. ————

EN
EN

E BEPABTM
E DEPARTM
CE DEPARTM

|

R
R

MBUTER 8¢
MPUTER 3¢
MPUTER SC

A Worst-Case

Efficient Algorithm

for

0000 Hidden Line Elimination
0000
0008
e e =l
oororoc

LLLILLILL Thonras Ottmann

<'<E Peter Widmayer

; ;; Derick Wood
LLLL L LL

o000 Data Structuring Group

EEE CS-82-33
NN

%%E October, 1982
S>>

i

A WORST-CASE EFFICIENT ALGORITHM FOR
HIDDEN LINE ELIMINATION+

Thomas Ottmannt
Peter Widmayert
Derick Woodt

ABSTRACT

Many algorithms for hidden line and surface elimination in a
2-dimensional projection of a 3-dimensional scene have been pro-
posed. However surprisingly little theoretical analysis of the algo-
rithms has been carried out. Indeed no non-trivial lower bounds for
the problem are known. In the present, self-contained, paper we
present a line-sweep-based hidden line elimination algorithms for 2-
dimensional projections of scenes of arbitrary polyhedra. It requires
Ofnlogn) space and O(n+ k)log?n) time, where n is the
number of edges in the 3-dimensional scene, and k is the number
of edge intersections in the specific projections.

1. INTRODUCTION

In the past two decades, many algorithms for the hidden line elimination
and visible surface reporting problems have been proposed in the literature (for
an overview see [SSS], [FV] and [NS].) The motivation for the intensive investiga-
tion and development of such algorithms stems from their practical importance in
the ever expanding field of computer graphics (computer aided design in architec-
ture, layout of VLSI-chips etc.). Consequently, a considerable number of the
algorithms have been designed for special applications, and the practitioner's
viewpoint has guided nearly all of the previous research. One effect of this is that
no attention has been paid to theoretical worst-case time and space bounds for
the algorithms; indeed, the authors know of only four (recent) resuits taking
worst-case complexity into account, [BBM], [LP], [S], and [Y]. Using the variable

+ This work was carried out wnder NATO grant No. RG 155.81; the work of the first and second
authors was additionally supported by a grant from the Dentsche Forschung inschaft DFG, and
the work of the third author by a Natural Sciences and Engineering Research Couneil of Canads
Grant No. A-7700.

t Institut fir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit Karlsruhe,
Postfach 8380, 7500 Karisruhe I, West Germany.

t Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo, On-
tario, Canada N2L $G1.

2 Ottmann, Widmayer and Wood

grid technique Franklin [F] has obtained a linear expected time algorithm, while
|[R] considers the problem for one monotone cylinder, and [EOW| for 1-
dimensional views of 2-dimensional scenes.

However, with the increasing significance of real-time computer graphics
applications, e.g. air traflic control and the like, the need for worst-case efficient
algorithms arises. For many other problems, contributions in this direction have
already been made within the flourishing field of computational geometry.
Paradigms developed there are applicable to the hidden line elimination problem
as well,

The purpose of this paper is to give a self-contained exposition of the
application of the line-sweep paradigm, sece [NP], to the hidden line elimination
problem, leading to a worst-case efficient algorithm. Section 2 consists of a short
presentation of the problem, following the guideline of definitions and
assumptions used in [$SS], [FV], and [NS]. Section 3 gives an outline of the line-
sweep algorithm for hidden line elimination, and a detailed presentation follows
in Section 4. The worst-case efliciency of the algorithm is derived in Section 5,
while some final comments are given in Section 6.

Hidden Line Elimination 3

2. THE HIDDEN LINE ELIMINATION PROBLEM

We are dealing with a scene of three-dimensional solids in three-dimensional
Fuclidean space. We assume that a solid is an opaque object which is bounded
by planar polygonal faces, which is not necessarily convex and may have holes.
The treatment of curved surfaces and solids is beyond the scope of the present
paper. It must be regular in the sense of Tilove [T|, that is it must be the closure
of its topological interior with respect to the three-dimensional Euclidean
topology. Intuitively, no dangling or isolated planes or lines are allowed.
Furthermore, no two solids are allowed to intersect, that is, no point of the space
belongs to more than one solid. Each face is bounded by edges and a face normal
vector is associated with each face, pointing outwards from the object, rormal to
the face, Looking at a face from outside the object, edges are oriented so that
the interior of the face lies to the right of each edge (we follow the convention of
polygon edge orientation as used in [L] and [OWW], for example).

The description of the three-dimensional scene is given as a collection of
descriptions of the faces. Each face is, in turn, described by a face normal vector
and a collection of descriptions of the edges of the face. An edge is given by its
starting and terminating point, implicitly giving the orientation, and the face it
belongs to.

