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ABSTRACT

We present an algorithm for the calculation of Boolean combi-
nations between layers of a VLSI circuit layout. FEach layer is
assumed to contain only polygons, which are specified by their
edges; the output is also polygonal. The algorithm makes heavy use
of some results in computational geometry and is conjectured to be
space and time optimal. It runsin O{(n+ k){r + logn )) time and
the On ‘r) space, where n is the maximum number of edges on
any layer, k is the number of edge intersections, and r is the
number of layers. We prove that when the polygons are presented
using a hierarchical description language the problem becomes NP-
hard. Finally we discuss how this approach can be used to solve
the ¢-contour-problem of computational geometry and the hidden
line problem of computer graphics.

1. INTRODUCTION

On the one hand calculating Boolean mask combinations, for example
AND, OR, XOR, ANDNOT, between different layers of VLSI circuit designs
is basic to design rule checking, connectivity checking and device recognition, for

t This work was carried out under NATO grant No. RG 155.81 and the work of the third author
was additionally supported by a Natural Sciences and Engineering Research Council of Canada grant
No. A-7700.
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example see [C], [DB], [L1], [L2] and {LP] and [MC]. Thus it is important that
such computations be carried out efficiently. On the other hand, the
investigation of such problems is an important aspect of the rapidly blossoming
area of computational geometry. A number of problems motivated by VLSI
design rule checking have already been studied, see [BO1|, [BW], [LiP1], [NP] and
|OW], for example. However, in each of these studies it is assumed that a single
set of objects is given, that is a single layer. Lauther [L2] is the Girst author to
study collections of sets of objects using present state-or-the-art results in
computationa! geometry. In the present paper we provide an algorithm which
improves on that of [L2].

We assume that each set of objects, that is each layer, is in fact a set of
polygons. Each polygon is specified by its edges, where the edges have an
orientation such that the region inside the polygon is to the right of each edge.
Furthermore each edge has a colour indicating which layer it belongs to. In the
detailed discussion of Section 2 we consider two layers, red and green, together
with the Boolean operation AND, in order to provide a clear presentation of the
basic ideas. In Section 3 we explain how these ideas can be extended for r
layers and arbitrary “regularized”’ Boolean mask combinations, while in Section 4
we consider the effect of describing the polygons hierarchically, see [MC], [BO2]
and [OW]. Finally, in Section 5 we discuss how these ideas can be applied to the
hidden-line problem of computer graphics [NS], and to the i-contour problem.
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2. THE INTERSECTION ALGORITHM

In our description of an algorithm for determining the contour of the
intersection of two sets of simple polygons we assume that the reader is familiar
with the Bentley~-Ottmann algorithm for reporting the intersecting pairs of line
segtents in the plane [BO1].

We assume furthermore that the set of simple polygons is given as a set of
oriented edges of the polygons, where each edge is described by its two end-
points, the orientation, and the colour. The interior of the polygon lies to the
right of the oriented edge. Assume - for simplicity only - that no vertical edges
occur (this can always be achieved by a rotation of the coordinate system), we
will talk about left - and right-oriented edges. An edge is left-oriented if the z-
value of the starting point is greater than the z-value of the terminating point of
the edge. One set of polygons is assumed to be colored red and the other green.

The task of the algorithm is to produce as output a set of oriented edges,
describing the intersection of the set of red polygons with the set of green
polygons; we will consider what Tilove |T] calls regularized intersection.

We will first give a general description of the algorithm, and later look at it
in detail and discuss its complexity.

2.1. The Outline

An edge or a part of it {no matter which colour, but with the original
orientation) is output by the algorithm, if it forms the boundary between a
region covered by at least one red and at least one green polygon and a region for
which this is not the case,

