Speech Recognition Using Linear
Prediction Residue and a Reduced
Feature Space

F. Mavaddat and S.K.S. Cheng
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-82-34
December, 1982



Speech Recognition Using Linear Prediction Residue and a
Reduced Feature Space

F. Maveddat
S.K.8. Cheng
CS-82-84

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L. 3Gl
Canada

ABSTRACT

Label Space is defined as a space to which reference points of a feature
space can be mapped. Lzbel space redundancies are removed by eliminating
points from the feature space. It is shown that some similarity measurements can
be performed in a combiunation of feature and label space with computational
advantages over the conventional methods. It is further shown that the similar-
ity measurements between the signals of speech in the space of LPC features can
take benefit of these preperties and a new algorithm for word similarity studies is
proposed. Two experiments are performed for finding a near optimum set of
parameters for the system and measuring its power for recognition of isolated
words. Some thoughts on hardware implementation is also given.

Keywords: linear predictive coding, feature space, similarity measurements, iso-
lated word recognition, phonemic labelling.
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Introduction

There are three steps to every pattern recognition problem namely, extraction of features,
measuring of similarities, and labelling of the unknown input. Theoretically, each step depends
only on the outcome of the previous step. Practically, there are strorg feedback considerations
within these steps and the merit of each step can be judged only within the framework of the

total system. This is the view which should be held in the study of this paper.

In this paper we first demonstrate a coding technique for transformation of reference points,
from feature space, into codewords. Such codewords are representable as points in the label
space. We will then show that the similarity measurements in the feature space are also measur-
able by the codeword distances in the label space. Such codewords often possess a certain amount

of redundancy which can be used towards reducing the cost of the computations.

Some of this redundancy can be removed through omission of some reference points from

the featurce space. Such reduced feature spaces are then studied in relation to linear predictive
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coding of speech signals. It is shown that in addition to reducing the number of reference tem-
plates in the LP feature gpace, computationally less expensive similarity measurements can also

be employed.

Based on these an acoustic processor is proposed. The acoustic processor will assign code-
words to suitable intervals of speech, By concatenation of these codewords, label matrices are

formed. Utterances are compared by measuring similarity of corresponding label matrices.

An experimental study is made and it is shown that the proposed techniques possess consid-

erable resolving power.
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1. The Label Space and the Similarity Measurements

Traditionally, patterns of short-time speech signals have been represented by feature vec-
tors. Such feature vectors are made of formalized entities representing the relevant parameters,
while ignoring redundancies, unrelated data, and noise. There are probably as many feature vec-
tors proposed as there are systems designed for processing of speech. Some of them, representing

distinct concepts, can be found in [Broad], {Atall],and [Fujiskai].

Independent of their underlying concepts, such feature vectors are usually representable as
points in their corresponding feature space. Similarity of patterns are measured in terms of suit-

able distance measures between the reference points in the feature space.

1.1 The Label Space

Let us consider n reference patterns by their respective points; R (1), R(2),....,£(n) in the
feature space. We also consider the distance measure d(7,j) to be a similarity measure between
the ith and the jih reference points, where d{i,i) = 0 for 1<i<n, and d{7,7)>0 for 1<i<n,
1<j<n, and i7#;j. We will further assume that a wnique label is associated with each of the
reference patterns.

Corresponding to each R (i) we will define a codeword, L(¢), as an ordered vector of refer-
ence point labels, such that R(j)'s label will precede that of R (%) in L(3), if 4{i,7)<d(i,k).
L (¢) will be called the codeword of the itk pattern. Codewords corresponding to individual pat-

terns are always unique by having their own label as their first element.

Fig. (1) is an example of a feature space with eight reference points labelled as
a,b,e,d,ef,g,and h. Distances between these reference points are shown in Fig. (la). Figure

(1b) shows the reference points as defined by their codewords.

