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ABSTRACT

In this paper we consider the problem of computing the
minimal I,solution to a consistent underdetermined linear system
Ar=8, where A is m by n with m=n. The method of sclution is to
reduce A to lower ‘trapezoidal form [Z O] using orthogonal
transformalions, where L is m by m and lower triangular, The
method can be implemented efficiently if the matrix AAT is sparse.
However if A contains some dense columns, 447 may be unacceptably
dense. We present a method for handling these dense celumns. The
problem of solving a rank-deficient underdetermined system is aiso

considered.
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1. Introduction

Let A4 be an m by n malrix with m<n and b be an m-veclor. Consider the

underdetermined system of linear equations
Ar=b . (LD

If A hasfull row rank, the system is always consistent and has an infinite number of

solutions. It can be shown that
g = AT{AATY B {1.2)

is the solution which minimizes the Lynorm (the so-called minimal lrsclution)
[Cline 78]. One way Lo compute this minimal Iysolution is as follows. Form the m
by m symmetric positive definite matrix B=4AT and compute its Cholesky
decomposition. Then use the Chelesky Iactor to solve Lhe system Bw=b. Finally
compute Z=ATw, However the condition nurber() of 7 is the square of that of A,
Thus if 4 is ill-conditioned, the computed sclution may be sensitive to rounding
errors. Furthermore severe roundefi and/or cancellation may occyr when B is

computed.

A more stable way of computing the minimal l,-solution is described in
{Saunders 72] and [Paige 73). In this paper we describe en implementation of this
method. The implementation will be efficient if the matrix AAT is sparse. This
condition is usually satisfied when 4 is sparse. However when A contains some dense
¢olutnns, the matrix 447 may be unacceptably dense. One possible way to solve this
problem is to withhold these dense columns from the original matrix, thus giving a
smaller matrix, say 4, such that A47 is sparse. Then the minimal {p-solution is
obtained by a technique which uses the Cholesky factor of AAT and the withheld

columns.

An outline of Lhis paper is as'follows. In Section 2 we describe the method and
its implementation. In Section 3 the effect of dense colurnns will be examined. In
Sections 4 and 5 the handling of dense columns in the solution of sparse
underdetermined systems is considered. The solution of consistent rank-deficient

(1) The Euclidean norm will be assumed throughout this paper.
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underdetermined systems is described in Section 8. The handling of dense rows in
sparse least squares problems using similar technigues is considered in Section 7,

and some concluding remarks appear in Section 8.

2. A methéd based on orthogonal reductions

There are a number of stable methods for solving underdetermined systems
of linear equations {Cline 76]. One of them is based on an orthogonal decomposition
of the coefficient matrix 4 ([Saunders 72], [Paige 73]}, Suppose the m by » matrix
A is reduced to lower trapezoidal form using orthogonal transformations. That is,

A:{L olg , (R.1)

where @ is an n by n orthogonal matrix and L is an = by m lower triangular
matrix. We will call such a decomposition the Lg-decomposition of A. Then the

minimal {solution is given by

[L’z" -1
z= AT[[L O]QQTi o ] b= AT(LLT) (2.2)
Nole that the condition number of /. is the same as that of 4 since the Ruclidean
norm is preserved under orthogonal transformations. Thus one would expect that
using {2.2), the error in the computed solution should depend on the square of the
condition number of A. However Paige showed that if A is not too badly conditiched,

the error depends essentially on the condition of 4 [Paige 73].
Furthermore (2.2} is particularly attractive for large sparse systemms because:

{1} Even though the method is based on orthegonal transformations, the
orthegonal matrix & which is large and usually tends to be dense is never
needed. The orthogonal transformations can be discarded once they have

been used.

