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The necessity of double bundie structure in sort theory.

Introduction:

We discuss here some sort theories which are inconsistent in the sense
that their collections of objects are neither sets nor proper classes in
the von Neumann-Bernays-Godel (NBG) axiom system for set theory. This
results from a form of the Burali-Forti paradox, the Powerset Axiom and
the Axiom of subsets of the NBG system.

The idea of a sort theory for computer science purposes goes back
to Nolin 1974 [6], who wanted a semantics for programming languages with
type declarations. In such a semantics data types would be treated like
primitive objects (see aiso [9]) and not like retracts as in [11].

In [6] a treatment of this question 5 given, using sort collections,
which are called "collections d'algorithmes" by Nolin. Our reason for calling
sorts Nolin's "algorithmes™ is that these objects seem much closer to some
kind of generalized types, or sorts as they are known in algebra, than
they are to algorithms in the usual sense, or in the complexity analysis

of algorithms sense. A tutorial presentation of sort theory is given in [5].

We show in the present paper that no set satisfies the requirements for
being a sort coilection, and-no class in the NBG axiom system is a sort
~collection.

In [3,4] a mathematical construction of sort domains is given, using
a bundle theoretic framework, as bundle theory provides a useful tool
for analyzing and unifying program semantics models. The sort domains
of [3,4] verify most, but not all, sort collection requirements, and

have an algebraic structure which is a double bundle structure.

In [7,8], Nolin and Le Berre present an existence theorem for

informatic spaces, which they present ([7] pp 502, [8] pp 600) as a

simplification of the proof in [3,4]. Their goal is to restore to the



original theory some of its set-theoretical purity ("We use solely elementary
set theory properties” [8] pp 600) and eliminate any “bundle theoretical
presupposition" (ibidem}.

This amounts, technically, to abandon the double bundle structure used
in [3,4], and use only the lower bundle, which they call "ensemble convenable”
(convenient set).

One shows here, by means of a counter-example, that the space they
construct does not satisfy the requirements stated in their existence
theorem for informatic spaces. As these requirements are roughty those
defining sort collections, it is shown by a similar argument that no set
or class in NBG can be an informatic space. One also shows that if a
Wadsworth scheme is used as in [3,4,7,8] in order to solve the sort space
construction problem, then a double bundle structure is necessary, and the

minimal upper bundle structure which is necessary is produced.



I. Sort theory with sort collections:

. We first recall some basic definitions from [6]. The notion of
cotlection is left undefined inside the theory; its intuitive meaning is
"aggregate" of objects.

Let T be a collection, P(T) the collection of subcollections of
T and A < P(T) such that ¢,TeA, where ¢ denotes the empty collection.
One defines
(i) completed union: for any family {xi}161 c A, the completed
union of the family is:
?Xi =Ny cA:vix eyl
(i1) atomicity: x ¢ A is atomic iff for any family Gl

x5glx1 e A=31 xg Xy
i

(111) normal function: f : A+ A is normal if
¥x ¢ A f(x) = U{fly) : y atomic ¢ x}
(iv) 1f x,y ¢ A, we define:
Fxy = {f : A+ A normal | f(x) < y}
(v) Ap 1s defined as being the smallest collection which contains
Fxy,¥x,y ¢ A and which is closed under infinite intersection.

(vi) evaluation: vwx « A Vye A x[yl =n{z ¢ A : x c Fyz}

Definition: If T 94s a non-empty collection, and A c P(T), then A
(*)

is a ' sort collection iff it verifies the following conditions:

(1) there exists a collection B c P(T) such that ,T « B and

A is the smallest subcotlection of P(T) which contains B

(*) "collection d'algorithmes" in Nolin's terminology.



(as a subcollection), and is closed under infinite intersection
and the operation
F X,y = Fxy

(i) FxT =T

(111} Let Ag be the closure of B under infinite intersection,
where ¢ and T have been taken away. Then if X e AB and
Y e AF, x and y are incomparable for the inclusion.

(iv) vx e A x=0U{ye A : y atomic c x}

(v) T is atomic. a]

Elements of A are called sorts; those of AF are the functional
sorts ("algorithmes propres" in [6]).

Theorem 0 (Nolin): If {Zj}j e d has only atomic elements, and Uzj e A
J

then  (NFx,y.) [qu] = U Nfy; : zy s x;1 O

i i ji
Theorem 1 (Nolin): ¢,T, the singletons {if any) and the functional sorts are
all atomic. O

The proof of this theorem uses the following lemma.