To determine all boundary-edges we use the sweeping line paradigm, see
[BOL|, [NP] for example. We sweep a vertical line in the horizontal direction
through the plane, keeping track of the covering of all regions under
consideration. At each scan-line position, the active edges are totally y-ordered,
and so are the intervals between them. A change in the covering of a region can
only occur when a change in the total order of all active edges occurs. This is
possible exactly at the starting, terminating and intersection points of edges.
Consequently, the crucial positions of the sweeping line (the sweeping points) are
exactly those of the Bentley-Ottmann algorithm. The region between two
adjacent scan line positions and two adjacent active edges is called an elementary
region, since for all points in such a region, the covering with red and green
polygons is the same. For a given scan line position, we associate the elementary
regions with the edges currently active, speaking of active regions below, above
and between edges, according to the y-order of edges (and active elementary
regions). Besides carrying out the actions and maintaining the information of the
Bentley-Ottmann algorithm we also keep track of the covering of each
elementary region by means of a counter for the number of green and a counter
for the number of red polygons covering the region. At each step of the sweep, a
scan line data structure stores all currently active edges in y-order, together with
these two counters for each active elementary region. A move of the scanline
from one position to the mext consists of the update of the active edges, the
update of the counters for the active elementary regions, and the output of (parts
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of) edges. The nature of polygons and polygonal intersections ensures that only
local changes of the boundary occur together with local changes of edges at the
sweeping points. We show in detail in the next subsection that such changes and
the necessary housekeeping are also local. We must, however, be careful to
output the correct starting and terminating points of parts of edges. We do this
by using an output buffer for each edge. Whenever an edge becomes a boundary
edge, it is put into its output buffer, together with the current sweeping-point,
indicating the starting point of the output edge; whenever an edge ceases to be a
boundary edge, it is output from the buffer, together with the current sweeping
point, indicating the terminating point of the output edge.

2.2. The Details

For the sake of simplicity we assume that at each sweeping point only one
change occurs; in the case that several changes occur, they must simply be
carried out in the appropriate order. The sweeping points of the scan-line are
determined in the same way as in [BO1], and all actions carried out there are also
carried out in our algorithm, without further notice. However, the data structure
maintained for the scan-line is slightly different: in addition to the actual edges
in ascending y-order we store the two counters RED and GREEN for each pair
of adjacent actual edges, representing the number of red and green polygons
covering the clementary region between the edges, respectively. The additional
actions to be carried out at a sweeping point are the updating of counters, the
preparation of edges for output by means of the output buffer, and the output of
a buffer.

The following example gives an input and the desired output of the
algorithm, and provides instances of most of the different situations which may
occur in the algorithm.

INPUT: [ & = {(z,¥), (z',y"), orientation, colour)]
ey = ({5,0), {0, 13), left, green),
e == ({5,0), (13,12}, left, green),
es = ({7,6), (13,12), right, green),
eq == {(0,13), (7,6), right, green),
e5 = {(6,5), (18,9), left, red),
eg = ({6, 5), (2,9), left, red),
er = ((2,9), (18,9), right, red).

X}

Bl
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Graphic Representation:

4“5

¥
2

OUTPUT: E, = ((2,9), (4,9), right),
E, = ({(4,9), (7,6), right),
E; = ((7,6), (10,9), right),
E, = ((10,9), (11,9), right),
Es = {(11,9), (9, 6), left),
Eq = ((9,6), {6,5), left),
E; = ((6,5), (2,9), left).

=
-
o~

Our use of positive integers for the input and output points is for the sake
of simplicity of presentation only; in general, rational numbers may eccur.

We describe the actions to be carried out by the algorithm for each of the

four possible cases.

(1) a polygon point with two edges lying to the right is encountered:
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Both edges must be of the same colour and must have different orientations.
Both edges are inserted into the data structure D representing the scan line at
the position determined by the y-value of p . The edges divide the region, in
which they fall, into two regions with unchanged counter values, and additionally
squeeze in a new region between e; and e; , where the counter of the colour of
the edges is incremented by 1if ¢; is oriented right, and otherwise decremented
by 1. The counter of the other colour remains unchanged.

This is in our example the case for point (2, 9) and edges e;, eg. The
scan line changes at that position from



y RED=0
] GREEN=0

€4

RED=0

€1

RED=0
GREEN==0

Do

The only edges that may become boundary edges (or cease to be boundary
edges) are ¢; and ¢; : they are both (partially) boundary edges if and only if

((RED > 0) AND (GREEN > 0) above ¢; and below ¢; )

AND (NOT((RED > 0) AND (GREEN > 0)) between ¢; and ¢;)
OR ((RED > 0) AND (GREEN > 0) between ¢; and ¢; )

AND (NOT((RED > 0) AND (GREEN > 0)) above ¢; and below ;)

In our example, both e; and ey are boundary-edges (at least partially, as

will be seen later).

GREEN=1 N

Boolean Mask Operations

RED=:0
GREEN=0

€

RED=0
GREEN=1

3]

RED=1
GREEN=1

€s

RED=0
GREEN=1

31

RED=0
GREEN=0

Dilur
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If both e¢; and ¢; become boundary edges, they are put in their output
buffers, together with their starting point p .