For a given three-dimensional scene and a given position (viewpoint} and
viewing direction of an observer, the problem roughly is to eliminate from an
appropriate two-dimensional projection of the scene all (parts of} edges and faces
which the observer cannot see. Intuitively, this is the problem of making a
realistic image of the scene with respect to the hidden and visible lines and
surfaces.

Let us assume that the viewpoint of the observer doesn’t lie inside any of
the solids. The task of projecting onto a two-dimensional viewing plane (e.g., a
screen) exactly what the observer sees, that is producing a perspective view of the
scene, involves simple but laborious trigonometric computations. Most
representations of three-dimensional scenes on two-dimensional screens take a
different view, the orthographic projection, which is computationally easier, but
nevertheless still seems to be sufficiently realistic (at least for a distant observer).
The orthographic projection uses ‘‘viewing rays’ which are all parallel (instead of
meeting exactly at the observer's eye). [SSS| remark that “there is a perspective
projection which transforms a three-dimensional object as viewed in perspective
into another three-dimensional object which looks the same when viewed
orthographically”. Hence, for simplicity we use the orthographic projection in
our presentation of the problem.

The output of the algorithm is a description of the collection of all visible
parts of edges. This description must be precise, that is the coordinates of the
end points of the visible parts of edges are not necessarily restricted to some finite
set of values, depending, for example, on the resolution of some graphic output
device, but vary over the whole range of real numbers. Of course the precision of
computations is restricted to the computer's range of valtes. We are dealing
with ‘‘object space” rather than ‘‘image space’’. Note that usually computations
in image space refer to each ‘‘atomic resolution element'’, for example pixel on a
screen, separately in an order which is achieved naturally by an application of the

4 Ottmann, Widmayer and Wood

line-sweep paradigm. Indeed, output devices such as a graphics screen with a line
scanning the image have been a major motivation for the development of the
line-sweep paradigm.

Hidden Line Elimination 5

3. AN OUTLINE OF THE ALGORITHM

It is convenient to distinguish between the object coordinate system, that is
the coordinate system in which the objects’s coordinates are given as input, and
the eye coordinate system which is defined to be the coordinate system such that
the observer’s eye is at the origin and the observer looks in the direction of the
positive z-axis. We will assume that the well-known linear transformation (see
[NS]) has been applied to all objects’ coordinates and henceforth refer to the eye
coordinate system. Let us look at the orthographic projection of all objects onto
the (x, y)-plane. We'll use the arrangement of coordinate axes as is usual for the
two-dimensional case; the direction of the positive z-axis is away from the viewer.
This convention means that we deal with a left-handed coordinate system which,
however, is more intuitive than the usual right-handed one.

We assume that the usual “clipping'’ has been done: there are no objects
“behind”’ the observer, that is with negative z-coordinate, and there is no
restriction of the range of visibility in the (x, y)-plane, as for example the
boundary of a screen. Observe that the situation described so far can be
achieved by a number of operations which are only linear in the number of edges
involved in the input. Let us simplify our further considerations by an additional
preprocessing step: we remove all back faces, They are clearly invisible, as they
are obscured by the solid to which they belong. This can be done in linear time
by just looking at the z-coordinates of the faces’s normal vectors, and removing
the faces with this coordinate greater than or equal to zero. Hence, we are left
with a set of polygonal planar faces, where (a part of) a face is visible if and orly
if it is not obscured by (a part of) some other face.

From now on, we deal with the projections of the remaining faces on the (x,
y)plane. With each polygon in the (x, y}-plane, a distance from the observer is
associated in the form of the equation of the plane from which the polygon stems.
As all solids are nonintersecting, polygons with common inner points are
unambiguously ordered with respect to their distance. Note that in general
polygons touching at the boundary need not be ordered, because they may be
adjacent faces of one solid. Then, a (part of a) polygon edge is invisible (hidden)
if and only if it lies in the intersection of the polygon to which it belongs with a
less distant polygon.