We define the distance D(s,7) between L (i) and L(7) in the label space by

D (i.4) = z=: (05,8}~ p(5.8)) | )
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abecdefgh

a 02314675 L(1) = adbcehfg
b 20136457 L{2) = beadfgeh
¢ 310275486 L(3} = chdagihe
d 13205764 L{4) = dacbhegf
e 467560231 L{5) = ehfgadbc
t 64572013 L{6) = fgehbead
B 754631002 L(7) = gfhecbda
b 57641320 L(8) = hegidacb

Fig. (1): Distance measures of a hypothetical system in the feature space
{2} and their corresponding codewords (b).
where p(i,k) (p(j,k)) represents the index position of the kth labet in L{i) (L{7)) vector and

n is the number of Iabel points in the feature space.

1.2 Similarity Measurements in the Label Space

Recognition is the process of associating the unknown input pattern with one of the known
reference patterns through some similarity measurements. Traditionally this has been done by
measuring the similarity of the unknown pattern with each of the known patterns through dis-
tance measurements in the space of derived features. We will now show that this decision can
also be based on similarity measurements in the label space. This new similarity measurement
can sometimes have computational advantages compared to those made in the feature space. In
section 2- of this paper one such possible advantage is studied in relation to the traditional meas-

urements in the linear prediction feature space.

Measuring similarities in the label space has two phases. During the first phase the distance

d(z,i) between the feature vector of the unknown input, R (z), and all reference points, R (i) for

1<i<n are measured. Based on these measurements L {z) i3 formed and recognition is based on ..

measuring the distance D{z,i) between the L (z) and all other L (¢)s for 1<i<m. Traditional
decision algorithms can then be applied to the association of # with one of the reference patterns.

Nearest neighbour algorithm, is a special case of the above more generalized algorithm
which, in a sense, expects an exact match between one of the known and the unknown codewords.

Because of the unique representability of the codewords by their first element, this exact match
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can be reduced to that of comparing the first elements, This eliminates the need for the forma-
tion of the codewerds and the two are considered matching if their first elements correspond.
Labelling of the unknown input by its first codeword element, its nearest neighbour, is calied the

“nearest neighbour labelling algorithm”.

Codewords posses a good amount of redundancy. Nearest neighbour labelling algorithm is
one way of using this redundancy towards reducing the amount of computation. Another possibil-
ity is through reducing the number of reference points in the feature space. Following is a discus-

sion of ways of removing this type of redundancy.

Let us consider n codewords L (1), L{2),....L(n} cach made from some permutations of n

distinct tabels. These words are all M-distinct if

D(jy>M 1<i<n, 1<ji<n, i5] (2)
where D{i,7) is defined by {1) and M is some non negative integer. A reference point, in the
feature space, i3 said to be M-removable (or simply "removeable”} if after omitting its label from

all codewords they remain M-distinct (distinct).

Intuitively one expects that m of such reference points are “removable” if n << (r-m)\.
This need is usually satisfied by the typical values of n and m in many real systems. Fig. (2)
shows the codewords corresponding to the eight reference points of Fig. (1) after removal of one,

two, and three labels from the feature space.

1 i 111
L(1)==" hdcehfg dcehfg dehfg
L(2)= bedfgeh  cdfgeh  dfgeh
L(3)= cbdgfhe cdgihe dgfhe
L(4)=  dcbhegf dchegf dhegf
L(5)= ehfgdbc ehfgde ehfgd
L(6)=  fgehbed fgehed fgehd
L(7)= gfhecbd gfhecd gfhed
L(8)=  hegfdch hegfdc hegfd

Fig. (2): The codewords of Fig. (1) after removing (I) the label *a”,
(IT) the labels ”a” and ”b”, () the labels ”a”, ”b”, and “¢”.