Lemma 2: tet f be a functional sort, then there exists a smallest
family {kawk : k e K} of fuhctionai sorts called basis of f such that:
(va ¢ A a atomic and a ¢ v, for some k) =3k'. a= Vis

k#k' = Vi # Vs

VR SV T W W

vk ¢ K Vi is atomic and W 2 T

(v) v=n Fvw
keK Kk

Proof: Suppose f =1 Fx.y. - Take {v } ={a ¢ A : a atomic, f[a] = T}
—_— g i k ke



and vk ¢ K W = flv 1 . Then the family (Fyy W, : k e Kb verifies (1)
to (iv). Now

f = ?inyi = ?F(g{vk PV S xi})(fg{wk PV s xi})

NN{Fv w, : v, < X.} = NFV W
Pk Kk k i k kk

by using theorem 0.

Proof of Theorem 1:

Atomicity is obvious for @, T and the singletons. Let

v=1 iny1 be a functional sort, where {inyi : i eI} is a basis
iel

of v. Assume v is not atomic, i.e.

v = U{vnzj tjedd =2

Clearly Vj Z. € AF . Let

zy = kEK.kawk
J
be a basis of 2z, . Nowsince v 4 z (otherwise |J| = 1}, we have
K, e K, v Fv W '
I K58

ie. OFX:y. ¢ Fv, W o (MFX.y )y, ) ¢ w =
PR kj k‘j i Wi kj kj

n

Ny, : v X:b g w -
P k i kj

@{yi PV
1

in

x5 iwkj = (since Fv w and Fx;y; are bases,

My; = v exgh =yt = xi})
i

NMy; :vp, =x:} ¢w .
jod kj i kj

Now we have two cases:

Tst case: 3i vkj = X and Y5 3 wkj

i
>

2nd case: 3 v,
3



Define the step function:
f(x') = vix'] if x' ¢ x; for some i e I, T otherwise
This function is certainly normal and

¥iel fe iny}., ie. fevs ?iny_i

In the first case we have

flv, ) =flx;) =y. ¢ w
kj i i kJ.
and in the second case we have f(vkj) =T & W (kawk basis)

Thus, since f(v, ) ¢ W, forany j, we have f ¢ Fv w . Therefore
. K

J J J
vy f ¢ z4, ie. f¢ q{vmﬁzj :J e Jd} = v which is contradictory with
J

the fact that we have here a prepartition of v,

Therefore v is atomic. n]

Theorem 3: The collection of normal functions f : A + A ordered
extensionally by

fsgevxeA f(x)caglx)
is order-isomorphic to the collection AF of functional sorts ordered
by inclusion. If we denote [A - Al = {f : A > A|f normal},

the isomorphism is given by

AF..LP.,[A-»A] efa) = x e A . a[x]
A=Al A ¥(f) = n Fyf(y)
yeA

Proof:
1. Function ¢ s well defined because sort collections are
closed under infinite intersection. Function ¢ is well defined
because

va e A p{a) = \x ¢ A . a[x] 1is a normal function,



Indeed let x = U Vi € A . Then

iel )

a[x] = (definition) n {u : a ¢ F(in)u}
) i
Now a c FlUy,)u =
i1

ac{f:A-A normal [f(Uy.) cule

i
cul =

ag{f:A~A normal |Uf(y,)
i

aci{f:A~+A normal [vi fly;) g ul o

a ¢ N{f : A~ A normal |f(yi) Z U}l -
1
viel ac Fyu) «(vi e I aly;1 < u)
= Ga[y'i:} cu
i

Thus a[x] = a[in] = Uh[yi] - Therefore the function ¢ (a) = e A . a[x]
i 1 .

is normal. Notice that ¢(a) 1is also monotone.

2. ¢ and ¥ are monotone by definition and the fact that b c b =
Fyb < Fyb'
3- W Otp = idAFu

vaeA (y 0 9)(a) = 0 Fy(OxeA.alxI)(y)) = n Fy(a[yl)=a .
,“,,ﬁpﬁf,yEA yeA

Now ¥X.yeAp x =y = VzeA x[z] = y[z]

This holds because

vz x[z] = y[z] = (definition)
¥z Vu x 5 Fzu = y ¢ Fzu
and since both x and y are intersections of algorithms Fab  this

amounts to x = y. Now for any atomic sort u, by Theorem 0



(yQA Fy alyD)[ul = n{aly] : u =y} = (o(a) is monotone) afu] .