We will work out the other cases in descending degree of detailed
presentation:

(2) apolygon point with two edges lying to the left is encountered:

In out example, one such point is (13, 12), where ¢; and ¢, meet.

Both edges again have to be of the same colour and must have different
orientations. They must be adjacent in the scan-line data structure D. Both
edges and their counters in between are removed from D . The counters above
e; and below e; must have the same values; the two regions are just merged
into one with the old counters.
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In our example:

RED=0 o RED=0
GREEN=0 [ -~~~ 77 "’ GREEN=0

€3 €7

RED=0 4
GREEN=1 /

€2

RED==0
GREEN=0

€7

If both edges were boundary edges, their buffers, containing the starting
points, are output, together with terminating point p.

(3) a polygon point with one edge to the left and one edge to the right is
encountered:

In our example, this holds for point (7, 6) and edges ¢y, e3.

Again, both edges are of the same colour. They also must have the same
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orientation. In D, e¢; replaces ¢ ; all counters remain unchanged.

If e was a boundary edge, then its buffer is output, together with

endpoint p ,and ¢; is put into its buffer, together with starting point p .

(4)

a (formerly detected) intersection point of two edges is encountered:

In advance, nothing can be said about the colours and orientations. Let us

distinguish between the different cases:

(a) Both edges have the same colour:
(Our example provides no instance of this case.)

(i)

(i)

(b)

Both edges have the same orientation:

We exchange edges ¢; and e; in D. All counters remain the same. If one
of ¢, e; wasa boundary edge, then its buffer is output, together with the
terminating point p, and the other edge of ¢;, ¢; becomes the boundary
edge and Is thus inserted in the buffer with starting point p .

Both edges have different orientations:

We exchange edges ¢; and e; in D, and update the counter for the region
between ¢; and e; : The counter for the colour of the edges is incremented
by 2, if ¢; is oriented left, and is decremented by 2 otherwise. If both edges
were boundary edges, their buflers are output, together with terminating
point p ; if none of them was a boundary edge, they may both become
boundary-edges. They are checked for this property, and they become
boundary edges they are put in their buffers, together with their starting
point p .

Both edges have different colours:
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(i) Both edges have the same orientation:
In our example, point {4, 9) and edges ey, e; provide an instance of this
case,

We exchange edges ¢ and ¢; in D, and update the counter for the
region between ¢; and e¢; . The counter for one of the colours is incremented
by 1, the colour for the other is decremented by 1:
if (¢ is green) AND (¢ is oriented right)) OR ({¢; is red) AND (¢ is
oriented left))
then REDppy = REDgp + 1 and

GREENNEW = GREENOLD -1,
else REDygw = REDgp - 1 and
GREENNEW = GREENOLD + 1.

In our example, ¢; is green (¢ is ¢,), and is oriented right, so the then-
clause applies.

The counters for regions above and below p remain unchanged, but are
necessary to determine whether any of the edges changed its boundary edge
status, We leave the straightforward but tedious task of examining at all
possible cases to the interested reader.

(ii) DBoth edges have different orientations:
In our example, point (11, 9) and edges e;, e, provide an instance of this
case.

We exchange ¢ and ¢; in D, and update the counter for the region
between e; and e . If e i9 oriented left, then both counter values are
incremented by 1, otherwise both counter values are decremented by 1.

Again, the counters for the regions above and below ¢; and e; remain
unchanged, but are necessary to determine which of ¢;, e; change their
boundary edge status. If only one edge of ¢, e; was a boundary edge, then
this edge remains as a boundary edge, and if both were boundary edges, both
cease to be boundary edges. If, however, none of them were boundary edges,
then either none of them are or both become houndary edges. We leave the
details again to the reader.

2.3. The Complexity

The number of sweeping points of the scan-line is, as in {[BO1}, Of{n+ k),
where n is the number of edges given in the input and k is the number of
intersection points found. Like Bentley-Ottmann, we can accomplish every
manipulation of the scan line data structure D in time Oflogn), since all
actions are local and counters always refer to the region between edges. A
balanced binary search tree might be used for this purpose, for example, where
edges are stored in the leaves, and between any two adjacent leaves the counters
are stored with double links. As any intersection point creates at most two
additional boundary edges, the number p of output edges (edge parts) is
bounded by O{k). The output bufler itself is bounded in size by O{n), as only
one part of an input edge can be prepared for output and thus stored in the
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buffer at any given time. The access to the output buffer elements is possible in
constant time, for example, by use of an array. Applying the economic storage
technique described in Brown {B], we conclude:

Theorem 1: The problem of reporting the intersection of two given sets of
simple polygons can be solved in time O{(n+ k)logn) and with space Ofn),
where n is the number of input edges and % the number of edge intersections.