() In[George B0] George and Heath have described an eflicient way of computing
the @FR-decomposition of a sparse rectangular matrix. Thus the L&-
decomposition of A can be cblained efliciently siruply by computing the Q-
decomposition of AT, Note that LLT = 44T, That is, L is the Cholesky factor of
the symmetric positive definite matrix AAT, except possibly for sign

differences in some columns. If AA7 is sparse, it is usually possible to reorder
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the rows and columns of 447 such that L is sparse. Furthermore a static data
structure can be set up for L before any numerical computation begins. See
[George BO] and [George B1] for more delails. Another advantage of the
method is that it enly eliminates one column of A (that is, one row of A7) at a
time. We do not have to store the entire matrix A4 in main storage. Only the

lower triangular matrix L and a few vectors are needed in main storage.

We conclude this section by presenting the complete algorithm for solving a
sparse underdetermined system of linear equations. It should be emphasized that

the matrix AAT is assumed to be sparse.

Algorithm 1

(1) Compute the Lf{-decomposition of A using the method described in
[George BQ]. That is, A={L O]Q.

() Solve LL'w=b,

{3) Compute T =ATw.

Note that the method described here can alse be used to solve Az =b, where 4
is square and nonsingular, In particular since {2.2) does nol require the orthogonal
matrix §, {2.2) can be used to solve several systems which have the same coefficient

malrix,

3. Efiect of dense columns
The algorithm we described in the previous section assumes that 4AY is
sparse. This is usually true if A4 is sparse. However if A has a few dense columns,

AAT may be unacceptably dense. An example is given below. Censider

1001

A=l0102

0013

Then
22 3 ~32

AAT =125 8|, and L =]vV2 V3
386 10 3 VB
VARG
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The matrix 4 is sparse except for the last column which is completely full. Notice

that 447 and L are both dense.

In general if 4 conlains some dense columms, both AA7 and 7. will be dense.
One possible way to preserve sparsily and reduce the computational time is to
withhold those dense columms [rom the L@-decomposition. let A be the matrix

containing the sparse columns of 4. In the previous example,

A=

o0 -

oo
10
01
Then 4 is reduced to lower trapezoidal form. That is,
A=[I 01§,

where I is a sparse lower triangular matrix. Now the lower triangular matrix L and
the previously withheld columns are used to find the minimal Iysolution of the
original system Az =b. In the next two sections we will derive two algorithms for

handling the dense ¢clumns.

4. Partitioned systeras (1)

Let A be an m by (n+p) matrix with m<n. Suppose A is partitioned into
[B C], where B is m by n and C is m by p. For example, in large sparse
problems, B and C will contain the sparse and dense columns of 4 respectively, We
asswre that both 4 and B have full row rank, and p is small. Furthermore we

asswme that the L§-decomposition of B is given by
B= {L olg . (4.1)

where ¢ is an n by n orthogonal matrix, and I is an m by m lower triangular

matrix.

Consider the underdetermined system of linear equations Az =b. The minimal
t-solution is given by (1.2), # = AT(447)"b. Note that

T

[ {
=BET+CC" = |L OIQQT[ o

B 7
or +ccT

AAT = [B c][



=LLT+ect . (4.2)

Thus the minimal [ solution is given by
F=AT{LLT+ o0ty . {4.8)

Note that both LLT and LLT+0CY are nensinguler.

It is possible to treat {4.3) using the Bherman-Morrisen-Woodbury formula

which is stated below [Henderson 81},

Lemma 4.1
Let M be an m by m nensingular matrix, and U and ¥V be m by p matrices. If

M+ UVT is nonsingular, then

(M + 0V = g - (VTR ) T VR

]
Thus applying Lemma 4.1 to (4.3}, we have
7= ATEL7TL71 _L—TL—lc(_!r + CTLfTL—lc)flcTLfTL—I% B
= AT LT — LT Lo+ O LT L) eTL T L e (4.4)

Although this expression appears to be complicated, the computational aigorithm

resulling from it is quite straight-forward, and is given below,

Algorithm 2

(1)  Compute the /.§-decomposition of B. That is, B = [L D]Q.
(2)  Solve the m by m sparse system LL7y =6,

(38) Solve p iriangular systems LW = C.

