEQ { t<stat> | t<stae> | .. ]
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End execution

Sum of several terms

[suM | 1 <exp-1> [ 1<tactor-1> | .. ] ... ]

This structure should be interpreted as pairs of expressions and their (rational) factors.
The simplifier lifts as many constant factors as possible from each expression and places
them in the <factor>> entries. A rational constant is multiplied by its {uctor and
represented with factor 1.

Unevaluated expression

|uNEVAL | t<exp> |

8.3. Portabllity of the Maple system

One of the design goals of Maple is to be portable. The level of portability that we
envision is one for which the scope of machines includes personal computers as well as
present-day time-sharing systems. It was a very early decision that the language to be
chosen should belong to the BCPL family. The reasons behind this decision are:
efliciency, suitability, and availability. On the other hand, no single language in the
BCPL family is sufficiently widely available to satisfly our mneeds. In view of this, we
decided to write our system in a language which closely resembles B and C. This
language is processed by the Margay macro-processor into either B or C, and in the near
future into Port and WSL (which are two systems implementation languages developed at
the University of Waterloo). Margay is a straightforward macro-processor which
resembles closely, although is more powerful than, C’s macro-processing. The most
important difference is that Margay is written in its own macros and hence is portable
across several systems.

The level of portability for the Maple uzer should be total. That is to say, a user
should not be able to recognize in which hardware he is runmirg. This is an easy
consequence of the fact that there is a single source for Maple; the macro processing is
done only before compilation and the intermediate code is never kept. It is important to
realize that the entire basic system is oaly about 4500 lines of code. Being so small, we
can afford minor changes in the code to improve portability across systems. In many
instances we add redundant information to be used by Margay, which may be ignored by
some systems and used by others.

The Margay macros which aid in portability can be classified in various groups:

- name changes; e.g. concat(..) in B is equivalent to strcat(..) in C.

- declaration information; Margay recognizes EXF (external function definitions},
FUN ({lunction definition), PAR (definition of parameters), LOC (definition of local
variables), EXT {definition of external variables), and three types: ALGEB (algebraic),
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LONGINT (multiple precision integers), and INT.

- system constants; EOF (end-of-fle), TRUE, FALSE, MAXINT, MAXADDR,
QUOTE, CHNL (new line character), ete.

- casting: [(...}, forcing an expression to be of type integer.

- input/output: The input and output is ome of the most delicate aspects of
portability. The Maple system requires a very simple type of sequeatial input/output.
Maple knows of only one sequential input stream (possibly stacked) and one sequential
output stream (unique). The input and output are done either in words or in characters.

The macros used for input are:
- Ropea(”filename”) Opens a file for input, stacks the present input file, and
returns false if it failed to open the file.
- Readch() Reads one character from the input stream.
- Readws{vect,nws) Reads nws binary words into vect. Returns the number of
words read; 0 if EOF. )
- Rclose() Closes file and unstacks previous file for input.

The output macros are:
- Wopen("filename™} Opens a file for output (there is only one at a given time),
and returns false if it failed.
- printf{(”format”,...) Outputs characters.
« Writews{vect,nws)} Outputs nws binary words from the vector vect.
- Welose() Closes the output file.

6.4. Searching Tables in Maple

Maple handles zll table searching in a uniform way. All of the searching is done by
an algorithm which is a slight modification of direct-chaining hashing. Although it is not
obvious, the internal tables play a crucial role; they are used for: locating variable names
{nametab); keeping track of simplified expressions (simpltab); keeping track of partial
computations (pctable); mapping expression trees into sequential files for internal
input/output (puttab); and for storing arrays and tables. It is immediately obvious that
the searching in these tables has to be fast enough to guarantee overall efficiency.

The algorithm used for these tables can be understood as an implementation of
direct-chaining where instead of storing a linked list for each table entry, we store a
variable-length array. This requires a versatile and efficient storage manager, but without
one symbolic computation would not be feasibie.

The two data structures used to implement tables are:

Table eatry

[HasuTAB | t<HAsH> [ r<HasH> | .. | t<HASH> |

Each entry points to a HASH entry or it is 0 if no entry was created. The size of
HASHTAB is constant for the implementation. For best efficiency, the number of entries
should be prime.
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Hash-chain entry

IHASHTkey I value I I

Each entry in the table consists of a consecutive pair, the first one being the hashing key
and the second the stored value. A key cannot have the value O as this is the indicator
for the end of a chain. For efficiency reasons, the HASH entries are incremented by 5
entries at a time and consequently some entries may not be filled. Keys may be any
integer or pointer which is representable in one word. In many cases the key is itself a
hashing value (two step hashing).

6.4.1. The Simplification Table

All simplified expressions and subexpressions are stored in the simplification table.
The main purpose of this table is to ensure that expressions appear internally only once.
Every expression which is entered to Maple or which is internally generated is checked
against this table, and if found, the new expression is discarded and the old one is used.
This task is done by the simplifier which recursively simplifies (applies all the basic
simplification rules) and checks against the table.

The task of checking for equivalent expressions within th ds of sub-expressions
would not be possible if it was not done with the aid of a ‘'hashing” concept. Every
expression is entered in the simplification table using its signafure as a key. The
signature of an expression is a hashing function itself, with one very important attribute:
it is order independeni. For example, the signatures of the expressions a+b+c and
¢+ a+ b are identical; the signatures of a**b and b#**a are also identical. Searching for
an expression in the simplification table is done by:

- Simplifying recursively all of its components;

- Applying the basic simplification rules.

- Computing its signature and searching this signature in the table. If the
signature is found then we perform a full comparison (taking into account that additions
and products are commutative, etc.) to verify that it is the same expression. If the
expression is found, the one in the table is used and the searched one is discarded.

The number of times that we have to do a full comparison on expressions is
minimal; it is only when we have a ‘“collision” of signatures. Some experiments have
indicated that signatures coincide once every 50000 comparisons for 32-bit signatures.
{Notice that the signatures are still far from uniform random numbers). The resulting
expected time spent doing full comparisons is absolutely negligible. Of course, if the
signatures disagree then the expressions canmot be equal at the basic level of
simplification.

6.4.2. The Partial-Computation Table

The partial-computation table is responsible for handling the option remember in
function definitions in its explicit and implicit forms. Basically, the table stores function
calls as keys and their results as values. Since both these objects are data structures
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already ctreated, the only cost (in terms of storage) to place them in the table is a pair of
entries (pointers). Searching these hashing tables is extremely efficient and even for
simple functions it is orders of magnitude faster than the actual computation of the
function.

The change in efficiency due to the use of the remembering facility may be
dramatic. For example, the Fibonacei numbers computed with

{ := proc(n)
it n<?2 then n else f{n-1)+ f{a-2) i end;

take exponential time to compute, while

f := proc{n) option remember;
if n<2 then n else f(n-1}+ f{n-2) A end;
requires linear time.

Besides the facility provided to users, the internal system uses the partial-
computation table for diff, taylor, expand, and evalr. The internal handling of expand is
straightforward. There are some exceptions with the others, namely:

- diff will store not only its result but also its inverse; in other words, if you
integrate the result of a differentiation the result will be “table-looked up” rather than
computed. In this sense, integration “learns” from differentiation.

- taylor and evalr need to store some additional, environment, information (Degree
for taylor and Digits for evair). Consequently the entries in these cases are extended with
the precision information. If a result is requested with less precision than what it is
stored in the table, it is retrieved anyway and ‘‘rounded”. If a result is produced with
more precision than what it is stored, it is replaced in the table.

- evalr only remembers function calls (this includes constants); it does not
remember the results of arithmetic operations.

Both the simplification table and the partial-computation table are cleared of all
unreferenced entries at garbage collection time.

6.4.3. Arrays

Arrays and tables are implemented with internal tables. In this case the address of
the simplified EXPSEQ of indices is used as a key for the searching. (Note that since
simplified expressions appear only once, we can use their addresses as keys.) Arrays and
tables are treated very similarly at the internal level, This implementation permits
efficient use of sparse arrays of any kind without overhead. (Note: Arrays and tables will
be implemented in version 3.0 of Maple).
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8.5. Style Recommendations for Library Contributions

In this section we include several recommendations (or a checklist) which should be
useful in preparing Maple software intended to be part of the library. The main
motivation for this document is to provide uniformity and ease in porting and
maintaining the library. We expect that contributors will find the recommendations
sound and that these will be followed as closely as possible.

General Recommendations.

8.5.1. Nothing, absolutely nothing, replaces good algorithms and good programming
techniques. No matter how closely it follows the recommendations or how much it is
embellished, a bad algorithm will always be a disgrace to the library.

8.5.2. Each function should have a precise objective, In this respect we think that
functions that can be trivially implemented with other commands or functions, are a
disservice to the user community. They take space in the libraries, manual, and minds
without giving a substantial service.

6.5.3. Each function should have comments in its heading which, without much
verbesity, explain the usage, purpose, author, level, algorithm and possibly some other
useful information. Pages of comments where it is difficult to find the above information
may be worse than no comments at all.

6.5.4. Each function should be accompanied by a test file which tests its correctness.
Test files should not be tedious repetitions of the same situation, but instead the shortest
and quickest program that explores all of the code in the function. Test files will
normally grow with the examples that detected errors previously undetected. Such
“errors” are pieces of code which run through a sensitive path and are, in general,
excellent tests. Long and slow tests tend not to be run, and are self-defeating.

8.5.5. The code in the library is likely to be taken as an example for users and future
implementors of Maple. Consequently we are doubly motivated te produce high quality
code,

More specific points.