This complexity is the best we can hope for with the present state of the
art, as the Bentley-Ottmann algorithm itself has the same complexity.
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3. GENERALIZATIONS

The efficiency of the algorithm presented in Section 2 depends neither on
the fact that the intersection (the Boolean AND) is the only boolean operation
involved nor on the restriction to two colours, red and green. On the contrary,
only the nature of polygons is crucial in order to maintain all necessary
information with only local changes in the scan-line data structure D .

We may therefore generalize our algorithm to apply to any partition of a
set P of polygons (into different colours, layers, etc.} and the application of any
boolean operators which are reasonable for sets of polygons, that is under which
the set of simple polygons is closed. As Tilove [T] points out, we should deal
with regularized Boolean operators to be mathematically precise, rather than with
set operators. A regularized operator yields as a result of the operation a
regularized set of polygons, that i3, a set of polygons without isolated points and
dangling lines (a polygon is regularized by taking its topological interior and
applying the topological closure operation to it, for details see [T]).

Let us assume that the set of polygons P, is partitioned into r (disjoint)
subsets P, P;, ...,P, , representing the different colours, layers, ete.

We define a Boolean function, CLASS( P;, S}, to denote for each set §
of points in the plane the property of belonging to the subset P; of polygons:
CLASS(P;,S) is true if and only if for all points p €S, p belongs to P, .
In other words, CLASS(P;,S)=(SC U{p}) .
PEP,

A Boolean function, QUTPUT(P,, ..., P,,8), characterizes for a partition

of the set of polygons and a set S of points whether S helongs to the output
of the algorithm. QUTPUT is restricted to be a function over the functions
CLASS(P,, S), ..., CLASS{P,,5), using only regularized Boolean operators
under which the set of simple polygons is closed, for example the operators
AND, OR, ANDNOT, and XOR. For example, partitioning the set of
polygons into subsets of red, green and blue polygons, one possibility for an
QUTPUT function is

OUTPUT(Prd- Pﬂeem Py, S) =
CLASS(P,.4,5) AND CLASS(P',“., S) OR CLASS(P,4,5) ANDNOT
CLASS(Pyye.S) -

Although the expression used to describe the output may deal with any
number of operators and any number of subsets of P, it can be handled in
exactly the same way as the simple intersection operation is handled by our
algorithm. We need only convince ourselves that the classification of (a part of}
an edge as (a part of) an output edge is possible with only local operations in the
scan-line data structure D) . For this purpose, we just maintain a counter
c(P;, S') for each of the r properties CLASS(P,-,S') of the set S' of all
points in the region between any two adjacent edges in D . At each step of the
computation, c¢{P;,S') denotes the number of polygons from P; covering
region §' . Obviously, CLASS{P;,S’) for such a region §' can be computed
from the counter information: CLASS(P;,$") = (¢(F;,$") > 0) for any region
S' between adjacent edges. We call such a region § an output region, if and
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only if QUTPUT (P, ..., Py, SJ) is true. Hence, {a part of) an edge & is (a part
of) a boundary edge, if and only if the region above ¢ is an output region, and
the region below e is not, or vice versa. Hence, being a boundary edge or not
can be determined for any given edge ¢ in D by just evaluating the OUTPUT
function for the regions above and below e and comparing the results.
Accounting for the function evaluation with time complexity O(r) and for the
space needed to store the r properties of the regions between any two adjacent
edges in the scan-line data structure D with space complexity Ofn-r), we
conclude:

Theorem 2: The problem of reporting the contour of the set of polygons
determined by the application of some regularized Boolean operators to r sets
of polygons can be solved in time Of(n-+k)(r+ logn)) and with space
O(n -r), with n is the total number of input edges, and k the number of
intersections between edges.