(4) TFormthe p by p matrix D=7+WTW.



-8 -

(3)  Solve the p by p dense system Dz =CTy.
(8) Solve the m by m sparse system Lifu=Cz.

(7) Compute z =AT{y—v),

If the method from [George BO] is used to compute the lower triangular
matrix L, then £ is discarded and 7 is stored on secondary storage. Also note that
both € and D are small matrices as long as p is small. Thus the amount of main
store required is essentially dominaled by that required for L. Finally it is easy to
see from the algorithm that the cost of the solution process is essentially given by
the orthogonal decomposition of B (step 1} and the scluiion of the m by m

triangular systems (steps 2, 3 and 6).

5., Partitionsd systenis (IT)

In Algorithm 2 we assumed that both the malrix A4 and its sparse submatrix 5
have full rank. However there are systems in which the sparse portion may be
rank-deficient even though the mafirix 4 has full rank An example is given below.
Suppose

[1

101
A= 012
0013

Clearly A has full roew ranlk. Its sparse submatrix is

110

B=1001

D01

The rank of B is only 2. Thus BBY is singular and Algorithm 2 will fail. In this

section we show how Algorithm 2 can be modified Lo handle a rank-deficient sparse
submatrix.

Let 4 be an m by (n+p) matrix with m=n. Suppose A is partitioned into

[B €], where B ism by n and Cis m by p. We assume thal 4 has [ull row rank

and B has rank r, where v <m. We also assume that bothp and {m —r) are small,



_'?_

Since F is rank-deficient, it is possible to arrange the columns and rows of #

s0 that the L@-decormposition has the form

Lo
s o|?

where § is ann by = orthogonal matrix, L is an 7 by r lower triangular matrix and
§ is an (m—r) by  matrix. Throughout this section we assume that the columns

and rows A have been reordered so that

L 0O

5 ol® - (8.1

.|

Consider the underdetermined system of linear equations Az =b, The minimal

I,-salution is given by Z = AT{44T7) . Note that

[ T T
Lo QQT[LO SO%&?T

— T N
=BT+ CC _180

w=o el

[LT ST

[
LOIO 0]+cc?. (5.2)

s 0

Let Ly be an m by m matrix defined by

Lo
Ig=is50p (63)
That is,
AT = LLE v et | (5.4)
The minimal {,;-solution is therefore given by
z = AT(1pih+cCT) b . (5.5)

Note that Zp is singular. Thus Lemma 4.1 cannct be used to handled (5.8) even
though A4” = L, LY + CC is nensingular.

In order to be able to use Lemma 4.1, we modify the matrix L, so that it
becomes nonsingular. We call such process renk-promalion. Define an m by m

lower triangular matrix I by



Lo
L:[S e {5.6)
Then
o fnollam st o opsm )l osT) joo
I =\s rllo 1 |=|sir ress =|sur ssritlo s
ez o|lzr s7] ool  loo
Slsolio o *lo I “LBLB“‘IO I (5.7)
Thus we can write 447 as
, r oo
AAT = 1 1l oCt = IT o rlree’ . (5.8)

Partition € as

c=a

where O is 7 by p end { is (m—r) by p. Define lwo m by (p+m—r) matrices U/
and V by

[Cl 0} [, o]
U= , d V=
c, =1 an lcg !
Note that
e, oller ¢l el ccf
oVt = Ic {o ’ 10(: C,Cl~1

T T

_ [CICI €6
7

CC1 G|

o =[eer e o

loo
- T
= CC "IO I] .
Therefore we have

AT = LpLfv oot = ILT + UVl (5.9)
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and the minimal {,-solution to Az =b is then given by
&= ATLET + vy . (6.10)

The important things te note are that L is now nonsingular and the ofi-diagonal
nonzero structure of 7 is identical to that of Lp. Now we can apply Lemima 4.1 to

(5.10), whence the minimal #,-solution is
2= AT LY ~ L0 U0+ VED T )y WL T L ) (5.11)

We now give the compulational algorithm, which is almost identical to

Algorithm 2.

