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Abstract
Language forms,their interpretations,and their
Tinguistical families are introduced, analogously to grammar
forms. These notions enable us to prove the foilowing three
results for grammar forms:
(i) the interval of all super-regular grammatical families
is not maximally dense,

(i1) there is no maximally dense interval of grammatical
families which contain the family of regular languages,
and

(iii) it is decidable whether or not an interval of grammatical
families containing the family of regular languages is

dense.



1. Introduction

In [MSW2] the study of dense hierarchies or intervals
of grammatical families generated by grammar forms has been
initiated. We say that a pair of grammatical families
(X],)fz) forms a dense interval if}\ﬂ 1 $(X/2 and faor
every pair of grammatical families ?fB and aZf P satisfying
;{ 1 5,{3 9%4 5‘4/2 there exists a grammatical family
properly in between%3 and ;\44.

Although the interval (X (REG),s& (CF)) is shown to
be dense in [MSW2], the question of its maximality within
the collection of context-free grammatical families was

Jeft open. This interval is maximal if for all grammatical

families o<p GZD(REG); (X7, (CF)) is not dense.
¥ .

In the present paper we resolve this issue by demons-
trating that (a¢f(REG), a%D(CF)) is not maximal. To this end
we introduce the general notion of a language form, which
turns out to be crucial in the solution of this problem,
enabling us to provide a characterization of those L] and
L, for which (atg(L}),é<9(L2)) is dense. Moreover we strengthen
this result considerably by proving that there is no maxi-
mally dense interval (a{o, a#D(CF)). Finally, we prove that
it is decidable whether or not (5(, ;ZJ(REG)) and, hence
(&, X (CF)) is a dense interval.

The paper consists of a further three sections. Section
2 provides the basic definitions and preliminary results.

Although this paper is dependent on some earlier results, we



have attempted to make it as self-contained as possible. The
crucial results of earlier papers are the four propositions
stated in Section 2. Section 3 states and proves two Density
Characterization Theorems, while Section 4 considers various

implications of these Theorems.



2. Basic Notation and Results

In this section we not only introduce the basic notions
and state some propositions, but we also prove some prelimi-

nary results.

Throughout this paper we use the following con-

vention regarding homomorphisms.

Convention: Every hemomorphism h: ¥ - A* is assumed to
be a literal (letter-to-letter) homomorphism, that is
h(£)}) € A. We use the terms homomorphism and morphism
interchangeably.

Let L be é language, then by alph(L)} we denote its
alphabet. We say L is looping if either L contains a word
containing two distinct appearances of the same letter or
there exist distinct words Wiseeo W, in L and distinct

letters a;,...,a  in alph(L}), for n = 2 such that a;, a

n

are in Wis 1 =1 <n and s a] are in wn. If L is not

i+l

looping we say it is nonlooping.

Let L e« Z* and L' « £'* then L' is an interpretation

of L, denoted by L'<d L, if there exists a morphism
h: Z'* - z* such that h(L') « L. We say L' is a reqular

interpretation, finite interpretation or nonlooping

interpretation of L denoted by L"ﬁ L, L' 79L or L' ﬂ L,
respectively, if L'=2 L and L' is reqular, finite or non-
looping, respectively. A language interpreted in this

manner is also called a language form.



Each language L defines a family of languages under

interpretation, denoted by & (L), dfr(L), &’f(L) or:{’n(L),

we call these the linguistical, r-linguistical, etc.,

families of L. For example £ (L) = {L' : L'=a L}. Note
that L (L)  L(L,) iff L; < L, and similarly for -, etc.
The importance of these various notions stems

from the following result.

Proposition 2.1 [MSW3]

For all Tanguages L1 and L,,

L) = R, ife (1) = &.(1L,).

In other words a family is characterized completely by the
finite languages it generates. Of course it follows
immediately that Jfr(L1) = ifr(Lz) iff Jff(L]) = £ flLy).

We now introduce the notion of interpretation for
context-free grammars, in which case we call them Qrammar
forms, for further details see [Wol. A {context-free) grammar
G is a quadruple G = (V,x,P,S,) where V is an alphabet, Pe(V-x)*
is a finite set of productions, usually written as A -.«,
and § in V - £ is the sentence symbol. It is well known that

we can associate a language with each grammar G, denoted by



L{G), where L(G) < =*. For further details consult Harrison
[H] or Hopcroft and Ullman [HU].
Let Gi = (Vi’zi’Pi’Si) be context-free grammars,
where 1 = 1,2. Then G] is an interpretation of Gz, denoted
* *

by G]-ﬂ Gz, if there exists a morphism h: V] - V, such
that:

h(v]-z]) sV, - 5,, h(g)) « £,,

h(P]) = P2 and h(Sl) = 52’

where h(P]) is defined as if P] is a finite language with
words A - a, and h(=) = =-.