Thus N Fy(a [yl}= a , which implies v o0 ¢ = idg
yeA F

. = j - A > e A, n o
4. g0 1d[A Al ¥fe [A -~ Al e Ao (g By f0)) [x] = F .

It is sufficient to verify for x atomic

( ygA Fy f(y)) [x] = (Theorem 0) = n{f{y) : x = y} = f(x) since every

normal function is monotone. Thus the two functions f and

MeA . ( yQA Fy f(y)) [x] are equal. Whence the theorem. [].

Proposition 4: If At is the collection of atomic sorts of A,
ordered by incﬁusion, then AF is order-isomorphic to the collection
of monotone functions over At
Proof:
1. Every functional sort a eAF defines a monotone function
AXeA. af[x] , and thus induces a menotone function over At.
2. If f: At » A is a monotone function, then it uniquely extends
to a normal function f : A > A defined by f = AyeA . U {f(u) : u atomic < ¥}

The proposition follows by application of theorem 3. [

Define a poset L as being non-trivial iff it has at least two comparable
elements 1i.e. 3Ix,yel x #y and either x=y or y = x.
Theorem 5: There exists no non-trivial poset L such that if

L-L={f:L~L| fmonotone} ,
mono

then L~ L 1is order-isomorphic to a subposet of L (in particular
mono

L-+Lec L as a subposet) O.



Proof:(*)

Since L is a non-trivial poset, 3x,yel x =y and x s y. The

three functions

a=xu.if u=y then x else u
D= Au.u
c=2Au. if u=x then y else u

are all monotone from L to L, and a<b < c. Now assume L — % =
as a subposet. Define

0=. if xe {a,b,c} then a else x

1= . if xe {a,b,c} then ¢ else x
= . ox
64 = M if xe {a,b,c} then b else «x

A1l four functions are monotone from L to L and since L + L <L,
mono

L contains the sublattice
1
/N
ko /}6
\\\ 0

If u,vel wedenote ulv the fact that u and v are

incomparable, i.e. neither us=v nor v=u. For example
Ew ol Y N

The rest of the proof will be a transfinite induction.

(*) The author is indebted to D. Scott for thé& idea of this proof.



10.

Define for every ordinal o the function

fx) =1 if3g<a 'ﬁg < XAVca 3y S X. ylﬁg

>

Mif3ﬁ<a.fz T xaTW<adysx . ylfy,

>

&4 13§<a.fz =X \1z<oz:~lysx.yh"Z
0 otherwise.

Thus f: ¥+ ﬁ; for each ordinal ¥ . We note that if for some given
ordinal o we denote by ¥ o the class of all smaller ordinals, and
+ x = {yel : y = x}, then

Jr<a . ﬂ; =X o f(¥)N4¢x#e

VZ<o -3 YysSX. yIﬁ; = every element of f(¥a) s incomparable
with some element of + x .

We also note that f  is monotone, and by induction it makes sense
to write ﬁ: = x for g =a,since Lo L is a subposet of L .
We recall that transfinite induction is defined as follows:

Let P(p) be a property of ordinals. Assume that for all ordinals
o, if P(ﬁ) holds for all ﬁ < a , then P(a) holds. Then we have P(p)

for all ordinais § .

Here our property P(B) will be:

P(e) = (v z<p= fIF ) A (fB(fB) = §4)

P

Let us assume that this property holds for all ordinals m <a i.e.

. = I !
Vg ,n<a (K<n f, fn)
vi<a  fy (f) = 4



1.

Now:

1. V¥ <o f; (fg)=«tt.

Indeed we first notice that if % < o then f(¥a) N + fg =¢
since it contains fz . We also have that f& e f{¥a) 1is comparable
with every element of +fz . Therefore fa (fz) = tt

2. fu (fa) = {4
We have

f(¥a) N + fm 2¢ » I%<a f, =f

For such an ordinal ¥ we have

fz (fz) s f, (fg) = tt
But by the induction hypothesis fg (fz) = ff ,and £t I §§ . Therefore
f{¥a) N ¢ fu = ¢ . By using the induction hypothesis again we have
VZ<a Jy=sx yl fg (just take y = fn for n<a M #2)
Thus fa (fa) = f4 .
Note here that for the first ordinal, O, fo = \X.4§§ and fo(fo) = {4 .