Alporithm 3
. L O
(i)  Compute the L@-decomposition of B. That is, B = 50 £. Construct the m

_leo
by m lower triangular malrix [ = lS ‘

{2) Solve the m by m sparse systemn LLTy =5&.

(3) BSolve {p+m —r) triangular systems LW, =0 and solve (p+m—r) trianguiar
systems EWE= V.

(4)  Formthe (p+m—r) by {(p+m—r) matrixB=I+W§Wl‘

(6)  Solve the (p+m—) by (p+m—7) dense system Dz = VTy.

(6)  Solve the m by m sparse system LLTw = Uz,

{7) Compute T =AT(y—).

Note that we only need to compute one of #, and W,. Denote the m. by (m.—7)

[

0
matrix [I by J. Then we have U= {C ~J} and V= [C J |. Thus

wo=L'v={1c —i] . ad Wy=Iv=|iic

That is, ¥, and W, are the same except that the last (m —r) columns have different

signs.
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By the same argument, it is easy to see that Wg‘Wi is the same as WgWg except

that the last {m —r) columns have different signs.

Furthermore it is not necessary to recrder the columns and rows of 4 so as to
reduce A to lower trapezoidal form (5.1). Suppose I is the lower triangular matrix
obtained after applying orthogonal transformations te B, All we need is to identify
the columns of I which are null and insert ones on the diagonal positions. More

details on this technique can be found in [Heath B2].

The final preoblemn to be solved ig to determine the rank of H; that is,
identifying the null columms of L. Since finite precision arithmetic is used, it is
unlikely that one could find exactly {m —r) null columns. Instead, one is likely to
find (m—r) columns which have relatively small elements cn the diagonal. Probably
the best way to identify the rank is to use a singular value decormnposition, but this is
a very expensive cormputation for large sparse problems. A cheap way which is
heuristic but usually reliable is to compare the diagonal elements of £ against some
small tolerance. Any disgonal elements which are less than this tolerance in
meagnitude will be regarded as numerically zero, and the number of such diagonal
elements will be assumed toc be {m—r). See [Heath B2] for more details on this

procedure.

8. Rank-deficieni underdetermined systems of lHnear cquations

In this section we show how Algorithm 1 can be adapted Lo sclve a rank-
deficient underdetermined system of linear equations, Let 4 be an m by n matrix
with m<n. Assume A has rank 7, where r<m.. Buppose the L@-decomposition of 4

is given by

A= [2 3}@ , 1)

where ¢ is anm by n orthogonal matrix, . is an v by v lower triangular matrix and
S is an (m—r) by r matrix. We now show that the minimal l;solution to the
underdetermined system Az=b has a form similar te (2.2) provided that the system

is consistent,
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lo

Let & be partitioned into 1

GE] where ¢ and d are vectors of length r and {m.—r)

respectively.

First note that the system of linear equations is the same as

&
Qﬂf=[d

Let & be partitioned into

L O

50 (6.2)

©
u ] where uw and v are vectors of length v and {n-r)
respectively, Then

[o

oo

S0 '
or
é = [; (6.3)
Thet is, fie =c and Sw = d. Thus, if the system is consistent, we have
SL7le =d . (8.4)
Now let w be the solution to the » by v system LLTw =¢. Then
£ = AT['L: (8.5}
is a solution to the system Az =5, since
wl ool Tur stllw] L o]letw
Af:AAT[o =ls OQQTIO 0 IG :[s oh 0 ]
Lnfw] 1 oe e
= [SLTw =ls110) = |a| =
Furthermore suppose # is any solution to Az =b. Let 6=F—%. Then
Ab = AlE—F) = AE—AT =0 . (6.6)

Note that
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[

T
N . u
lelf=lz-6lF=|z|Z+]6|F-rx"6 = |z|F+ ]lﬁ\ES—E[ATIo 6

=lz15+ leli-rlwl 0lad = |z |5+ [6]5= [=1F .