Fig. (2) shows that for associating an unknown input pattern with one of the known pat-
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terns, it is not necessary to compare it with all of the eight patterns in the feature space. This in
addition to savings in the storage requirements, may have computational advantages if similarity
studies in the feature space are costlier than those in the label space, which is sometimes the cagse.
in general this reduction in the number of points in the feature space can be computationally

advantageous if

clf
%<—}{7}l (3)

where c{f) and c¢({) are the computational costs of the similarity studies in the feature and the
label space respectively, n is the total number of the reference points in the feature space, and
m (m<n) is the number of the redundant reference points to be removed. Obviously there will

be no advantage if ¢{f) < c(!).

Later in this paper we will see that the ¢(f) associated with the first phase of the two phase
algorithm applied to the linear prediction residual, as the basis of similarity measurements, is less
expensive compared to those required to be performed totally in the feature space. This will

further add to the computational advantage of the proposed algorithm.

Study of the procedures for systematic removal of the redundant reference points from the
feature space is not of our immediate interest. At worst it can be based on an exhaustive search
algorithm subject to certain rules for speeding up of the operations. Being executed once for the

lifetime of each system its overhead should be tolerable.

In some pattern recognition problems prior knowledge of all reference points is not feasible.
This can be due to their large number andfor great variations. Phonemic labelling is an example
of this possibility [Jelinek] , {Reddy]. Under such conditions, and if the absolute uniqueness of -
label vectors of all patterns is not immediately related to the overall performance of the system,

reference points can be chosen without the help of a solid redundancy removal algorithm.

Following points should be considered in the choice of such points:

1- The number of remaining reference points, {n—m), should satisfy the n << (n-m)!

relation.
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2- Remaining reference points should statistically be prominant within the input popu-

lation.

3- The selected features should have a high yield in the lexicon of the input words

[Shoup].

2. The Label Space of LP Features

Here we will apply the two phase detection algorithm to the study of pattern similarities in
the linear prediction feature space. The main reason for consideration of the linear prediction
feature space is its wide acceptance in modelling of speech signals [Atall], [Atal2], {Makhoul] and

recogrition of speech {Itakura], [White], [Coker|, [Gupta].

Questions regarding pattern similarities can be asked in two different ways, leading to dis-
tinct formulations with computationally significant differences. The first type of the questions
deal with similarities, between the two patterns, in absolute terms. Answers to such questions are
in terms of distance measures signifying, great, little, or no similarity. The second type of the
questions deal with the similarity of a given pattern with two or more others in relative terms.
These questions are in fact asking for ordering of the many according to their similarity with one.
It is not difficult to see that the questions of the first type are more demanding and can always be
used in answering the second type, while the reverse is not true. We will later show that the
answer to the questions of the first type also require computationally more complex and expensive

caleulation in the feature space of the LP coefficients.

Studies made and techniques proposed so far for measuring the similarity of speech patterns -
in the space of LP features deal with the questions of the first type. This is understandable in
view of the eventual use which is made of them for comparing the two short intervals of speech
taken from the unknown and the known patterns according to some suitable time wrapping func-
tion. On the other hand, the first phase of measuring the similarities of two intervals in the label
space requires only the answer to questions of the second type. Here, we \;'ill first study some of

the proposed distance measures in the LP feature space and then investigate the ways that they



can be {it to coding of label vectors.

There has been a considerable amount of interest in the study of a snitable distance meas-
ute, based on features derived by LP techniques, over the last few years [ltakura], [Coker],
[Souza], [Gupta], [Tribolt]. Direct comparison of LP coefficients is shown to be unsatisfactory
[Sato]. [takura attributes this "to the fact that the feature space spanned by LPC is too compli-
cated to introduce a simple and effective measure of distance between elements” [Itakural. It
turns out that all successful formulations, in one way or the other, are based on some form of the
power of the residual signal obtained by filtering of'one by the inverse model of the other. Here
we will study some of these from a general point of view aund consider the ways that they can be

applied to coding of label vectors.