6.5.8. If a function resides in < any-directory>>/xxx.m then its source, that is the
Maple source code that generates it, will be placed in <any-directory> fsrcfxxx . The
only exceptions to this rule are the functions that, for being thematically related and very
short, are included in a single file. System library functions should be saved with a
statement like

save . libname . “xxx.m";

30 that their *.m" files can be created in a portable way.
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6.5.7. Flle names {without the “.m"), and consequently function names, should be ¢
characters long or shorter. This is not counting directories. This is caused by system
limitations and the need to load with readlib(...). Internal functions defined entirely
within another function body are not restricted by this limitation. Upper-lower case
distinctions are not respected by some systems; consequently, different function names
should not rely on case diflerences alone.

6.5.8. Loeal variables should be reasonably economized. Also, excessive use of local
variables tends to reduce readability of the programs. E.g.,

for i to nops(exp) dq -
is more efficient and readable tl}an

limit ;== nops{exp);
for i to limit do ... od;

The use of the RETURN(...) function typically eases the understanding of the fow of
control and saves local variables, Simple operations on parameters may not be worth the
assignment of local variables; for example, if op(l,paraml} is used omly twice, then
assigning temp := op{1,parami) is not a real saving. :

68.5.9. Global variables should be avoided. If unavoidable, global variables should be
named starting with the at-sign (@). The Maple library convention for returning a “fail”
condition (in cases where a direct FAIL return is inappropriate) is to return the global
name QFAIL. ’

8.5.10. Data types should be used properly where needed. For example: a pair of 2
elements where order is important should be accommodated in a list; an indicator shouid
only take the values true or false; etc.

8.5.11. Packages (collections of functions for a given purpose) should be structured
according to the following example. Suppose users want to call X{...) directly. If X is
nontrivial, it may optionally call sub-functions A, B, or C. Furthermore let us assume
that any of X, A, B or C can call the lowest level functions E and F. Then:

{a} X should be the only name known to Maple, or the only name subject to be
read with readlib(X).

{b) All of the functions that are likely to be loaded within the execution of X
should be included in the module of X. That is to say that the number of loading
operations should be minimized.

(¢) The remaining functions in the package, which may or may not be loaded,
should be defined in the module X as B:=="readlib('B')’, etc. This will cause the loading
of B to be delayed until B{...) is used.

(d) When there are two or more possible entry points which share most of the
package, then all of the definitions should he included in a single module. If X and Y are
two entry points for the same package, all of the code for X and Y will be stored together
(say in X.m). The initial definitions of X and Y will now be:
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X := 'readlib('X")";
Y := 'readlib( "Y', =" . libname . X.m" };
{e) Finally, a sub-function may be used directly by the user independently of the

package. For example, if C could be used independently of X and Y then we need an
entry for C. Within the package X we will define C as before, namely:

C := "readlib('C")’;

For the direct use of C we need to load its accompanying E and F; consequently, the
definition for direct usage of C (not through X) will be:

C := 'readlib( 'C’, *.libname.'C.m", " libname.'E.m", **.libname. F.m" }';

8.5.12. The option 'remember' may be crucial for efficiency. It should be used when it
is reasonably effective: whenever recomputation is likely. It should net be unnecessarily
nested. Functions which produce side effects (printing of values, returning values through
parameters, etc.) cannot use the option remember since this option reproduces the
function result, not its side effects.

6.5.13. Atomired programming (splitting all steps of a computation) is not very
efficient and, frequently, is unreadable {the '‘Assembler syndrome”). At the other
extreme, “‘one-liners” are also unreadable (the “APL syndrome”). Both extremes should
be avoided.

0.5.14. In complicated packages, it may be desirable to inform the user about the
progress of a computation. Such printing should be regulated by printlevel. The values 2
ang 3 are reserved for this purpose. For example:

if printlevel>2 then print(*Risch method applied’) f;

8.5.15. It has proved to be valuable to have a ‘‘benchmark” for each function. A
benchmark is a test file that not only tests for correctness but also for timing. When
changes are dome, it can be precisely measured if morefless timefspace is used.
Sometimes naive-looking modifications produce significant changes in performance.

6.5.16. Reminder: Don't forget to use the load option “-I” when loading Maple library
functions. (See section 8.3).
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7. LIBRARY FUNCTIONS

Maple’s library functions fall into three categories: functions internal to the Maple
system, automatically-loaded library functions, and miscellaneous library functions that
are not automatically loaded. Functions in the frst category are coded internally in the
basic Maple system. Functions in the second category are specified by Maple code in the
Maple system library, and their names are initially assigned as unevaluated readlid
functions {see section 5.7). The functions in the first two categories will be grouped
together in this section since the user will not generally make any distinction between
these two categories. In fact, the grouping of functions into these two categories may be
different on different host systems. For a specific function °‘f", the user can easily
determine which of the first two categories it belongs to by entering Maple and displaying
the value op(‘l’); the result will be the name '’ for functions in the first category and the
result will be ‘readiib(’)’ for functions in the second category. Functions in the third
category will be listed separately at the end of this section because they cannot be used
without being explicitly loaded by the user.

The general rule for function invocations in Maple is that all arguments are tully
evaluated. Two exceptions are the functions sssigned and evaln where the argument is
evaluated to a name, a third exception is the function evald where the argument is
evaluated by the Boolean evaluator rather than by the general expression evaluator, and
a fourth exception is the function remember where the argument involves a procedure
invocation which will not be invoked. The names of the library functions are not
reserved words in Maple. A user may define his own function using the same name as one
of the system-supplied functions.

7.1. abs( @r )

If expr is of type rational (or integer) then the absolute value of expr is returned,
otherwise the function invocation remains unevaluated.

7.2. analyre { expr )
The purpose of this function is to analyze an expression in the following sense. The
expression expr is viewed as a sum of products of the form:

const * f1s+el « [2ewe2 » .+ [na%en .
If expr is a product (including the case of a single factor) then the value returned is the
list

[const, {1, el, ..., fn, en]

(where const will be 1 if there i no explicit constant in the product). If expr is a sum or
an equation or a range then the function analyze is mapped on*o expr. (See the fuaction
map).



MAPLE User' s Manual 55

7.3. anames ()

This function takes no arguments. It returns an expression sequence consisting of
all of the active names in the current Maple session which are assigned names, meaning
names which bave been assigned values other than their own names. (See also the
fanction unames).

7.4. assigned { name )

This function returns the value true if name is active in the current session and it
has a value other than its own name, and returns the value false otherwise. The
argument to this function must be a valid <name>>. The argument is not tully
evaluated but is evaluated to a name.

7.5. asympt (expr,x) or asympt (expr,x,n}

The purpose of this function is to compute the asymptotic expansion of expr with
respect to the variable x {as x approaches infinity). If there is a third argument ‘a’ then
it must evaluate to an integer which specifies the ‘truncation degree’ to be used. If there
is no third argument then the ‘truncation degree’ is specified by the current value of the
global variable Degree (which initially has the value 5 in the Maple system). Specifically,
this function is defined in terms of the faylor function as follows:

subs( x=1/x, taylor{ subs(x=1/x, expr), x=0, 1 ) )

(where the third argument ‘@’ to the taylor function will be omitted if it was omitted in
the call to asympt). :

7.8. cat (a,b,c,...)

This function takes an arbitrary number of arguments which must evaluate to valid
strings, and it concatenates these strings into a new string. The result of this function
can be specified in terms of Maple's concatenation operator *." as follows:

‘

“.a.b.c

{for the case of only three arguments, for example}.

7.7. coeff ( expr,x,n)

For this function the expression expr must be in expanded form (see the function
ezpand). The value of this function is the coefficient in expr of the term involving x**n .

Examples: If
P == TOsy+x#%4 - TO#x34 — 17Tex**2 + 19#yssbax - 35ey**2 + 105

then
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coefi(p, x, 0) yields
coelf(p, x, 1}; yields
coefl{p, x, 2); yields
coefl{p, x, 3); yields
coefl(p, x, 4); yields

7.8. commonden ( expr )

105-354y=*2
19:-yn5
-177

0

T0sy-T0

This function ¢computes the common denominator of an expression. Specifically, it

first applies the analyze function to expr.

Then it extracts from each term the

denominator of the constant factor and all factors whose exponents have megative sign,
and forms the least common multiple of the denominators thus extracted from each term.

7.9. convert ( expr, typename )

The purpose of this function is to explicitly convert an expression from one data
type to another. Two kinds of conversion are currently supported, corresponding to the

two values for ‘typename’; ratioual and polynom.

For the case where ‘typename’ is ‘rational’, if expr is not of type ‘rational’ then it
must be of type ‘real’ and a rational number is generated which approximates the given
real number. The accuracy of the approximation depends on the number of significant

digits in the input real number.

For the case where ‘typename’ is ‘polynom’, if expr is not of type ‘polymom’ then it
must be of type ‘series' and the result is the polynomial obtained by removing the order
term (if any) from the series and converting from the series data structure to the ordinary

sum-of-products data structure.

Examples:
convert(3.14, rational); yields
convert(3.1415, rational); yields
convert{0.30, rational); yields
convert(0.300, rational); yields
s := taylor{sin(x), x==0); yields
convert(s, polynom); yields

22/7

311/99

1/3

3/10 .