With a grammar form G we associate its grammatical
family & (G), defined by Z(6) ={L(G') : 6" < 6},

A sub-regular grammar form G and its language L{G)

are related in the form sense by the following proposition.

Proposition 2.2 [0SW]

For all context-free grammars G such that 9<7(G)

consists solely of regular Tanguages

AL (6) = 2 (L(e)).

Note that this result does not hold for "context-free inter-

pretations" of languages.



We say that a language L is minimal if there is no
L' ¢ L such that Jf(L') =Z(L). Given L] and L, such that
if(L]) = Zf(Lz) then L, is said to be equivalent to L,,
denoted by Ly ~ L2, otherwise L] is inequivalent to L2,
denoted by L] v L2. If L]—Q L2 and L] & L2 then we say L,
is a proper interpretation of L,, written L]‘f L,. By
L -« L2 we denote that L] is not an interpretation of LZ'

Since we also discuss regular and nonlooping inter-
pretations in the following we add a subscript to<d, &, 9,

~ giving ‘f , ‘? » 7 » f for example.

The two central notions of this paper are captured

by:

Definition

Let Jf] and sz be two grammatical families
satisfying J(] T ifz. Then Jf] pred sz, denotes
5{1 is a predecessor of if;, if there is no grammatical
family -l’3 with Z] gza g_.zz.

We say that (Jf],ifz) forms a dense interval (of

grammatical families) if for every pair of grammatical

families ifs and Af4 satisfying

Z Czs&”'fa,fxz

1 =



there is a grammatical family 42?5 with &{3 $:£f5 = df4.
In a similar manner we define these notions for linguistical
families generated under the various interpretation mechanisms.
Typically we will write LI pred L, and (L],Lz) rather than
K’(L]) pred Z(LZ) and (f(L]),i((LZ)), respectively, 1in
this case and speak of r-denseness when we mean
i -

(Jfr(L]), xr(Lz)) s dense with respect to-.

Note that Proposition 2.2 connects dense intervals
of sub-regular grammatical families with r-dense intervals

of the corresponding linguistical families.

It should be clear that an interval (< 1 &fz) is
dense {r-dense) if there is no OZD3 in the interval with a
predecessor (r-predecessor) alsc in the interval. We charac-
terize those language forms which have a predecessor in the
following two theorems. However we need to define some pre-

liminary notions first of all.

Definition

Let L] < z]* and L2 (= 22* be two Tanguages.

Then the superdisjoint union of L4 and Lo, denoted by

L1 [} L2, is defined as L1 U L2 if 21 n 22 = f and is
undefined otherwise. If L1 and L2 are language forms, we
can always rename their alphabets to obtain disjointness,
so in this case it is assumed that L] ) L2 is always well-

defined.



Let L = £* be a language. We say that L is
incoherent if it can be decomposed into nontrivial L-I and L2
such that L, o L, = L (by nontrivial we mean Ly # P and
L; + {1}, where X is the empty word). Otherwise we say L

is coherent.

In [MSWI] the following two results have been proved:

Proposition 2.3

Let L be a finite coherent language. Then L has a

predecessor iff L is nonlooping.

Proposition 2.4

A minimal finite ladguage L has a predecessor iff

L = KB N for some K and N, where N is nonlooping.

Theorem 2.5
Let L be a coherent language. Then L has a

predecessor iff L is nonlooping.

Proof: If L is finite the result follows by Proposition
2.3. Hence consider infinite L only. Observe that

every infinite L is looping, hence it only remains to show
that such an L cannot have a predecessor. Therefore assume
L has a predecessor P. Now P'f L and hence there exists

a finite F with F<9 L but F-@ P by Proposition 2.1.



Consider P & F. Clearly PP § F=a L. Moreover L2 P U F
since L -5 P by assumption, L F, since L is infinite, and
L is coherent. This contradicts the assumption that P pred L.

Hence L has no predecessor. O
We also have the general result.

Theorem 2.6
A minimal language L has a predecessor iff

L =K®N for some K and N, where N is nonlooping.