1t is generally accepted that a short interval of speech signal, X{r), can be considered to be
stationary. It has been further shown that, except for nasals, such stationary intervals of speech

signal can be modelled by an all pole model |[Flannagan), [Makhoul]

r
X(n)= -3, a(k) . X(n-k) + ¢ (n) 4
x=1
where e¢(n) is a white noise process and the values of (%) for 1<k <p, can be obtained by solv-

ing the following systemn of normal equations

3 alk) Rli-4) = k() 1<i<s %)

k=

where R (i} = R(~i) is the autocorrelation function of the signal X(n). The vector
7 = (1,8(1),2(2),...a(p)) whose a(k} for 1<k<p, values are obtainable from (5) will be called

the linear prediction model, or simply the model, of the signal X{n).

The so called residue vector & T = (2(0), e{s), e{2),...¢(p)) can be defined as
T = Ra’ (6)
where R is the pth order autocorrelation matrix of an arbitrary signal X1(n}, and
7 = (1, a(1), a(2},...a{p)) is the model of another {or the samej signal, X2{n) (or X1(n)).
Different functions of , F'( ), have the following useful properties in measuring the similarities

of the two signal X'1(n) and X2{n).



1- Skould @ be a model of itself

F(v)=R()+ g ok) + B (k) )

will be the minimum total squared error of e{r}).

- FlE)= @7 & results in the total squared error e(n) due to filtering of X1i(n) by model T of

X2(n}).

3- e(i) for 1<i<p, values have been used successfully as measures of distance between signals
X1{r) and X2(n} [Gupta] in the forms of

DOXLXY = F(7)=Tog (33 [e)) (8)

I=1

or

LA
D(X1,X2) = F(¥)=1log ()} (e(i)}H) (9
i=1
where # is the residual vector of filtering X1 by the model of X2

Direct use of F{ € ) towards answering the similrity questions of the first type should not be
satisfactory. This is due to the fact that even though model & of sigral X1{rn) results in
minimum prediction error for X1, there is no guarantee that the same model will not result in

smaller absolute residual value while filtering some other signals.

To overcome this difficulty one has to consider any F( ¢ ) relative to the residual vector,
say F(% )} which can be obtained through filtering of X(n) by its own model. F( 2 ) is the self
referencing component of the measurement. Should & be a model of the similar signal, then

F( 7 )and F(%€) are close and their ratio nears the unit value.
Under all other conditions F( ) > F( £ ) and this results in greater than one ratios.

This fact has becn considered by 2 number of researchers. Coker and Bell [Coker] use
F{#)=a’ & as the basis of their studies and propose
=T
X 7) = ,;T—

= (10)

= a
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as a measure of similarity between X and @, where & is the model of X, and R is the pth order

autocorrelation matrix of X.

{takura {Itakura], using the log likelihood ratio derives

=T —_
a R 7
4TR % ()

d(X,7) =log
as the measure of similarity between X and the model # of the reference points. It is interesting
to find that Itakura’s assumption of speech signals as a Gaussian random process and interpreta-

tion of similarity as a likelihood ratio leads basically to identical formulation of the distance

measure derived by others purely on the basis of intuitive reasoning.

There has been some criticism of Itakura’s measure on the basis of its assumed statistical
properties [Souza], though Tribolt [Tribolt] has argued that such criticism is unjustified. AH these
measures, including those which lack the required self referencing component, have been used

with success in the development of some systems,

Derivation of the input signal model, corresponding to the successive intervals of the unk-
nown pattern, as required by (10) and (11), is one of the reasons behind the computational

expense of answering the questions of the first type.