3 1= 1ax+ (-1/6)xeed+ 1/1209x 35+ O(xx6)
x-1/G¥x*a3+ 1/120x#*5

User Interfaces New conversion procedures can be made known to the convert function
by the foltowing mechanism. If the user assigns a procedure to the name ‘conv/newtype’
(where ‘newtype’ is any name chosen by the user} 2 in

‘conv/mewiype' :== proc ( expt, <extra parameters> } ... end

then the function invocation

convert { expr, newtype, <extra parameters> )

will cause the function invocation
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‘conv fnewtype® [ expr, <extra parameters> ) .

If “conv/newtype® is not assigned then Maple looks for it in the Maple system library at
the pathname

* . libname . ‘conv/newtype.m’

and if it is not found then an error occurs.

7.10. degree ( expr, x )

If expr is a polynomial in x (allowing both positive and negative exponents) then
this function returns the degree of expr in x. It is not necessary that expr be in expanded
form. This function may be applied as well to the series data structure. If expr is neither
a series in the indeterminate x nor a polynomial in the indeterminate x then the value
returned is the largest word-size negative integer. (See also the function {degree).

7.11. diff ( expr, x1,x2,...,xn)

This function computes the partial derivative of expr with respect to x1, x2, .. .,
xn, respectively. The latter n expressions must evaluate to <name>s. In the case where
n is greater than one, the syntax is simply a shorthand notation for nested applications of
the diff function.

Examples: Assuming that x and y are names which stand for themselves, if the following
statements are executed:

P = -30¥x#s3ky + QOex+#2uyss2 4 Haxesd - Gaxxy,;
difi{p, x, ¥}

then the result of the function tnvocation of ‘diff’ is:
—Q0*x**2-+ 360*x*y+ (-6}
This is equivalent to executing the statement diff(diff(p,x),y) .

User Interface: New functions can be made known to Maple's diff function by the
following mechapism. If the user assigns a procedure to the name ‘diff/zewfcn” (where
‘newfen’ is any name chosen by the uset) as in

*diff/newfcn” := proc (expr,x} newfcnl{expr) ¢ diff(expr,x) end

(where the name ‘newfenl’ is being used as the name of the derivative function) then the
function invocation

diff { newfcn(expt), x )
will cause the function invocation
‘diff/newfen” ( expr, x }.

If “diff/newfen” is not assigned them Maple looks for it in the Maple system library at the
pathname
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** . libname . “diff/newfen.m*

and if it is not found then a FAIL return occurs from the diff function.

Functions whose derivatives are curreatly defined in the Maple system library
include the elementary functions (all of the circular, inverse circular, byperbolic, and
inverse hyperbolic functions, as well as the functions exp and In), abs, GAMMA, Psi
(which satisfies the relationship ’

Psi(x) = dif{GAMMA{x),x) / GAMMA(x) ),

and the first four derivatives of Psi (represented by the names Psil, Psi2, Psi3, and Psid).
The derivative of an unevaluated ‘int’ function is also defined in the Maple system
library.

7.12. divide (a, b,'q’)

The purpose of this function is to attempt to perform exact polynomial division of
expression ‘a’ by expression ‘b’. The division is considered successful only if the resuiting
quotient is a ‘true polynomial’ in its indeterminates — i.e., negative exponents are not
acceptable in the result of a polynomial division. The value of the divide function is
‘true’ if the division was successful, 'false’ otherwise. Furthermore, if there is a third
argument 'q’ (which must evaluate to a name) and if the division was successful then the
value of the quotient is assigned to q. In the case of an unsuccessful division the value of
q will remain unaffected.

Examples:
2 iz Teyssdexsewd - Qeysxasd — (yreq - 21syesd)rxesd _ Gayex — Jryseq;
b i=a y#xs+2 4+ 3¥y;
divide(a, b, 'q’}; yields true
q; yields Tryea2ex+42_2ex.y+*]

r :== expand{ (2¢x-5}**3 * (x+ 1} );
while divide(r, 2#x-5, ') do od;

r; yields x+1

f == expand({c-1)fe); yields 1-c**{-1)
g = c-1; yields e-1
divide{f, g); yields false

In the latter example, note that it is possible to simplify the expression [/g to the value
c**(-1) but this cannot be accomplished by the divide function because the result is not a
‘true polynomial'. For this purpose, the normal function should be used, as in:

ffe; yields  (1-c*s{(-1}}{(c-1)
normal(”); yields cee(-1}
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7.13. ERROR ( message )

This function is a special function whose purpose is to cause an immediate exit from
a procedure, and 'message’ is a <string> which is the error message to be printed out.
{See section 5.5). Upon execution of this function, control returns to the top level of the
Maple system and the following error message is printed out:

ERROR: message

where ‘message’ (a < string>>) is the argument to the ERROR function.

7.14. evalb ( expr )

This function invokes the Boolean expression evaluator on expr. For example, the
expression a = b will be considered an algebraic equation if it does not appear in an
explicit Boolean context, but evalb(a = b) will evaluate the equation a3 a Boolean (i.e., it
will evaluate the equation to the valse ‘true’ or to the value ‘false’).

7.15. evaln { name )

The purpose of this fupction is to apply te the argument ‘name’ Maple's name
evaluator, which is the evaluator that is always applied to left-hand-sides of assignments,
for example. The argument must be a syntactically valid <name>> and, of course, it is
not fully evaluated. One of the uses for this function is to unasssign names formed with
the concatenation operator. For example,

for i to 5 do a.i := evaln(a.i) od

will unassign the names al, a2, a3, a4, and a5. Note that in this case the evaln function
cannot be replaced by the use of the unevaluated expression comstruct 'a.i’ because then
the concatenation on the right-hand-side will remain unevaluated (and the names
al, ..., a5 will remain sesigned ).

7.16. evalr (expr) or evair (expr,n)

This is the ‘evaluate to a real' function, which evaluates the argument 'expr’ to a
real number (if possible). If there is no second argument then the number of significant
digits appearing in the result is controlled by Maple's global variable Digits. (The initial
value of the global variable Digits is 10, but the user may assign any integer value to this
global variable). If there is a second argument ‘n' to the evalr function then it must
evaluate to an integer, and the number of significant digits appearing in the result is
determined by the value of n.

Examples:
a = (5#+40 + 3%x50} [ 2%+90; yields
a ;= 4547832457858487115869580437 /618970019642690137449562112

evalr(a); yields 7.3474196060
evalr(a, 40); yields 7.3474196060154781089322604350878881161323
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Digits = 25;
evalr( 5/3 * exp(-2)  sin(Pif4) ); yields .15949416085068487326793800

User Interface: New functions, and also new constants, can be made known to Maple's
evair function by the user.

For the case of new functions, il the user assigns a procedure to the name
‘real/newfcn” (where ‘newfcn’ is any name chosen by the user) as in

‘real/newfcn” ;= proc (x)
local t;
t ;== evalr{x);
evalr( exp(t*=2) & sin{Pif2 =« t} )
end

then the function invocation
evalr ( newfen(x) }

will cause the function invocation
‘real/newfca’ {x) .

If “real/newfcn” is not assigned then Maple looks for it in the Maple system library at the
pathname

** . libname . ‘real/newfcn.m’

and if it is not found then an error occurs.

For the case of new constants, if the user assigns a procedure to the name
“realfconstant /newconst” (where ‘newconst’ is any name chosen by the user) as in

“realf/constant /newconst™ := proc () evalr( (5#%(1/2) - 1) / 2 ) end;
then the function invocation

evalr ( newconst )
will cause the function invocation

‘real/constant /newconst { ) .

If “real/constant/newconst” is not assigned then Maple looks for it in the Maple system
library at the pathname

** . libname . “real/constant/newconst.m"’

and if it i3 not found then an error occurs.

Functions for which ‘evalr’ procedures are currently defined in the Maple system
library include the elementary functions (all of the circular, inverse circular, hyperbolic,
and inverse hyperbolic functions, as well as the functions exp and Inj, and the Psi
function. Constants for which ‘evalr’ procedures are currently defined in the Maple
system library include:



MAPLE User' s Manual 61
Pi, e (exp(1)), gamma (Euler’s constant), and C (Catalan’s constant) .

7.17. expand {expr ) or expand (expr,el,e2,...,en)

The purpose of this function is to expand expr by distributing products over sums.
If the number of arguments is greater than one then the additional arguments el, €2, . . .,
en are expressions which will be ‘frozen’ (i.e., the efflect is to replace every occurrence of
¢i by a <pame> before performing the ezpand operation and then to restore the original
expression ei unchanged). If the expression is an equation then ezpand is applied to the
operands of the equation.

Examples:

p = (2¢x - 5) * (35¥x*s2-x + T);
expand(p); yields TOx3*3-17T#x+#2+ 19+x+ (-35)

q 1= 3*sin{x) * (x*sinfx) ~ y*z} * (2¥x*+2 - 3);
expand(q); yields
Gsin(x)s#2ex++3-Gesin{x pe+2+x~Gosin(x)#y *z+x +£2+ Orsin{x)¥y*z

t== 3x(x+ 1)##3 — Se(x+ 1)#*2;
expand(r, x+ 1); yields Be(x+ 1)+e3-5%(x+ 1)#=2
expand(r); yields Sax a3+ qax*s2-x+ (-2)

%7.18. factor ( expr )

This function computes a complete factorization over the integers of the
multivariate polynomial expr. (Work on this function has not been completed at the
time-of writing).

7.19. frac(a)

This function computes the fractional par! of a rational number. It is the
complement of the {runc function; the value of frac(x} is specified by

x - trune(x) .