3. Thus L <a=f (fg) =zt , fz (fz) = §§ . Therefore f I fz for any
ordinal Z < o . We also have fa (fa) = {§ . This is exactly the property
of ordinals P(a) defined above.

4. From this we conclude, by transfinite induction,

Ya,B cr.<13=1’°tlf"5
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Thus {fu :ae 0rd} < L, where Ord is the class of all ordinals
(which is a proper class and not a set), i.e. L contains a class
whose elements are all incomparable, indexed by a proper class, i.e.
L contains a proper class. Thus L 1is not a set. Contradiction.
Whence the theorem. : 0.
Theorem 6: There exists no set which has a sort collection
structure.

Proof: Let A be a sort collection. By Proposition 4, AF

contains, up to an order-isomorphism, all the monotone functions
f: At - At , where At 1is the collection of atomic sorts. By

theorem 1 AF < At , thus

AR mono AF S A dno AT S Ap
where the inclusions denote injective order-morphisms. But (AF mdno AF
< AF) - AF is not a set by Theorem 5. Thus A is not a set. a

Thus sowticollections are not sets. Are they classas in some set
theory? '

The NBG {von Neumann, Bernays, Godel)} axiom system [2] is a
set theory which is designed to handle classes, It has one single pre-
dicate letter ¢ , which is binary, and no function Tletters or individual

constants. We use X, Y, Z, ... to represent arbitrary variables.

Definition:
1. Xeg¥Y¥-= def. VZI.ZecX = Ze¥Y (inclusion)
2. MX) = 4of, 3Y . XeY (X isa set)

3. Pr(X) = 4op. M(X) (X is a proper class)



We shall call upon two axioms from NBG. In these axioms we use
lower case letters x, y, z, ... as special, restricted variables for
sets.
Powerset axiom {W):

vx dyvwu (uey = ucx)
i.e. the power class of a set is a set.
Axiom of Subsets (S):

yx¥Y3zvu(uez = uexauced)
i.e. the intersection of a set with a class is a set.
Theorem 7: There is no class in NBG which has a sort collection
structure. a0
Proof: Let A be asort collection. Assume. A s a class. Since
TeA, T dis a set be definition. By axiom W, P{T) is also a set and
A=ANP(T) cP(T) is a set by axiom S. Which contradicts Theorem 6.

Therefore A is not a class. 0O+

II. Sort theory with informatic spaces:

The basic definitions of this approach [#,8] are roughly the same
as for sort collections. The new features are a closer look at the
convenient set structure (see below) and the use of a diagram in the
category theoretical sense called Wadsworth scheme in [4], both
borrowed from [3,4].

Let T be a set and E c P(T). We shall use in the sequel defini-
tions (i) to (v) of §I, by substituting "E" to "A" .

The set E 1is convenient 1iff:

(i) ¢, TeE
(ii) E 1is closed for the intersection

(i11) vxeE x = U{ye E : y atomic ¢ x}



(iv) T is atomic. 0O
One defines also the following diagram (which we call a Wadsworth
scheme, since it generalizes this author's diagram in his E_  construc-
tion [%3]). The definition has two parts: the objects: E, and the arrows:
e, (injections) and iy (projections).

Objects: Let E0 < P(To) be a convenient set. Assume that E0 has an

"isolated" element -~ , i.e. such that Vv x e E0 XFy = XNy= ¢.

Define ¥ n ¢ IN

G, = {r}

Frag = {f : E, > E, { f is normal}

Gogq = 4 0 F o Flgd with of = {geF 19 = f}
Toet = To U Py

En+'| = (EO - {¥, TO})U Gn+-| U {Tn+]}

To make the structure of these objects precise one takes the extensional
order on F , i.e. g=f = ¥xeE y(x) = f(x)
and the subset-ordering on G, -
Arrows: vn e IN,
injections: e, : En -+ En+]
en(Tn)=Tn+],en(Y)=l_J-{.Y:y651}
en {x) =x if xcE - {r,T

}

0

e, (f) =e,yofor , if feF ,which
extends canonically to G, by e, (+F) = + e (f) .
projections: ot En+1 > En

Po Tped =T, s rox) =



v (x) =x if x «E, - {v , T .}

0 o}

ry (F) = rn_} ofoe ; if feF ., which

extends canonically to G by " (+F) = 4 . (f) .

n+l
The indices in e, and r, may be dropped when there is no ambiguity

(¢f Lemma 8, infra).