Schmitt (|S]) uses the line-sweep paradigm to build up a ‘“connection
graph” containing all starting, terminating and intersection points of polygon
edges on all (parts of) polygon edges, augmented with some additional
information. In order to detect all visible lines, a traversal of the connection
graph is made as a second step of the algorithm. Although this algorithm has a
worst-case runtime of only O((n+ k)logn), where n is the number of input
polygon edges and k& is the number of pairs of intersecting edges, the space
requirement for the connection graph can be as high as (n+ k). See Section 6
for further comments on [S]. In contrast, we'll present an algorithm having a
runtime of O{(n+ k}logZn), but requiring only O(nlogn) space. The expected
space requirements are indeed much smaller, as at each step of the algorithm only
a small subset of all polygon edges needs to be stored, As our algorithm works
with only one sweep, each polygon edge is accessed as input, for example from a
secondary storage device, only once, and is stored only for a short while during

6 Ottmann, Widmayer and Wood

the sweep. This feature allows even large amounts of data to be processed with
little actual space being used. ‘

In detail, our application of the line-sweep paradigm to solve the given
problem works as follows: Sweep a horizontal line from top to bottom through
the plane, halting at each point where an edge starts or terminates or two edges
intersect; the sweeping points. Detect the intersection points during the sweep as
described in [BO], with the trivial change of sweeping “from top to bottom’
instead of “from left to right”. Maintain a line-sweep data structure L
representing the arrangement of polygons and edges currently cut by the
sweeping line. At each sweeping point, update L appropriately, depending on
the type of sweeping point: at an upper end point of an edge, insert the edge
into L ; at a lower end point of an edge, delete the edge from L ; at an
intersection point of two edges, do whatever is necessary to maintain L .

Maintain a buffer Ble] for each edge ¢ . Whenever an edge is inserted,
check whether it is visible, If it is, stote the coordinates of its upper end point in
its buffer. Whenever an edge is deleted, check whether it has been visible. If it
was visible, output its buffer entry, together with its lower end point. Whenever
two edges intersect, check each of them for previous visibility and for changes in
visibility status, updating and outputting the corresponding buffers as
appropriate.

The output buffering technique is used in order to avoid splitting visible
lines into small pieces. The output of the algorithm is the desired description of
the set of visible parts of edges. The runtime of the algorithm depends on the
number of sweeping points and on the complexity of the operations carried out at
each sweeping point. As the number of sweeping points is determined by the
given scene, and the buffering operations are simple it is crucial to find a good
data structure L supporting the desired operations.

Hidden Line Elimination 7

4. THE HIDDEN LINE ELIMINATION ALGORITHM

The sweeping line stops at upper end points, lower end points, and
intersection points of edges. We assume that these sweeping points are
determined analogous to the description in [BO|, and that the associated
computations take place. We will not refer to this part of the algorithm again.

However, in contrast to many other line-sweep algorithms, we may not
assume that at each sweeping point only one of the halting conditions is fulfilled.
For example at the upper end of the projection of a solid many polygons may
start:

sweeping 1ine

In such a case, we first change the situation immediately above the sweeping line
to the situation immediately below it, that is apply all changes to the line sweep
data structure L , and then check for visibility all edges that have been affected
by the operations.

We may, however, impose the usual restriction that no horizontal edges
occur. If they do we transform the coordinate system into a new ome such that
this constraint is satisfied, then apply our algorithm and transform the resulting
description back to the original coordinate system. Both transformations need
only time linear in the number of edges involved.

An edge is visible if and only if all polygons in which it lies are more
distant than the polygon to which the edge belongs. The visibility of (a part of)
an edge can change only at its own starting and terminating points and at
intersection points with other edges. Hence, to detect the visible parts of edges
during a line-sweep it is sufficient to stop at those points.

At each step of the algorithm, the sweep-line data structure I keeps track
of only those edges and associated polygons that are cut by the actual sweep-line
position. This is sufficient in order to determine the visibility of edges at the
crucial points. The parts of each polygon actually cut by the sweep-line are
represented as intervals, such that the two boundaries of each interval are the
two corresponding polygon edges. The ordering of interval boundaries does not
change between any two adjacent sweeping points. With each interval is
associated its distance in the form of the equation of the plane in which the
corresponding polygon lies.

In order to maintain L during the sweep, the following operations have to
be performed: whenever a new polygon {part) is encountered, that is, the sweep-

8 Ottmann, Widmayer and Wood

line stops at the starting point of two adjacent edges, the corresponding interval
has to be inserted into L , together with its distance; whenever the sweep-line
stops at a terminating point of two adjacent edges, the corresponding interval has
to be deleted from L ; whenever the sweep-line stops at the terminating point of
an edge which is the starting point of another edge, the interval boundary has to
be replaced by the new one (the ordering doesn’t change, however).

For example, immediately above the sweeping point depicted in Figure 1,
I stores the three intervals I, = [ej, el , I, =[eg €y, and I3 = ey, e} ,
representing the ‘‘active” parts of polygons py,p, and p; respectively. At the
sweeping point, I, has to be deleted; the boundary e; of I, has to be replaced
by e3; the boundary e, of I; has to be replaced by eg;

Situation: Data structure L:
{[el,ezl.[es,ell,[ez,e7])
e
sweeping 6
line __T___—-—_
{[eﬁ,e3},[e5,e7],
[e3.e4].[e4,e5]}

Figure 1

two intervals [, = [eg, e,] and I5=[e, ¢5] have to be inserted into L .
Hence, immediately below the sweeping point, L stores four intervals
I,=ee,eq, Iz=1leses], {y=|es €4 and Iy = e, e5], a8 desired.