7.20. ged ( a, b, 'resultl’, "result2’ )

This function computes the greafest common divisor of the multivariate polynomials
‘a’ and ‘b’. It is an error if ‘a’ and 'b' are not polynomials in their indeterminates. The
ged is computed in the domain of polynomials with integer coeflicients, but the input
polynomials may have rational coefficients in which case the common denominator is
simply removed. If the third argument ‘resultl’ is present then it must evaluate to a
<name> and upon return its value will be a / ged(a,b) . Similarly, if the fourth
argument ‘result2’ is presemt then it must evaluate to a <pame> and upon return its
value will be b [ ged(a,b) .
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7.21. has ( exprl, expr2)

The value of this function is frue if exprl contains expr2 as an explicit
subexpression, false otherwise. The concept of ‘explicit subexpression’ corresponds to the
semantics of the op function: if op(exprl), or recursive application of op to each operand
of exprl, yields expr2 as an operand then exprl contains expr2 as an ‘explicit
subexpression’; otherwise it does not.

Exampless
has ( {a+ b)*s(4/3), a+ b }; yields true
has ( (a+ b)**{4/3), 2 ); yields true
has ( a+b+¢, a+ b ); yields false

7.22. icontent ( expr )

This function computes the integer content of expr — i.e., the greatest common
divisor of the integer coefficients in the case of an expanded polynomial. If expr is not in
expanded form then the iconéent function is mapped onto its components to obtain the
result. For the common case of an expanded polynomial with integer coefficients, this
function has a concise definition in terms of the functions lcoeff, map, iged, and op as
follows:

iged( op(map(lcoed, [op(expr)})) )

7.23. ifactor (n)

This function returns an integer factor of n; if o is prime then the value returned is
n. The integer factor returned by this function is not necessarily a prime.

7.24. iged (L), k.0

This function takes an arbitrary number of arguments which must evaluate to
integers, and it computes the nonnegative greatest common divisor of these integers. If
iged is called with no arguments then the value 0 is returned.

Examples:
iged(); yields 0
iged(3); yields 3
iged(-10, 8, -8); yields 2

7.25. flem (1, J,k,...)

This function takes an arbitrary number of arguments which must evaluate to
integers, and it computes the nonnegative lcast common multiple of these integers. If ilem
is called with no arguments then the value 0 is returned.
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Examples:
ilem(); yields 0
ilem(-5); yields 5
ilem(7, -6, 14); yields 42

7.26. imodp (n, p)

The fupctions imodp and imods are two functions for computing the integer
modular operation

nmodp.

The fnal letter ‘p' or 's’ in the function name stands for ‘positive range’ or 'symmetric
range’. If n and p are integers then the function imodp(n,p) returns an integer r lying in
the ‘positive range’

0 < r < sbop),

where n==pg + r for some integer ¢. If p is zero then an error occurs. Note that the
tmodp function satisfies the property:

imodp(n, p) = imodp(z, -p) .

Examples:
imodp{7, 5); yields 2
imodp(8, 5} yields 3
imodp(-8, -5); yields 2
imodp(7, -6}; yields 1
imodp(-7, 6); yields 5

7.27. imods {n,p )

The functions imede and imodp are two functions for computing the integer
modular operation

pmod p.

The final letter ‘s’ or ‘p’ in the function name stands for ‘symmetric range’ or ‘positive
range’. If n and p are integers then the function imods(r,p} returns an integer r lying in
the ‘symmetric range’:

-abs{p)f2 < r < abs(p)f2

where n=pg + r for some integer g. If p is zero then an error occurs. Note that the
imods function satisfies the property:

imods{n, p) = imods(n, -p} .
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Examples:
imods(7, 5); yields 2
imods(8, 5); yields -2
imods(-8, -5}; yields 2
imods(9, —6); yields 3
imods{-9, 6); yields 3

7.28. Indets ( expr )

The purpose of this function is to determine the indeterminates which appear in
expr. The value of the function is a set whose elements are the indeterminates. The
concept of ‘indeterminate’ is.that expr is viewed as a rational expression (i.e. an
expression formed by applying only the operations +, —, *, / to some given symbols) and
therefore unevaluated functions such as sin{x), exp(x*+2), f{x,y), and x**(1/2) are treated
as indeterminates. When an indeterminate which is not a <name>> appears in the set
then so will all of its component indeterminates. Expressions of type ‘constant’ such as
sin(1), f(3,5), and 2+#{1/2} are not considered to be indeterminates. Note that if expr is a
sum or product of terms tl, t2, ..., to then the result of applying indets(expr) will be
identical to the result of applying the set union:

indets(t1) + indets{t2} + ...+ indets(ta}.

Examples: If the following statements are executed:

p == Jex*aJsysudsg — Qaxsadezas) 4 yRR3ez Tay + 5
r == {Qsx#e2 - 5) * (x - 2)#%(1/3) [ (xrexp(x*s2)};

then

indets(p); yields {z.yx}

indets(r); yields {exp(x**2),(x+ (-2))**(1/3),x}
Furthermore,

indets( exp(x+*2) ); yields {exp(x**2),x}

indets( x**(1/2) ); yields {x**(1/2),x}

indets{ 2+=(1/2)*1(9) }; yields {

7.29. Int ( expe,x) or int (expr,x ==a.b)

If the second argument is not an equation then this function attempts to compute
the indefinite integral of expr with respect to the second argument 'x’ which must
evaluate to 3 <pame>. If the second argument is an equation then its left-hand-side
must evzluate to a <name> ‘x’ and its right-hand-side must evaluate to a <raage>
‘a..b’, and this function attempts to compute the definite integral of expr with respect to
‘x' over the interval specified by the range 'a..b'. If Maple is not successful in performing
the integration then a FAIL return cccurs, meaning that the value of the function
invocation is the unevaluated function invocation.
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Examples: If
[ o= 1/2%x%(-2) + 3/2ex*x(-1) + 2- 5f2%x + T7/24x++2;

then
int(f,x); yields —1f2%xee(-1)+ 3/2¢In(x)+ 2¥x-5/4rx+*2+ T [Grx**3
int(f, x = 1..2); vields 203 + 3/2+In(2)
evalr(”); yields 7.706387438
int{ (x-1)}/(x+ 1}, x ); yields {(x-1)*ln(x+ 1-{x+ Dinfx+ 1)+ x+ 1
expand(”); yields -2sfn(x+ 1}+x+1
int{tan(x), x); yields ~In{cos(x)
int(sin{t)*cos{t), t};  yields 1/2#sin(t)**2
int(x*cos{x}, x); yields x*sin(x)+ cos(x)

int{exp{x*+2}, x}; yields int(exp(x**2),x)

7.30. iquo (m, n)

This function computes the integer quotient of ‘m’ divided by ‘n’. The result of this
function is identical with the result of applying trunc(m/n). The iguo function will be
more efficient than the latter when ‘m' and ‘n’ are long integers because it avoids first
simplifying the rational number m/n to lowest terms. Specifically, if m and n are
integers then the function iguo(m,n) returas an integer ¢ satisfying

m=nqg+r
for some integer r such that
abs(r) < abs{n) and mr > 0.

If n is zero then an error occurs.

Examples:
ique(7, 5); yields 1
iquo(-7, 5); yields -1
iquo(7, -5); yields -1
iquo(-7, -5); yields 1

7.31. lem(a,b)

This function computes the least common multiple of the multivariate polynomials
‘a’ and ‘b’. It is an error if ‘a’ and ‘b’ are not polynomials in their indeterminates. This
function invokes the ged function, using the definition

lem(a,b} = a*b [ ged(a,b)

(with an adjustment of the sign of the result to make the leading coefficient positive).
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Restrictions on the input expressions are therefore the restrictions of the ged function.

7.32. lcoeff { expr )

This function computes the constant leading coefficient in the multivariate
polynomial expr, with respect to the set of indeterminates indets(expr). If expr is in
expanded form and if indets(expr} yields the set {x.1, x.2, ..., x.n} then the result of
the leoeff function can be expressed as foilows:

u i= expr;

for i to n while not type(u, constant) do
u ;= coefl{ u, x.i, degree(u, x.i} )

od;

u

It is an error if expr is not a polynomial in its indeterminates.

Examples:
p == 3laxssdsyss4 4 2exeeduyradey - yea2eznf;
indets(p); yields {z,yx}
leoeff{p); yields -1
q == 17ex#s5 + x##3 - Sex*2 + 111;
indets{q); yields {x}
lcoefl(q); . yields 17
rims 3/24yes3 - 5/2sIn(2exsabey + xvadry - 1;
indets(r); yields {xr}
lcoefi(r); yields -5/2+n(2)

7.33. ldegree ( expr,x)

This function is 3 companion to the degree function. If expr is a polynomial in x
(allowing both positive and negative exponents) then this function returns the low degree
of expr in x, which is the least exponent of x in expr. It is ot necessary that expr be in
expanded form. This function may be applied as well to the series data structure. If
expr is neither a series in the indeterminate x nor a polynomial in the indeterminate x
then the value returned is the largest word-size negative integer.

7.34. length (n)

For this function, the argument ‘n’ must evaluate to an integer and the value
returned is the length of the integer (i.e., the number of digits in its base-10
representation).
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7.35. lexorder ( namel, name2 )

This function tests to determine whether namel and name2 are in lexicographical
order. It returns true if namel occurs before name2 in lexicographical order, or if
namel is equal to name2. Otherwise, it returns false. The lexicographical order
depends in part upon the collation sequence of the underlying character set, which is
system-dependent. For names consisting of ordinary letters, lexicographical order is the
standard alphabetical order.