Now define
F” = {(yn)HGIN € 120 Fi yn = rn (yn+]) 3 yo =y} F= +F”
E =FUfe,F UI(E-{s,T N UE - {8, T}

The set £ c P (T) (where T=FuU Eo -{¢, T, }) has ¢ and T

as elements; it is closed for the intersection since

LA (9 xi) = Q "n (xi) '

The atomic elements of £ are those of
FU{s, T} U {atwic elements of Eg} -y . To} .
Thus E 1is a convenient set ([B] PpP. 614)‘ We shall use this set throughout

the rest of this paragraph.

Note that V¥ z = (zn) €E,z=nz if (z)n =z, is the n-th
nelIN n

projection of z . Elements of E0 NE are (trivially) constant projective
sequences.

The problem is now to produce an isomorphism between F and the set

[E+El={f: E+E| f is normal}

Nolin and Le Berre's theorem ([8] pp. 619) states that:

"For any convenient set E , there exists a smallest convenient set
E , which contains E as a subset, and which is closed for the operation
F:x, y+Fxy (i.e. which contains every normal function from E to E)".
In this statement E 1is meant to be the above constructed space.

Now, if we define the thresho}d.function
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‘ny= A . if ucx then y else T

then Fxy = +fx Every threshold function is normal, thus the

y
theorem states that

X, y € E fxy € E .

This statement is incorrect in that it does not follow from the
argument which is supposed to prove it. We produce hereafter two
elements x and y 1in E such that fxy is not representable as an
element of [ .

In order to clarify the notations, which contribute to some extent
to the error in [7,8], we use two preliminary lemmae, which 1link Nolin
and Le Berre's notations to more classical ones {[4,10,131).

Lemma 8: If we define for any function f : € > E the following
sequerce 1 f[ =(1f[,)neclN
110,

Y
1F [pay = WeE, + (1)),
and if ¥ pe IN, xp € Ep , ¥ e E we take

aP = (PP, ) s e, L)L F
%Y %% h -

£2 )
exp )yp+2

then both sequences ] f [ and gp are projective and

f
ey s Ypup

furthermore:

=11 1

XY
Note: The indices in the projections r and the injections e have been
dropped for the sake of clarity.

Proof:

(1) projectivity of gp is immediate up to rank p + 1 .



N = f =
r (fexp 3 )'p.” ) r p 0 exp s yp+'| ° ep

azeE . or. (if engexp then y else T

PP p+l p+1)

ueEp . if epzsexp then rp(yp+1) else L (Tp+])

(since E_ 1is isomorphic tu its image ep(Ep) c Epﬂ)

P

xze!E'J . if stp then yp else Tp = prYp .

Similarly

r, T 2 = o f 0 =
( e Xp ) yp+2) rp‘ﬂ ezxp ) yp+2 ep+'|

2
XZEED_H . r'pﬂ (if el zsexp then yp+2 else Tp+2)

- 2
= AzeEpy - if e s ex then "o+l (yp+2)else_ Mot (Tp+2)

AzeE if zgexp then y

H

ptl * p+] else Tp+1
(1) projectivity of 1 f [ : we have
Far1 (flpep) =m0 (L) 0 e =
"n ° )\yegnﬂ ‘ (f(y)gﬂ ° & ©
ek org ((Fle () y) =
aweEp ory ((F(9)) ) =
WeE, - (F()), = 3L,
Hence ] f [ is projective.
(i11) 1, y[ and gP are equal: Since both sequences are
projective, it is sufficient to show
] fxpy (41 = Ppuy for n=ptk, k>0

Now ¢° by definition

=f
+k k-1
p e (XP) s yp+k-l

17.



] fxpy [ p+k = XyEEp+k_1.(f X y(u))p+k~1

= ey g (if ug ! (xp) then y else T )p+k-1

= MieEpy - fek~1(xp) v

= fek-1(xp) o " (definition) o .

thus V¥V k > O ]fxpy [p+k = gpp+k .