In addition to the maintenance of L , visibility checks for edges have to be
performed. The active part of an edge e is visible if and only if each interval in
L within which ¢ lies has distance greater than the polygons to which ¢
belongs. Hence, it is sufficient to consider the closest of all intervals in L
enclosing ¢ .

Observe that queries for the closest enclosing interval take place whenever

Hidden Line Elimination 9

the visibility of an edge might change, that is, at each sweeping point. On the
other hand, the structure I needs to be updated only at starting and
terminating points of edges. As we shall see later, it i3 useful to maintain the
total ordering of the interval boundaries; if we do so, it is of course necessary to
update this ordering at all sweeping points, too.

The possibly large number of sweeping points naturally leads to a splitting
of visible edges into many small successive visible parts. We avoid this by the
standard buffering technique already described in Section 3.

Let us summarize the operations that must be supported by the scan line
data structure L :

(i) dnsertion of an interval with associated distance;

(ii) deletion of an interval with associated distance;

(iii) query with a point to determine the closest enclosing
interval.

An interval, having two boundaries, together with the distance, can be
viewed as a 3-dimensional point. Formulating the enclosure query as a
dominance query ([EO] show how this is possible), we can express the above
operations alternatively as:

(i') insertion of a 3-dimensional point;
(ii") deletion of a 3-dimensional point;
(iii’) query with a 2-dimensional point to determine the 3-

dimensional point with minimal first coordinate
among those 3-dimensional points that are dominated
by the query point in both other coordinates,

By this reformulation we have a special case of a 3-dimensional dominance
query. [EO| show that each 2d-dimensional dominance searching problem is
equivalent to a d-dimensional rectangle containment searching problem. For a
special type of d-dimensional rectangle containment query, namely the orthogonal
range query, a lower bound of Q(n(logn)’) is known from Fredman |[Fr]. This
lower bound also carries over to the 2d-dimensional dominance searching
problem. Though this does not really provide a lower bound for our special 3-
dimensional dominance query, it leads us to suppose that a data structure L
requires Oflog’n) time in the worst case for at least one of the operations.

We now give a description of the hidden line elimination algorithm in terms
of the primitive operations:

10 Ottmann, Widmayer and Wood

Algorithm HLE
{ The operations of Bentley-Ottmann’s line segment intersection algorithm
[BO] are carried out as well, without further notice. They determine the
sweeping points.}

procedure try output { ¢ : edge);
begin if output buffer Bfefis marked
then begin output (¢, Bfe));
output current point of ¢;
unmark Bfe/

end
end;
function visible (e : edge) : boolean;
begin query L with e determining the distance d
of the enclosing interval;
visible ;= (4 > distance of interval of ¢)
end.
begin { HLE }

Start with initially empty sweep-line data structure L
and unmarked output buffer B,
for all sweeping points y from top to bottom do
begin {updatesof L}
for all intervals [starting at y do insert [into L ;
for all intervals I ending at p do delete I from I ;
for all intervals I for which at y a boundary edge
is replaced by another do
begin delete old [from L ;
insert new 7 into L
end;
{visibility checks and output}
for all edges e ceasing to be active at y do try output (e);
for all edges ¢ becoming active at y do
If visible (¢) then mark Ble| with y;
for all edges e intersecting some other edge at y do
if visible (¢) then If Ble| is not marked
then mark B[e] with y
else
else try output (¢)
end
{at the end of the operations of the algorithm, L and B are again empty,
and all visible parts of edges have been output}
end {HLE }.

In order to show that Algorithm HLE does indeed have a worst-case complexity
of O(logzn) per insert, delete and query operation, we present a data structure
L suppotting the required operations within this time bound. Let us recall

Hidden Line Elimination 11

that, for a specific sweep-line position, the visibility query is the question of
determining the closest interval (of a given set of intervals) in which a query
point lies. In order to be able to answer such a question efliciently, we chose an
augmented dynamic segment tree to be the sweep-line data structure. In this
structure, storing a set of intervals in one dimension involves maintaining the
values of the interval’s end points in sorted order. Recall that L also requires
updates at intersection points of edges, because the total ordering of interval
boundaries changes. As for the usual segment trees, the sweep-line is divided into
elementary intervals, so-called fragments, defined by all pairs of adjacent interval
end points. Hence, each (original) interval consists of a sequence of adjacent
fragments. For a detailed discussion of the segment tree see [BW], for example,