Answering the similarity questiony of the second type, i.e. ordering of a set of reference pat-
terns according to their similarity to a given input pattern, can be considerably less expensive.
Suppose in answering of the questions of the second type, we measure the similarity of the input
pattern with each of the reference patterns. As the denominator of the distance ratios are identi-
cal in all these measurements, and one is interested only in the relative value of these distances, it
is possible to eliminate the self referencing component from all calculations (also log extraction '
from Itakura's measure) and base the ordering on the value of the numerators only. This should
save a considerable amount of computation in formation of the label space codewords. This

approach is the basis of the experimental system explained next.
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3. The Experimental System

The fitst set of experiments deals with the search for optimum system parameters. It was
performed in an informal way through which a set of reasonably performing parameters were

selected.

In the second experiment, the system parameters were fixed at those values and the systems

recognition rate for a vocabulary of 10 words {the ten digits) was found to be excellent.

The central idea around which the IWR is designed is that of first segmenting every utter-
ance into an equal number of segments, each short enough to be considered stationary. Then, the
similarity of every such interval with a predefined set of signals is measured and the interval is
replaced by a codeword representing the ordered sequence of the known signals labels. Ordering
is according to the distance measured between the interval of the unknown signal and the known
ones. This leads to representing every utterance by a matrix of labels. The overall utterance

similarities are measured by measuring the similarities of the label matrices.

3.1 IWR System Organization

To operate the system, for a new speaker and/or new set of words, one has to go through
three phases. They are for: setting up of reference points in the feature space of phonemes, form-
ing the reference matrices of the vecabulary, and inputting of the unknown word for measuring

its similarity with the stored vocabulary. !

3.1.1 Feature Space of Phonemes

Ideally cne would like to have one reference point for every sound of the Ianguage. On the
other hand the number of such reference points, when all allophores of every phoneme are con-

sidered, can be very large.

In section (1-2) we discussed a technigue for reducing the number of such reference points
through a mapping from the feature space into the label space. Such mapping can now be

employed by consideration of only a limited number of phonemes in the feature space with a label
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(a single letter of alphabet) assigned to everyone of them. Every other phoneme and their varia-
ticits {including those already present in the feature space} can now be coded into a codeword
(string of labels), with the position of label in the codeword signifying the relative distance of the

coded phoneme from the phoneme in the feature space.

The question of which and how many essential phonemes should be used is a difficult one.
One part of the first set of experiments is an attempt at recognition of one such set. We adopted
a very informal and intuitive approach based on the guidelines discussed earlier, and experi-

mented with a few distinct sets of phonemes.

It was intuitively obvious (and experimentally confirmed) that inclusion of vowels in the
set of feature space phonemes is very helpful. Other than this, depending on the set of vocabu-
larly, other frequently used phoneimes can be included in the set. As the cost of computation
directly increases by the number of such points, the tendency should be towards that of an
optimum set which, with a minimum number of members, is able to produce good recognition

results.

When feature space phonemes are known, one word of vocabulary for everyone should be
selected (there is little point in selecting a phoreme if it does not appear in any of the words of
vocabulary). This, is followed by inputting that word into the system and inspecting the utter-
ance signal on a graphic display. This is followed by manually isolating an integer number of
pitch periods from the section representing the phoneme, and deriving its model using the
methods discussed in section {2). The set of all models, derived for every one of the feature space
phonemes, constitutes the set of reference points in the reduced space of LP features. This phase
can be interpreted as introducing a new speaker to the system, though in principle there is little
against using the same model for another speaker. In hardware implementation of the system, to
be discussed later, this phase corresponds to that of tuning the prediction filters to that of a par-

ticular set of sounds.
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3.1.2 Introducing the Words

Once the essential phonemes are known and their models are derived and stored in the sys-
tern, words to be recognized must be introduced to the system, To form a referene template for
every word, several inputs of the same word should be used and “averaged” [RABINER]. We

will discuss only the information of reference template based on a single vtterance.

The input signal must first be sectioned into a number of segments, each equal in time and
short enough to represent an allophone. As the amount of computation increases by the number
of segments, the optimum number of such segments was another parameter of interest during the

first set of experiments.