In many applications, including VLSI design, * is a small constant. In
this case, our algorithm has time complexity O{(n+ k)logn) and needs Ofn)
space, which is again the best we can expeet with the present state of the art.
For some computing environments it is a considerable advantage that the
algorithm needs only one sweep of the scan-line through the plane, for example if
the input polygon edges are stored in sorted order on an external device with
sequential access, and central memory is rather limited.
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4. Boolean Mask Operations for Hlerarchical Input

It is well known that for many applications of geometric algorithms the
input data are not as the collection of objects, which most algorithms require.
For example in VLSI design and in computer graphics (see for example [MC},
[NS]) hierarchical descriptions of geometric objects are used. Bentley and
Ottmann [BO2] were the first to investigate the theoretical implications of
hierarchical input for the complexity of geometric algorithms. We assume the
reader to be familiar with [BO2|, and we present a hierarchical language for the
specification of polygons in the plane in a similar way to that chosen for
rectangles in [BOZ2|.

A simple regular polygon is described by denoting the end points of its
edge, in clockwise order. Each end point is denoted only once, and between any
two adjacent end points p; , and p; it is understood that an edge leads from
pi to p;; additionally, an edge leads from the last point to the first (in the
given order). We use the notation

POLYGON({<point>} )!

where each point is given by its (2, y)}coordinates. For example
POLYGON(6, 1), (3, 1), {1, 4), 6, 4),(2,3)

denotes the polygon depicted in Figure 4.1,

t The meta-notation {I}," denotes an arbitrary large sequence of T's containing a least three
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Figure 4.1

A description of a polygon in this form is called a polygon command:
pelygon command: POLYGON({<point>}3)

A set of polygons is described by a sequence of polygon commands, augmented
with an identifying number for the set. The description of a set of polygons,
together with its number, is called a symbol:

symbol: <symbol number> : {<command >} {

For example

1:POLYGON ((1, 1), (1, 2), (2 1))
POLYGON ((0, 0), (0, 3), (3, 0))

is a description of a set of two polygons and is referred to as symbol 1,

Once a set of polygons is defined, it may be used as part of another set of
polygons. With its use, a translation of the set is allowed: the “old’’ origin may
be positioned relatively to a given “new’ origin. Notationally, this is done by a
call of the corresponding symbol (by its rumber) in the form of a draw command:

draw command: DRAW <(symbel number> AT <point>
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For example,
DRAW 1 AT (0, 5)

refers to the set of polygons denoted by symbol number 1, where the polygons are
positioned so that the “old” origin of the coordinate system lies at point (0, 5).

Draw commands may also be used as parts of symbol definitions, provided
that the called symbol has already been defined:

command;: polygon command | draw command

Hence, calls of symbols defined later than the calling symbol and recursive calls
are not allowed. To control the calling structure easily, we associate ascending
natural numbers with the symbols and allow calls to symbols with smaller
numbers only.

A collection of symbol definitions in the defined hierarchical input language
(HIL) is called an HIL description:

HIL description: {<symbol>} .

An HIL description denotes the set of polygons denoted by the symbol with the
highest symbol number. This allows us to ‘‘forget” about intermediate steps in
the description.

For example,

1: POLYGON ({0, 0), (0, 1), (1, 0})
2: DRAW 1 AT (0, 0)

DRAW 1 AT {1, 1)
3: DRAW 2 AT (0, 1)

DRAW 2 AT {2, 0).

denotes the set of polygons depicted in Figure 4.2.
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Figure 4.2

Note that the origin HIL description (see [BO2]) deals with rectangles rather than
polygons and is thus a special case of the HIL description given here.

Let L (D) be the set of polygons described by an HIL description D .
The Boolean Mask Problem in terms of HIL is the problem of constructing an
HIL description of a set P of polygons denoted by a Boolean expression using
operators AND, OR, ANDNOT, XOR on some sets Py, ..., of polygons.
Each set of polygons P;(i=1,...,k) is given by an HIL description D; :

Boolean Mask Problem:

Input: k€ N ; k HIL descriptions Dy, ..., D; of sets of polygons
L(Dy), ..., L (D), and an expression expr{L(D,), .., L{D;)) on the
L(D;)(i € {1,...,k}) using only regularized Boolean operators from

{AND, ANDNOT, OR, XOR}.

Output; An HIL description D such that L (D) = expr(L (D), ..., L(Dy)) .