The dynamic segment tree was first described in [E]. Instead of an optimal
binary tree as for the static segment tree version (see [B], [BW]) a tree of
bounded balance (see [NR], [W1] and [W2]) is used. As in the usual static
segment tree, each leaf of the tree represents a fragment, and each inner node
represents an interval which is the union of the intervals represented by its sons.
For each node p , we denote by [(p) the interval represented by p . With
each node p , a secondary structure is associated, storing all segments # for
which (I{p) C #) (I(father(p)) € #) The weight-balance property of the
dynamic segment tree provides the basis for a counting argument showing that
the worst-case cost for rebalancing and the necessary creation of new secondary
structures is ({nlog n) for a series of n insertions and deletions of segments in
the initially empty tree, provided that the creation of a new secondary structure
from old ones takes time at most linear in the number of segments stored in the
secondary structure. For a detailed presentation of this argument see [E].

The dynamic segment tree, which we will call the primary structure,
supports the operations

INSERT LEAF
DELETE LEAF structural changes including rebalancing
SEARCH LEAF

with an amortized worst-case cost per operation of Oflogn), when n polygon
edges are given as input, providing an upper bound for the number of fragments
ever stored in the primary structure. The secondary structure is chosen in order
to support the operations

SEARCH interval
INSERT interval
DELETE interval
MIN DISTANCE

in at most Oflogm) time, when m intervals are currently stored in the
secondary structure, and the operations

UNION
INTERSECTION
DIFFERENCE

12 Ottmann, Widmayer and Wood

of two secondary structures yielding one new secondary structure with at most
O(m) cost per operation. The latter bound is sufficient to guarantee an
O(n log n) total cost for rebalancing operations.

The time needed for the secondary SEARCH, INSERT, DELETE, and MIN
DISTANCE operations turns out to be crucial for the total worst-case time bound
of the algorithm. We have not been able to find a structure that supports all of
these operations faster than Oflogn) time. It is, however, possible to account
for SEARCH, DELETE and MIN DISTANCE or for SEARCH, DELETE and
INSERT with only O{1) worst-case cost by using additional pointers and an
additional dictionary {for the seccondary structures altogether) or by using a
layered tree scheme for all secondary structures together (see [VW]), respectively.
As in both cases one of the operations keeps its Oflog m) complexity, this
doesn’t improve the overall worst-case behaviour of the secondary structures.
Hence, we use the simplest of the structures suitable for our purposes, a height-
balanced binary search tree (AVL-tree, see [AVL]). Each node of an AVL-tree
stores a polygon, associating with it the equation of the plane in which the
polygon lies. The entries are sorted with respect to the distances of the polygons.
Note that within the secondary structures we are not concerned with polygon
boundaries or changes of the order in which the polygons are stored; the
algorithm will ensure, on the primary structure’s level, that the entries of the
secondary structures are correct by appropriately inserting and deleting polygons.

Let us recall the overall data structure: The primary structure PRIM is a
dynamic weight-balanced segment tree, in which each node represents an
interval. The interval boundaries are represented by the equation of the
corresponding edges. A secondary structure SEC{p) is associated with each
node p of PRIM. SEC(p) is an AVL-iree storing all polygons that is, intervals
for any given sweep-line position, which make use of the interval I(p) in their
canonical segment tree covering. The polygons in SEC(p) are sorted with
respect to their distances.

It remains to be shown how the updates of the line-sweep data structure
can be performed, and how the visibility check for an edge is done. Observe that
an edge is visible if and only if it belongs to the nearest face present in one of the
adjacent elementary intervals in PRIM. All faces f present at any given
elementary interval I{/) of a leaf { of PRIM have exactly one entry of f in
SEC(p) for one of the nodes p on the path from the root of PRIM to leaf [.
No other entries occur in SEC(p) for these nodes p . Hence, the nearest of the
faces present in I({) is the nearest of the faces with MIN DISTANCE in
SEC(p). This means that we can find the nearest face present in I(I) in

O(log’n) time by finding the minimum in Oflogn) structures SEC(p).
Hence, each visibility test for an edge in PRIM can be answered in O{logn)
time by looking at both adjacent elementary intervals,)

In order to show how the updates of the line-sweep data structure can be
performed, we distinguish between the possible cases occurring at a sweeping
point z :

1)

Hidden Line Elimination 13

{z isa sweeping point }

{a,b are edges}

{» isa polygon }
PRIM INSERT LEAF (a,b)
by splitting the leaf into which (a,3) falls (see Figure 2) { note that
SEC(leaf (s, b)) is empty };
SEC INSERT p INTO leaf(s,d).