Examples: For a typical implementation of the ASCII character set the following results
are obtained:

lexorder(a, b); yields true
lexorder(A, a); yields true
lexorder{* a°, a}; yields true
lexorder(John, Harry); yields false
lexorder(determinant, determinate); yields true
lexorder(greatest, great); yields false
lexorder( ", “#*); yields true
lexorder(**#*", "+ *); yields true

7.38. limit (expr,x =a}

This function attempts to compute the limiting value of expr as x approaches a.
The second argument must be an <equation> and the left-hand-side of the equation
must evaluate to 2 <name>. This function applies the faylor function and deduces the
limit from the form of the taylor series. The limit point ‘a’ may take the special value
‘infinity’ in which case the limiting value is determined by applying the change of
variable x = 1/x in expr and then computing the taylor series about x = 0.

Examples:
limit(sin(x)/x, x=0); yields
limit{ (tan(x}-x)/x**3, x=0); yields 1/3

limit( (5%x-3}/(x**2+ x+ 1), x=iofinity);  yields 0

ros= (xe¥2 - 1) [ (11%xes2 - 2%x - 9);

limit(r, x=0}; yields 1/9
limit(r, x=infinity); yields /11
limit{r, x=1}; yields 1/10
limit{1/x, x=0); yields infinity

limit(1/x, x=infinity); yields 0
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7.37. map ( f, expr, arg2, arg3, ..., argn )

For this function, { must evaluate to a name or to a procedure definition. The
purpose of this function is to map f (as a function name or as a procedure invocation)
onto the components of expr. The resuit of the map function is a new expression which
can be defined as follows: replace the ith operand in expr by the result of applying I to
the ith operand, for i = 1, 2, ..., nops(expr). If { takes more than one argument then
there must be additional arguments to the map function: arg2, arg3, ..., argn which
are simply passed through as the 2ud, 3rd, . . ., nth arguments to f.

Exampless
maplf, x + y*z); yields f(x) + fly*z)
map(f, y*z); yields fly)*f(z)
maplt, {abe}) yieids  {fa)I(BL16)
map( proc (x) x**2 end, x + ¥ ) yields x*s2 4 yeu2
map( proe (x) x**2 end, [1,2,3,4] ); yields {1,4,9,16]
map(int, {exp(t),in(t),tan(t)], t); yields [exp(t),tla(t}-t,~1n(cos(t))]

expr := 2/3 * xfsin(x} - 1/x + sin(x);
den :== 3#x*sin(x);

map( proc (e,m) m*e end, expr, den ); yields 2ox+#2-3sin(x )+ Jexesin(x)**2

mult :== proe {e,m) m*e end;
map(mult, biu,v,w), 10); yields h{10%u,10%v,10*w)

7.38. max(a,b,¢,...)

This function takes ap arbitrary number of arguments. If each of the arguments
evaluates to an integer, a rational aumber, or a real number, then the value of this
function is the maximum of these numbers. If one or more of the arguments does not
evaluate to such a constant then a FAIL return occurs. It is an error if maz is called with
0o arguments.

Examples:
max(3/2, 1.49); yields 3/2
max(3/5, evalr{In(2)), 9/13); yields 6931471805
max(5); yields 5
max(-1001, 1/2, -1/2, -9); yields 1/2

max(x, ¥); yields max(x,y)
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7.3¢. member { expr, set_or_liat, "position’ )

The purpose of this function is to test for set membership or to test for list
membership and (optionally) to locate the position of expr in a list. The second
argument ‘set_or_Jist' must be either a set or a list, and this function returns true if expr
is one of the elements in set_or_list, false otherwise. If the third argument is present
then it must evaluate to a <name>>, the second argument must be a list, and, in the
case where the value of this function is true, the position of expr in the list will be
assigned to the third argument.

Examples:

member( y, {x,y,z} ); yields true
member( y, {x+y, y*z} % yields false
member( x, {} ); yields false
member( 3*exp(x/2), {sin(x), 3*exp(x/2)} ); yields true
member{ w, {x,y,w,u] }; yields true
member{ w, [x,y,w,ul, k' ); yields true
k; yields 3

member( x, [x+y, x-¥, x*¥, xfy], 'k’ ); yields false
member( x+ y, [x+y, x~y, x*y, x [y}, k' ); yields true
k; yields 1

7.40. min (a, b,c,...)

This function takes an arbitrary number of arguments. If each of the arguments
evaluates to an integer, a rational mumber, or a real number, then the value of this
function is the minimum of these numbers. If one or more of the arguments does not
evaluate to such a constant then a FAIL return occurs. It is an error if min is called with
no arguments.

Examples:
min(3/2, 1.49); yields 149
min(3/5, evalr{ln(2)), 9/13); yields 3/5
min( evalr(In{2)), evalr( (5+=(1/2}-1}/2) ); yields .6180339890
min{-1001, 1/2, -1/2, 9); yields -1001
min{x, y); yields min{x,y)

7.41. nops ( expr)

The purpose of this function is to determine the number of operands appearing in
expr. The mannet in which expr iz viewed by this function corresponds to the manper in
which an expression is viewed by the function op. In the most common case, expr bas
operands indexed from 1 to n (such as in a general algebraic expression, a set, or a list)
and nops{expr) is n. If expr is a function invocation with operands indexed from 0 to
then nops(expr) is n. [f expr is a series with operands indexed from 0 to n then
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nops{expt) is .

Examplest Assuming that [, x, y, and z are names which stand for themselves, if the
following statements are executed:

g = f(x, y, z);
a 1= (3wsin(x**3) - (2/3)%x + y) [ (2ex**2 - 1};

then
aopsig); yields 3
nops(a); yields 2
nops{op{1,a}); yields 3
nops{op{2,aj); yields 2.

Note that the latter resuit of 2 is not because the denominator of 'a’ is the expression
Qaxaa2+ (-1)

which is an addition of two terms but rather op{2,a) is the expression
(2exe02+ (-1))+(-1)

which is a power (and a power necessarily consists of exactly two operands).

7.42. normal { expr )

This function normalizes expr into the facfored normal form for rational expressions
— i.e., into the form

numerator / denominator

where numerator and denominator ate relatively prime. In the general case, each of
‘numerator’ and ‘denominator’ will be left in factored form as far as possible (without
actually performing any factorization) subject to the condition that sums of factors witl
be expanded whenever this is necessary to guarantee that zero will be recognized. In the
special univariate case (i.e., when there is only one indeterminate in expr) each of
‘numerator’ and ‘denominator’ will be in expanded form. )

Examples:
normal( 2/x + y J; yields (2+ y*x)/x
normal( 3*y*(x-5)}#*2 [ (x**2-25) ); yields 3y *(x-5)/(x+ 5)

num = (3ex*22 - Sexsy)es2 » (xe#2 - 2exay + yea2);
den := x * (y-x)**3;
normal({ aum/den }; yields x*(3ex-5ey J#»2/(y—x)

normal{ (sin(x)**3 - 27) [ (sin(x) - 3} }; yields gin(x)**2+ 3*sin(x)+ 9
pormal( x**2/(1-x) - x/(1-x) }; yields -X
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7.43. numerator ( expr, 'denom’)

This function computes the numerator of expr that results from first forming a
common denominator for the terms in expr. It calls the commonden function. If the
second argument is present then it must evaluate to a <name> and it will be assigned
the value commonden(expr).

Examples:

" pumerator{ 2/x + ¥ J; yields 2+ y*x
numerator{ 3*y*#(x—5}s*2 [ (x+*2-25) ); yields Brys{x-5)e*2
numerator( x**2/(1-x) - xf(1-x), 'den’ };  yields X#¥2-x
den; yields 1-x

7.44. op{lL,expr) or op(i.J,expr) or op (expr}

The purpose of this function is to extract one or more operands from the expression
expr. If op is called with two arguments and if the first argument evaluates to a
ponnegative integer, say i, then the value of the function is the i-th operand in expr.
General algebraic expressions have operands indexed from 1 to n (for some positive
integer n). A function invocation

<name>> { <expression sequence> )

is considered to have as its O-th operand <name> and the arguments are operands 1
through n (for some integer n). If expr is a <series> formed by expansion about the
point x=a {where x is the name of the indeterminate) then the 0-th operand of expr is
x-a, the l-st, 3-rd, . . . operands are the coefficients {which may be arbitrary
expressions), and the 2-nd, 4-th, . . . operands are the corresponding exponents (with the
exponents ordered from least to greatest). For a more detailed description of the
operands corresponding to each of Maple's data types, see section 4.1.

If op is called with two arguments and if the first argument evaluates to a
<range> then the value returned is an expression sequence (i.e., a sequence of
expressions separated by commas) consisting of the operands specified by the <range>.

If op is called with only one argument, say expr, then the result is equivalent to the
result of the invocation

op { 1..nops( expr ), expr ) .

For general algebraic expressions, this value is an expression sequence consisting of all of
the operands in expr. Note, however, that if expr is one of the structures for which
operand O is defined (e.g., a series or a function invocation) then the 0-th operand will be
missing from the expression sequence op{ expr ).

The special case where expr evaluates to a <name>> must be noted. A <name>>
is defined to have exactly one operand, which is the value assigned to <mame>>. If no
value has been explicitly assigned to <name>> then its value is its own name. Note that
in the case where a value has been assigned to <name>>, say x, the op function must be
called in the form
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op( 'x" )
( or equivalently, op(l, 'x') ) if it is desired to see what value was assigned to x;

otherwise, if the argument is not quoted then it will be the value of x which is passed to
the op function.