As this problem is quite complex because many HIL descriptions are
involved as input, and an arbitrary complex expression may be given, we consider
a simpler problem, whose complexity provides a lower bound for the Boolean
Mask Problem. We restrict our attention to two given HIL descriptions and an
expression with one of the regularized Boolean operations:
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Restrieted Boolean Mask Problem:

Input: Two HIL descriptions D, , and D, of sets of polygons L (D;), and
L(D,), and a Boolean operator op € {AND, ANDNOT,
OR, XOR}.

Output: An HIL description D such that L(D) == L(D)) op L(Dy).

The Restricted Boolean Mask Problem is at least as difficult to solve as any
one of the four subproblems, where each subproblem involves exactly one of the
four different Boolean operators. That is, each subproblem’s complexity provides
a lower bound for the original problem. To simplify the analysis, we restrict the
problem further: instead of searching for a description D, we restrict our
attention to whether or not L (D) is empty. For an HIL deseription D , the
emptiness of L (D) (and also the non-emptiness) is of course decidable in
polynomial time. To see this, observe that a syntactically correct HIL description
consists of at least one symbol, and each symbol conmsists of at least one
command. Draw commands may only refer to symbols with smaller number.
This implies that at least the symbol with smallest number contains only polygon
commands. Furthermore, each of the sequences of symbols starting with the
symbol with highest number and continuing with a symbot referenced by a draw
command maust end at a symbol containing only polygon commands. Hence, any
syntactically correct HIL-description describes a nonempty set of polygons. We
conclude that the complexity of the non-emptiness and emptiness problems for
L(D) is a lower bound for the complexity of our original problem. We shall
prove that the nonemptiness question for the operator AND to be NP-complete,
thus showing that both the Restricted Boolean Mask Problem and the Boolean
Mask Problem are NP-hard.

Let us look at the
Conjunction Nonemptiness Question:
Input: Two HIL descriptions D; and D,.
Output: Yes, if and only if (L (D,) AND L(D,)) 540 .
Complezity NP-complete.

Proof:
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The problem is in NP.

Guess two polygons, p; € L(D,) and p; € L(Dy), and a point p interior,
(that is ot on the boundary, to both p; and p;. Guess the polygons in
the form of a sequence of commands in D, and D, , respectively. The the
verification that p, € L(D,) and py € L(Dy) is easy: just follow the
commands in the given sequence and calculate the position of the respective
polygon. Testing whether or not point p lies inside polygon p;
(+ € {1,2}) consists of checking for each edge of p; whether p lies on the
its side; this can of course be done in time proportional to the number of
edges of p; .

The problem is NP-hard.

A lower bound for the complexity of our problem can be obtained by looking
at a special case. Let the description deal with rectangles only (instead of
polygons in general) and let D, describe one single rectangle. Substituting
{z} for L(D;) we obtain the answer yes if and only if
L(D)Nn{z}#0. This is exactly the problem of the non-empty
intersection of L(D,) with a query rectangle z which [BO2] have shown to
be NP-complete.

Though the observations show that the Reskricted Boolean Mast Problem is

NP-hard, we are interested in the question’s complexity for any of the operators
considered. We now know that AND- operations are NP-hard, but what about
the others? Let's treat them, one by one:

ANDNOT:

The emptiness question for (L{D;) ANDNOT L({D;)} reduces to the

construction of a description D such that L (D)= (L(D,) ANDNOT L (D)) :
once we know D , we can decide the emptiness of L(D) easily. We prove the
NP hardness of the construction by proving that the emptiness-question is NP-
hard:

ANDNOT-Emptiness Question:

Input: Two HIL descriptions Dy and D, .

Output: Yes, if and only if (L(D,) ANDNOT L{D,))=0.

Complezity: NP-hard.

Proof: We prove this by reducing the well known (cf. for example [GJ}) NP-
complete subset sum problem to the conjunction nonemptiness question:

Subset Sum Problem:
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Input: A (multi-)set W of n positive integers, W == {wy, .., wy}, and a
positive integer T .