Once the utterance is segmented, the relative distance of every one of its segments from the
feature space phonemes are calculated and a codeword representing the section iz formed. The
words’ reference template, a matrix of labels, is formed by side concatenating the codewords

representing the segments.

3.1.3 Input of the Unknown Utterance

Unknown utterances are initially processed like the known ones (3.1.2.) and a reference tem-
plates for them is formed. To recognize the unknown word its codeword matrix must be com-
pared with that of all the known words reference templates. The measure of similarity between
the unknown matrix and the known ones can be based on different measures. In our experiments
we used the sum of distances between individual cedewords, using a suitable time-wrapping algo-

rithm [Sakoe] and the nearest neighbour algorithm for labelling of the unknown utterance.

The measure used to calculte the distance (dissimilarity) between the ith and the jih

columns (codewords) of two label matrices is that of (1).

3.2 System Hardware

A 780 based microcomputer system, with 64K of RAM and 4MHZ system clock is used.

Peripherals include two single-density, single-sided, 8 inch floppy disk drives, a tektronix 4014
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graphics terminal and the usual video terminal and the dot matrix printer.

For speech input, a close-talking head-mounted microphone is wsed. Input signal is
bandpassed to that of telephone quality, sampled at 10KHZ, and digitized to 8 bits. - All utter-
ances were made in a small room with the low humming sound of the system cooling fans as the

background noise.

3.3 The First Experlment

The first experiment is zimed at finding the optimal parameters for the system operation.
The parameters under consideration were the order of prediction, the order of segmentation, and
the suitable set of reference phonemes. While the first two parameters are suited to systematic
search, the third has a very large space of possibilities and no systematic search was feasible.
Therefore, an intuitive approach was used and a reasonable set was found. All the utterances in

the Grst experiment were spoken by a male with a low voice whose mother tongue is English.

The vocabulary, Table (1), was taken from the first thirty words of a flight reservation sys-

tem [Levinson|.

YES SUNDAY  EIGHT MIDNIGHT

NO ONE NINE ANY

MONDAY TWO TEN EITHER
TUESDAY THREE ELEVEN  SEABASE
WEDNESDAY FOUR TWELVE INTERNATIONAL
THURSDAY FIVE AM. KENNEDY
FRIDAY SIX P.M. -

SATURDAY SEVEN NOON -

Table (1) Thirty Words Vocabulary for Experiment One

The reference phonemes used in the se experiments are a subset of the five vowels:

@ ,%,%,%,and T, and the four fricatives: n, s, f and ¢.

Ninety (three for each word in the vocabulary) words were used for formation of reference
matrices. In the same way, ninety words were used as the test set. The utterances were spoken

in a rardom order and at different times of day.
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3.3.1 Varlations of the Order of Segmentation

With the order of prediction and reference phonemes fixed at ten and CV1 (see table (2))
respectively, the order of segmentation was varied from five to forty. Figure (3) shows the

number of errors and near errors under different orders of segmentation.

Reference Phoneme Composition
Set Label
C1 n,f s, t
V1 i,1,7,4,7
CV1 nf st d,1, 7,4
cv2 n,f st 1€
cvs n,f, 9,4 d,%,e,i,T

Table {2} Composition of Reference Phoneme Sets

'™ ORDER OF PREDICTION : 10

— [ rFures eank :covi
ro
oo [
o - — ERRORS
o o
&< o —-- NEAR ERRORS
@ o L
[« Bl |
“e
oe [

c
OI L
w e s
W
S [
:S 3
zz i

o] Il 1 1 i 1 | 1 ]
0 0 20 30 40

ORDER OF SEGMENTATION

Figure (3) Variations of the Order of Segmentation: Error Rate,
va. Order of Segmentation

3.3.2 Variations of the Order of Prediction

With the order of segmentation and the reference phonemes fixed at twenty and CV1
respectively, the order of prediction was varied from six to eighteen. Figure {4) shows the number

of errors and near errors under different orders of prediction.