Whence the lemma. ‘K

Operation of an Element of F over E ,

Element of F are used to define normal functions over E .
To this end, it is sufficient to describe how they operate on atomic
elements (argument similar to Proposition 4).
Define vheF YueE atomic ([8] pp. 616)

. i
h [u] = N oy (hyyqup))

where p; e if i<n
*
id if i =n
ry . n if i>n

(thus p; injects (or projects) elements of Ei into  (onto) En).
Ltemma 9: If he F and if we define ¥ u atomic the function [h] by

[h] (u)=n LN (un) , then for every u which is atomic [h] (u) = h [u] .
n

Proof: This comes from the fact that

[h] (U) = g h1+] (ui) = 2 (? h1+] (ui))n

= _ i
= 2 ? (hi+1 (Ui))n = 2 ? pn (hi+] (ui))

This establishes the equivalence between our definition [h] (u) ({47 pp. 213)

and the one of Nolin and Le Berre for making an element. h of F operate over

- —



In {7,8] it is first shown that if we take gp as

P =
g¥ =] Fxpy [ = OyeE, « fxpy (u))h)nsIN

Hence [gP] = fxpy {by using the definition of Temma 9). Then their
argument runs as follows ([8] pp. 618-619):

"Hence, for any x, y ¢« E and any p <IN , we have gp = fx y
Thus fxy = g fxpy . Indeed ... (here follows a proof of this fgct).
To sum up, every normal function over E s in F".

The authors do not distinguish between the functions from £ to E

(such as f%‘y ) and the elements of E representing them (such as
p
P =1 i y [ ). Thus they claim (Lemma 6, [7] pp. 501):
p
Since f, ,=qP and f,_=UTF , then £, =0 gP , where
" T ey T By
X = (xp)p <IN » Just by using the substitutivity of equality.

Whence their theorem: E s closed for the operation f : X,y + fk’y .
Such spaces are then called informatic spaces ([8] pp. 619).

The "equality" & y = U gp is written in our more precise notation:
P p

= TU &P
By = [g 9]

It does not hold. Let us take y =1 and x =Y , where 1 denotes
the number “one" (it would be the singleton {1} in this case), and
Y = (Yn) n e« IN denotes the paradoxical combinator

: Ox .« Fx0) A F L (L FO0)
in E (E 1is presented as a A-calculus model, [8] pp. 625).
Then in this case

P -
g ] pr] f, and

roo JBa s ~ .. D FRVERY ~ .. D ITYERY
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. p -
Now we claim g 9" 41 (Yn) Tn . Indeed

g gpn+1 (Yn) = (Lemma 8) = g (el . (pr7 (u)) )(Y)

g (fyp1 .,

u

= g if Y < Yp then 1 else T =T

since there are p's Tlarger than n and (Y ) is decreasing.

p’p €IN
Thus

fweP1(v) =
P n

o

—
[}

—

whereas  fy ](Y) = 1 . Whence fY 1# fu o1
P

\ _ b .
even if f, = g FYp1 and pr] = [g"] ..

since [UgPl#u [gp] , there is no element a ¢ F readily available
p P

for representing the normal function fY] , i.e. such that fY1 = [a] .

Thus the domain E 1is not closed for the operating f : X,y *'fxy s
and the existence theorem for informatic spaces ([7] pp. 501, [8] pp. 619)
would need another proof. However the following proposition settles the
matter.

Proposition 10: There exists no set or proper class in the NBG axicm
system which has an informatic space structure. 0
Proof: Let E be an informatic space and a set. By definition E is a
complete lattice and contains every normal function from £ to E .

Let K be the set atomic elements of E . By definition of E ,

K=Fu {¢.T}U(Atoms(£0) - {TO});'and f : E+E is normal if and only



if its restriction to K 1is montone. Thus K ~ K.g E=+E ¢ FcK
mono normal

where the inclusions are poset inclusions. Therefore X + K< K as a
mono

poset. Which is impossible by Theorem 5. Therefore E 1is not a set.
Suppose E 1is a proper class, since E < P (T) ([8] pp. 614)
and TeE,T is aset and P(T) 1is also a set thus E = E N P(T)

is a set which is impossible. : B

3. The Projective Sequence Bundle:

The representation system

J.D:[E-EYE, F>1F[= OueE . (FU)),) \on

[‘]:F*[E«»E],h->[h3=)~UeE.ﬂhn_'_1 (un)
n

which was considered in Lemmae 8 and 9 has the following property.
Proposition 11: If ¥ f : E~E normal, we define the projective sequence
Jf[ as in Lemma 8, and if ¥ h ¢ F, function [h] is defined as in
Lemma 9, then

yfe[E-E] [JFf[]=f = for every atomic projective sequence

(zn) e E we have f (n zn) =N f(zn) . ¥
neIN n n
Proof: For z = (zn) =0z, atomic,
neiN n
we have:

[1F01@ =1L, () -
n

u

N OyeE . (F()), (2) =0 (fz)),
n n

(F(z,)), = 0 Flz,)

n (f(zn))k = g n n n

n,k

Hence [ 1f[](z)=7+

—_—~ A& D

Yo f(nz)=nf(z)
z n 2) = 0 iz,
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This statement establishes the equivalence between the representability
of normal functions from E to E and their regularity for the following
bundle structure defined by the projective sequences:

1. spectrum function:

¢ E spectrum(z) = {z }
nelN

2. Yimit function:
The 1imit function is the greatest lower bound. This a monic

ordered bundle, with U En as its set of rational elements, It is
neIN

distinct from the convenient domain structure of E , and is intrinsically
embedded, together with the regularity property "a la Scott" attached
to it:

f(n =N f
(0 2,) =1 1lz,)

in the construction of E and the representation system:

1. [:[E-E]l~E

[.1:F>[E~+E]
The solution adopted in the first sort domain construction [3,4] was
to strengthen this reguiarity property, which only concerns projective sub-
sets of E , in order to have a full Scott - c¢ontinuity property, which
concerns every directed subset of E . This Teads to 2-bundles with an
algebraic upper bundle, thus linking sort theory to denctational sem-
antics [12]. Another reason for choosing this bundle was to introduce
some more structure in the ground data type objects of E0 , for computability
reasons, and the upper Scott topology seemed a good start to this end.

. g2 qgs -nf -
Function fxpy verifies the condition fxpy (2 z) 2 Xy (z,)

since xpeEp is finite for the projective sequences:
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¥ (zn) eE x =Nz =3nx =z

R | p n

This holds also for every normal function f whose domain

Dom (f) = {xeE : f(x) # T} contains only inductive sequences. The function
fyq=w . If us=Y then 1 else T

does not verify the condition of Proposition 11 since

Y=NY, e dnY=Y
n N

n
is not true.

A1l this can be made more precise in the following way.

Let X be a set, partially ordered by =, and u : S+U S
(resp. M : S ~—+T1S) the partial function which takes least upper bounds
(resp. greatest lower bounds) of subsets S of X , whenever they exist.

Definition: (i) A monic_ordered bundle (m.o.b.)} over X 1is a couple

<1im , s> where Time {U , M} and s : X -+ P(x) are such that

VxeX x = lim {s(x))

(i1) An elementary m.o.b. over X is a m.o.b. <lim, s>
such that V¥ x V ues(x) u es{u) il

This definition is slightly different from the one given in [4].
Examples:
(i) the trivial m.o.b. is defined by lim =u and
s(x) =+ x={y :ys=x}
(i1) -any algebraic c.p.o. defines an elementary m.o.b. by 1im =u
and s(x) = {y < x : y compact}
(i11) any convenient set as defined in section II of this paper is an

elementary m.o.b. by 1im=U and s(x) = {y ¢ x : y atomic},
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Definition

: Let <]imx > 5> be a m.o.b. on X and <1imy , sy>

be a m.o.b on

¥xeX

Y.

Then a function f : X =Y s regular iff
f(x) = 11m'yf(sx(x)) ]

We denote by [X > Y ] the set of regular functions from X to Y

(ordered extensionally).

Examples:
(1)

functions.

The regular functions for ¢rivial m.o.b. are the monotone

(i1} The regular functions for algebraic c.p.o. are the Scott-

continous function,

(ii1)

functions.

The regular functions for convenient sets are the normal

0

It is easily shown that m.o.b.'s are closed under product and coproduct

[a].

Now define the following Wadsworth scheme. Let D be any elementary

m.0.b. which has a top element.