Proof: This is similar to the proof of Proposition

2.4 and is therefore omitted. 0

Finally we demonstrate that denseness implies

r-denseness for regular linguistical families.

Lemma 2.7
Let L1 and Ly be two regular languages with L]‘g L2.
Then if (LI’LZ) is dense, (L1,L2) is r-dense also.

Proof: Assume that (L],Lz) is not r-dense. Then by the
remarks above there exists L and P satisfying L] <P <f L-? L2
and Pr-pred L. Now P2 L implies PR L and since (L]’LZ)

is dense, there exists Q with P 15 Q j?L. Mow by Proposition
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2.1 there exists a finite qua Q with qub P and also

there exists a finite FL with FL-Q L and FL Q. Putting
these two facts together consider P © FQ' Clearly

PP GFQ < L, since P R FQ is regular. This is a contra-

diction, hence (L], L2) is r-dense.



3. The Density Characterization Theorems

Cne of the major obstacles to proving decidability
results for intervals of grammatical families has been the
Tack of a density characterization theorem for such intervals.
In the present section we provide such theorems which are then

used to provide examples of dense intervals.

Theorem 3.1: The First Density Characterization Theorem

Given two languages L1 and L2 with Llfg L2, then

(LI’LZ) is dense iff Ly % Lo
Similarly if L] = LZ’ then (LI’LZ) is r-dense
iff L] W L2.

»

Proof: The second statement follows from the first by way
of Lemma 2.7, hence we will only prove the first statement
here.

Without Toss of generality assume both Ll and L2

are minimal.

if: Assume Ly 7 L,- Observe that for all L,

L,y L=<sL

2’ n i’
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Let L, = Lj g My 5 ... 8 Mo» for coherent nonlooping
Mi’ 1 <1 <mand Lé looping, where Lé cannot be further
decomposed under § into a non-empty nonlooping language and
a looping language. We say the above decomposition of L2 is
the maximal non-looping decomposition for L2. Similarly,
let L, = L & Ky g ... 8 K, be the maximal nonlooping
decomposition for L].

Since L] = LZ’ Mi*G L], 1 < i <m. Furthermore each
Miqﬁ Li since this would contradict the minimality of Lz.
Therefore Mi-c Kj for some j. Similarly Kj-q Mi’ otherwise
it would contradict the minimality of Ly. Hence Mi ~ Kj.
This implies we can write L, as Ly GMy B oM ¢ N,y g
where n = 0 and the Ni are coherent and nonlooping.

Note that Lé + f. Otherwise LT'f L2 implies Li =9,
since a looping language cannot be obtained from a nonloeping
one. Moreover in this case n = 0 and hence.L1 ~ L2, a

contradiction.

Finally consider minimal L3 and L4 such that

L,< L

-t
i + Ltl-‘=l L

3 2’

Then by similar arguments to those for L] above we can

express L3 as

L3HM1U...UMmUN g ... 4N



and
Ly as L 9 M, 6 ... 6 m 0 N, ... 0 Nis
where
1 <t <s <n
Moreover Lé can be expressed as J] g ... 8 Jp and L&

as K, g ... 8 Kq, where each of the J; and K, are looping
and coherent. MWe now show that we can always construct

an L such that L L9 tL

3T LT L,
(i) s = t. In this case there exists an i such
that for all j, 1 s j < p either Jj - Ki

or ij Ki‘

For otherwise Lé ~ LA and
hence L3 ~ L4. Since Ki is lTooping it has
no predecessor (by Theorem 2.5). Therefore
consider a K%'f Ki which also satisfies

K; P2 Jj’ 1 < j < p. Sucha K% must exist
since there are only finitely many Jj«d Ki'

To conclude this subcase observe that L, g K
is properly between L3 and L4.
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(ii) s>t. Now Nt+1 U o... 4 N5 cﬂK] B ... W Kq,
otherwise we would have a contradiction to
the minimality of L3. In particular this
implies Nt+1-° Ki for some i, 1 < i < q.

Consider K% such that Nt+1'$ K%-ﬁ Ki' Surely
such a K% exists and furthermore as in

subcase (i) Ly 4 L3 9 K%{: Ly-

only if: Assume (Ll’LZ) is dense. MNow if L, ﬁ L,» then there
exists a coherent nonlooping F <3 L2 such that F -9 L]. But
this implies Ly 9L,  F= L, and by Theorem 2.6 L, g P s

a predecessor of L1 ¥ F, if P is the predecessor of F.