SEC

Figure 2 : split of a leaf in PRIM

14

Ottmann, Widmayer and Wood

(2)

PRIM INSERT LEAF (a,5)
by splitting the leaf into which (a, b} falls (see Figure 2);

let 4 be the (unique) node on the path from the former leaf(l,r) to the
root such that p € SEC(u); u can be found by a series of Oflogn) SEC
SEARCH operations;

SEC DELETE p FROM u ;

DISTRIBUTE p DOWNWARDS FROM u (see Figure 3)
{ distributes the entry p to those nodes in the subtree below u which p
uses for the canonical segment covering }.

DISTRIBUTE p DOWNWARDS FROM u :

begin if interval (u }IN p
then SEC INSERT p INTO «
else begin
DISTRIBUTE p DOWNWARDS FROM leftson(u);
DISTRIBUTE p DOWNWARDS FROM rightson(x)
end
end;

{ entry p is distributed to Oflogn) nodes and inserted in their SECs,
according to the canonical segment covering }

Figure 3: The DISTRIBUTE procedure

Hidden Line Elimination 15

@)

PRIM SEARCH LEAF (7,4) and
PRIM SEARCH LEAF (s, ?);

replace @ by b everywhere on the path from the root to the two found
(adjacent) leaves in PRIM.

)

same as (3}

)

16

Ottmann, Widmayer and Wood

PRIM SEARCH LEAF (a,})
{ (a,}) really is aleaf and p is the only entry in its SEC, because @ and
b are both boundaries of p ; the situation is as depicted in Figure 4 or
symmetric to it }
observe (sce Figure 4):
all faces in SECs of nodes on the path from u; to v, and from u, to
v, have right ends > r and left ends </, respectively; edge a
separates left and right subtree of u ;
choose | to be the new separating edge:

replace @ and & by (in the PRIM interval descriptions of all nodes from
% to vy and from u, to v,;

Hidden Line Elimination 17

1\ and deenote a (possibly empty) sequence of nodes and
rightson-Tinks or teftson-1inks, respectively.

Figure 4: PRIM before sweep-line halt

PRIM DELETE LEAF v ;
PRIM DELETE LEAF v, ;
merge v’ with its father: take SEC from father(v'), because SEC{v’'}is
empty;
IF former father (v} = u
then merge u with rightzon(u): build a disjoint union of their SECs of
constant length

else merge former father(v;) with former brother(v;): build disjoint union of
SECs of constant length.

18

Ottmann, Widmayer and Wood

The situation changes as depicted in Figure 5.

L)
merged

Figure 5: Change of situation in cases (5), (6); example
for Uy #zl

Hidden Line Elimination 19

(6)

- the situation for PRIM is as depicted in Figure 4; p NOT IN SEC(v);
exactly one node from u; to v, and exactly one from v' to v, contains
p IN SEC; restructure PRIM and merge SECs as in case (5), yielding the
situation depicted in Figure 5;

- because the region occupied by p has increased, it may be necessary to
collect p's entries in SECs and make an entry of p at some higher node; the
only place for this change can be v! : the former uncle of v’ has become
its brother; therefore

(p InSEC(v'))and (p In SEC (brother{ v’))) then
begin
SEC DELETE p FROM v’ ;
COLLECT p UPWARDS FROM v’
end;
{ see Figure 6 }.

COLLECT p UPWARDS FROM v :

begin if p In SEC (brother(v))
then begin
SEC DELETE p FROM brother(v);
COLLECT p UPWARDS FROM father(v)
end
else SEC INSERT p INTO v
end;

{ entry p is collected and deleted from O{log n) SECs of brothers of path
nodes and inserted in one node's SEC }

Figure 6: The COLLECT procedure

Ottmann, Widmayer and Wood

{7)

don’t change the structure of PRIM; on the paths from the root to the
(adjacent) leaves (¢, a), (s,8) and (b,r), exchange a with b ;
one of the following two cases can occur:
(i) as depicted in Figure 4
exactly one node from u; to v; contains p, and one contains p; in
SEC; also, p, INSEC(v); s0

- SEC DELETE p; FROM v ;
- SEC INSERT p, INTO v;

(ii) as depicted in Figure 7:
let v, be the unique node between u; and 2z, such that p, IN
SEC(v,); there is exactly one node between z, and v, with p, IN
SEC; py NOTINSEC(v); so

- SEC DELETE p, FROM v, ;
- DISTRIBUTE p, DOWNWARDS FROM o, ;
- COLLECT P, UPWARDS FROM v ;

{ note that no restructuring takes place in PRIM }

®)

Hidden Line Elimination

21

22 Ottmann, Widmayer and Wood

- see the situation as depicted in Figure 4; the treatment of the symmetric
situation is, as opposite to case (7), symmetric; let v, be the unique node
between u; and v such that p, IN SEC(v,); let v, be the unique node
between v, and v such that p; INSEC(;)

- COLLECT p; UPWARDS FROM v ;

- COLLECT p, UPWARDS FROM v ;
-exchange a& with & at the interval boundaries in PRIM.