Output: Yes, if and only if a subset W' C W suchthat Y, w= T,
weW'’

We give an HIL description D, , where each possible subset's sum is
represented by some polygon (we use a small triangle, as in the previous example)
along the y-axis at the y-position representing the subset sum. The other HIL
description D, , denotes a single polygon of the same kind on the y-axis at
position 7' . Then there is a solution to the subset sum problem if and only if in
L{D,) a polygon occurs at height 7 . This is the case if and only if
(L(D,)) ANDNOT L(D;)) is empty. The demonstration that a description
such as D, can be given with polynomial length (in the number n of integers
in W }is given in detail in {BO2| and [BOW] for unit squares. We apply exactly
the same technique yielding D, to consist of symbols

0: POLYGON ({0, 0), (0, 1), (1, 0))
and for each i € {1,..,n}

i: DRAW i-1 AT (0,0)
DRAW i1 AT (0, w; )

OR

The disjunction of two sets of polygons is described easily, if we don’t
impose restrictions such as intersection-freeness on the polygons within an HIL
description or some sort of minimal representation of covered area. In this case,
the OR-operation is just a concatenation of two descriptions, Let’s assume for
simplicity that two descriptions D, and D, are given with disjoint symbol
numbers, say numbers 1 up to n for D; and numbers n+1 up to o for
D, . Then we construct a description D such that L(D)= L(D,) OR L (D))
simply by concatenating | and D; and adding the additional symbol

#+1: DRAW n AT (0,0)
DRAW #' AT (0,0).

Hence, the disjunction construction problem is solvable in constant time,

Note that if we have to make the symbol numbers disjoint, that is we have
to choose new numbers for the symbols, we can still solve the problem in linear
time.

If, however, we deal with HIL descriptions D , where polygons within
L(D) are not allowed to intersect (having some ‘‘minimal” representation of
covered area in mind), the disjunction construction problem becomes NP-hard,
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too. The intersection-frecness requirement forces us to find a representation D,
for L(Ds) = (L(D,}) OR L(D,)} such that polygons within L(Ds) don't
intersect. “‘Intersection’’ is understood in the usual way. A polygon denoted a
multiple times by an HIL description D counts only once in L(D), in
accordance with the usual semantic of sets, and therefore does not constitute an
intersection. For example, the following description D' fulfills the
intersection-freeness restriction:
D' o POLYGON ({0, 0}, (0, 1), (1, 0))
1: DRAW 0 AT (0, 0)
DRAW 0 AT (0, 0) .

The disjunction construction problem is shown to be NP-hard by a
reduction of the problem of whether the disjunction of two HIL descriptions
describes a set of exactly one polygon. To convince the reader that for a given
description D it is decidable in polynomial time whether ornot |L(D})| =1,
let us assume that no unreferenced symbols occur in D, (if they do occur they
may be removed by a linear scan, starting at the symbol with highest number).
Let us further assume that no symbols consisting of a single draw command occur
(if they occur, they may be removed, and every reference to them changed to
refer to the appropriate symbol with the appropriate translation of coordinates).
Let us call “‘bottom symbols” all symbols containing only polygon commands
(they form the bottom of the call structure). To test whether L(D) describes a
set of exactly one polygon, observe that if any of the symbols in D’ describes a
set of more than one polygon, then |L{D)|{ > 1. We therefore organize the
test in a bottom-to-top manner in the call structure: starting with the bottom
symbols, we decide whether the set of polygons denoted by a symbol has
cardinality more than one. Associating with each symbol the polygon it denotes,
we can answer the question of a calling symbol s by combining the polygon
information of the symbols called from s : if the polygons of the called symbols,
together with their translations, are all the same, then s denotes the same
polygon, too. We continue the procedure only as long as no symbol denoting
more than one polygon occurs. Either we find such a symbol, then

|L{D)| > 1, or we don't, in which case |L(D)] = 1. In either case, we
obtain the answer to our original question after at most one simple test for each
of the symbols, that is in polynomial time.

We call the problem of whether or not |L(D)| =1 the singleton
problem, and we conclude that if the singleton problem for the disjunction of two
HIL descriptions is NP-hard, then the construction of the description of the
disjunction is also NP-hard. We demonstrate the former as follows:

Disjunction Singleton Problem;

Input: Two HIL deseriptions D) and D .
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OQuiput; Yes, if and only if |(L{D;) OR L{Dy))| = 1.

Complezity. NP-hard.