But this implies (L],Lz) is not dense, a contradiction. [

Corollary 3.2
For an arbitrary regular language L, (-fr(L),-Z’(REG))
is r-dense iff L is n-complete andafr(L) 7 & (REG).

Corotlary 3.3

For two arbitrary Li and L2 with L] ?1 L2, (L],Lz)

is not r-dense if L] is noniooping.
This follows by obéerving that if L2 is nonlooping
then Lz-# L.I and hence L] ﬁ LZ' On the other hand if L

215



15

looping then it can generate arbitrariiy long chains of
words (or broken loops, see [MSW1]) and L] cannot, hence

once again L1 # LZ'

Corollary 3.4

The interval (ifr(L),.f(REG)) is not r-dense,

where L = (a*-{az}) U {ab,ba,b}.

Proof: <Consider the language M = {ab,acd,bef}. Clearly M

is nonlooping and M is minimal and coherent. Now both a

and b appear in a word of Tength 3. Therefore letting h

be a morphism such that h(M) = L, it follows that h(acd) = h(bef)
= aaa and hence h(ab) = aa. But aa is not in L, hence

ML and by Corollary 3.2 (L,a*) is not dense. a

To enable us to present specific r-dense intervals
of the form (-C,i(REG)) we need to strengthen Theorem 3.1
for the case of n-completeness. This we now do by way of

the following definitions.

Let L =< £* be an arbitrary nonlooping language and
let L' = L - . We say a word w in L' is isolated if
alph(w) n alph{L'-{w}) = #. We say a word w in L is an

end word if
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alph(w) n alph(L'-{w}) = {a}, for some a in E.
In this case we say a connects w and L' - {w}. We say a word
w in L is an inner word if it is neither an isolated word
nor an end word.
Lemma 3.5

Every coherent nontrivial nonlooping language N

has at least one end word if #N = 2.

Proof: Immediate. &}

We are now ready to state and prove our second

characterization theorem.

Theorem 3.6: The Second Density Characterization Theorem

Let L be an arbitrary language.
Then (L,a*)} is r-dense iff L has a subset L' for

which the following condition obtains:
For all letters a in alph(L') and for all i, j = 0
there is a word x in (é]ph(L'))i and a word y in

(a]ph(L'))j such that xay is in L'.

In other words L is n-complete iff it has such a subset L'.
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Proof: 1In this proof whenever an n-complete Tanguage is
mentioned we always assume it i3 also minimal, that is every
proper subset of it is not n-complete. Clearly this is
no loss of generality since each n-complete Tanguage has
a minimal n-complete subset.

Because of Theorem 3.2 we only need consider the
case that L is n-complete, since a* is obviously

n-complete.

if: To show that L is n-complete we need to prove that every
nonlooping language N has a morphic image in L' and hence
in L. We prove this by induction on the cardinality of N.
Note that L' contains words of all lengths. For #N =1,
since the only word must consist of distinct letters
it trivially has a morphic image in L'.

Now assume that for some k z 1, every N with #N < k,
has a morphic image which is a subset of L'.

Let N be a nonlooping language with #N = k + 1. For
w an end word in N there is a morphism h such that h(N-{w})
is a subset of L.

Consider the connecting symbol a in w. Then we can

write w as b.l . biabi bn’ where 0 < i < n. Clearly

+1
there is a word v in L' satisfying
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v = x1h(a)x2,

where |x;| = i and [xy] = n - 1.

Note that the letters b], ey bn are distinct from
each other and from alph(N-{w}). Hence we can extend
h to these new symbols such that h(w) = v. In other

words h(N) < L' completing this part of the proof.

only if: L is minimal n-complete by assumption, hence we
prove it satisfies the property in the Theorem statement.
Let a be a Tetter in alph(L) and let xay be a word
in L. Clearly there must be at least one such word with
|xyl # 0 otherwise L would not be minimal n-complete.
Now there is a nonlooping language N such that
whenever h(N) = L, then there is a word w in N with
hiw) = xay. If this is not the case L- {xay} is also
n-complete, a contradiction of the minimality of L. We

define nonlooping languages Mij for all i, § =2 0 by:

For every symbol s in alph(N) add a word

aq e aisb] . bj
to N, where a, and bm are new symbols for

every symbol s in alph(N).
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Now since each Mij is nonlooping Mij-ﬂ L for all i, j = 0.
Moreover whenever Q(Mij) < L, for some morphism g, then

g(w) = xay by the above remarks. Moreover g(a]...aisb]...bj)
= Xqay, in L, for some s in alph{N) and hence L satisfies

the property in the Theorem statement, completing the

proof. 0

This leads immediately to some specific examples

of n-complete languages and hence dense intervals.