(9)

- one of the following two cases occurs:

(i) as depicted in Figure 4:

py INSEC(v); let v, be the unique node between u, and v; such
that p, IN SEC(v,); let v, be the unique node between u, and v
such that p, INSEC(v,);

- SEC DELETE p; FROM v
. SEC DELETE p, FROM v, ;
- DISTRIBUTE p, DOWNWARDS FROM v, ;
- exchange ¢ with & at the interval boundaries in PRIM:
(ii) as depicted in Figure 7: symmetric to (i} exchange indices ! with r,
s with b, and 1 with 2.

Hidden Line Elimination

(10)

This case is symmetric to case (7). See case (7) for details.

23

24 Ottmann, Widmayer and Wood

5. A WORST-CASE UPPER BOUND FOR THE COMPLEXITY OF
THE ALGORITHM

From the previous observations, we know that at each sweeping point
O(log?n) operations are sufficient, if n denotes the number of edges given in
the input to the algorithm. Let k be the number of intersection points of
polygon edges. Then the Bentley-Ottmann algorithm finds all intersections in
time Of(n+ k)logn). Hence, the time for our hidden line elimination
algorithm is O{(n + k)log*n) , taking into account the detection of the sweeping
points, the updates of the sweep-line data structure, the visibility checks for
edges and the output of the visible lines.

The space requirements are bounded from above by the space requirements
for the sweep-line data structure, because the output buffer as well as the
structure needed for detection of the intersections of edges can be kept linear (see
[Br]). The primary structure PRIM needs at most linear space, too. However,
each polygon may have an entry in Oflogn) secondary structures SEC at any
given time. Hence, the overall space complexity is Oz logn) .

We state the essence of our investigation in the following:

Theorem: The hidden line elimination problem can be solved by a line-sweep
algorithm in O{(n + k)logZn) time using O(nlogn) space, where n is the
number of edges given in the input and k& is the number of edge intersections.

Bearing in mind that the fastest known algorithm for detecting all edge
intersections takes O{{n + k)logn) time, it would be interesting to find a line-
sweep algorithm for hidden line elimination with the same complexity. Such an
algorithm could be said to be quasi-optimal with respect to the state-of-the-art in
line-sweeping.

Note that our hidden line elimination algorithm can be easily adapted to be
a visible surface reporting algorithm, by just changing the visibility checks so
that they refer to (parts of) polygons instead of (parts of) edges. The dynamic
segment tree structure augmented with AVL-trees is indeed powerful enough to
support a number of modifications to the original problem very easily.

Hidden Line Elimination 256

6. FINAL REMARKS

The result reported here can be considered to be a further step in
developing a mathematical theory for computer graphics, cf. [EOW]. However,
having said this, it still leaves much to be desired. [S] has produced an

O({n+ k)logn) time algorithm for hidden line elimination, which unfortunately
requires O{n+ t) space. Thus, although the algorithm is quasi-optimal, it is so
at the expense of high space requirements, and even the author of the algorithm
[S1] bas found this to be unbearable when implemented, since the connection
graph must be available throughout the computation.

The first question is, simply: Is there a hidden line elimination algorithm
requiring O{(n+ k)logn) time but only O{nlogn) space?

Second, is there a quasi-optimal algorithm requiring only O{n) space?

Third, and more interestingly, edge intersections may play little part in a
particular projection. For example, consider a scene of polyhedra which is
blocked by a large wall. A projection may only show the wall, yet all edge
intersections are considered by our algorithm. Is there an algorithm whose
complexity is expressed in terms of both the number of edges in the scene and
the number of visible edges in the projection?

Fourth, and finally, what non-trivial lower bounds can be obtained?

26

Ottmann, Widmayer and Wood

REFERENCES

[AVL]

(BBM]

(B]

[BO]

(BW]

(Bl

[E]

[EO]

[EOW]

[FVv]
[F]

[Fr]

[z

L}

[LP]
[NS]

Adelson-Velskii, G.M. and Landis, YM.. An Algorithm for the
Organization of Information; Dokl. Akad. Nauk SSSR 146, (1962), 263-
266.