Examples:
g = flx,y, z);
op(0, g); yields  f
op(2, gk yields ¥
opl0..2, gk yields £.x,y
op(gh yields X,¥,2
e 1= [2#x, y+ 1J;
[op(e). =l; yields [2#x,y+ 1,3}
a :== (3+sin(xee3) - 2/3%x + y} [ (Pxxe=2 - 1);
op(2, a); yields  (2sxxs2-1)s+(-1)
op(l, a); vields  3ssin{x#s3)}-2{3sx+y
op(2, op(1,"}); vields  sin(x**3)
w == Jaxes2 - Qaxey 4 yes2;
x = 1/2;
op('w'); . yields  3xes2-2exey+ yus2
op('x’); yields 1/2
op(w) yields  3f4,~y,y**2
op(x); yields 1,2

7.45. param (1)

This is a special function which is only valid within the body of a procedure. The
argument i must evaluate to a positive integer not greater than nargs, the number of
actual parameters with which the procedure was invoked, and the value of this function is
the i-th actual parameter. (See section 5.2.}

7.48. prem ( a, b, x, 'm')

This function computes the pseudo-remainder of ‘a’ divided by ‘b’ with respect to
the variable x, where ‘a’ and ‘b’ must be polynomials with integer coeflicients.
Specificatly, the value of this function is the unique polynomial ¢ with integer coeflicients
such that

ma = bq + r

for some polynomial 3 with integer coefficients, with r = 0 or degree(rx) <
degree(b,x), where the multiplier m is defined by
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m = c ** (degree(ax) ~ degree(bx) + 1)

where ¢ = coefi(b, x, degree(b,x)) — i.e., ¢ is the leading coeflicient in b with respect to
x. If the fourth argument is present then it must evaluate to a <name>> and it will be
assigned the value of the muitiplier m defined above.

7.47. print ( exprl, expr2,...)

The effect of this function is to print the values of the expressions appearing as
arguments. Three spaces are printed between each of the output expressions. If this
function is called with no arguments then the effect is to create a blank line in the output
stream.

7.48. product (expr,i==m.n)

This function forms the product of the factors obtained by substituting for i in expr
the values m, m+ 1, . . ., n. The second argument must be an equation and its left-
hand-side must evaluate to a <name>>, its right-hand-side must evaluate to a <range>.
It is an error if 0 — m does not evaluate to an integer and it is an error if m > n+ 1. If
m == n+ 1 then the value of the product is 1.

7.48. readlib ('f') or readlib ('F", filel, file2, ..., filen )

Each argument to this function must evaluate to a <name>>. If there is only one
argument then the [ollowing read statement is executed:

read **'. libname . [ . “.m";

and the value returned is the value of the argument ‘[’ after the read statement has been
executed. If there is more than one argument then the following read statements are
executed:

read filel; read file2; . ..; read filen;

and the value returned is the value of the first argument ‘f' after the the read statements
have been executed. It is an error if 'f’ is not assigned a value in the file (or one of the
files) being read. For further details, including a complete definition in Maple code, see
section 5.7.

7.50. Real(m,n)

This is a special function used to specify a resl number. The arguments to this
function must evaluate to integers, and the value of Real(m, n) is the real number

m * 10**n .

This function is particularly useful for specifying a real number with a very large or a
very small magnitude, as in Real(173, 21) or Real(1952135, -30).
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7.51. remember (f(x,¥,...} = result)

This is a special function to be used in conjunction with the option remember
facility in procedures (see section 5.3). The argument to this function must be an
<equation> and its left-hand-side must take the form of a procedure invocation. The
name ‘I’ must evaluate to a procedure definition in which option remember has been
specified. The effect of this function is to place an entry in the system table known as the
partial computation lable which associates the specified procedure invocation with the
specified ‘result’. If there is ever another invocation of this procedure with actual
parameters that have the same values as those specified here then the Maple system will
immediately retrieve the ‘result’ from the partial computation table without performing
any computation. This function generalizes the option remember facility since it may be
invoked either from within the body of the procedure '’ or externally.

Note that this function has special rules for the evaluation of its arguments. The
name '’ will be evaluated to a procedure definition and each of the specified arguments x,
¥, . . . will be evaluated, but the procedure will not be invoked. The right-hand-side of
the equation, ‘result’, will be evaluated.

7.52. RETURN ( exprl, expr2,...)

This function is a special function whose purpoée is to cause an immediate return
from a procedure {see section 5.5). Upon execution of this function, control returns to the
point where the current procedure was invoked and the value of the procedure invocation
is the expression sequence exprl, expr2, . . . . It is an error if a call to the function
RETURN occurs at a point which is not within a procedure definition.

7.53. sign { expr )

This function computes the sign of expr in the sense of the sign of the constant
lcoefl{ expr ). {See the function lcoeff). Specifically, the definition of the sign function is:

if lcoefflexpr) < O then -1 else 1 fi

7.54. solve { eqn, var ) or solve ( {eqnl,..,equk}, {varl,..,vark} )’

This function takes two arguments. The first argument is either a single equation
or a set of equations, and correspondingly, the second argument is either a single name
which is the variable to be solved for or a set of names which are the variables to be
solved for. Whenever an equation is expected in the input arguments, if it is instead an
ordinary algebraic expression e then the equation e == 0 is understood. In the case of a
single equation and a single variable, it is valid to specify one of the arguments as a set or
both arguments as sets. The value of this function is an expression sequence of the
solutions, and in the case where the second argument is a set the value is a sequence of
solution sets.

As of this writing, the solve function is able to solve single equations involving

elementary transcendental functions, systems of linear equations, single polynomial
equations, and equations requiring the inversion of taylor series.
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Examples:
solve( cos(x) + y =9, x ); yields arccos{9-y)
solve( 2#+a + G, 3 ); ) yields In(-G)/1n(2)
solve{ taylor(aresin(x}-y, x}, x ); yields
1#y+ (-1/6)sy**3+ 1/120%y*+5+ O(y*6)
solve( x#*2 - 46%x + 529, x ); yields 23,23
- solve( 1/2%asx%*2 + b¥x + ¢, x ); yields

(-b+ (b**2-2#ac)*+(1/2))/a (-b—(bes2-23a*c)*+(1/2)})/a

eqnl ;= X + 2*y + 3%z + 4%t + S*u =6

eqnl (== 5%x + 5%y + 43z + It + 2xu=1;

eqn3 ;= 3%y + 4%z - 8+t + 2su = 1;

eqnd ‘=X + y+ z+ t+ u=19

eqn5 == 8¥x + 44z 4 3%t 4+ Qe =1,

solve( {eqn.(1..5)}, {x,y.z.t,u} ) vields
{u=8580/110,x=56,2=-13983/110,y=168/5,t=-1736/55}

7.55. subs { 0ld1 == newl, .. ., cldk = newk, expr )

This function takes an arbitrary number of arguments and each argument except
the [ast one must be an equation. The value of this function is the expression resulting
from applying the substitutions specified by the equations to the last argument, expr.
The substitutions are performed sequentially starting with the first argument oldl =
newl. Thus, the following two statements are equivalent:

subs( old1 = pewl, old2 = new?2, expr )
subs( old2 = new?2, subs{old1 == newl, expr) }

More specifically, the semantics of the function subs( cld = new, expr )} are that every
occurrence in ‘expr’ of the subexpression ‘old’ is replaced by the expression ‘new’.

Examples:
subs{ x==1, 3ex*In(x**3) }; yields 0
subs{ a+ b =y, (a+ bjr+(4/3) ); yields y**{4/3)
subs( a=b+1, b==3, a+b ); yields 7

7.568. subsop (I = newexpr, expr } .

The value of this function is the expression resulting from replacing op(i, expr) by
newexpr in expr. The first argument must be an equation and the left-hand-side of the
equation must evaluate to a nonpegative integer mot greater than nops(expr). In the
special case where op(i, expr) does not occur anywhere in expr except as the i-th operand,
the result of this function will be equivalent to the result of

subs{ op(i,expr) = newexpr, expr ).
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7.57. sum { expr,1) or sum (expr,1=m.n)

1f the second argument is not an equation then this function attempts to compute
the ‘indefinite summation’ of expr with respect to the second argument ‘i’ which must
evaluate to 3 <name>>. Specifically, if we denote the functional dependency of expr on
the variable ‘i’ by the notation expr{i) then the indefinife summation is defined to be an
expression g(i), containing the variable ‘i’, such that

gli+ 1) - g(i) = expr(i) .
In other words, ‘indefinite summation’' is the inverse of the forward difference operator.

If the second argument is an equation then its lefi-hand-side must evaluate to a
<name> ‘' and its right-hand-side must evaluate to a <ramge> ‘m..n’, and this
function attempts to compute.the definite summation of expr with respect to ‘i’ with.
lower limit i = m and upper limit i == n. The limits ‘m’ and ‘n’ may evaluate to

arbitrary expressions. Note that the definite summation over the range m..n can be
obtained from the ‘indefinite summation' g{i) as the value:

glo+ 1) - g(m)

and this method is used whenever m — n does not evaluate t{o an integeror m - n is a
very large integer; otherwise, direct summation is performed. Note that the value of the
definite summation is zero whenever m = n+1.

If Maple is not successful in performing the summation then a FAIL return occurs,
meaning that the value of the function invocation is the unevaluated function invocation.