3.3.3 Varlations of Filter Bank

With the order of segmentation and the order of prediction fixed at twenty and ten respec-
tively, the filter banks, i.e. the set of feature space phonemes were varied. Table {2) gives the

composition of each filter bank. No plotting (such as that of figure {3) and (4)) is given because
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ORDER OF SEGMENTATION : 20
FILTER BANK : CV I

~— ERRCRS

—---NEAR ERRORS

NUMBER OF ERRORS OR
3
T T

NEAR ERRORS {ouf of 30 )
LI I 4 T T

(<]

[} 8 ] 12 14 16 8
ORDER OF PREDICTION

Figure (4) Variation of the Order of Prediction: Error Rate
vs. Order of Prediction.
the independent variable is not orderable.

Table (3) shows that the use of the filter bank made of only four consonant filters (C1)
resulted in the worst error rate; nevertheless, it was able to achieve a recognition rate of 72/90.
This recognition rate shows that consonant filters are significant in a filter bank. It is found that
at least nine filters, including both comsonant and vowel filters, should be carefully chosen to

achieve acceptable results.

3.4 The Second Experiment

In the first experiment, the optimal orders of prediction and segmentation were found to be
around sixteen and twenty respectively. It was found also that about nine reference phonemes
are sufficient for reasonable recognition accuracy, and that both consonant and vowel should be

included in the set.

However, two questions were not answered by the first experiment: (1) what is the recogni- -
tion power of the system? (2) what is the resolving power of the system in discriminating refer-

ence templates? The second experiment is designed to answer these two questions.

The experimental procedure is the same as in experiment one {section 3.3.). In this experi-
ment the speaker was a different male with English as his second language. The vocabulary con-

sisted of ten words only - one to ten. The test set was increased to 380 {38 for each word) to give
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FILTER BANK
WORDS o7 yv1  cv1 ove covs
NO o o - - N
MONDAY . ; .o -
FRIDAY 1o 10 - - -
SATURDAY 0/1 10 - - i
SUNDAY - - - -
ONE -1 - ] ]
TWO o0 1fo - ) ]
THREE 1o - - -
FOUR 20 - - 12 -
FIVE 20 3/0  2/0 200 1/0
EIGHT o0 - i . g
NINE . - ] -
TEN o1 - - o2 -
TWELVE S oyo 1o ot -
AM. iyt - o/t 1o 1j0
P.M. - - 1/o - 0/1
NOON 30 - 10 20 10
MIDNIGRT - 1fo  o/L -  1/0
ANY 20 - ; ; ;
EITHER 1o 1o - ) .

KENNEDY /o - - - -
TOTAL 18/3 13/0 52  6/6  5/2
Errors/Near-Errors, Blank = 0/0

Table (3) Varlations of Filter Banks.
a more significant estimation of the recogrition rate. The reference phonemes consisted of the ten

phonemes : &,n,&, %, 7,17 ,f,3,¢, and 7.

In this experiment, 380 test utterances, spoken in a random order over several days, were
sampled. Four words were classified incorrectly - once for the word ONE, twice for the word

THREE and once for the word NINE.

Tables (4) and {5} give the mean, standard deviation, maximum, and mimimum of the Shor-
test Distance (SD) and Distance Difference (DD) of the experiment. The SD is the smallest dis-
tance value obtained when an unknown template is matched with the reference templates. The
DD is the difference between the SD and the second shortest distance. In general, the lower the

SD or the higher the DD, the better is the resolving power, The statistics were collected only
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from the correctly recognized words.

From table (4), the worst (largest) SD is for the word THREE, which agrees with the experi-
mental result, for there are two recognition errors for this word. The best (shortest) distance is

for the word SIX.