Thus Z is in fact the minimal Z,-solution.

However in terms of implementation, the method may be inefficient since we
have to identifly Lhe mairix L from the L@-decomposition. Fer large sparse
problems, the daia structure for storing the lower trapezoidal form is usually
complicated. Thus it may be difficult and expensive to extract L from the data
structure. To selve this problem, we can use the technique described in Section 5:
Lo
g f

by = Then instead of

Lo
replace the m by m lower triangular matrix [S o

solving LLTw=c, we do the following. First solve

-

Yo |5 T
Note that ¢,=/%c and y2=d=5yi=d—SL“a. Because the system iz assumed to be

Y

Ya (61

consistent, y,=0, Next solve

[LT ST

i
210 I 1

Iyl = [O] . (8.8)

:y2

Lo

|7

ﬁi"}"

Now f =0 and '{UZL‘TyFL‘TL’Ic. Finally the minimeal £-solution is given by

(8.9)

Algorithm 4
L O
{1) Compute the L{-decomposition of 4, That is, A= g o|% Censtruct the m

- L0
by m lower triangular matrix L = [S ]
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(2)  Sclve the m by m sparse system LL7z =8,

(3) Compute z=4Tz.

7. Use of similar Lechnigues for sparse least squares problems
The techniques we have used for handling dense columns can also be used to
handle dense rows in the seolution of large sparse least squares problems. Let A be

an m by n matrix with m=n, Consider the problem

Az=bl, . (7.1)

min |
&
It is well known thal if A has full celumn rank, then the unigque least squares solution
is given by the solution to the normal equations
F=(AT4)4Ts . (7.2)

Note that the ferm of Z iz similar to that of the minimal I,-solution to

underdelermined systems (see (1.2)).

Suppose the @F-decomposition of 4 is given by

(7.3)

where & is an m by m orthogonal matrix and A is an n by n upper triangular

malrix. Then the least squares golution ig given by

7= [[RT O]QTQ ‘2]] ATb = (RTR) 1A%y . (7.4)

This leads to the following algorithm for solving least squares problems.

Algoritam 5

E
(1) Compute the @F-decomposition of A. That is, A= Q{ OJ'
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(2) Compute d =475,

{3) Solve RTRrE=d.

Note that the vector d can be computed as either 476 or {R 0|g"b. Inthe second
alternative, §7& can be formed while R is computed. However if several problems
which have the same observation matrix 4 are to be solved, § is available implicitly
only when the first problem is solved. Thus in this case the first alternative may be
more useful since d can then be computed using 4 and b,

When A”4 is sparse, Algorithm 5 can be implemented efficiently by using the
algorithm proposed in [George B0] to compute #. Howsver if A contains dense rows,
both AT4 and # may be [ull. This situation is similar to having dense columns in
sparse underdetermined systems. In order to reduce the storage required, one can
withhold those dense rows in the @#-decomposition. Then the §F-decomposition of
the sparse portion and the dense rows are used in a way which is similar to those

used in underdetermined systems to find the least squares solution.

We now derive the algorithms for handling dense rows in sparse least squares
problerms. We assume that 4 is an {m+p) by ® matrix with m>n. We partition 4

into

I
p } , {7.5)

A=lc

where B ism by n and Cisp by n. Here B and C contain respectively the sparse

and dense rows of A. The unique leasl squares sclution is then given by
= {ATA) AT = (BTR+ 7)1 AT . (7.6)

We first assume that both A and & have full column rank, Suppose the @F-

decomposition of B is given by

(7.7)

R
o

where & is an m by m orthogonal malrix and R is an n» by n upper triangular

matrix. Then {7.8) can be written as
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g ={RTR+L¥C) 14T | (7.8)
Applying Lemrma 4.1 yields
#={RTR TR RTCT( 4 CRTRTTCTYICR IR T4 (7.9)

The resulting computational algorithm is given below.