Examples:

sum(i**2, i); yields 1/3%{#3-1 [20ise2t 1 [6ui
expand( subs{i=i+1,7)-");  yields jns2

e 1= (5%i - 3)*{2+i + 9);
sum(e, i = 1..5000); yields 417279137500
sumle, i = 1.n);,  yields  10/3%(n+ 1)v3+ 20/2+(n+ 1)++2-269/6%n-+ {~107/6)

expand(”); yields 10/3*n**3+ 49/2*n**2-35/6*n
sum{i**2 — 2%a¥, i = a..5); yields

55-181/6%a~1/3sa%+3+ 1/2%ass2+ Jeas(l/2sass2-1/2%a)
expand({™); yields 55-181/6%a—1/29a%x24 2/3vava3

sum(x**i, i = 0..n); yields xox(n+ 1/ (x+ (-1)){x+ (-1))::(-’1)

7.58. taylor (expr,x =a) or taylor(expr,x=a,n)

The purpose of this function is to compute a Taylor series (more generally, Laurent
series) expansion of expr. If the second argument evaluates to an equation then its left-
hand-side must evaluate to a name ‘x’ which will be the variable of expansion and its
right-hand-side ‘a’ will be the point about which the expaasion is taken. If the second



MAPLE User's Manual 77

argument is not an equation then it must be a name 'x’, and the eflect is the same as if
the second argument had been the equation x == 0 . If there is a third argument 'n’ then
it must evaluate to an integer which specifies the ‘truncation degree' to be used. If there
is no third argument then the ‘truncation degree’ is specified by the current value of the
global variable Degree (which initially has the value 5 in the Maple system). An ‘order
term’ appears in the result of the taplor function whenever the resuit is not known to be
exact. (See section 4.1.8 for a description of the series data structure).

Examples:
fom= (3ex##2 - 5ax) [ (x**3 - x + T);
taylor{exp(f), x==0); yields

1+ (-5/7)*x+ 57/98*x2+ {-500/ 2058 ¥x+*3+ 12841/57624%x %4+
(~18971/134456)*x*s5+ O(x**6)
taylor(f, x=1, 2); yields
(-2/7)+ 11/49%(x+ (-1))+ 167/343%(x+ (-1)}}¥*2+ O((x+ (-1))**3}

e == (x**2 + awx - 1) [ {a+ 1-x);
taylor(e, x==a, 2); yields
(2¥a%*2+ (-1))+ (3va+ 2#as*2+ (-1)j*(x-a)+ (3*a+ 2ea**2)¥(x—a)**2+ O((x-a)*+3)

h := y*exp(y)*sin(x)/x**3 + y+*In{sin(x));

taylor(h, x==0); yields

yrexp(y)exax(-2)+ (-1/6+y*exp(y)+ yIn(x)}+ (-1/6%y + 1/120%ysexp(y))ex*2+ Ofx+*3)
taylor( 1/x + y + x*#3,x ); yields Texwr(-1)+ y+ 1ex*+3
taylor( x + x*++3 + Ofx#+2),x ); yields 1ex+ O(x+#2)

“dififg" := proc (a,x) 'g'*(a) ¢ difi{a,x) end;
“diff{g" := proc (a,x) ‘g""(a) * diff{a,x) end;
Degree = 2,

taylor( sin(g(x)), x=0); yields

sin(gf0))}+ cos(g(0)}xg (0)ex-+ (~1/2+sin(g(0))sg’(0)++2+ 1/2%cos(g(0})*g"'(0)*x**2+ Ofx*+3)

User Interface: New functions can be made known to Maple’s taylor function by the
following mechanism. If the user assigns a procedure to the name “tayl/newfcn” (where
‘newicn’ is any name chosen by the user) as in
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‘tayl/newfen” == proc {expr, x}
taylor{expr, x);
# Code to compute taylor series for
# aewfen{expr)
# [rom the taylor expansion of expr
# about x = 0 using global variable Degree
# to specifly the 'truncation degree’.

end;
then the function invocation
taylor { mewfcn(expr), x )
will cause the function invocation
‘tayi/newfen" { expr, X ) .
In the case of a more general invocation of the taylor function:
taylor ( newfcn(exps), x == a, n }

the internal taylor function will perform a transformation of the variable x, and will set
the global varisble Degree, hefore invoking the ‘tayl/mewfcn® procedure. If “tayl/newfen®
i3 not assigned then Maple looks for it in the Maple system library at the pathname

* . libname . “tayl/newfca.m’

and if it is not found then the mechanism described below comes into effect.

A second mechanism for making 2 new function known to Maple’s taylor function i3
to define the derivatives of the function via the user interface for the diff function. If
Maple is not able to find a definition for the name ‘tayl/newfcn' then it looks for a
definition of the name ‘dififnewfcn’ and, if it is found, them the taylor expansion is
generated via differentiation and substitution.

Functions whose series expangions are currently defined in the Maple system library
include the elementary functions {all of the circular, inverse circular, hyperbolic, and
inverse hyperbolic functions, as well as the functions exp and In), and the factorial
function (which interfaces to the GAMMA function known to diff).

7.59. trunec ( expr)

The value of this function when expr evaluates to a rational number {or an integer)
is the ‘integer part' of expr which would be obtained if expr was expanded in a decimal
expansion. For example, trunc{8/3) is 2 and trunc{-8/3) is -2.

7.80. type ( expr, typename )

This is Maple’s type-checking function. The value returned is érue if expr is of type
typename and the value returned is false otherwise. The following typenames knowsa to
the {ype functicn correspond to Maple's data types which are described in section 4.1:



MAPLE User' s Manual 79

VNS, et T, Y, e e 1 Cand®, “mot”, Cor”, equation (alternatively
‘="), range (alternatively ‘..'), function, integer, list, name, procedure, rational, real,
series, set.

Additionally, the following typenames are known to the fype function and they are
defined in terms of the basic data types as indicated:

algebraic (any of the following types: *.%, “4°, *#*, “#+* °I" function, integer, name,
rational, real, series)

constant (any of the following types: integer, rational, real, or any expression whose
operands are all of type constant)

User Interface: New type-checking procedures can be made known to the fype function
by the following mechapism. If the user assigns a procedure to the name “type/newtype’
(where ‘newtype’ is any same chosen by the user) as in

‘type/newtype' := proc ( expr, <extra parameters> }. . .end
then the function invocation

type ( expr, newtype, <extra parameters> )
will cause the function invocation

‘type/newiype’ ( expr, <extra parameters> ) .

If “type/newtype’ is not assigned then Maple locks for it in the Maple system library at
the pathname

** . libname . “type/newtype.m’

and if it is not found then an error occurs,

One additional typename is currently defined in the Maple system library: polynom.
It can be used in either of the two forms:

type( expr, polynem )
type{ expr, polynom, domain )

where in the latter case, the extra parameter ‘domain’ can take any one of five possible
forms:

typename [ X, ¥, ...]
typename [ {x,¥,...}]
(X 9.---]

{xy ...}

X

The expression expr is checked as a polynomial in the indeterminate(s) specified by
‘domain’. In the case of the first two forms of ‘domain’, there is an additional check that
expr, as a polynomial in the specified indeterminates, has coeflicients of type ‘typename’.
In the case where the argument ‘domain’ is omitted, the implied value of ‘domain’ is
indets{expr). In all cases, the concept of a ‘polynomial’ is that expr is not of type 'series’
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and the degree of expr in each of the indeterminates is finite (i.e., not equal to the largest
word-size negative integer).

7.81. unames {)

This function takes no arguments. It returns an expression sequence consisting of
all of the active names in the current Maple session which are ungssigned nomes, meaning
names which have no value other than their own name. Note that in Maple every 'string’
is equivalent to a ‘name’, so the result of the unsmes function will include every ‘string’
that has been defined in the session (including file names and error messages). (See also
the function anames).
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7.82. Miascellaneous Library Functlons

The following functions reside in the Maple system library but they are not
automatically loaded. In other words, the names of these functions are not initially
defined in the Maple system. If the user wishes to load one of these functions, named
‘fname’, then he may use the read statement:

read ** . libname . ‘fname.m"

or he may use the readlib function to initiate an ‘automatic loading’ facility by specifying
the assignment:

fname := 'readlib('fname’)’ .
7.62.1, cfrac (f) or cfrac(f, maxit)

Computation of partial fraction convergents.

Use: efrac( f [,maxit] )
Prints the sequence of (maximum maxit) quotients
and convergents to f. [ can be rational or real.

£ R S S R

7.62.2. convergents (&, b,n)

convergents: Find {2nd print) the convergents of a continued
fraction.

The continued fraction

b

13-

b3 b4

al + — —— _—
a2 + ad + at +

is entered as: convergents( a, b, n );

where a and b are either lists ([al,a2,.],]1,b2,.]) or
functions which compute the respective coefficients.

1f all the b coeflicients are I, b can be omitted.

n is an optional parameter which indicates the number
of convergents to compute.

b3k 3 3k 3k 3 W W I R IR



82

7.62.3.

7.02.4.

7.82.5.
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EML (f,x,n)

#

# Compute an n-th degree Euler-Maclaurin summation formula
# of f (an expression in x).

7# In general, E_ML(f,x,n) is an asymptotic approximation of
# sum( f, x ).