Beatty, J.C., Booth, K.S. and Matthies, L.H.: Revisiting Watkins'
Algorithm, Seventh Canadian Man-Compuler Communications Society
Conference (June 1981), 359-370.

Bentley, J.L.: Solutions to Klee's Rectangle Problems; unpublished
manuscript, 1977,

Bentley, JL. and Ottmann, Th.: Algorithms for Reporting and
Counting Geometric Intersections; JEEE Transactions on Computers C-
28, (1979), 643-647.

Bentley, J.L. and Wood, D.: An Optimal Worst-Case Algorithm for
Reporting Intersections of Rectangles; JEEE Transactions on Computers
C-29, (1980), 571-577.

Brown, K.Q.: Comments on ‘Algorithms for Reporting and Counting
Geometric Intersections'; IEEE Transactions on Computers C-30 (1981),
147-148.

Edelsbrunner, H.: Dynamic Data Structures for Orthogonal Intersection
Queries; Institut fiir Informationsverarbeitung, Technische Universitit
Graz, Report No. 59, 1980,

Edelsbrunper, H. and Overmars, MH.: On the Equivalence of Some
Rectangle Problems; Information Processing Letters 14 (1982), 124-127,

Edelsbrunner, H., Overmars, M.H. and Wood, D.: Graphics in Flatland:
A Case Study. Technical Report CS-82-25, Department of Computer
Science, University of Waterloo 1982.

Foley, J.D. and Van Dam, A.: Fundamentsls of Interactive Computer
Graphice; Addison-Wesley Publishing Co., Reading, Mass. 1982.

Franklin, W.R.: A Linear Time Exact Hidden Surface Algorithm.
SIGGRAPH '80 Conference Proceedings, Computer Graphics 14 (1980),
117-123.

Fredman, M.L.: A Lower Bound on the Complexity of Orthogonal
Range Quetries; Journal of the ACM Vol. 28, (1981), 606-705.
Hubschman, H. and Zucker, S.W.: Frame-to-Frame Coherence and the
Hidden Surface Computation: Constraints for a Convex World.
Computer Graphics 15 (1981), 45-54.

Lauther, U.: An O{Nlog N) Algorithm for Boolean Mask Operations;
Proceedinge 18th Design Aulomation Conference, Nashville, (1981), 555
562.

Lee, D.T. and Preparata, F.P.: Private communication, 1982.

Newman, W. and Sproull, R.: Principles of Interactive Computer
Graphics; 2nd edition, McGraw-Hill, New York, 1979.

e

[NP]

[NR]

[oww]

[R]

is}

[s1]
[sss]

[T}

(VW]

fwa]
fwaj

{v]

Hidden Line Elimination 27

Nievergelt, J. and Preparata, F.P.: Plane-Sweep Algorithms for
Intersecting Geometric Figures; Communications of the ACM (1982), to
appear.

Nievergelt, J. and Reingold, E.M.: Binary Search Trees of Bounded
Balance; SIAM Journal on Computing 2, (1973), 33-43.

Ottmann, Th., Widmayer, P. and Wood, D.: A Fast Algorithm for
Boolean Mask Operations; Technical Report CS-82-37, Department of
Computer Science, University of Waterloo, 1982.

Rappaport, D.. Eliminating Hidden Lines from Monotone Slabs;
Proceedings of the 20tk Allerton Conference on Communication, Control,
and Computing (1982), to appear.

Schmitt, A.: On the Time and Space Complexity of Certain Exact
Hidden Line Algorithms; Universitit Karlsruhe, Fakultat fiir Informatik,
Report No. 24/81, 1981.

Schmitt, A.: Personal communication, 1982.

Sutherland, 1LE., Sproull, R.JF. and Schumacker, R.A: A
Characterization of Ten Hidden-Surface Algorithms; Computing Surveys
6, (1974), 1-55.

Tilove, B.: Set Membership Classification: A Unifled Approach to
Geometric Intersection problems; JEEE Transactions on Compulers C-
29, (1980), 874-883.

Vaishnavi, V.K. and Wood, D.: Rectilinear Line Segment Intersection,
Layered Segment Trees and Dynamization; Journal of Algorithms, 3
(1982), 160-176.

Willard, D.E.: Predicate Oriented Database Search Algorithms; Harvard
University, Aiken Computer Laboratory, Report TR-20-78, 1978.
Willard, D.E.: An Introduction to Super-B-Trees; University of lowa,
Department of Computer Science, 1979.

Yao, F.: On the Priority Approach to Hidden-Surface Algorithmas,
Proceedings of the 21st IEEE Annual Sympesium on Foundations of
Computer Science (1980}, 301-307.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