Corollary 3.7
L1 = {a,b}* - {a1,b1 : 1z 2} is n-complete and

hence (L],a*) is an r-dense interval.

Proof: L} clearly satisfies the condition of Theorem 3.6.

Corollary 3.8
Ly = {a,b,c}* - {a3,b3,c3,aab,aac,aba,aca,baa,

caa,bbc,bcb,cbb} is n-complete.

More importantly:

Corollary 3.9
Let I, = {a].az,...,am} and

K 2)

*
n (e*-x

I
U La]az,a2a3,...,ama1}.

Then K is n-complete.
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4. Decidability and Maximality

In this section we first prove that n-completeness
is decidable for context-free languages, and then go on to
show not only is (L (REG), £(CF)) not a maximally dense
interval, but also there is no maximally r-dense interval

(L,a*).

Theorem 4.1

N-completeness is decidable for context-free languages.

Proof: L is n-complete iff it has a subset L', which
satisfies the condition of Theorem 3.6, that is L' = L n &*
for some £ < alph(L). Now define finite substitutions 8y

for all a in % by:

§,(a) = {f,a}
sa(b) = {f}, for all b in Z, b * a,

where f is a new symbol.

Clearly L' satisfies the condition of Theorem 3.6 iff
Ma = Ga(L') n f*af* = f*af*, for all a in Z.
This is decidable since f*af* is a bounded regular

set and Ma is context-free. 0
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In order to prove the maximality result we need to

consider directed cycles of length m, denoted by Cm. Letting

I, s {a],az,...,am} we define Cm by:

Cm = {a]az,azas,...,ama]}.

It is a straightforward observation that

cr-a Cm iff r = 0 (mod m).

On the other hand every nonlooping language N < 22 is an

interpretation of Cm for-all m =z 1.
We now have:

Lemma 4.2
Let L be an n-complete language.

Then there is an m such that Chp e L.

Proof: We only need consider L' = {w is in L : |w| = 2}.
Let #L' = r. Now since all nonlooping languages are inter-
pretations of L, then in particular

P = {3132,3233,...,a

r LRl R LIPS

is an interpretation of L', that is there is a morphism h such

that h(Pr) c L'
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Now h cannot be one-to-one, since #P = r+1 > #L'. Therefore
h merges at least two letters and hence there is anm 2 1
such that ¢ = h(P ). But this implies C = L' cl
completing the proof. 0

We also need:

Lemma 4.3

Let L1 and L2 be regular languages. Then there is

a regular language L such that
L (L) = L(Ly) n LALy)
and
L0 = L () 0 L (L),

Proof: This follows along the lines of the proof of Theorem

4.2 in [MSW4] and hence is Tleft to the reader. a]

We are now able to prove ocur final result:

Theorem 4.4

There is no (regular) language L such that (L,a*)

is maximally dense {r-dense).
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Proof: We show that every dense interval (L,a*) can be
extended. In other words that there exists an L0 such
< *) i
that L0 < L and (Lo,a ) is dense.
From Lemma 4.2 we know that there is an integer
m = 1 such that Cm < L. Let mo be the greatest such m.
Immediately L' = {w is in L : Jw| = 2} is not an
, since ¢ -AC
m0+] My m0+i

s - 2 s
Letting Km0+1 = (alph(L)* - alph{L)® u {aja,, ..., am0+1a1}.

interpretation of C
Then Cm0+1 =1 Km0+1 and moreover L is not an interpretation

of K Now let L0 be a language such that

m0+1'

LiLg) = () 0 LKy o).

Note that Loff L, since L is not in Rf(LO).
It remains to demonstrate that L0 is n-complete. However

L is n-complete by assumption and K is n-complete

ma+1
0
by Corollary 3.9. Hence L0 is n-complete and (Lo,a*) is

both dense and an extension of (L,a*) as required. ]

Corollary 4.5
For all context-free grammar. forms G with ?f(G), 5(?CF),
the interval (Z(6), £ (CF)) is not maximally dense.

Thus a problem posed in [MSW2] has finally been solved.
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