#

tagrt (n )

#

# isqrt: integer square root of an integer.

#

# Calling sequence:

# isqrt(n,x) if an approximation to the sqrt is known (x);
# isqrt(n) otherwise.

#

# 1t returns the closest integer to the
# square root of 0.

#

orthog.p

#

# All the orthogonal polynomials in this package are
# generated by their recurrences. This seems to be
7 the most efficient procedure. It is better

# than the generating function, even if you want
# all of the polynomials from 1 to n.

#

# Generate the nth orthogonal Hermite polynomial.

#

# Calling sequence: H(n,x)

#

# Generate the nth orthogonal Legendre polynomial.

#

# Calling sequence: P(n,x)
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Generate the nth orthogonal Tschebysheff polynomial
of the first kind.

Calling sequence: T{n,x)

Generate the nth orthogonal Tschebysheff polynomial
of the second kind.

HhkE HEHEE

Calling sequence: U(n,x)
7.62.8. primtest (n) or primtest ( n, iter)

Heuristic primality testing.

Use: primtest (n ) or
primtest { m, iter )
Returas 'false’ if it can prove in 10 {or iter)
iterations or less that the number is not
prime; returns 'true’ otherwise.

e ®HHRERRERR
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8. MISCELLANEOQOUS FACILITIES

8.1. Debugging Facillties

The current version of Maple does not have the sophisticated syntax error messages
that we envision for Maple in the future. The best mode of operation for detecting
syntax errors in procedure definitions is to develop the procedure definition into a file
{using a text editor external to Maple) and then to use the read statement to read the
file into Maple. In this mode, when a syntax error is encountered the corresponding line
number in the fle is displayed with the syntax error message.

One name whose value determines the amount of information displayed to the user
during execution of a Maple session is yydebug. The default value for yydebug is 0. If
the user assigns the value 1 to yydebug as in the statement

yydebug :== 1;

then the system displays a very large amount of information which is a trace of the
Maple session from the basic system viewpoint.

A more useful facility from the user viewpoint is the prinilevel facility. The default
value for printlevel is 1. Any integer may be assigned to the name printlevel and, in
general, higher values of printlevel cause more information to be displayed. Negative
values indicate that no information is to be displayed. More specifically, there are levels
of statements recognized within a particular procedure (or in the main session)
determined by the nesting of selection and/or repetition statemenis. If the user assigns

printlevel :== 0;
then the following statements within the main session

b :=2;
for i to 5 do a.i :== b¥*i od;

will cause the printout b :== 2 after execution of the first statement and there will be no
printout caused by the for-statement (the value of the for-statement is null). If the user
assigns

printlevel := I;
before the above statements are executed (or equivalently, if no assignment to printlevel
has been made) then each statement within the for-statement will be displayed as it is

executed (in the same manner as if these statements appeared sequentially in the
‘mainstream'), yielding the following printouts for the above statements:
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b:=2

al ;=2
a2:=4
a3 =38
a4 ;= 16
ab = 32

The statement b := 2 is comnsidered to be at level 0 while the other assignment
statements in this example are at level 1 because they are nested to one level in a
repetition statement. If statements are mested to level i then the value of printlevel must
be i if the user wishes to see the results of these statements displayed.

More generally, statements are nested to various levels by the nesting of procedures.
The Maple system decrements the value of printlevel by 2 upon each entry into a
procedure and increments it by 2 upon exit, so that normally (with printlevel = 1} there
is no information displayed from statements within a procedure. If the user assigns

printlevel := 2;

in the main session then statements within procedures called directly from the main
session {but mot nested statements) will be displayed as they are executed, because the
effective value of printlevel within the procedure is 0. If the user assigns

printlevel := 3;

in the main session then, in addition, statements nested to one level of selection and/for
repetition statements in the procedure will be displayed because the effective value of
printievel within the procedure is 1. Alternatively, the user may explicitly set the value
of printlevel within the procedure for which the information is desired.

It is often useful for debugging purposes to set a high value of printlevel in the main
gession if information is desired from within procedures to various levels of mesting.
When the effective value of printlevel upon entry to a procedure is 3 or greater, the
printout will display the entry point and exit point for that procedure as well as the
values of the arguments at the entry point. It is not uncommon to use a debug setting
such as

printlevel := 1000;

in which case entry and exit points and statements will be displayed for procedures up to
500 levels deep. For more selective debugging information, the value of printlevel should
be assigned within specific procedures.

A program called profile is available for processing the output produced by Maple
with a high setting of printlevel. This program is separate from the Maple system and is
available under the same directory where the Maple system resides. It is used in the
form:

profile <outfile

where ‘outfile’ is a file containing Maple output produced with a high setting of printlevel
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(in particular, entry and exit points of Maple functions must be displayed). The output
from the profile program is a table showing the name of each Maple procedure (including
the Main Routine) that was entered, the number of entries to the procedure, and the
pumber of lines (also the number of characters) of output in ‘cutfile’ originating from the
procedure. This information can be useful to pinpoint ‘bottleneck’ procedures which
should be candidates for efliciency improvements.

8.2. Monltoring Space and Time

As execution proceeds in a Maple session the user will see lines displayed in the
form “words used n” for integer values n. This information indicates the number of
words of memory that have been requested up to that point in the execution of the
session. This information is also displayed at the end of a session when the quit
statement is executed, where the phrase “Final ‘words used'=n" is displayed. It should
be noted that this measure of memory usage is not directly related to the actual memory
requirements of the Maple session at any point, but rather is a cumulative count of all
memory requests made to the internal Maple memory manager during execution of the
session. Typically, a significant proportion of the ‘words used’ at any point may have
been re-allocations of actual memory that was previously used and then released to
Maple's memory manager.

A second measure of memory requirements is displayed at the end of a session when
the quit statement is exscuted, in the form of the phrase “storage=n" for some integer
n. This measures the memory space actually occupied by the Maple system plus the data
area, and the unit of measurement is the ‘natural’ unit of memory for the particular host
system [e.g., bytes on the Vax machine and words on the Honeywell machine). Note that
Maple’s internal memory manager requests ‘storage’ from the host system in large chunks
and then allocates it as needed, so that the final “‘storage==n”" measure typicaily includes
a significant number of memory units that were never actually required by the Maple
session.

Monitoring timing information for a Maple session can be accomplished by using the
timing facilities of the host system. Typically there is a tlme command on the host
system and it is often convenient to use this command along with the host system’s
facilities for re-direction of input and output. For example, if infile denotes the pathname
of a file containing the Maple session to be timed and if outfile denotes the pathname of
the file where the Maple output is to be directed then the UNIX command

time [fu/maple/bin/maple <infile >outfile
or the Honeywell TSS command
time : maple/maple <infile >outfile

will cause the Maple session in infile to be executed, with output into cutfile, and after
completion the host system will display the timing information for that session. Of
course, the time command may 2also be used without necessarily using re-direction of
input and/or output.
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8.3. Other Facilities

Escape Character

The character ! when it appears as the first character in a line is treated as an
‘escape to host’ operator. This allows one to execute any command in the host system
from within a Maple session.

Gn.rb;a.ge Collection

Maple’s automatic garbage collection facility has not been implemented at the time
of this writing. It can be useful to effect a manual garbage collection from the interactive
level of Maple by using the sequence

save “temp.m";
quit

followed by re-entering the Maple system and then
.xead ‘temp.m’;

This will restore the Maple environment but with all ‘garbage’ having disappeared.

‘Wrap Program

There is a program called wraop whick will insert <mewline>> characters at
appropriate intervals in files containing very long lines of output. {Note that it is not
uncommon for Maple to produce very long expressions in its output}. This program is
necessary on some host systems as 3 pre-processor before the host system’s editor will
accept the file for editing. The wrap program is separate from the Maple system and is
available under the same directory where the Maple system resides {on those host systems
where it is required). It is used in one of the following two forms:

wrap <filel >file2
wrap n <filel >file2

where ‘filel’ is the original Maple output file, ‘file2’ is the file into which the ‘wrapped’
output will be deposited, and ‘n’ (if present) specifies the maximum number of characters
to be allowed in & line before a <newline> character. (The default value of ‘n’ is 240).
The wrap program uses some knowledge about mathematical expressions in attempting to
insert the <newline> characters at ‘natural’ break points (when possible), rather than
breaking after exactly ‘n’ characters. '

Load Option

Maple has a load option which must be used whenever functions are being loaded
into the Maple system library, and which should be used whenever an internal-format
(*m’} fle is created by a user. This option is activated by specifying I immediately
following the 'maple’ command. For example, on the Vax UNIX system a typical
command for loading a library function named 'f’ would be
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Ju/maplefbinfmaple -1 </u/maple/libfstc/t
where the source file for '{" should end with the statements

save . libname . ‘f.m";
quit

In Maple's normal mode of operation (without the lead option), when an internal-
format save is done the Maple <name>s which correspond to automatically-loaded
library functions {readli-defined functions) are ot saved. Therefore, in this normal
mode it is impossible to update the ‘.m’ files which define the Maple library functions.
The effect of the [oad option is to initiate a Maple system in which none of the library
function names is initially defined (and the global variable names printlevel, Digits, and
Degree are also uadefined). It follows that such a Maple system is of limited value for
ordinary use; its sole purpose is for loading ‘.m’ files.

It is recommended that every user should use the load option when creating a '.m’
file. Otherwise, the readlib definition of each Maple library function which is referenced,
and also the current values of any of the above-mentioned global variables which are
referenced, will be stored in the user's file. This may lead to several undesirable effects:
the value of the giobal variables will be ‘mysteriously’ redefined when the user's ‘.m’ file
is loaded; there may be unwanted re-loading of library functions (which not only is costly
but also destroys previously-remembered values for functions with option remember); and,
even more setiously, there may arise a circular loop loading and re-loading files!
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