Proof: Again, we reduce the subset sum problem to our problem. Let

W = {w,,..,w,} be the set of n positive integers, and let T be the positive

integer from the subset sum problem's input. Then we construct D, to denote a

set of unit squares along the y-axis with y-values corresponding to ali subset

sums of W . We construct D, to denote the two rectangles of unit length and
»

height from y-value T+1 to y-value ¥, w;-+ 1. This yields the following
i=1

two descriptions:

Dy: 0: POLYGON (0, 0), (0, 1), (1, 1), (1, 0))
1: DRAW 0 AT (0, 0)
DRAW 0 AT (0, w, )
2: DRAW 1 AT (0, 0)
DRAW 1 AT (0, w,)

i DRAW i-1 AT (0, 0)
DRAW i-1 AT (0, w;)

n: DRAW n-1 AT (0, 0)
DRAW n-1 AT (0, w,) .

and

Dy 1 POLYGON ((0,0), (0, T), (1, T), (1, 0)
POLYGON (0, T+1), 0, 33 i ), (1, 3} w ), (L T+1))

=1 =1

Then we have the following reduction of the subset sum proBlem to the
disjunction singleton problem:

The subset sum problem has a solution
if and only if there is a unit square-at position (0, 7') in L(D,)
if and only if [{L (D) OR L(D3))| = 1, because the unit square at (0,

T) fills exactly the “‘hole” between the two polygons from
L(Dy).
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XOR:

The construction of a description I such that L (D) = L(D{) XOR L(D,)
is shown to be an NP-hard problem by 2 reduction of the emptiness problem for
L(D) XOR L(Dy):

to decide the emptiness of L(D;) XOR L{D;) we construct D as above
and decide D’s emptiness straightforwardly. The XOR emptiness
problem remains to be shown NP-hard:

XOR-emptiness question:
Input: Two HIL-descriptions D'y and D, .

Output: Yes, if and only if (L (D;) XOR L(D,)} = 0.
Complezily. NP-hard.

Proof: We give a reduction of the subset sum problem to our problem in a way
similar to that for OR:
Let D, be the description of unit squares along the y-axis at the heights of
all subsums, i.e. chose D, exactly as described for the disjunction singleton
question.

Let D, be a call of the symbol with the highest number of D,, plus an
additional unit square at height T:

Dy 0:
as for D,

n:
n+1: DRAW n AT (0, 0) .
POLYGON ((0, T), (0, T+1), (1, T+ 1), (1, T)).

The only possible difference between L{D;) and L (D) is the unit square at
height T: this is really a difference if and only if no subset sum yields T. Hence,
L{D,) XOR L(D,) describes the empty set of polygons if and only if the subset
sum problem has a solution. This reduction of the subset sum problem to the
XOR emptiness problem proves the latter to be NP-hard.
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Thus we have proved.

Theorem 3: The Boolean Mask Problem for hierarchical input is NP-hard for
each of the operators AND, ANDNOT, OR, and, XOR.

Proof: By the previous considerations.
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5. FURTHER APPLICATIONS

65.1. The i-Contour Problem

The i-contour of a set of polygons is the contour of the region covered by
at least i polygons. The description of the contour is a description of non-
intersecting polygons, having at most a finite number of points in common. This
implies that for every two polygons no common boundary of positive length may
exist. The contour is thus a “‘minimal’’ representation of the covered area.

Given a set of polygons, we can computer the 1-contour easily by applying
the given boolean mask algorithm, where we have only one relevant layer (a
second one is considered empty) and the operation OR is to be performed.

In order to be able to solve the general problem we just slightly modify the
test of whether an edge is an output edge: (a part of) an edge is (a part of) an
output edge if and only if exactly one of both adjacent counters (we deal with
one layer only) has a value greater than or equal to {. Obviously, this algorithm
runs in time O{(n+ k)logn) and needs O{n) storage.

The fact that the counter for each elementary region provides all necessary
information enables us to solve all related problems within the same bounds. For
example, looking for the contour of all regions covered by exactly i polygons or
for the contour of all regions covered by at most i polygons, simply change the
test for output edges accordingly.

5.2. The Hidden Line Elimination Problem

Given a set of non-intersecting solids in 3D-space, bounded by plane
polygonal faces, we want to produce a 2-dimensional, for example on a screen of
what an observer sees, looking from a specified position in some specified
direction.

In order to determine all visible parts of lines, we deal with the 2-
dimensional projection of the faces onto a “viewing plane” through the observer's
position, normal to the viewing direction {for a detailed presentation of the
problem see [SSS| or [OWW]). A scan of the viewing plane is accomplished in a
fashion similar to that applied for the Boolean mask operations. However,
instead of a constant number of layers we have faces of solids at arbitrary
distances from the observer. Instead of a counter for each layer within each
elementary region we maintain information about the distances of all faces
covering the region. A dynamic version of a segment-tree-like data structure
allows the necessary operations to be carried out efliciently; for details see
[OWW].
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