Algorithm 8
lr
(1)  Compule the @F-decomposition of #. Thatis, B = Qlo .

(2) Compute the vector d =ATb,

(3)  Solve the » by n sparse system RTRy =d.
{4) Solve p triangular systems R7E =7,

{5y Compute the p by p matrix 9 =f+£TE.

{8) Solve the p by p dense system Dz =0y,

(7)  Solve the n by n sparse system RTRv =Tz,

(8) Compule the least squares solution z =g —v,

Now suppose the sparse portion A is rank-deficient, and assume that the rank
of B isr, where r<n. Let the @F-decomposition of B be
7 s
B =4 o|= R . (7.10)
where & is an m by m corthogenal matrix, 2 is an v by = upper triangular matrix

and § is an 7 by {n—r) matrix. Then the unique least squares sclution which is

given by (7.6) becomes
&= (RERy+CTC) ATy . {(7.11)

Now RER, is singular, In order to be able to use Lemma 4.1, we have to promote the

rank of Kp by constructing the n by n upper triangular matrix

(7.12)

7S
o7
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Define the {(p +n—7) by n matrices U and ¥V by

e lc
U=I_J and V:ly, (7.19)
where J=[O I] is an (n—r) by n matrix. Then it can be shown that
RTR+UTV=RIR,+CTC . (7.14)
Thus the least squares solution is given by
z=(RTR+UTV)4Ts . {7.15)

Since BT R is now nonsingular, so we can apply Lemma 4.1 to (7.15) and obtain
E={RRT-RRTUT+ VRIRTUTY YWRIRT{ATy | (7.18)
The computational algorithm is given below.
Algorithm 7
(1)  Assume B has rank r<n. Ceompute the @R-decomposition of 5. That is,
RS — K S
B=g o o} Consiruct the » by n upper triangular matrix % = o1l

{2) Compute the vector d=A"b,

(3) Solve the n by » sparse system F'Ry =d.,

(4)  Selve {(p+n —r) triangular systems F'T;K] KE] = {CT —JT].
8
(6)  Compute the (p+n—r) by (p+n—r) matrix D =7 + KT lKl Kz}.

C
(8)  Solve the (p+n—7) by (p +n—r) dense system Dz = [_J]'y.

(?)  Solve the » by n sparse system R Rw = {CT JT]Z.

{8) Compute #=y-w.

Algorithms 5, 8 and 7 are similar to Algorithms 1, 2 and 3 respectively,

However, unlike underdetermined systems, the error in the computed least squares
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solution now depends on the square of the condition number of A. Thus it is
important to note that Algorithms 5, 6 and 7 should be used enly when A is well

conditioned.

B. Concluding remarks

In this paper we have considered a method for solving sparse
underdetermined systems of linear equations Az=b, If AAT is sparse, this method
can be implemented efficiently using the technique proposed in [George BO] for
computing the @R-decomposition of A7, When 4 has dense columns, 447, and hence
its Cholesky factor L, may have a large amount of fill-in. Techniques have presented
for bhandling these dense colummns. Apparently this is the first lime updating

algorithms have been employed in solving underdetermined systems.

We have also shown how Lhe updating techniques can be applied to handle
dense rows in sparse least squares preblems. Algorithm 6 is similar to an updating
algorithm described in [Plackett 50] but Algorithm 7 appears to be new. Different
updating algorithms for sparse least squares problems which use the gQR-
decomposition of the sparse portion have been proposed in [George 8G], [Bjarck 81]
and [Heath 82]. These updating algorithms are derived by considering the residual

in the least squares problem.
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