Objects:

A

n+]

=D+ [A~Al

Define

nzg

where [An - An] is supplied with the trivial bundle and An+1 with the

coproduct bundle.

i A A
0 0

Arrows:

=x if xeD

=i 0 03 R
0% 9j, otherwise

x if xeD

T otherwise
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PAy A s () = xif x e D

jn+l

jn 0 X oin otherwise.
We take the set-theoretical 1imit of this scheme:

A= ndnern * ¥n =y (yn+1)}
This can be decomposed in fact into

Ao = Aln) e Y "Y€ D *

{(}'n)nEIN :yO = T 1) ‘y"l = jn(yn+‘|) > yn-l-] € [An + AnJ}

=D+4,

where we define A_ as being the second part (in fact the functional
part) of the decomposition.

Having in mind Proposition 1T, we supply A_ with a double bundle,

or 2-bundle, structure defined as follows:

(1) "lower bundle" of A_ : 9t is induced by the m.o0.b. structure '

of I Ai » of which A_ is a subset. Thus:
ieIN

Vim =l , s((-"'n)neIN) = (sn ('y’n))nsIN
where < U, S is the m.o.b. structure of An .

(i1) ‘“upper bundle" of A : is defined by 1im =} and

5*((.yn)nEln) = {.yn+] i n e IN}

if we identify each An with its injective image in A, .

Definition: A function f : A - A_ is reguiar iff it is regular

for the upper and lower bundles 1i.e.

vxeA f(x)=u f(s(x))

f(x) =N f(s*(x)) o
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Since A =D+ 4 , as far as regular functions are concerned,
the upper bundle brings nothing to the D-part of A_, since in this
case s* ((Jh>neIN) is a singleton, and the Tower bundle brings

nothing to the & - part of A since in this case
SO phen) = Woen = +Oplnery
and regularity amounts to monotonicity.
let [A +A]=1{f: A~ A|fregular}. Then [A -+ A1 itself is
equipped with a 2-bundle structure.
More precisely Vv fe [A + A1 define 1f[=(]F [n) neIN
16, =T

1F Dy = e A . (R,

This is similar to the definition of lemma 8, and one shows similarly
that ]f[eAm.

Define also Vv h e 4,

[hl = A A, [h] (u) =n Pl (un) if ued, or uebD and ue s{u)
n

= [h] (s{u)) otherwise. s
Theorem and Definition: The couple [ . ], 1. [ defines a 2-buyndle
isomorphism between 4 and [A -+ A ] d.
Proof:

1. vhea, [h]le[A,~A], this is easily verified, by definition.
2. v fe[A,~A]1 1f[ea, , the proof is similar to the one of

Temma 8.
3. [ .] and 1. [ are both monotone. Equivalently, if

[Aw - Am] is supplied with the trivial m.o.b. as its lower bundle, then
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[.7 and 1. [ are regular for the lower bundle structures of

a_ and [A —+A]
4. The couple <lim, s> defined by 1im =N and
Y S(F) = ([ 1F L[] o nec N}

defines an upper bundle structure over [A°° > A“] . Indeed, let

K(A) =a_U{ueD:ues(u)}t
Then ¥ynelIN,[]1F [n+1] is canonically defined by
D1F D] = hue ko) 10T F Gl (3p)
On the other hand

TGl = Prue k) 100 flu) gy ()

Aue K (a) . :g (1f Lnﬂ)p_ﬂ (up)

(since (] f [i) (uj) is decreasing in both indices) =

u

AueK(a) . r;l (1 f [pyq) (up)

rueK(a). flu)=r

since f. is regular for the upper bundle {same argument as for Proposition

11). Therefore f =M s{f)
5. We just showed that v fe [A_+A] f=[1Ff[1].

6. vhea J[h][="h since
TIR [ppy = Ay e A, . (IR (W), = (if K(A) = AN K(a))

=AU e K(An) . (g hp+1 (up))n
Now Y Ve K(An)

] [h] [n+'| (V) = (g hp+l (vp))n = hn.(.] (V)
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Thus ] [h] [n+1 = hn+] as functions, therefore ] [h] [ =h .

7. 1. [ is regular for the upper bundles since

Ts(f) [=T{01F(qlineIN]
={101f[4410:ne Ny = (Point 6.)
{1f[yqineNy =s(3f[)

similarly [ . ] 1is shown to be regular for the upper bundles by computing
s (([h]) for hea: . X
s {[h]) =40 31Th] ) sne Ny = {hy g ine INE = {fh gl ome IN)

= [ s (h) 1. Which comples the proof. 0
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