STANDARD
MEAN DEVIATION MAXIMUM  MINIMUM
ONE .183 .028 .258 135
TWO .166 019 195 128
THREE .265 029 350 218
FOUR 124 .031 244 0856
FIVE 224 045 301 .146
SIX 103 012 142 .081
SEVEN 171 .020 .223 143
EIGHT 179 .029 .228 113
NINE 220 037 202 .154
TEN 182 031 244 .132

Table (4) Statistics of the Shortest Distance (SD)

STANDARD

MEAN DEVIATION MAXIMUM  MINIMUM
ONE 174 .048 .247 034
TWO .149 040 240 062
THREE 147 056 250 018
FOUR .192 042 257 083
FIVE 092 032 .148 .008
SIX .198 .018 .230 148
SEVEN 138 .026 194 084
EIGHT 181 024 .229 Ja27
NINE 108 045 .201 017
TEN 167 .030 217 088

Table (5) Statistics of the Distance Difference (DD)

From table (5), the words that contain errors - ONE, THREE and NINE - have the largest devia-
tion. This observation is consistent with the meaning of the standard deviation. The wider the
spread of the DD, the easier it is to have errors. The words, SIX and EIGHT have the largest
mean DD and the smallest standard deviation; therefore, they can be considered as the best

recognizable words.
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4. Herdware Implementation

Teckniques discussed earlier in this paper are particularly suitable to direct hardware imple-
mentation. Figure (5) shows one such implementation. The speech signal is fed in parallel to a
number of prediction filters. Each filter is tuned to predict one of the sounds of language and the
difference between the predicted and the actual vzlue appears in the output of the filter. Such
bank of filters correspond to the set of the reference phonemes in the equivalente software imple-
mentation. Design of such filiers is straight forward and well studied. Their regular structure

resembles that of systolic hardware and therefore suitable to VLS implementation.

Such filters can also be implemented, rather easily, using the digital signal processors.
Depending on the word length, order of prediction, and the speed and power of the signal proces-
sor, one processor may be able to implement one or more filters with the possibility of implement-

ing all filters using a single signal processor.

LINEAR
PREDICTIVE - pe -
frenr COMPUTER
\ AVERAGING
LrF f P \ MEASURES
DISTANCE RECOGNIZED
speeon ‘ \ ORDERING ? $ BETWEEN 9= L o0
' \ , UNIT \ X UNKNOWN
' ' LABEL
:
; \ | |3 ] MATRIX &
\ { THE
\ l KNOWN
LPF / ? ones

\\ !t/ !
|
W /

i
PREDICTION FILTER REFERENCE
RESIDUALS LABELS LABEL

MATRICES

Fig (5)+ Hardware Preprocessor
The "averaging and ordering unit” integrates the square of each filter output and displays at

its outputs the codes corresponding to the filter labels arranged in the order of the integration
values. Integration can be performed using simple analogue techniques and the ordering can be
performed using very simple single chip microcomputers. Slow rate of label vector updating

(around twenty per word) permits the use of very simple and cost efective techniques in its design
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and implementation. Measuring similarity between the Iabel matrices must be performed using

conventional equipment.

5. Summary and Conclusions

It was shown that similarity measurements ean also be performed in the Iabel space. Being
a redundant space, techniques of removing some of these redundancies were discussed.
It was further shown that the distance measure in the space of LP feature is costly and pro-

vides more information than what may be required for certain {ype of questions.

Finally ways of combining the two observations in the label space and the space of the LP
features were discussed. It was demonstrated that it can lead to a sufficiently powerful framework

for word recognition systems, with computationally less complex and less expensive calculations.

Some of the important reasons for using the proposed system are as follows:

1- The volume of needed programs is small and can be easily implemented

in very small systems.

2- Processing can be very fast. There are very good techmiques for its
further reduction, deperding ou the number of words in the lexicon versus the number

of reference sounds.

3- System is easily amendable to hardware implementation, using existing

modules in the market and/or custom VLSI implementation.

4« With little modification the same technique can be applied to the

initial phonological labelling phase of the continuous speech recognition.
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